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Abstract

Determining if a symmetric function is Schur-positive is a prevalent and, in gen-
eral, a notoriously difficult problem. In this paper we study the Schur-positivity of a
family of symmetric functions. Given a partition ν, we denote by νc its complement
in a square partition (mm). We conjecture a Schur-positivity criterion for symmet-
ric functions of the form sµ′sµc − sν′sνc , where ν is a partition of weight |µ| − 1
contained in µ and the complement of µ is taken in the same square partition as
the complement of ν. We prove the conjecture in many cases.

1 Introduction

The ring of symmetric functions has as a basis the Schur functions, sλ, indexed by par-
titions λ. This basis is of particular importance in representation theory because its
elements occur as characters of the general linear group, GLn, and they correspond to
characters of the symmetric group, Sn, via the Frobenius map. In addition, the Schur
functions are representatives of Schubert classes in the cohomology of the Grassmanian.
Often, given a symmetric function, we are interested in writing it in the Schur basis. If the
coefficients in the Schur basis expansion are all non-negative integers, then the symmetric
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function corresponds to the character of a representation of GLn or Sn. In this case, the
coefficients are simply giving the decomposition of the character in terms of irreducible
characters. We will call a symmetric function Schur-positive if it is a linear combination
of Schur functions with non-negative coefficients.

In recent years there has been increased interest in studying the Schur-positivity of
expressions of the form

sλsµ − sαsβ. (1)

See for example [1, 2, 3, 4, 5, 7, 13]. These expressions can also be interpreted as differences
of skew Schur functions which have been studied in [11, 12]. The Schur-positivity of such
expressions is equivalent to inequalities between Littlewood-Richardson coefficients. In
this paper, we study the Schur-positivity of a family of expressions of this form. Let ν
and µ be partitions such that |µ| = |ν|+ 1 and ν ⊆ µ, and let m be an integer such that
m > µ1 + `(µ). We denote by νc (respectively µc) the complement of ν (respectively µ)
in the square partition (mm) and by ν ′ (respectively µ′) the conjugate of ν (respectively
µ). We are interested in the Schur-positivity of expressions of the form

sµ′sµc − sν′sνc . (2)

As we explain in section 2.3, these expressions arise in the study of the Kronecker
product of a square shape and a hook shape. Determining the Schur decomposition of this
Kronecker product is of particular interest in a paper by Scharf, Thibon and Wybourne
[14] on the powers of the Vandermonde determinant and its application to the quantum
Hall effect. In their paper, the q-discriminant is expanded as a linear combination of Schur
functions where the coefficients are specializations of the Kronecker products mentioned
above.

Central to our paper is a conjectural criterion for the Schur-positivity of (2).

Conjecture I: Let ν ` n and µ ` n + 1 be partitions such that ν ⊆ µ. Then, if
complements are taken in a large enough square, sµ′sµc − sν′sνc is Schur-positive if and
only if the following conditions are satisfied.

(C1’) The partition ν is such that, if δk is the smallest staircase partition which is not
contained in ν, then there is a single box (a + 1, b + 1) which is in δk but not in ν,
and ν contains the box (a, a + b) or the box (a + b, b). (By convention, ν contains
the boxes (0, a+ b) and (a+ b, 0).)

(C2’) If ν is as in (C1’), then µ is the partition obtained from ν by adding the box
(a+ 1, b+ 1).

The conjecture above can be restated in the following equivalent form.

Conjecture II: Let ν ` n and µ ` n + 1 be partitions such that ν ⊆ µ. Then, if
complements are taken in a large enough square, sµ′sµc − sν′sνc is Schur-positive if and
only if the following conditions are satisfied.

(C1) ν or ν ′ is of the form β + (ss) +α, where β and α are partitions such that `(α) 6 s,
and
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(i) if β1 = i, then β contains (is+2, i− 1, i− 2, . . . , 1),

(ii) s 6= 0 if and only if α 6= ∅.

(C2) If ν (respectively ν ′) is a partition β + (ss) + α as in (C1), then µ (respectively µ′)
is the partition β + (ss, 1) + α.

If ν satisfies (C1) in Conjecture II, we say that ν is of type 1 if s = 0 and of type 2
if s > 1.

In [10] McNamara gives several necessary conditions for Schur-positivity. However,
most articles considering special cases of (1) focus on sufficient conditions. The strength
of our conjecture lies in the fact that is it a criterion. In this article, we prove the
conjecture in many cases.

All results of this paper are valid if all complements are taken in a large enough
rectangle instead of a square. Since the proofs for complements in rectangles do not add
any new insight, to simplify the exposition, we present the results with complements taken
in a large enough square.

The paper is organized as follows. In Section 1, we review the notation and basic
facts about partitions and Schur functions and discuss products of the form sµ′sµc . In
Section 2, we discuss symmetry and stability properties of expressions of the form (2),
introduce the main conjecture and prove that the two formulations are equivalent, and
discuss type possibilities for a partition and its conjugate. In Section 3, we study partitions
of type 1 and show that the conjecture holds if the partition contains a large rectangle
of the same width as the partition. Moreover, we show that the conjecture holds for
all partitions of type 1 of width at most four. In this section we also state the Lex-
minimality conjecture that would imply that condition (C2) on µ is necessary for the
Schur-positivity of sµ′sµc − sν′sνc , if ν satisfies (C1). In Section 4, we establish several
properties of partitions of type 2 and prove the conjecture for partitions of type 2 with
β1 = 0 or 1. In Section 5, we consider the failure of Schur-positivity for the symmetric
function (2) if ν does not satisfy (C1) (i.e., ν is neither of type 1, nor of type 2). In
Section 6, we offer some final remarks, including unsuccessful strategies we considered in
our attempt to prove the conjecture.
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2 Preliminaries

2.1 Partitions and Schur functions

For details and proofs of the contents presented here see [9] or [15, Chapter 7]. Let n be
a non-negative integer. A partition of n is a weakly decreasing sequence of non-negative
integers, λ := (λ1, λ2, · · · , λ`), such that |λ| =

∑
λi = n. We write λ ` n to mean λ is a

partition of n. The nonzero integers λi are called the parts of λ. We identify a partition
with its Young diagram, i.e., the array of left-justified squares (boxes) with λ1 boxes in
the first row, λ2 boxes in the second row, and so on. The rows are arranged in matrix
form from top to bottom. By the box in position (i, j) we mean the box in the i-th row
and j-th column of λ. The length of λ, `(λ), is the number of rows in the Young diagram.

Figure 1: λ = (6, 4, 3, 1), `(λ) = 4, |λ| = 14

Given two partitions λ and µ, we write µ ⊆ λ if and only if `(µ) 6 `(λ) and µi 6 λi
for all 1 6 i 6 `(µ). If µ ⊆ λ, we denote by λ/µ the skew shape obtained by removing
the boxes corresponding to µ from λ.

Figure 2: λ/µ with λ = (6, 4, 3, 1) and µ = (3, 1, 1)

For any two Young diagrams (or skew shapes) λ and µ, we denote by λ× µ any skew
diagram consisting only of the diagram λ followed by the diagram µ such that λ and µ
have no common edges. That is, the rows (respectively columns) of λ are above the rows
(respectively to the right of the columns) of µ. Note that λ and µ could have one common
corner, i.e, the highest northeast corner of µ can connect with the lowest southwest corner
of λ.

Figure 3: λ× µ with λ = (2, 1) and µ = (3, 2).

For any two partitions λ and µ, we define the sum λ+ µ to be the partition obtained
by adding corresponding parts. That is, λ + µ = (λ1 + µ1, λ2 + µ2, . . .). For example, if
λ = (3, 2, 1) and µ = (2, 2), then λ+ µ = (5, 4, 1).

A semi-standard Young tableau (SSYT) of shape λ/µ is a filling of the boxes in the
Young diagram of the skew shape λ/µ with positive integers so that the numbers weakly
increase in each row from left to right and strictly increase in each column from top to
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bottom. The type of a SSYT T is the sequence of non-negative integers (t1, t2, . . .), where
ti is the number of labels i in T . The superstandard tableau of a partition λ is the SSYT
of shape λ and type λ.

2 2 3 4
1 4 4 6

1 3 6 6
2 2 4

Figure 4: SSYT of shape λ/µ = (7, 6, 5, 3)/(3, 2, 1) and type (2, 4, 2, 4, 0, 3).

Given a SSYT T of shape λ/µ and type (t1, t2, . . .), we define its weight, w(T ), to
be the monomial obtained by replacing each i in T by xi and taking the product over
all boxes, i.e., w(T ) = xt11 x

t2
2 · · · . For example, the weight of the SSYT in Figure 4 is

x21x
4
2x

2
3x

4
4x

3
6. The skew Schur function sλ/µ is defined combinatorially by the formal power

series
sλ/µ =

∑
T

w(T ),

where the sum runs over all SSYTs of shape λ/µ. To obtain the usual Schur function one
sets µ = ∅. It follows directly from the combinatorial definition of Schur functions that
sλ×µ = sλsµ.

The space of homogeneous symmetric functions of degree n is denoted by Λn. A basis
for this space is given by the Schur functions {sλ |λ ` n}. The Hall inner product on Λn

is denoted by 〈 , 〉 and it is defined by

〈sλ, sµ〉 = δλµ,

where δλµ denotes the Kronecker delta.

2.2 The Littlewood-Richardson rule

The Littlewood-Richardson coefficients are defined via the Hall inner product on symmet-
ric functions as follows:

cλµ,ν := 〈sλ, sµsν〉 = 〈sλ/µ, sν〉.
That is, skewing is the adjoint operator of multiplication with respect to this inner
product. The Littlewood-Richardson coefficients can be computed using the Littlewood-
Richardson rule. Before presenting the rule we need to recall two additional definitions.
A lattice permutation is a sequence a1a2 · · · an such that in any initial factor a1a2 · · · aj,
for each 1 6 i 6 n, the number of labels i is at least the number of labels (i + 1). For
example 11122321 is a lattice permutation. The reverse reading word of a tableau is the
sequence of entries of T obtained by reading the entries from right to left and top to
bottom, starting with the first row.

Example: The reverse reading word of the tableau
1 2

3 5 6 8
4 7 9

is 218653974.

We denote by LR(λ/µ, ν) the collection of SSYTs of shape λ/µ and type ν whose
reverse reading word is a lattice permutation. We refer to a tableau in LR(λ/µ, ν) as
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a Littlewood-Richardson tableau of shape λ/µ and type ν. The Littlewood-Richardson
rule states that the Littlewood-Richardson coefficient cλµ,ν is equal to the cardinality of
LR(λ/µ, ν).

We denote by cλµ,ν,η the multiplicity of sλ in the product sµsνsη, i.e., cλµ,ν,η = 〈sλ, sµsνsη〉.
In the next remark, we draw attention to a condition on tableaux in LR(λ/µ, ν) which

will be used later in our discussion. First we introduce a definition. Recall that given a
partition ν, a horizontal strip in ν is a skew shape ν/ψ (for some partition ψ ⊆ ν) such
that no two boxes in ν/ψ are in the same column.

Remark 2.1. The lattice permutation condition on a tableau T ∈ LR(λ/µ, ν) imposes
the following condition. Let ν(1) = ν. The labels in the last row of T must form a
horizontal strip in the superstandard tableau of ν(1). Denote this horizontal strip by h1.
Note that if we list the labels in the last row of T in order from left to right, they appear
in h1 in that order when read from right to left. Let ν(2) be the partition obtained from
ν(1) by removing the boxes of h1. Then, the labels in the second to last row of T form a
horizontal strip in the superstandard tableau of ν(2). This process continues recursively.
We denote by hj the horizontal strip in ν(j) containing the labels of the j-th row from the
bottom in T and let ν(j+1) be the partition obtained from ν(j) by removing the boxes of
hj. Then, the labels in the (j + 1)-st row from the bottom in T must form a horizontal
strip in the superstandard tableau of ν(j+1).

