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Abstract

Two sequences {z; }i_; and {y;}!_; of distinct integers are similar if their entries
are order-isomorphic. Let f(r, X) be the length of the shortest sequence Y such that
any r-coloring of the entries of Y yields a monochromatic subsequence that is also
similar to X. In this note we show that for any fixed non-monotone sequence X,
f(r, X) = ©(r?), otherwise, for a monotone X, f(r, X) = O(r).
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1 Introduction

We consider the following Ramsey-type question. We say that two sequences {z;}!_; and
{y:}i_, of distinct integers are similar if their entries are order-isomorphic, i.e., z; < x;
if and only if y; < y; for all 1 <7 < j < t. For a given sequence X and a positive
integer r a sequence Y is Ramsey for X if for every r-coloring of the entries of Y there is
a subsequence of Y which is both monochromatic and similar to X. Denote by f(r, X)
the length of the shortest sequence Y that is Ramsey for X, i.e.,

£r, X) = min Y|,
where the minimum is taken over all Ramsey sequences for X. Moreover, let

f(?”,t) = m)?xf(r,X),
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where the maximum is taken over all sequences X with |X| = t.

Frankl, R6dl and the author [3] asked to determine for a fixed ¢ the order of magnitude
of f(r,t) as a function of r. Here we show that f(r,t) = O(r?). Indeed, we give a stronger
result identifying the asymptotic behavior of f(r, X) for every X.

Theorem 1.

(i) Let X be a monotone sequence, i.e., X is similar to (1,2,...,|X]) or (|X|,...,2,1).
Then

f(r, X) =0O(r).
(i1) Let X be a non-monotone sequence. Then

f(r,X) =0(?.

(The hidden constants depend only on X.)

It is also worth mentioning that the proof shows that for each t there is a (universal)
sequence Y of length O(r?) which is Ramsey for every sequence X of length ¢ and any
number of colors r. Furthermore, the entries of such Y colored by the majority color
contain a subsequence similar to X.

2 Proof of Theorem 1

For (i) it is enough to observe that (1,2,...,r|X|) is Ramsey for (1,2,...,]|X]), and
similarly, (r|X]|,...,2,1) is Ramsey for (| X],...,2,1).

Now we prove (ii). First we show the lower bound. The proof is based on the Erdds-
Szekeres [4] theorem which says that any sequence S of length m contains a monotone
subsequence of length [v/m]. It is not difficult to observe (see, e.g., [1, 8]) that the
repetitive application of this result shows that S can be partitioned into at most |2/m|
monotone subsequences. For the sake of completeness we prove a similar result here.

Let X be any sequence of length ¢ which is non-monotone. Assume that Y is Ramsey

for X. We show that |Y| > (5)2 Suppose not, i.e., |Y| < (g)2 We will repeatedly

apply the Erdés-Szekeres theorem. We start with Y of length ag = |Y| < (g)2 and find a

monotone subsequence of length [,/ag ]. Then we remove it from Y obtaining a sequence
of length a; = a9 — [y/ao | and repeat the whole process again. After the i-th step the
length of the remaining sequence is given by the recursive formula

Ai+1 = A — f\/a_ﬂ-

Let N be the least integer for which ay = 0. We show that N < r. First observe that for
each i < N, we have a; > 1 and

1\ 2
ai+1=az‘—[\/a_ﬂgaz‘—\/a_i<(\/a_i—§)
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implying

and consequently,

Thus,

and after at most r steps we end up with an empty sequence. Summarizing, we just found
a decomposition of Y into at most » monotone subsequences. Now we color each monotone
subsequence with a different color. Since X is non-monotone, there is no monochromatic
subsequence similar to X, a contradiction.

Next we show the upper bound. First we need some notation. Let A and P be 0-1
matrices. We say that A contains the ¢ x t matrix P = (p;;) if there exists a ¢ x ¢
submatrix B = (b; ;) of A with b;; = 1 whenever p;; = 1. Otherwise we say that A
avoids P. Notice that we can delete rows and columns of A to obtain the submatrix B
but we cannot permute the remaining rows and columns. Given a permutation 7 of ¢
elements its permutation matriz is the ¢t x t matrix Pr = (p; ;) whose entries are all 0
except that in column 4, the entry 7 () equals 1, i.e., the only non-zero entries are pr(; .

We will use the following result conjectured by Fiiredi and Hajnal [6] and proved
by Marcus and Tardos [7]. Let P be a permutation matrix. Denote by g(P,m) the
maximum number of ones in a 0-1 matrix of size m x m avoiding P. Then, due to Marcus
and Tardos [7], there exists a positive constant ¢ = ¢(P) such that

g(P,m) < cm. (1)

Let X be a given sequence of ¢ different integers. (Here non-monotonicity is not
required.) Without loss of generality we may assume that X is a permutation of {1, ..., ¢}.
Let Px be the corresponding permutation matrix and let ¢ = ¢(Px) be as in (1) yielding

g(Px,m) < cm. (2)
Set
m = |er| + 1. (3)
Now we define a sequence Y which is a permutation of {1,...,m?}. Let
Y=(1, m+1, 2m+1, 3m+1, . (m—1)m+1,
2, m+2, 2m+2, 3m+2, ce (m—1)m+2,
3, m+3, 2m-+3, 3m+3, ce (m—1)m+ 3,
m, 2m, 3m, 4m, - m? ).