We refer to the condition in Remark 2.1 as the rows of T form horizontal strips in the
superstandard tableau of ν.

1 1 1 1 1 1 1
2 2 2 2

1
1 2
2 3
3 4

2 4 5
1 3 3 3 5 6

1 2 4 4 4 6
2 3 5 5 5 7

1 1 2 3 4 6 6 6 8
2 2 3 4 7 7 7 7
3 4 5 5 8 8 8 8
5 6 6 9 9 9 9 9

1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7
8 8 8 8 8
9 9 9 9 9

Figure 5: A Tableau T and the corresponding superstandard tableau

Figure 5 shows, on the left, a tableau T ∈ LR(λ/µ, ν) with λ = (17, 14, 106, 93, 83), µ =
(102, 9, 83, 7, 4, 32), and ν = (13, 12, 9, 82, 7, 53). On the right, it shows the superstandard
tableau of ν. The colors indicate the labels in some of the bottom rows of T and the
corresponding horizontal strips in the superstandard tableau of ν.

2.3 Product of the conjugate and the complement of a partition

Let ν = (ν1, ν2, . . . , ν`) be a partition. We denote by ν ′ the conjugate partition of ν, i.e.,
the partition whose rows are the columns of ν. If D is a skew-diagram, D∗ denotes D
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rotated by 180◦.
If (mm) is a square partition and µ ⊆ (mm), the complement partition of µ in (mm),

denoted µc, is the partition ((mm)/µ)∗. Whenever we need to emphasize m, we write µc,m

for µc. See Figure 6 for the shape of the complement.

µ∗

m

m

Figure 6: The complement of µ, i.e., µc.

Given a partition µ and a square (mm), we will be interested in the product sµ′sµc .
Our interest in this particular product has its origin in the Kronecker product of a hook
and a square shape, i.e., s(n−k,1k) ∗ s(mm). We briefly explain this connection.

Using Pieri’s rule and induction, one can easily see that

s(n−k,1k) =
k∑
i=0

(−1)k−is(n−i)s(1i).

Then, using Littlewood’s formula [8], we obtain

(s(n−i)s(1i)) ∗ s(mm) =
∑

µ`n−i,ν`i

c(m
m)

µ,ν sµsν′ .

Since c(m
m)

µ,ν =

{
1 if µ, ν ⊂ (mm) and ν = µc

0 else.
, we have

s(n−k,1k) ∗ s(mm) =
∑
η`n

(
k∑
i=0

(−1)k−i
∑
µ`i

cηµ′,µc

)
sη.

The focus of this article article is the study of Schur-positivity of differences of products
of the form sµ′sµc .

If we choose m large, then the partitions occurring in the expansion of sµ′sµc have
the shape shown in Figure 7. That is, if cλµ′,µc 6= 0, then λ = (ηc + γ, σ), where η ⊆ µ,
|γ|+ |σ| = |η| and the complement of η is taken in (mm).

Remark 2.2. In order for λ to occur with nonzero coefficient in the expansion of sµ′sµc ,
there must be LR tableaux of shape λ/µc and type µ′. With the notation of Figure
7, the conditions for a SSYT imply that `(γ) 6 `(µ′) = µ1 and σ1 6 µ′1 = `(µ). In
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η∗

γ

σ

m

m

Figure 7: The shape of the partition λ = (ηc + γ, σ) for large m.

addition, η1 6 µ1 and `(η) 6 `(µ). Therefore, if m > µ1 + `(µ), the skew diagram λ/µc

is the disjoint union of three distinct diagrams, γ, (µ/η)∗, and σ, and the label fillings in
Littlewood-Richardson tableaux do not depend on m. Hence, the decomposition of the
product sµ′sµc becomes stable, i.e., does not change for m > µ1 + `(µ).

For the rest of the article we assume that complements are taken in a square (mm)
with m > µ1 + `(µ). Thus, we assume that all partitions λ such that cλµ′,µc 6= 0, have the
shape in Figure 7, i.e., λ = (ηc + γ, σ), where η ⊆ µ and |γ|+ |σ| = |η|.

The following proposition describes a symmetry property for the expansion of the
product sµ′sµc .

Proposition 2.3. Let µ be a partition and m ∈ Z with m > µ1 + `(µ). Consider the
partitions λ = (ηc + γ, σ) and λ = (ηc + σ, γ) with η, γ, σ as above. The coefficients of sλ
and sλ in sµ′sµc are equal. Moreover, these coefficients are equal to cµ

′

γ,σ,(µ/η)∗.

Proof. If λ, µ and m are as in the statement of the proposition, we have

〈sλ, sµ′sµc〉 = 〈sλ/µc , sµ′〉 = 〈sγs(µ/η)∗sσ, sµ′〉 = 〈sγsσs(µ/η)∗ , sµ′〉.

Thus, 〈sλ, sµ′sµc〉 = cµ
′

γ,σ,(µ/η)∗ . Moreover,

〈sλ, sµ′sµc〉 = 〈sσs(µ/η)∗sγ, sµ′〉 = 〈sλ/µc , sµ′〉 = 〈sλ, sµ′sµc〉.

A consequence of Proposition 2.3 is the following combinatorial interpretation of the
coefficient of sλ in sµ′sµc .

Corollary 2.4. If λ, µ, and m are as in Proposition 2.3, then

〈sλ, sµ′sµc〉 = |LR(γ × σ × (µ/η)∗, µ′)|.
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3 Schur-positivity for a difference of products

We say that a symmetric function f is Schur-positive if every coefficient in the expansion
of f as a linear combination of Schur functions is a non-negative number. That is, if

f =
∑
λ

cλsλ,

then cλ > 0 for all λ.
In this paper we are interested in the Schur-positivity of expressions of the form

sµ′sµc − sν′sνc ,

where νc and µc are complements in the same square, ν ⊆ µ, and µ ` |ν|+1. We introduce
another definition to simplify the statements of the theorems.

Definition 3.1. We say that µ covers ν, if ν ⊆ µ, |µ| = |ν|+1, νc and µc are complements
in the same square, and sµ′sµc − sν′sνc is Schur-positive.

For the rest of the article, whenever complements of different partitions appear in the
same expression, it is understood that they are taken in the same square.

In the proof of the following proposition we use the fundamental involution ω on
the ring of symmetric functions ω : Λ → Λ. This is defined on the Schur functions by
ω(sλ) = sλ′ . It is a well-known fact that ω is an isometry with respect to the Hall inner
product. For details see [15, Section 7.6]. This leads immediately to the following result.

Proposition 3.2. If µ covers ν, then µ′ covers ν ′.

3.1 Symmetry and stability

In this section we describe two properties of the coefficients occurring in the expansion of
sµ′sµc − sν′sνc .

Proposition 3.3 (Symmetry). Let µ be a partition and m ∈ Z with m > µ1 + `(µ). If
λ = (ηc + γ, σ) and λ = (ηc + σ, γ), then the coefficients of sλ and sλ in s′µsµc − s′νsνc are
equal.

Proof. If m > µ1+`(µ), by Proposition 2.3, both products sµ′sµc and sν′sνc are symmetric.

For fixed ν and µ, the differences sµ′sµc − sν′sνc satisfy the stability property given in
the following proposition.

Proposition 3.4 (Stability). If ν and µ are partitions such that ν ⊆ µ and |µ| = |ν|+ 1,
then sµ′sµc − sν′sνc is stable in the sense that if m1,m2 > µ1 + `(µ), then

〈s(ηc,m1+γ,σ), sµ′sµc,m1 − sν′sνc,m1 〉 = 〈s(ηc,m2+γ,σ), sµ′sµc,m2 − sν′sνc,m2 〉,

for all η, γ, σ with |γ|+ |σ| = |η|.
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Proof. This follows directly from Remark 2.2 and Corollary 2.4 since 〈sλ, sµ′sµc〉 = |LR(γ×
σ × (µ/η)∗, µ′)| does not depend on m if m > µ1 + `(µ).

The following example shows that the bound µ1 + `(µ) on m in Proposition 3.4 is
sharp.

Example 3.5. Suppose µ = (3, 2, 1) and ν = (3, 2). Thus, µ1 = 3 and `(µ) = 3. Let
η = (2, 2, 1), γ = (1, 1, 1), and σ = (1, 1). One can use Maple to check that, if m1 = 6,
then 〈s(ηc,m1+γ,σ), sµ′sµc,m1 − sν′sνc,m1 〉 = 1. However, if m2 = 5, then (ηc,m2 + γ, σ) =
(6, 6, 5, 3, 3, 1, 1) and, using Maple again, we have〈s(ηc,m2+γ,σ), sµ′sµc,m2 − sν′sνc,m2 〉 = 2.

3.2 Main conjecture

We now introduce our main conjecture. It gives a characterization of partitions ν and µ,
where the diagram of µ differs from that of ν by a single box, for which sµ′sµc − sν′sνc is
Schur-positive (assuming complements are taken in sufficiently large squares).

Conjecture 3.6. Let ν ` n and µ ` n + 1 be a partitions such that ν ⊆ µ. Suppose
complements are taken in (mm) with m > µ1 + `(µ). Then, µ covers ν if and only if the
following conditions are satisfied.

(C1) ν or ν ′ is of the form β+ (ss) +α, where β and α are partitions such that `(α) 6 s,
and

(i) if β1 = i, then β contains (is+2, i− 1, i− 2, . . . , 1),

(ii) s 6= 0 if and only if α 6= ∅.

(C2) If ν (respectively ν ′) is a partition β + (ss) + α as in (C1), then µ (respectively µ′)
is the partition β + (ss, 1) + α.

Suppose ν satisfies (C1). We say that ν is of type 1 if s = 0 and of type 2 if s > 1.
Note that in (C1) it is possible to have β = ∅.

In Figure 8, we show a general partition ν of type 1 together with the corresponding
cover µ. Inside the diagram of ν we show (in blue) the smallest partition of type 1 of
width equal to the width of ν. In Figure 9 we show a general partition of type 2 together
with the corresponding cover µ. In both cases the red box represents the box added to ν
to obtain µ.

Let δk be the kth staircase partition (k, k− 1, k− 2, . . . , 2, 1). Notice that in Figure 8
the red box (1, i + 1) is the unique box in δi+1 that is not in ν. In Figure 9 the red box
(s+ 1, i+ 1) is the unique box in δs+i+1 that is not in ν.

Based on the observations we made on Figure 8 and Figure 9, we give the following
alternate formulation of conditions (C1) and (C2) in Conjecture 3.6.

Theorem 3.7. Condition (C1) is equivalent to
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ν = µ =

Figure 8: A partition ν of type 1 and the corresponding partition µ

ν =

α(ss)
β

µ =

α(ss)
β

Figure 9: A partition ν of type 2 and the corresponding partition µ

(C1’) The partition ν is such that, if δk is the smallest staircase partition which is not
contained in ν, then there is a single box (a + 1, b + 1) which is in δk but not in ν,
and ν contains the box (a, a + b) or the box (a + b, b). (By convention, ν contains
the boxes (0, a + b) and (a + b, 0).) Moreover, if (a + 1, b + 1) is the box in δk not
contained in ν, then k = a+ b+ 1.

Moreover, condition (C2) is equivalent to

(C2’) If ν is as in (C1’), then µ is the partition obtained from ν by adding the box (a +
1, b+ 1).

With the conditions of Theorem 3.7, type 1 corresponds to a = 0. Moreover, if b = 0
in (C1’), then ν ′ is of type 1.

Proof. We first show that (C1) is equivalent to (C1’). Suppose that ν is a partition
satisfying (C1).

If ν is of type 1, then ν = β with β1 = i and β contains (i2, i − 1, . . . , 2, 1). Thus, ν
contains δi but not δi+1. Moreover, the only box contained in δi+1 but not in ν is (1, i+1).
Thus, ν satisfies (C1’). If ν is of type 2, then ν = β+(ss)+α, s 6= 0, α 6= 0 and, if β1 = i,
then β contains (is+2, i − 1, . . . , 2, 1). Therefore, ν1 > i + s + 1. Further, νs+1 = i and
νs > i+s. Thus, δi+s is contained in ν since β contains (is+2, i−1, . . . , 1). However, δi+s+1

is not contained in ν and the only box contained in δi+s+1 but not in ν is (s + 1, i + 1).
Further, ν contains the box (s, i + s). Therefore ν satisfies (C1’). Similarly, if ν ′ is of
type 1 with ν ′ = β and β1 = i, then δi ⊆ ν, δi+1 6⊆ ν, and (i + 1, 1) is the only box in
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δi+1 not contained in ν. Thus, ν satisfies (C1’). If ν ′ is of type 2 with ν ′ = β + (ss) + α
(β1 = i, s > 1, α 6= ∅), then δi+s ⊆ ν but δi+s+1 6⊆ ν, and (i + 1, s + 1) is the only box in
δi+s+1 not contained in ν. Moreober, ν contains box (i+ s, s). Thus, ν satisfies (C1’).

Now we assume that ν is a partition satisfying (C1’). Then for some k, the partition
ν contains δk−1 but it doesn’t contain δk and there is only one box contained in δk but
not in ν, (a + 1, b + 1) for some positive integers a and b such that a + b + 1 = k.
Moreover, ν contains the box (a, a + b) or the box (a + b, b). If a = 0, then the box
contained in δk but not in ν is (1, b + 1) and k = b + 1. Thus, ν1 = b and ν contains
(b, b, b − 1, . . . , 2, 1). Then, ν is a partition of type 1 and thus it satisfies (C1). If b = 0,
then the box contained in δk but not in ν is (a + 1, 1) and k = a + 1. In this case, ν ′ is
of type 1. Now assume that a, b 6= 0. Suppose that ν contains box (a, a + b). Then, ν
contains (b+ a+ 1, b+ a, . . . , b+ 1, b, b, b− 1, . . . , 2, 1). Therefore, ν = β + (ss) + α with
i = b, s = a, α 6= ∅. Thus, ν is a partition of type 2 and therefore it satisfies (C1). A
similar argument applies if a, b 6= 0 and ν contains the box (a + b, b), in which case ν ′ is
a partition of type 2.

It follows from the argument for the equivalence of (C1) with (C1’) that (C2) is
equivalent to (C2’).

The next two lemmas list some properties of partitions satisfying (C1). They follow
directly from condition (C1).

Lemma 3.8. Suppose ν = β + (ss) + α satisfies the conditions in (C1). Then,

(i) β1 = β2 = . . . = βs+1 = βs+2 and βj > s+ β1 − j + 2 for j > s+ 2.

(ii) β′j > s+ β1 − j + 2 for 1 6 j 6 β1.

(iii) If β 6= ∅, then `(β) > s+ β1 + 1.

(iv) If λ = (ηc + γ, σ) is such that cλν′νc 6= 0 and ν is not self-conjugate, then η 6= ∅.

(v) If ν 6= ∅ is of type 1 (i.e., s = 0), and λ = (ηc + γ, σ) is such that cλν′νc 6= 0, then
η 6= ∅.

In the next lemma we consider the effect of removing rows or columns from a diagram
on the type of the partition.

Lemma 3.9.

(i) If ν is a partition of type 1, then so is any partition ν(k) obtained from ν by removing
its first k columns, 1 6 k 6 ν1 − 1.

(ii) If ν = β + (ss) + α is a partition of type 2, then so is any partition ν(k) obtained
from ν by removing its first k columns, 1 6 k 6 β1.

(iii) If ν = β + (ss) + α is a partition of type 2, then the partition ν(s) obtained from ν
by removing its first s rows is of type 1.
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Conjecture 3.6 gives a criterion for exactly when a partition covers another partition in
the case that the partitions differ by one box. It might not be obvious that the conjecture
implies that a partition ν satisfying condition (C1) is covered by a unique partition. We
prove this in Theorem 3.13, but first we prove a few more properties of partitions satisfying
(C1).

Proposition 3.10.

(a) If ν is a partition of type 2, then the expression given in (C1) is unique.

(b) If ν is a partition of type 1, then ν is not of type 2. I.e., ν cannot be of type 1 and
type 2 simultaneously.

Proof. (a) Since ν satisfies (C1’) and it is of type 2, then a 6= 0 and the unique box in
δa+b+1 that is not in ν is the box (a+ 1, b+ 1). This box completely determines β, s and
α. We have β = (ba+2, νa+3, . . . , ν`(ν)), s = a and α = (ν1−a−b, ν2−a−b, . . . , νs−a−b).

(b) Suppose ν = β+ (ss) +α is of type 2 (i.e., s 6= 0, α 6= ∅) and let δk be the smallest
staircase not contained in ν. By the proof of Theorem 3.7, the unique box in δk that is
not contained in ν is (s + 1, i + 1). Since s 6= 0, this box is not in the first row. Thus, ν
is not of type 1.

If ν is of type 2, since the decomposition ν = β + (ss) + α is unique, we refer to the
Young diagram formed by the boxes in (ss) as the square in ν.

Since the criterion in Conjecture 3.6 depends on the shape of ν or ν ′, we explore the
relationship between partitions of type 1 and 2 and their conjugates.

Proposition 3.11.

(a) If ν is of type 1, then ν ′ is not of type 1.

(b) If ν = β + (ss) + α is of type 2 with β1 > 1, then ν ′ is not of type 1.

(c) If ν = (ss) + α is of type 2 with β1 = 0, then ν ′ is of type 1.

(d) If ν and ν ′ are both of type 2, then ν is of the form ν = β + (ss) + α with s > 1,
α 6= ∅ and β as in (C1) satisfying βs+β1 = β1.

Before we prove Proposition 3.11, we give an example illustrating part (d).

Example 3.12. Consider the partition ν = (6, 5, 3, 3, 3, 1). Then, ν ′ = (6, 5, 5, 2, 2, 1)
and both both ν and ν ′ are of type 2. We have β1 = 3, s = 2, and βs+β1 = β5 = 3 = β1.
The Young diagram of ν is given in Figure 10.

The condition βs+β1 = β1 ensures that the square in ν (marked with • above) and
the square in ν ′ (marked with ◦ above) meet but do not have any common edge. Then,
assuming Conjecture 3.6 is true, the only cover of ν is the partition µ = (6, 5, 4, 3, 3, 1).
Moreover, µ′ is the only cover of ν ′.
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• •
• •

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

Figure 10: A partition of type 2 whose conjugate is of type 2

Proof. (a) If ν satisfies (C1’), the smallest staircase δk not contained in ν has only one
box not in ν. If both ν and ν ′ were of type 1, δk would contain two boxes not in ν, the
box in the first row and the box in the last row of δk.

(b) If ν = β + (ss) + α is of type 2 with β1 > 1, the unique box (s+ 1, β1 + 1) in the
smallest staircase δβ1+s+1 that doesn’t fit into ν is not in the first column. Hence in ν ′,
the only box in δβ1+s+1 not contained in ν ′ is not in the first row.

(c) If ν = (ss) + α, α 6= ∅, the smallest staircase not contained in ν is δs+1 and the
unique box in δs+1 not contained in ν is (s+1, 1). Hence (1, s+1) is the only box contained
in δs+1 but not in ν ′. Therefore, ν ′ is of type 1.

(d) If ν = β + (ss) + α is of type 2 and ν ′ is also of type 2, the smallest staircase that
doesn’t fit into ν and ν ′ is δs+β1+1 and the unique box in δs+β1+1 but not in ν or ν ′ is
(s + 1, β1 + 1). In addition ν must contain both (s, β1 + s) and (β1 + s, β1). Therefore,
ββ1+s = β1.

Note that parts (b) and (c) of Proposition 3.11 show that ν = β + (ss) + α is of type
2 with conjugate of type 1 if and only if β = ∅. Equivalently, a partition ν is of type 1
with conjugate of type 2 if and only if (νν11 ) ⊆ ν.

Propositions 3.10 and 3.11 lead to the following result.

Corollary 3.13. Assuming the validity of the main conjecture, a partition has either no
cover or exactly one cover.

We conclude this section by proving the interesting property that, if Conjecture 3.6 is
true, then covering partitions µ are not covered by any partition.

Let C1 be the set of all partitions satisfying (C1), i.e., C1 consists of partitions ν such
that ν or ν ′ is equal to β + (ss) + α, with α, β satisfying the following conditions:

(i) If β1 = i > 0, then β contains (is+2, i− 1, i− 2, . . . , 1).
(ii) s 6= 0 if and only if α 6= ∅.
Let C2 be the set of all partitions satisfying (C2), i.e., C2 consists of partitions µ such

that µ or µ′ is equal to β + (ss, 1) + α, where β and α are as above.

Theorem 3.14. The sets C1 and C2 are disjoint.

Proof. Suppose λ ∈ C1 ∩ C2. Since λ ∈ C2, λ satisfies (C2’). Thus, there exists a partition
ν satisfying (C1’) such that ν ⊆ λ, |λ| = |ν| + 1, and λ/ν consists of the unique box
(a + 1, b + 1) in δk−1 that is not in ν, where δk−1 is the smallest staircase partition not
contained in ν. Then, δk−1 ⊆ λ. Since (a + 1, b + 1) is not in ν, then both (a + 2, b + 1)
and (a+ 1, b+ 2) are not in ν. Since |λ| = |ν|+ 1, the boxes (a+ 2, b+ 1), (a+ 1, b+ 2)
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are not in λ. However, both (a + 2, b + 1), (a + 1, b + 2) are in δk, the smallest staircase
partition not contained in λ. This contradicts the fact that λ ∈ C1.

We note that C1 ∪ C2 is not equal to the set of all partitions. For example, partitions
of the form (ss) are neither in C1 nor in C2.

Corollary 3.15. Assuming the validity of the Conjecture 3.6, if µ covers ν, then µ is not
covered by any partition of size |µ|+ 1.

4 Partitions of type 1

In this section we prove that Conjecture 3.6 holds for some special cases of partitions of
type 1. In particular, we prove the conjecture for partitions ν of type 1 containing the
rectangle (νν1−11 ) and those of width at most four.

4.1 Partitions of type 1 containing a large rectangle

Let ν = β be a partition of type 1 with β1 = i and suppose β contains the rectangle (ii−1).
Therefore, if i > 2, β contains (ii−1, 2, 1), i.e., β′i > i− 1. We will prove that ν is covered
by µ = ν + (1), the partition obtained from ν by adding a box at the end of its first
row, by showing that cλν′νc 6 cλµ′µc for all partitions λ. We use Corollary 2.4 and consider
Littlewood-Richardson tableau of shape γ×σ×(β/η)∗ (respectively γ×σ×((β+(1))/η)∗)
rather than of shape γ× (β/η)∗× σ (respectively, γ× ((β + (1))/η)∗× σ). This simplifies
considerably the description of tableaux and injections between sets of tableaux. For a
partition λ = (ηc + γ, σ) such that cλν′νc 6= 0, we give an algorithm that assigns to each
T ∈ LR(γ×σ× (β/η)∗, β′) a distinct tableau T ′ in LR(γ×σ× ((β+ (1))/η)∗, (β+ (1))′).
We denote by x the box in the diagram γ×σ× ((β+(1))/η)∗ that is not in γ×σ× (β/η)∗

γ

σ

(β/η)∗

γ

σ

(β/η)∗

Figure 11: γ × σ × (β/η)∗ and γ × σ × (β + (1)/η)∗

Figure 11 illustrates the shape of the diagrams to be filled with the labels of the
superstandard tableau of β′ (for the diagram on the left) respectively of (β′, 1) (for the
diagram on the right). The box x is shaded blue. The goal is to insert a label i+ 1 into a
tableau of the shape shown on the left so the result is a Littlewood Richardson tableau of
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the shape on the right. When we count columns in a skew shape such as those in Figure
11 we do so starting with the leftmost non-empty column. This column becomes column
1. We only count non-empty columns.