Clearly, |Y| = ©(r?). It remains to show that Y is Ramsey for X.
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Let Ay be the following matrix of size m x m based on Y. The first m elements of Y
form the first column in Ay in reverse order. The next m elements of Y form the second
column in Ay in reverse order, etc. Thus,

(m=—1)m+1 (m—1)m+2 (m—1)m+3 ... m?
(m—=2)m+1 (m—=2)m+2 (m—2)m+3 ... (m—1)m

A (m—=3m+1 (m—=3m+2 (m—3m+3 ... (m—2)m
y = : : . :
m+ 1 m + 2 m+ 3 2m

1 2 3 m

Now let us arbitrarily color the elements of Y with r colors. We need to show that there
is a monochromatic subsequence in Y that is similar to X.

Clearly, every coloring of Y uniquely induces a coloring of the entries of Ay. Choose
the most frequent color, say red, and let A = (a;;) be the 0-1 matrix of size m x m whose
entries correspond to it. That means a;; = 1 if and only if the ij-entry in Ay is colored
red. The key observation is the following: if A does not avoid Py, then Y contains a
monochromatic subsequence similar to X. By (3) and (2), we get that the number of

ones in A is at least )

s em> g(Px,m).
”

Hence, A does not avoid Pyx. This completes the proof of (ii).

3 Concluding remarks
It may be of some interest to study f(r,t) in more detail. Theorem 1 implies that
ar? < f(rt) < e,

for some positive constants ¢; = ¢;(t) and ¢y = c5(t). For the sake of simplicity we did
not attempt to optimize theses constants. The proof gives ¢; = %L and this constant can
be improved to 1 by using a result of Brandstadt and Kratsch [2]. On the other hand,
¢ is entirely based on the result of Marcus and Tardos [7] and so is exponential in ¢ (see
also a result of Fox [5]).

It would be also interesting to consider a similar question and study the growth of
f(r,t) for a fixed r and large ¢.

For only two colors it is not difficult to see that

f(2,t) =6(t). (4)

Indeed, let X = {z;}!_; be any sequence. Without loss of generality we may assume
that X is a permutation of {0,...,¢ — 1}. For the upper bound let us define Y =
YWYy @ | Y® where YO = (tz; + 21, tw; + 29, ..., tz; +z) for 1 <i < t. Now let us
arbitrarily color the entries of Y with two colors. Since each Y is similar to X, we may
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assume that there is no monochromatic Y'®. Thus, there is a monochromatic subsequence
(y1,92, ...,y such that y; € Y@ for 1 < i < t. It is easy to see that such (y1,va,..., %)
is similar to X. Consequently, Y is Ramsey for X and f(2, X) < |Y| = %

To see the lower bound of (4) consider X = (1,2,..., 5], t,t —1,..., 5] +1). Let Y
be any Ramsey sequence for X. Clearly, Y must contain many subsequences similar to
Z = (1, 2,..., L%J ). Starting with Yy = Y, we find a subsequence similar to Z and remove
it obtaining Y; (of length |Y| — [£]). We repeatedly continue the process of removing
subsequences similar to Z until we cannot longer find a subsequence similar to Z. Let m
denote the number of steps and Y;,, be the remaining sequence. Now we color Y,,, blue and
Y \ Y, red. Since Y,, contains no subsequence similar to Z, there is no blue subsequence
similar to X in Y. Therefore, there must be a red subsequence in Y which is similar to X.
In particular, there is a red subsequence similar to X \ Z. Since Y \ Y, is a disjoint union
of m (increasing) sequences similar to Z, each of these m subsequences can contain at

most one element of the (decreasing) sequence X \ Z. Thus, m >t — |£| = [L] and so

2 2
2
Yy \Yulzm|i] > L] 220
2 2 2 4

By recursively extending the above construction one can get an upper bound for any
r > 2 and show that

flrt) <t (5)
For example, for r = 3 and a permutation X = {z;}l_, of {0,...,¢ — 1} it is enough to
take Y = YOY® YO where
Y(l) = ( t2$i+t$1 + 21, t2$i+t£€1 + X9, ey t2$i+tl'1 + x4,
t2$i + tl’z + x1, th’i + tLL’Q + T, coey tQJJi + txz + T,
t2x; + tay + 21, t2x; + txy + 9, - 2z + txy + 3y ),

for 1 < i < t. Observe that Y is Ramsey for X. Hence, f(3,X) < |Y] =
The lower bound in (4) and the upper bound in (5) imply that for a fixed r > 2

Q) = f(r,t) = Ot").

Determining the right order of magnitude of f(r,t) as a function of ¢ remains open. !
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(12

Wery recently, together with Klimogova and Kral’ we showed that f(r,t) = Q(polyl o2

uses some ideas from [5].

) . The proof
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