Before describing the algorithm, we remark on several properties satisfied by some
tableaux in LR(γ × σ × (β/η)∗, β′). Remark 4.1 is true for all partitions of type 1.

Remark 4.1. Let β be a partition of type 1 with β1 = i and let λ = (ηc + γ, σ) be
such that cλβ′βc 6= 0. Since β′ has i rows and LR(γ × σ × (β/η)∗, β′) 6= ∅, all columns in
γ × σ × (β/η)∗ have length at most i. In addition, η1 > 1. Moreover, if η1 = 1, then
βi+1 = 1 and every tableau in LR(γ× σ× (β/η)∗, β′) has the (i− 1)st column filled, from
the top to the bottom, with labels 1, 2, . . . , i.

Lemma 4.2. Let β be a partition of type 1 with β1 = i, i > 4, such that (ii−1) ⊆ β
and βi 6 i − 2. Let λ = (ηc + γ, σ) be such that η1 = 1 and cλβ′βc 6= 0, and let T ∈
LR(γ × σ × (β/η)∗, β′) be a tableau with all labels i in the last row. Let q be the label in
the first column and in row i − βi from the bottom in T . Then, T satisfies the following
properties.

(a) For each t such that βi + 2 6 t 6 i, row i− t+ 1 from the bottom has each box filled
with the label t (i.e., the last row is filled with i, and, if βi < i−2, the second to last
row is filled with i − 1, and so on until we reach row (i − βi − 1) from the bottom
which is filled with βi + 2). Moreover, `(η) > i− βi.

(b) For each label p in the (i− 1)st column, the box directly to its right is either empty
(i.e., not part of (β/η)∗) or it contains a label greater than p.

(c) The first column of T contains the labels 1, 2, . . . , i, with one label missing, in in-
creasing order, from top to bottom. The missing label is 1, 2, or βi + 1.

(d) Row i− βi from the bottom in T is filled, from left to right, with the labels βi, βi +
1, βi+1, . . . , βi+1 or with βi+1, βi+1, . . . , βi+1. Thus q = βi or βi+1. If βi > 2,
the label directly above q is exactly q − 1. Moreover, if βi > 2 and q = βi + 1, then
each box in row i− βi + 1 from the bottom in T is filled with βi.

Proof. (a) In the superstandard tableau of β′, each label i, i − 1, . . . , βi + 1 appears an
equal number of times while the number of labels βi is exactly one more. Since the reverse
reading word of T is a lattice permutation, the last i− βi− 1 labels in the first column of
T , read from the bottom up must be i, i− 1, . . . , βi + 2. The statement follows from the
fact that the last row of T is filled with i.

(b) Since η1 = 1, we have βi+1 = 1 by Remark 4.1. Therefore β′1 > β′2 and the
statement follows.

(c) This follows from the fact that in the superstandard tableau of β′, the number of
labels j equals the number of labels j − 1 for each 3 6 j 6 i and j 6= βi + 1. If label
j 6= 1, 2, βi+1 were missing from the first column of T , then in the reverse reading word of
T there would be a label j− 1 after the last label j. This violates the lattice permutation
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condition. For j = 2, βi + 1, the number of labels j is strictly less than the number of
labels j − 1.

(d) This follows directly from part (c). (Note that if βi = 2 and q = 3 the label directly
above it could be 1 or 2.)

Note that if β, λ and T are as in Lemma 4.2, and q = βi + 1, then `(η) > i− βi + 1.

Remark 4.3. Let β be a partition of type 1 with β1 = i, i > 3, such that (ii−1) ⊆ β and
βi = i − 1. If λ and T are as in Lemma 4.2, then part (b) of the lemma holds. In part
(c), the missing label in the the first column of T can only be 1 or 2. In part (d), we have
q = βi + 1 and it is still true that, if βi > 2, the label directly above q is q − 1.

In what follows we state the algorithm informally followed by an example and then
proceed to give a formal statement of the algorithm.

Given T ∈ LR(γ × σ × (β/η)∗, β′), the algoritm will assign to it a distinct tableau
T ′ ∈ LR(γ × σ × ((β + (1))/η)∗, (β + (1))′) as follows.

If η1 = i, place label i+ 1 in box x.
If η1 < i and at least one label i is in a row of T higher than the last row, insert label

i + 1 in the rightmost box of the last row of T and bump all labels in the last row of T
one position to the left. The leftmost label in the last row of T is placed in box x.

If all labels i are in the last row of T , let q be the label in the first column and in row
i − βi from the bottom in T . We will insert label i + 1 in the rightmost box of the last
row of T and bump labels along an up-then-left-hook path. If q = βi, we bump up to the
row of q and then left, placing label βi in box x. If q = βi + 1, we bump up to the first
row directly above the row of q and then left, placing label βi in box x.

The following example illustrates the last case.

Example 4.4. Consider the partition β = (6, 6, 6, 6, 6, 3, 1, 1). Then i = 6, βi = 3, and
β′ = (8, 6, 6, 5, 5, 5). Let λ = (ηc + γ, σ) with η = (1, 1, 1, 1, 1), γ = (3, 1), and σ = (1).
We show the effect of the algorithm on two tableaux T ∈ LR(γ×σ× (β/η)∗, β′) in which
all labels i are in the last row of T . In the first example, shown in Figure 12, the label q
(marked in blue) in the first column and row i− βi = 3 from the bottom in T is equal to
βi = 3. In the second example, shown in Figure 13, q = βi + 1 = 4. In T , the path of the
insertion is marked with a red line. In T ′ the affected labels are marked in red.

1 1 1
2

3
1
2

1 1 4
1 1 2 2 2
2 3 3 3 3
3 4 4 4 4
5 5 5 5 5
6 6 6 6 6

−→

1 1 1
2

3
1
2

1 1 4
1 1 2 2 2
2 3 3 3 3
4 4 4 4 5
5 5 5 5 6

3 6 6 6 6 7

T T ′

←−

Figure 12: Example 4.4 with q = βi
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1 1 1
2

2
1
2

1 1 3
1 1 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6

−→

1 1 1
2

2
1
2

1 1 3
1 1 2 2 2
3 3 3 3 4
4 4 4 4 5
5 5 5 5 6

3 6 6 6 6 7

T T ′

←−

Figure 13: Example 4.4 with q = βi + 1

Next we define two operations on tableaux. In this definition we use −k to denote the
kth row from the bottom of the tableau. These will help us formulate the algorithm. Let
T be a Littlewood-Richardson tableau.

Definition 4.5. Insert u and bump left in row −k, denoted R−k ← u, is defined as
follows. Label u replaces (bumps) the rightmost label in the kth row from the bottom
in T . While there is a label to the left of it, the last bumped label replaces the label
directly to its left. When the end of the row is reached, the last bumped label becomes
the evacuated label.

Insert u and bump up-and-left in column k and row −t, denoted Hk,−t ← u, is defined
as follows. Label u replaces the last label in the kth column of T . While the last bumped
label is in a row below the tth row from the bottom in T , the last bumped label replaces
the label directly above it. If v is the label bumped from column k and row t−1 from the
bottom in T , perform R−t ← v. When the end of the row is reached, the last bumped
label becomes the evacuated label.

Note that, in the remainder of the article, we only use the operations of Definition 4.5
when the resulting tableau is a Littlewood-Richardson tableau.

Thus, in Figure 12, we performed H5,−3 ← 7 and the evacuated label was placed in x.
in Figure 13, we performed H5,−4 ← 7 and the evacuated label was placed in x.

We are now ready to state the algorithm that will provide the desired injection of
tableaux.

Algorithm 4.6. Input a tableau T ∈ LR(γ × σ × (β/η)∗, β′).
(Initializing step) If η1 = 1 and βi < i, set q equal to the label in the first column and

in row i− βi from the bottom in T .

(1) If η1 = i, place label i+ 1 in box x.

(2) If η1 < i,

(a) If βi = i or 2 6 η1 or the leftmost label in the last row of T is not i, perform
R−1 ← (i+ 1). Place the evacuated label in box x.
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(b) If βi < i and η1 = 1 and the leftmost label in the last row of T equals i,

(b1) if q = βi, perform Hi−1,−(i−βi).

(b2) if q = βi + 1, perform Hi−1,−(i−βi+1).

Place the evacuated label in box x.

Output tableau T ′.

Theorem 4.7. Suppose ν = β is a partition of type 1 with β1 = i and such that (ii−1) ⊆ β.
Then, for each partition λ = (ηc + γ, σ) the above algorithm provides an injection

LR(γ × σ × (β/η)∗, β′) ↪→ LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

Proof. Let λ = (ηc + γ, σ) be a partition such that cλν′νc 6= 0. We input a tableau
T ∈ LR(γ × σ × (β/η)∗, β′) into the algorithm. The algorithm produces a tableau T ′.
By construction, the shape of T ′ is γ × σ × ((β + (1))/η)∗ and the type is (β + (1))′. We
show that T ′ is a SSYT whose reverse reading word is a lattice permutation and the map
T → T ′ is an injection from LR(γ×σ×(β/η)∗, β′) into LR(γ×σ×((β+(1))/η)∗, (β+(1))′).

If η1 = i, then

γ × σ × ((β + (1))/η)∗ = γ × σ × (β/η)∗ × (1).

The algorithm simply places the label i + 1 in x. Clearly T ′ ∈ LR(γ × σ × (β/η)∗ ×
(1), (β + (1))′) and T → T ′ is an injection from LR(γ × σ × (β/η)∗, β′) into LR(γ × σ ×
((β + (1))/η)∗, (β + (1))′). In particular, this settles the case i = 1.

Now suppose that η1 < i. First consider the case in which i = 2. We have η1 = 1 and
β2 = 2. Moreover, since the first column of T has length β′2 and the only available labels
are 1 and 2, the partition β must be of the form (22, 1k) and the only box in the last row
of T has label 2. The algorithm replaces this label by 3 and places a label 2 in the box x.
The resulting tableau is a SSYT. Since there are two labels 2 in the superstandard tableau
of β′, the reverse reading word of T ′ is a lattice permutation. If T1, T2 are two tableaux in
LR(γ × σ × (β/η)∗, β′) such that T1 6= T2, then they differ in a row higher than the last
row. Since the algorithm only modifies the last row of a tableau in LR(γ×σ×(β/η)∗, β′),
it maps T1, T2 to different tableaux. Therefore, T → T ′ is an injection. Together with the
algorithm for the case η1 = 2, this settles the case i = 2. For the remainder of the proof,
we assume that i > 3.

If βi = i or 2 6 η1 < i, the algorithm performs R−1 ← (i+1) and places the evacuated
label in box x. This certainly creates a SSYT. In this case, it is impossible for T to contain
all labels i in the last row. Therefore, in the reverse reading word of T ′, there is an i before
i+ 1 and thus the word is a lattice permutation. It is straightforward to see that, in this
case, for two different tableaux T1, T2 ∈ LR(γ × σ × (β/η)∗, β′) the algorithm produces
different tableaux in LR(γ×σ× ((β+ (1))/η)∗, (β+ (1))′). Hence, we obtain an injection
from LR(γ × σ × (β/η)∗, β′) into LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).
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For the remainder of the proof assume that βi < i and η1 = 1. Then, as noted in
Remark 4.1, βi+1 = 1. Let T be a tableau in LR(γ×σ× (β/η)∗, β′) with at least one label
i in a row higher than the last. Then the algorithm performs R−1 ← (i + 1) and places
the evacuated label in box x. As in the preceding paragraph, the resulting tableau is a
SSYT whose reverse reading word is a lattice permutation. Moreover, if the algorithm is
applied to two different tableaux LR(γ × σ × (β/η)∗, β′) such that each tableaux has at
least one label i in a row higher than the last, the resulting tableaux are distinct. If T
contains all labels i in the last row, the algorithm performs Hi−1,−t, where

t =

{
i− βi if q = βi

i− βi + 1 if q = βi + 1,

and places the evacuated label in box x.
In the resulting tableau T ′, there is a label i directly above the label i + 1. By the

properties in Lemma 4.2 and Remark 4.3, T ′ is a SSTY. If βi 6= 2, the label placed
in x will always be βi and, since we have one more label βi than the number of labels
βi + 1, the lattice permutation condition is not violated. If βi = 2, the label placed in
x is either 2 or 1. In either case the lattice permutation condition is not violated. Thus
T ′ ∈ LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

Next, we will show that, if we apply the algorithm to two different tableaux in T1, T2 ∈
LR(γ × σ × (β/η)∗, β′) with all labels i in the last row, we obtain two distinct tableaux
T ′1, T

′
2. Consider first the case in which βi = i− 1. If i > 3, the second to last row in both

T1 and T2 must be filled with labels i− 1. Therefore, in this case, T1 and T2 must differ
in a row higher than the last two. Since the algorithm only affects labels in the last two
rows, the resulting tableaux must be distinct. If i = 3, the second to last row in T1, T2 is
1 2 or 2 2 . If T1 and T2 differ in the second row from the bottom, T ′1 and T ′2 differ in

box x. If T1 and T2 differ in a row higher than the last two, T ′1 and T ′2 are distinct. Now
assume that βi < i− 1, i > 4. By property (a) in Lemma 4.2, T1 and T2 cannot differ in
the last i− βi − 1 rows. By property (d) in Lemma 4.2, if T1 and T2 differ in row i− βi
from the bottom, then they can only differ in the label q (the leftmost label in this row).
Suppose T1 has q = βi while T2 has q = βi + 1. Then, the i-th column of T ′1 is filled, from
top to bottom, with the labels 1, 2, . . . , βi, βi + 2, βi + 3, . . . i+ 1. The i-th column of T ′2 is
filled, from top to bottom, with the labels 1, 2, . . . , βi − 1, βi + 1, βi + 2, . . . i+ 1. (Recall
that in T ′1 and T ′2 the first column is the column of x.) Therefore, T ′1 6= T ′2. Now suppose
T1, T2 differ only in rows higher than row i−βi from the bottom. If they both have q = βi,
the algorithm only affects the last i− βi rows of such a tableau and therefore T ′1 6= T ′2. If
both T1, T2 have q = βi + 1, the algorithm only affects the last i − βi + 1 rows of such a
tableau. Since tableau T1 and T2 do not differ in column i − 1, and the algorithm shifts
up in column i− 1 and left in row i− βi + 1 from the bottom, we must have T ′1 6= T ′2.

Finally suppose that T1, T2 are tableaux in LR(γ×σ× (β/η)∗, β′) such that T1 has all
labels i in the last row and T2 does not. Then the rightmost label in the second to last
row is equal to i in T ′1 and is equal to i− 1 in T ′2.

Thus, if βi < i and η1 = 1, the algorithm produces an injection from LR(γ × σ ×
(β/η)∗, β′) into LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).
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Corollary 4.8. If ν is a partition of type 1 such that (νν1−11 ) ⊆ ν, then ν is covered by
ν + (1).

In the remainder of the subsection, we show that if ν is of type 1 containing the
rectangle (νν1−11 ) and µ does not satisfy (C2), then sµ′sµc − sν′sνc is not Schur-positive.

Theorem 4.9. Suppose that ν = β is a partition of type 1 with β1 = i and such that
(ii−1) ⊆ β. Let η be the partition obtained by reordering the parts of β/(β ∩ β′) to form a

partition. Then, η is the smallest partition in lexicographic order such that c
(ηc+γ,σ)
β′βc 6= 0

for some γ, σ.

Proof. Let β be as in the statement of the theorem. If i = 1, 2, or 3, then β ∩ β′ consists
of the first i rows of β. If i > 4, then (ii−1, 2, 1) ⊆ β, (i + 1, i, (i − 1)i−2) ⊆ β′, and
(i2, (i−1)i−3, 2) ⊆ β∩β′. Since `(β∩β′) = i, the skew Young diagram β/(β∩β′) contains
rows i + 1, i + 2, . . . , `(β) of β. In addition, since (ii−1) ⊆ β, if i > 4 and βi 6 i − 2, it
will also contain the last box in rows βi + 1, βi + 2, . . . , i− 1 of β. Thus, the partition η
obtained by reordering the the parts of β/(β ∩ β′) to form a partition is

η = (βi+1, βi+2, . . . , β`(β), ξ),

where ξ = ∅ if i = 1, 2, 3 and, if i > 4, then

ξ =


∅ if i− 1 6 βi 6 i

(1i−1−βi) if 2 6 βi < i− 1.

We will prove that there exists γ and σ such that c
(ηc+γ,σ)
β′βc 6= 0 and that if η̃ is smaller

than η in lexicographic order, then c
(η̃c+γ,σ)
β′βc = 0 for all γ and σ. To prove that c

(ηc+γ,σ)
β′βc 6= 0

we will produce a tableau in LR(γ × σ × (β/η)∗, β′).
Case 1: βi = i or i − 1. Then ξ = ∅. Notice that for i 6 3, βi = i or i − 1. In this

case we have η = (βi+1, βi+2, . . . , β`(β)). Let γ = η′ and σ = ∅ and T be the tableau of
shape η′ × (β/η)∗ and type β′ filled so that the boxes of η′ form a superstandard tableau
and each column of (β/η)∗ is filled with consecutive integers from top to bottom starting

with 1. Then, T ∈ LR(η′ × (β/η)∗, β′) and cη
c+η′

β′βc 6= 0.

Case 2: 2 6 βi < i − 1 for i > 4. Then ξ = (1i−1−βi) 6= ∅. In this case we have
η = (βi+1, βi+2, . . . , β`(β), 1

i−1−βi). Again let γ = η′ and σ = ∅ and T be the tableau of
shape η′ × (β/η)∗ and type β′ filled so that the boxes of η′ form a superstandard tableau
and the columns of (β/η)∗ are filled as follows from top to bottom: the first column is
filled with 1, 2, . . . , βi, βi + 2, . . . , i, the next i− βi − 1 columns are filled with 2, 3, . . . , i,
the next βi− 1 columns are filled with 1, 2, . . . , i, and the right-most column is filled with
1, 2, . . . , βi + 1. Then, T ∈ LR(η′ × (β/η)∗, β′) and cη

c+η′

β′βc 6= 0.

If θ is any partition such that cθ
c+γ,σ
β′βc 6= 0, i.e., LR(γ × σ× (β/θ)∗, β′) 6= ∅, then there

must be a tableau T of shape γ×σ×(β/θ)∗ and type β′. Therefore, since we have exactly
i distinct labels, the columns of (β/θ)∗ must have length at most i. Then, θj > βi+j and
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1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8

Figure 14: Example of the bottom longest possible horizontal strip (highlighted) of the
superstandard tableau of β′ = (12, 10, 9, 8, 8, 7, 7, 7). These are the only possible values
that can occur in the last row of (β/η̃)∗.

therefore (βi+1, βi+2, . . . , β`(β)) ⊆ θ. Thus, if βi = i or i−1, then η is the smallest partition

in lexicographic order such that c
(ηc+γ,σ)
β′βc 6= 0 for some γ, σ.

Now suppose that 2 6 βi < i − 1, η = (βi+1, βi+2, . . . , β`(β), 1
i−1−βi), and η̃ is strictly

less than η in lexicographic order. Suppose that cη̃
c+γ̃,σ̃
β′βc 6= 0 for some γ̃, σ̃. As previously

noted, (βi+1, βi+2, . . . , β`(β)) ⊆ η̃. Hence, η̃ = (βi+1, βi+2, . . . , β`(β), 1
k) with k < i− 1− βi.

Let T ∈ LR(γ̃ × σ̃ × (β/η̃)∗, β′). Then, the ith column of T (i.e., the last column of
(β/η̃)∗) has length i − k > βi + 1. For easier reference, we divide the first i columns of
tableau T into three parts: T1 refers to the first i− βi columns of T , T2 refers to the next
βi − 1 columns (i.e., columns i− βi + 1 to i− 1) of T , and T3 refers to the ith column of
T .

We will now show by contradiction that with the given labels we cannot fill γ̃ × σ̃ ×
(β/η̃)∗ to form an LR tableau of type β′.

As explained in Remark 2.1, the rows of T form horizontal strips in the superstandard
tableau of β′. The bottom longest possible horizontal strip of T in the superstandard
tableau of β′, read from right to left, ends in

. . . , βi, i, i, . . . , i︸ ︷︷ ︸
i− 1 times

.

See Figure 14 for an example in which β = (87, 5, 3, 2, 1, 1).
It follows that a label j such that βi + 1 6 j 6 i− 1 cannot occur in the last row. In

addition, since the first column in T has length i− 1 and 2 6 βi < i− 1, then βi cannot
be in the first column of T in the bottom i − βi − 1 boxes. These boxes are filled, from
the bottom up with i, i− 1, . . . , βi + 2 by the properties of LR tableaux. The conditions
for a SSYT force the last row of T1 to be filled with i, the second to last row of T1 to be
filled with i− 1, and so on until row i− βi − 1 from the bottom in T1 must be filled with
βi + 2. Therefore, each label i, i − 1, . . . , βi + 2 has been used i − βi times in T1. The
columns of T2 have length i and are thus filled from top to bottom with 1, 2, . . . , i. Thus,
each label has been used βi − 1 times in T2. Therefore, labels βi + 2, βi + 3, . . . , i − 1, i
have each been used i − 1 times in T1 and T2. Then, only labels 1, 2, . . . , βi + 1 can be
used in T3. This is impossible since the length of the ith column of T is at least βi + 2.
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Therefore, cη̃
c+γ̃,σ̃
β′βc = 0 for all γ̃, σ̃ and η is the smallest partition in lexicographic order

such that c
(ηc+γ,σ)
β′βc 6= 0 for some γ, σ.

Corollary 4.10. If ν is a partition of type 1 such that (νν1−11 ) ⊆ ν, then ν is not covered
by (ν, 1), the partition obtained from ν by adding a box at the end of its first column.

Proof. Let ν = β and η be as in the statement of the Theorem 4.9. Notice that (ν, 1) is
also a partition satisfying the hypothesis of Theorem 4.9. Moreover, we have β ∩ β′ =
(β, 1) ∩ (β, 1)′. Then, by Theorem 4.9, the smallest partition η in lexicographic order

so that cη
c+η′

ν′νc 6= 0 is η = β/β ∩ β′. However, if ν = (β, 1), the smallest partition η̂

in lexicographic order so that cη̂
c+η̂′

(ν,1)′(ν,1)c 6= 0 is η̂ = (η, 1). Therefore, by Theorem 4.9,

cη
c+η′

ν′νc 6= 0, but cη
c+η′

(ν,1)′(ν,1)c = 0.

Theorem 4.11. If ν is a partition of type 1 such that (νν1−11 ) ⊆ ν, then ν is not covered
by any partition µ with ν ⊆ µ, |µ| = |ν|+ 1, and µ 6= ν + (1).

Proof. Let ν = β be as in the statement of the theorem. If β1 = i and i > 2, we have
(ii−1, 2, 1) ⊆ β. Let µ be a partition such that ν ⊆ µ, |µ| = |ν|+1, and µ 6= ν+(1). Then,
µ is obtained from ν by adding a box at the end of its pth column, for some 1 6 p 6 i.
If p = 1, we are in the case of Corollary 4.10 and the statement of the theorem is true.
Suppose p > 2. Consider the partition ν̃ = ν(p−1) obtained from ν by removing its first
p − 1 columns. Then, by Corollary 4.10, ν̃ is not covered by (ν̃, 1). Let j = ν̃1. Since
ν̃j = j, it follows from the proof of Theorem 4.9 that η̃ = (ν̃j+1, ν̃j+2 . . . , ν̃`(ν̃)) is such that

cη̃
c+η̃′

ν̃′ν̃c = 1 and cη̃
c+η̃′

(ν̃,1)′(ν̃,1)c = 0.

Let ε be the partition obtained by adjoining η̃ to the right of the first p−1 columns of
ν, i.e., ε = (ν ′1, ν

′
2, . . . , ν

′
p−1, (η̃)′)′. Then, ν̃/η̃ = ν/ε and |LR(η̃′ × (ν̃/η̃)∗, ν̃ ′)| = |LR(ε′ ×

(ν/ε)∗, ν ′)|. Similarly, |LR(η̃′ × ((ν̃, 1)/η̃)∗, (ν̃, 1)′)| = |LR(ε′ × (µ/ε)∗, µ′)|. Therefore,
cε

c+ε′

ν′νc = 1 and cε
c+ε′

µ′µc = 0. Thus, µ does not cover ν.

4.2 Partitions of type 1 with small width

Let ν = β be a partition of type 1. In this section we show that, if ν1 6 4, then Conjecture
3.6 holds.

Proposition 4.12. If ν is a partition of type 1 with ν1 = 1, 2, or 3, then Conjecture 3.6
is true. Moreover, if ν is a partition of type 1 with ν1 = 4 and ν ′4 > 3, then Conjecture
3.6 is true.

Proof. In each of these cases ν contains (νν1−11 ) and the conjecture follows from Theorems
4.8 and 4.11.

We now consider partitions ν = β of type 1 with ν1 = 4 and ν ′4 = 2. To show
that ν is covered by ν + (1), for each partition λ = (ηc + γ, σ) such that cλν′νc 6= 0, we
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give an algorithm that assigns to each T ∈ LR(γ × σ × (β/η)∗, β′) a distinct tableau in
LR(γ × σ × ((β + (1))/η)∗, (β + (1))′). The labels in the superstandard tableau of ν ′ are
1, 2, 3, 4 and there are exactly two labels 4.

In addition to the operations of Definition 4.5, we also use the operation insert u and
bump along the path (k1, j1) → (k2, j2) → (k3, j3) → · · · → (kt, jt) defined as follows: u
bumps the label in position (k1, j1) and for 1 6 s 6 t − 1, the label in position (ks, js)
bumps the label in position (ks+1, js+1). The last bumped label becomes the evacuated
label.

By box in position (−k, j), we mean the box in the kth row from the bottom and the
jth column.

Algorithm 4.13. Input a tableau T ∈ LR(γ × σ × (β/η)∗, β′).
(Initializing step) If 1 6 η1 6 2, set q equal to the label position (−1, 1) in T , set b

equal to the label in position (−2, 2) in T , and set p equal to the label in position (−2, 1)
in T .

(1) If η1 = 4, place label 5 in x.

(2) If η1 < 4,

(a) If there are less than two labels 4 in the last row of T , perform R−1 ← 5 and
place the evacuated label in x.

(b) If there are two labels 4 in the last row of T ,

(b1) If q = 2 or (q = 3 and β4 = 3), insert 5 along the path (−1, 3)→ (−2, 3)→
(−2, 2)→ (−1, 1).

(b2) If q = 3 and β4 = 2 , perform H3,−b ← 5.

(b3) If q = 4 and η2 = 2, perform H2,−2 ← 5.

(b4) If q = 4 and η2 = 1 and (β4 = 3 or p < 3), replace label in position (−1, 2)
by 5 and perform R−2 ← 4.

(b5) If q = 4 and η2 = 1 and β4 = 2 and p = 3, replace label in position (−1, 2)
by 5 and perform H3,−3 ← 4.

Place the evacuated label in x.

Output tableau T ′.

Theorem 4.14. Suppose ν = β is a partition of type 1 with β1 = 4 and β′4 = 2. Then,
for each partition λ = (ηc + γ, σ) such that cλν′νc 6= 0, the above algorithm provides an
injection

LR(γ × σ × (β/η)∗, β′) ↪→ LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

Proof. Let λ = (ηc+γ, σ), with η ⊆ β and |γ|+|σ| = |η|, be a partition such that cλβ′βc 6= 0.
We input a tableau T ∈ LR(γ×σ×(β/η)∗, β′) into the algorithm. The algorithm produces
a tableau T ′. By construction, the shape of the tableau T ′ is γ × σ × ((β + (1))/η)∗ and

the electronic journal of combinatorics 21(3) (2014), #P3.46 24



the type is (β + (1))′. We show that T ′ is a SSYT whose reverse reading word is a
lattice permutation and the map obtained is an injection from LR(γ×σ× (β/η)∗, β′) into
LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

If η1 = 4, by the argument of Theorem 4.7 when η1 = i, T ′ is a SSYT whose reverse
reading word is a lattice permutation and T → T ′ is an injection from LR(γ × σ ×
(β/η)∗, β′) into LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

If η1 < 4 and T is a tableau with less than two labels 4 in the last row, the algorithm
shifts all labels in the last row of T one position to the left. The leftmost label in
this row is placed into the box x and label 5 is inserted into the rightmost box in the
last row of T . As explained in the proof of Theorem 4.7, the resulting tableau is in
LR(γ×σ×((β+(1))/η)∗, (β+(1))′) and applying the algorithm to two different tableaux
T1, T2 ∈ LR(γ × σ × (β/η)∗, β′) with less than two labels 4 in the last row produces
different tableaux in LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

We now consider the case in which T ∈ LR(γ × σ× (β/η)∗, β′) is a tableau with both
labels 4 in the last row. We will explicitly perform the algorithm on all such tableaux to
see that the resulting tableau T ′ is in LR(γ × σ × ((β + (1))/η)∗, (β + (1))′). Moreover,
this will allow us to conclude that, if η1 < 4, the algorithm produces an injection from
LR(γ × σ × (β/η)∗, β′) into LR(γ × σ × ((β + (1))/η)∗, (β + (1))′).

Note that in all diagrams below we only show the relevant labels. Since the algorithm
does not affect γ and σ, we only show the (β/η)∗ part of T . It is possible for boxes
without labels to not be part of the skew shape (the reader should imagine such boxes as
not being part of the tableau) and columns of boxes without labels could be higher than
shown, as long as the resulting diagram is a skew shape. Labels that are not marked do
not change when the algorithm is performed.

If both labels 4 are in the last row of T , we have η1 = 1 or 2. Since β′1 > 5, we also
have η2 > 1. We consider several cases depending on the shape of η and β.

Case ( I ) η1 = 1. Then the last row of T is q 4 4 . Since the third column of T ends in
4 and β′2 > 4, we must have β′2 = 4 (i.e., β5 = 1). Therefore, the number of labels 2 is
equal to four and we have at least five labels 1. Moreover, β4 = 2 or 3.

We consider these two cases separately.

(a) Case β4 = 3. Then the first three columns of T are

1 1
2 2

p 3 3
q 4 4

Since the number of labels 2 equals the number of labels 3, q 6= 2. Thus q = 3 and
p = 1 or 2. The result of applying the algorithm is shown below. T ′ is clearly an
LR tableau.

1 1
2 2

p 3 3
3 4 4

→ 1 1
2 2

p 3 4
3 3 4 5

T T ′
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If η1 = 1, β4 = 3, and T1, T2 are distinct tableaux in LR(γ × σ × (β/η)∗, β′) with
both labels 4 in the last row, then T1 and T2 can only differ in the label p or in a
row higher than the second row from the bottom. Since the algorithm only affects
the last two rows but does not change the label p, the resulting tableaux T ′1 and T ′2
are different.

(b) Case β4 = 2. Then the first three columns of T are

1
a 2

p b 3
q 4 4

If q = 2, then p = 1. We must also have b = 3 because the number of labels 2 is
one more than the number of labels 3. Then,

1
a 2

1 3 3
2 4 4

→ 1
a 2

1 3 4
2 3 4 5

T T ′

T ′ is clearly an LR tableau.

Suppose now that q = 3. Below we give the result of the algorithm depending on
whether b = 2 or 3. Note that if b = 3, there are no labels 3 in a row higher than
the second to last row in T .

1
1 2

p 2 3
3 4 4

→
1

1 2
2 3 4

p 3 4 5

1
a 2

p 3 3
3 4 4

→
1

2 3
p 3 4

a 3 4 5

T T ′ T T ′

If T is an LR tableau, one can easily verify that in each case T ′ is also an LR tableau.

Suppose η1 = 1, β4 = 2, and T1, T2 are distinct tableaux in LR(γ × σ × (β/η)∗, β′)
with both labels 4 in the last row. If T1, T2 differ in the label q, then T ′1, T

′
2 either

differ in the label in box (−3, 4) or else in the label in box (−2, 2) (recall that the
first column of each T ′1, T

′
2 consists of only the box x). If T1 and T2 have the same

label q, and q = 2, then they differ only in rows higher than the second to last row.
Since the algorithm in this case only affects the last two rows, the resulting tableaux
are different. If T1 and T2 have the same label q, and q = 3, then T ′1 and T ′2 either
differ in the label in box (−3, 4) or else in at least one of the following labels: the
label in box x or the label in box (−2, 2) or a label in a row higher than the third
to last row.
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Case ( II ) η1 = 2. Then, the last row of T consists entirely of 4. Because the type β′

allows only for the labels 1, 2, 3 and 4, we must have β4 = 2 or 3. We distinguish between
the two cases below.

(a) Case β4 = 3. Then the first two columns of T are

1
2

p 3
4 4

Below is the result of the algorithm depending on whether η2 = 1 or 2.

1 1
2 2

p 3 3
4 4

→
1 1
2 2

3 3 4
p 4 5

1
2

p 3
4 4

→
1
2

3 4
p 4 5

T T ′ T T ′

In each case T ′ is clearly an LR tableau.

Suppose η1 = 2, η2 = 1 or 2, β4 = 3, and T1, T2 are distinct tableaux in LR(γ× σ×
(β/η)∗, β′) with both labels 4 in the last row. Then T ′1, T

′
2 differ in the label in box

x or in a label in a row higher than the second to last row.

(b) Case β4 = 2. Then the first two columns of T are

a
p b
4 4

If η2 = 2, we have

a
p b
4 4

→ a
b 4

p 4 5

T T ′

and T ′ is clearly an LR tableau.

Suppose η1 = η2 = 2, β4 = 2, and T1, T2 are distinct tableaux in LR(γ × σ ×
(β/η)∗, β′) with both labels 4 in the last row. Then T ′1, T

′
2 will differ in at least one

of the following labels: the label in box x, or the label in box (−2, 2), or a label in
a row higher than the second to last row.

If η2 = 1, then we must have β5 = 1. Below we show the result of the algorithm
depending on whether p 6= 3 or p = 3.
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1
a 2

p b 3
4 4

→
1

a 2
b 3 4

p 4 5

1
a 2

3 3 3
4 4

→
1

2 3
3 3 4

a 4 5

T T ′ T T ′

If T is an LR tableau, one can easily verify that in each case T ′ is also an LR tableau.

Suppose η1 = 2, η2 = 1, β4 = 2, and T1, T2 are two distinct tableaux in LR(γ × σ×
(β/η)∗, β′) with both labels 4 in the last row. Then T ′1, T

′
2 will differ in the label in

box (−3, 4) or else in one of the following labels: the label in x, or the label in box
(−2, 2), or the label in box (−3, 3), or a label in a row higher than the third to last
row.

The discussion above shows that if T ∈ LR(γ × σ× (β/η)∗, β′), the algorithm produces a
tableau T ′ ∈ LR(γ×σ× ((β+(1))/η)∗, (β+(1))′). Moreover, we showed that if T1, T2 are
two distinct tableaux in LR(γ × σ × (β/η)∗, β′) with both labels 4 in the last row, then
the resulting tableaux T ′1, T

′
2 are distinct. We also showed that if T1, T2 are two distinct

tableaux in LR(γ × σ × (β/η)∗, β′) with less than two labels 4 in the last row, then the
resulting tableaux T ′1, T

′
2 are distinct.

Now suppose T1, T2 are two distinct tableaux in LR(γ × σ × (β/η)∗, β′) such that T1
has both labels 4 in the last row and T2 has at most one label 4 in the last row. Then, if
η1 = 1 or η1 = η2 = 2, T ′1 has a label 4 directly above the label 5 while T ′2 has a label 2
or 3 directly above the label 5. If η1 = 2 and η2 = 1, then in T ′1 the label in x is less than
or equal to the label in box (−2, 2) while in T ′2 the label in x is strictly greater than the
label in box (−2, 2). Therefore, in either case T ′1 6= T ′2.

Corollary 4.15. If ν is a partition of type 1 with ν1 = 4 and ν ′4 = 2, then ν + (1) covers
ν.

Proposition 4.16. If ν is a partition of type 1 with ν1 = 4 and ν ′4 = 2, then ν is not
covered by any partition µ such that ν ⊂ µ, |µ| = |ν|+ 1, and µ 6= ν + (1).

Proof. To prove the proposition, it is enough to show that (ν, 1) does not cover ν by

finding a partition η such that cη
c+η′

ν′νc 6= 0 and cη
c+η′

(ν,1)′(ν,1)c = 0. If we can show this, the
argument in the proof of Theorem 4.11 shows that ν is not covered by any partition other
than ν + (1).

Let η = (β5, β6, . . . , β`(β), ξ), where ξ = ∅ if β′3 = 3, and ξ = (1) if β′3 > 4. (Note that
η is obtained by reordering the parts of β/(β ∩ β′) to form a partition.) One can easily

check that cη
c+η′

β′βc = 1 and cη
c+η′

(β,1)′(β,1)c = 0.

The results above lead to the following theorem.

Theorem 4.17. If ν is a partition of type 1 with ν1 = 4, then Conjecture 3.6 is true.
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The proof of Theorem 4.14 gives a glimpse into the difficulty of proving the conjecture
in general by matching Littlewood-Richardson tableaux.

There are certain similarities between the algorithm above (when ν1 = 4 and ν ′4 = 2)
and the algorithm given at the beginning of this section for the case when ν is a partition
of type 1 such that (νν1−11 ) ⊆ ν. In both cases, if all labels i (i.e., highest label) are in
the last row of a tableau T , one creates T ′ by bumping labels up and then to the left
(and possibly southwest) according to certain rules. Otherwise, one just bumps labels
to the left in the last row. One might ask why such an algorithm would not work for
partitions of higher width. Below we give an example where the natural generalization of
the algorithm above fails.

Example 4.18. Consider the partition ν = (5, 5, 5, 3, 3, 1) of type 1 with ν1 = 5. Let
η = (13), γ = (2, 1), and σ = ∅. In Figure 15 we show a particular tableau T ∈
LR(γ × σ × (ν/η)∗, ν ′).

1 1
2

1
1 1 2
2 2 3

1 3 3 3
2 4 4 4
3 5 5 5

Figure 15: A tableau T for which the corresponding T ′ is not LR

Notice that all labels 5 are in the last row. We could try to perform insertions as in
the algorithm for ν1 = 4. Neither H4,−2 ← 6 nor H4,−3 ← 6 produce SSYT. We could
also try up-left-SW bumping paths as in (b1) of the algorithm. If we insert 6 along the
path (−1, 4)→ (−2, 4)→ (−2, 3)→ (−2, 2)→ (−1, 1) and place the evacuated box in x,
the reverse reading word of the resulting tableau is not a lattice permutation. If we insert
6 along the path (−1, 4) → (−2, 4) → (−3, 4) → (−3, 3) → (−3, 2) → (−2, 1) and place
the evacuated box in x, the resulting tableau is not a SSYT.

While one can figure out a rule for assigning a tableau T ′ to the specific tableau T in
Example 4.18, (H4,−5 ← 6 works), this just confirms the need for a myriad of rules for
specific cases as the size of ν grows.

4.3 Failure of Schur-positivity

The only if part of Conjecture 3.6 for partitions of type 1 states that, if ν is of type 1
and µ is a partition such that ν ⊆ µ, |µ| = |ν| + 1, µ 6= ν + (1), then sν′νc − sµ′µc is not
Schur-positive.

Using Maple and Sage, we checked the only if part of the conjecture for many partitions
ν of size up to 25. As the size of ν grows, so does the size of the square in which one takes
the complement. The computations become expensive very quickly. The largest example
we could examine, thanks to a computation by Nicolas Thiéry, was for a partition ν ` 35
with the complement taken in the square (1414).
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Based on the proofs of Theorem 4.9 and Proposition 4.16, and many explicit examples,
we make the following conjecture.

Lex-minimality Conjecture: If ν = β is of type 1, the smallest partition η in lexi-
cographic order such that cη

c+γ,σ
β′βc 6= 0, for some γ, σ is given by reordering the rows of

β/(β ∩ β′) to form a partition. Moreover, for this η, we have cη
c+η′

β′βc = 1.

The Lex-minimality conjecture implies that a partition ν of type 1 is not covered by
(ν, 1). Using the same argument as in Theorem 4.11, this would be enough to show that
a partition ν of type 1 could only be covered by a partition µ satisfying (C2).

In the remainder of this section we prove the failure of Schur-positivity of the expres-
sion sν′νc − sµ′µc for partitions ν of type 1 satisfying a symmetry condition and partitions
µ such that ν ⊆ µ, |µ| = |ν|+ 1, µ 6= ν + (1).

Recall that an outer corner of a Young diagram, and thus a partition, is a position
(outside the diagram) such that, if we add a box in that position we still obtain a Young
diagram.

Following the notation of Lemma 3.9, we denote by ν
(k)
(s) the diagram obtained from ν

by removing its first k columns and its first s rows. If k = 0 or s = 0, the notation means
that no columns, respectively rows, were removed from ν.

Definition 4.19. A partition ν is called corner-symmetric if for every outer corner (k, j)

of ν with k > 1, there exists 0 6 t < k − 1 such that ν
(j−1)
(t) is self-conjugate.

Definition 4.20. Equivalently, ν is corner-symmetric if for every outer corner (k, j) of
ν with k > 1, there exists a partition ηk,j such that ν/ηk,j is a self-conjugate (non-skew)
partition and ν/ηk,j contains box (k − 1, j) of ν but does not contain any box from the
first j − 1 columns of ν.

The partition in Figure 16 (a) is corner-symmetric. It has three outer corners (marked
with •) in positions (7, 1), (5, 3), and (3, 5). We can take η7,1 = (5, 5), η5,3 =
(5, 5, 2, 2, 2, 2, 2), and η3,5 = (5, 4, 4, 4, 2, 2). The partition in Figure 16 (b) is not corner-
symmetric. For the outer corner (6, 1) there is no partition η6,1 satisfying Definition 4.20.

•
•

•
•
••

(a) (b)

Figure 16: (a) Corner-symmetric and (b) non-corner-symmetric partitions

Theorem 4.21. If ν is corner-symmetric and µ is such that |µ| = |ν| + 1, ν ⊆ µ,
µ 6= ν + (1), then µ does not cover ν.
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Proof. Let µ 6= ν + (1) be a partition such that |µ| = |ν| + 1 and ν ⊆ µ. Then µ is
obtained from ν by adding a box at an outer corner (k, j) with k > 1. Let ηk,j be the
partition from Definition 4.20 (which is not necessarily unique) and let λ = ηck,j + η′k,j.
Then, λ/νc = η′k,j × (ν/ηk,j)

∗ and the partition λ appears in sν′sνc with multiplicity one
but does not appear in sµ′sµc . Therefore µ does not cover ν.

Corollary 4.22. A corner-symmetric partition of type 1 is covered by at most one parti-
tion.

5 Partitions of type 2

Recall that ν is a partition of type 2 if ν = β + (ss) + α, where s > 1, α 6= ∅. Moreover,
by Proposition 3.10 (a), this decomposition is unique. For the rest of the section we set
i = β1. Then, (is+2, i − 1, i − 2, . . . , 1) ⊆ β. Consider the partition µ = β + (ss, 1) + α.
In this section, we prove that, for some particular partitions ν of type 2, µ is the only
partition covering ν.

Theorem 5.1. Suppose ν is a partition of type 2 with β = ∅, i.e., ν = (ss) + α, with
s > 1, α 6= ∅. Then Conjecture 3.6 is true.

Proof. By Proposition 3.11 (c), if ν is as in the statement of the theorem, then ν ′ is of
type 1. Moreover, ν ′1 = s and (ss−1) ⊆ ν ′. The result now follows from Corollary 4.8,
Theorem 4.11, and Proposition 3.2.

Before considering additional cases of partitions of type 2, we introduce more notation
and prove two helpful lemmas.

Let λ = (ηc + γ, σ) be a partition such that cλν′νc 6= 0. As we did with partitions of
type 1 in the previous section, we attempt to show that cλµ′µc > cλν′νc by matching each
tableau T ∈ LR(γ × σ × (ν/η)∗, ν ′) with a distinct tableau T ′ ∈ LR(γ × σ × (µ/η)∗, µ′).

The shape µ′ is obtained from ν ′ by adding a box in position (i+ 1, s+ 1). Thus, the
type µ′ provides us with the same labels as the type ν ′ plus an additional label i+ 1. In
γ × σ× (µ/η)∗, we denote the box (γ × σ× (µ/η)∗)/(γ × σ× (ν/η)∗) by x. As before, we
refer to x as the added box. We refer to the row of x in T or T ′ as rx. Thus, rx is the
(s+ 1)-st row from the bottom. In T , we denote by a the label directly to the right of x
(if it exists) and by b the label directly below x (if it exists). Depending on the shape η,
there might not be a box directly below or directly to the right of x.

Example 5.2. In Figure 17, we consider the diagram in which ν = β + (ss) + α with
β = (25, 1), s = 3 and α = (2, 1, 1). Moreover, η = (3, 1), γ = ∅ and σ = (2, 2). The
figure shows γ×σ× (ν/η)∗ with the place where the added box, x, would be placed. The
label in the box to the right of x is a and the label in the box below x is b.
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a
b
x

Figure 17: γ × σ × (β/η)∗ with the relevant boxes marked

If η = (24), σ = (4, 4), and γ = ∅, there is no box to the right of x in γ × σ × (ν/η)∗.
If η = (3, 3, 3, 2), σ = (4, 4, 3), and γ = ∅, there is no box directly below or directly to the
right of x in γ × σ × (ν/η)∗.

Lemma 5.3. Suppose ν = β + (ss) + α is of type 2 with β1 = i and λ = (ηc + γ, σ) is
such that cλν′νc 6= 0. Let T ∈ LR(γ × σ × (ν/η)∗, ν ′). If 1 6 j 6 s and label i+ j appears
in row r of T , then r is at most j rows under rx. In particular, the lowest row in which
label i+ 1 can appear is the s-th row from the bottom.

Proof. Since T is of type ν ′, each label i + j, 1 6 j 6 s, appears exactly s times in
T . Therefore, the lattice permutation condition forces T to contain label i + j + 1,
1 6 j 6 s− 1, in a row below the row of the last label i+ j. The statement of the lemma
follows from the fact that there are at most s rows under rx.

Note that it is possible for all labels i+ j (for some 1 6 j 6 s) to be above rx.

Corollary 5.4. Suppose ν = β+(ss)+α is of type 2 with β1 = i. For λ = (ηc+γ, σ) such
that cλν′νc 6= 0, let T ∈ LR(γ × σ × (ν/η)∗, ν ′). In T there are at least s labels i occurring
in row rx or a row above it.

Lemma 5.5. Suppose ν = β + (ss) + α is of type 2 with β1 = i. For λ = (ηc + γ, σ) such
that cλν′νc 6= 0, let T ∈ LR(γ × σ× (ν/η)∗, ν ′). In T there is at least one label i+ 1 in row
rx or a row above it.

Proof. If all i+ 1 labels appear in the first row after rx, then all labels i+ s appear in the
last row of T . Since α 6= ∅, there is a label i+ s+ 1 and it would have to be placed below
the last row.

Theorem 5.6. Suppose ν = β + (ss) + α is a partition of type 2 and β1 = i = 1. Then,
µ = β + (ss, 1) + α covers ν.

Proof. Suppose λ = (ηc+γ, σ) is such that η ⊆ ν and |γ|+|σ| = |η| and cλν′νc 6= 0. Let T ∈
LR(γ×σ× (ν/η)∗, ν ′). We will assign to T a distinct tableau T ′ ∈ LR(γ×σ× (µ/η)∗, µ′).
The tableau T contains s labels 2 whereas the tableau T ′ contains s+ 1 labels 2.

Since the partition (1s+2) is contained in β, if there is a box in T directly to the right
of x, then a > 2. If there is no label 1 in a row below rx, then either there is no box
directly below x or b > 2. (If b = 2 and all labels 1 appear in row rx or a row above
it, then all s boxes in the row of b and to the left of b must be filled with label 2. This
contradicts Lemma 5.5.)

The tableau T ′ is constructed from T in the following way. If there is no label 1 in a
row below rx, place a label 2 into the box x. Otherwise, find the highest, rightmost label
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1 below rx and replace it by 2. Then, place a label 1 into the box x. By Lemma 5.3, there
is no label 2 in a row lower than the first row below rx. Thus, the tableau T ′ obtained
above is a SSYT. By construction, its reverse reading word is a lattice permutation.

It is straightforward to see that this construction gives an injection

LR(γ × σ × (ν/η)∗, ν ′) ↪→ LR(γ × σ × (µ/η)∗, µ′).

Recall that ν(s) denotes the partition obtained from ν by removing its first s rows.

Proposition 5.7. Let ν = β + (ss) + α be a partition of type 2 with β1 = i and such
that ν(s) is corner-symmetric. Then ν is not covered by any partition µ with ν ⊆ µ,
|µ| = |ν|+ 1, and µ 6= β + (ss, 1) + α.

Proof. If µ is obtained from ν by adding a box at an outer corner (k, j) at the end of the
jth column with 1 6 j 6 i, let ηk,j be the partition obtained by applying Definition 4.20

to ν(s), and let η = (ν1, ν2, . . . , νs, ηk,j). Then, cη
c+η′

ν′νc = 1 and cη
c+η′

µ′µc = 0. Therefore, µ
does not cover ν.

Suppose now that µ is obtained from ν by adding a box at an outer corner at the end
of the jth column with i+ s+ 1 6 j 6 ν1, i.e., the added box is at the end of one of the
columns of α. We denote by α̃ the partition obtained from α by adding this box. We will
show that ν ′ is not covered by µ′. Then, Proposition 3.2 will imply that ν is not covered
by µ. Consider ν ′ = (β′, ss, α′) and let χ = (ν ′)(i). Then, χ = (ss, α′) is a partition of
type 1 with χ′χ1

> χ1. By Proposition 4.11, χ is not covered by χ̃ = (ss, α̃′). Moreover,

the proof of Proposition 4.11 gives a partition η for which cη
c+η′

χ′χc = 1 and cη
c+η′

χ̃′χ̃c = 0. Let

η̃ = (β′, η). It is easy to see that cη̃
c+η̃′

ν(ν′)c = 1 and cη̃
c+η̃′

µ(µ′)c = 0. Therefore µ′ does not cover

ν ′.

Corollary 5.8. Suppose ν = β + (ss) + α is a partition of type 2 and β1 = i = 1. Then
ν is not covered by any partition µ with ν ⊆ µ, |µ| = |ν|+ 1, and µ 6= β + (ss, 1) + α.

We remark that the proof of Proposition 5.7 shows that if we can prove that a partition
of type 1 is not covered by any partition not satisfying (C2), then it follows that a partition
of type 2 is not covered by any partition not satisfying (C2). Therefore, establishing the
Lex-minimality conjecture would prove the only if part of Conjecture 3.6 for partitions
of type 1 and 2.

6 Non-type 1 or 2 partitions

In this section we consider some partitions ν such that neither ν nor ν ′ is of type 1 or 2,
i.e., partitions not satisfying (C1). The next proposition sheds light on the necessity of
α 6= ∅ in the definition of type 2 partitions.
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Proposition 6.1. Let ν = β + (ss) with s > 1, β1 = i > 0 and such that β contains
(is+2, i − 1, i − 2, . . . , 1). Then, ν is not covered by µ = β + (ss, 1). Moreover, ν is not
covered by µ = β + (ss) + (1) either.

Proof. If µ = β+(ss, 1) or µ = β+(ss)+(1), then λ = βc+β′ appears with multiplicity 1
in sν′sνc but does not appear in sµ′sµc . (Note that if β = ∅, then λ = (mm) is the square
in which we take the complement.)

Corollary 6.2. Let ν = (ss), s > 1. Then ν is not covered by any partition µ.

Proof. This follows from Proposition 6.1 with β = ∅ and the fact that the only partitions
µ such that ν ⊆ µ, |µ| = |ν|+ 1 are µ = (ss, 1) and µ = (ss) + (1).

We now consider partitions ν such that both ν and ν ′ are corner symmetric. We show
that they are neither of type 1 nor of type 2 and are not covered by any partition µ with
ν ⊆ µ and |µ| = |ν|+ 1.

Proposition 6.3. If ν is a partition such that both ν and ν ′ are corner-symmetric, then
ν is neither of type 1 nor of type 2.

Proof. First we show that, if ν of type 2, then ν is not corner-symmetric. Let ν be
a partition of type 2, ν = β + (ss) + α, with β1 = i, and consider the outer corner

(s + 1, i + 1). Let 0 6 t 6 s − 1. Because of the shape of ν, the partition ν
(i)
(t) has last

part at least s and length at most s. Since α 6= ∅, ν(i)(t) is not self-conjugate. Then, by
Definition 4.19, ν is not corner-symmetric.

Next, we show that, if ν is of type 1, then ν ′ is not corner-symmetric. Suppose that
ν = β is of type 1with β1 = i, and let j = β′i. Then ν ′ has an outer corner at (i + 1, 1).
For each 0 6 t < i, the partition ν ′(t) has last part equal to j. To be self-conjugate, ν ′(t),
and therefore ν ′, must end in j rows of length j, i.e., ν ′i−j+1 = j. However, since ν is of
type 1, by Lemma 3.8 (ii), we have ν ′i−j+1 > i− (i−j+1)+2 = j+1. Then, by Definition
4.19, ν ′ is not corner-symmetric.

The next proposition follows directly from Theorem 4.21 and Proposition 3.2.

Proposition 6.4. If ν is a partition such that both ν and ν ′ are corner-symmetric, then
ν is not covered by any partition µ such that ν ⊆ µ and |µ| = |ν|+ 1.

Corollary 6.5. If ν is self-conjugate, then ν is not covered by any partition µ such that
µ ⊆ ν and |µ| = |ν|+ 1.

Notice that a partition ν such that both ν and ν ′ are corner-symmetric is not neces-
sarily self-conjugate. For example ν = (6, 5, 5, 5, 4, 4, 3, 3, 3) is corner-symmetric and so is
ν ′. However, ν is not self-conjugate.

Corollary 6.6. The staircase partition δi = (i, i− 1, . . . , 2, 1), with i > 1, is not covered
by any partition.
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7 Final remarks

The proof of the main conjecture in complete generality will likely involve some new com-
binatorial ideas. As the proofs of Theorem 4.7 and Theorem 4.14 suggest, trying to match
tableaux to show Schur-positivity seems to involve complicated insertion algorithms. The
larger the width of the shape β, the more exception rules need to be introduced. In
an attempt to prove the main conjecture we have also tried (unsuccessfully) using the
Jacobi-Trudi identity (see [15]) and, separately, the Plücker relations (see [6]).

We note that if ν and µ are such that ν ⊆ µ and |µ| = |ν| + 1, then McNamara’s
necessary conditions for Schur-positivity [10] for sµ′sµc−sν′sνc are satisfied. The particular
cases of Conjecture 3.6 proved in this article provide another set of examples showing that
the conditions are not sufficient.
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[6] M. Kleber, Plücker Relations on Schur Functions, J. Algebraic Combin. 13 (2001),
no. 2, 199–211.

[7] T. Lam and A. Postnikov and P. Pylyavskyy, Schur positivity and Schur log-
concavity, Amer. J. Math., 129 (2007), 1611-1622.

[8] D. E. Littlewood, The Kronecker product of symmetric group representations, J.
London Math. Soc. 31 (1956), 89-93.

[9] I. G. Macdonald, “Symmetric Functions and Hall polynomials”, sec. ed. Oxford
University Press, 1995.

[10] P. W. McNamara, Necessary conditions for Schur-positivity. J. Algebraic Combin.
28 (2008), no. 4, 495-507.

[11] P. W. McNamara and S. van Willigenburg, Positivity results on ribbon Schur fun-
tions diffrences, European J. Combin. 30, (2009), no. 5, 1352-2369.

[12] P. McNamara and S. van Willigenburg, Maximal supports and Schur-positivity
among connected skew shapes. European J. Combin. 33 (2012), no. 6, 1190–1206.

the electronic journal of combinatorics 21(3) (2014), #P3.46 35



[13] A. Okounkov, Log-concavity of multiplicities with applications to characters of
U(∞), Adv. Math., 127 no. 2 (1997), 258-282.

[14] T. Scharf, J-Y Thibon, and B.G. Wybourne. Powers of the Vandermonde determi-
nant and the quantum Hall effect, J. Phys. A: Math. Gen. 27 (1994) 4211-4219.

[15] R. Stanley. Enumerative Combinatorics Vol 2, Cambridge Univ. Press, 1999.

the electronic journal of combinatorics 21(3) (2014), #P3.46 36


	Introduction
	Preliminaries
	Partitions and Schur functions
	The Littlewood-Richardson rule
	Product of the conjugate and the complement of a partition

	Schur-positivity for a difference of products
	Symmetry and stability
	Main conjecture

	Partitions of type 1 
	Partitions of type 1 containing a large rectangle
	Partitions of type 1 with small width
	Failure of Schur-positivity

	Partitions of type 2
	Non-type 1 or 2 partitions
	Final remarks

