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Abstract

A regular covering projection is called dihedral or abelian if the covering trans-
formation group is dihedral or abelian. A lot of work has been done with regard to
the classification of arc-transitive abelian (or elementary abelian, or cyclic) covers
of symmetric graphs. In this paper, we investigate arc-transitive dihedral regu-
lar covers of symmetric (arc-transitive) cubic graphs. In particular, we classify all
arc-transitive dihedral regular covers of K4, K3,3, the 3-cube Q3 and the Petersen
graph.
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1 Introduction

Covering techniques are known to be a useful tool in algebraic and topological graph
theory. Application of these techniques has resulted in many important examples and
classification of certain families of graphs with particular symmetry properties. For ex-
ample, Djoković used graph covers to prove that there exist infinitely many 5-arc-transitive
cubic graphs, as elementary abelian covers of Tutte’s 8-cage.

Recently, quite a lot of attention has been paid to the classification of arc-transitive
covers of symmetric graphs. Approaches have involved voltage graph techniques (see [9])
and universal group methods (see [3]). In most cases, the group of covering transformation
is either cyclic or elementary abelian, or more generally abelian. These methods have been
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successfully applied in the classification of arc-transitive elementary abelian or abelian
covers of symmetric cubic graphs, such as the complete graph K4, the complete bipartite
graph K3,3, the 3-cube graph Q3, the Petersen graph and the Heawood graph and so on.

In this paper, we are aiming to extend our research on arc-transitive abelian covers
to non-abelian covers which is harder and has not been previously considered. We be-
gin with some further background in Section 2, and determine the arc-transitive cyclic
regular covers of the Möbius-Kantor graph and the Desargues graph in Sections 3 and 4,
respectively. In Section 5, we deal with dihedral covers, and give a complete classification
of arc-transitive dihedral covers of K4, K3,3, Q3 and the Petersen graph.

2 Preliminaries

Throughout this paper, all the graphs are finite and simple. A covering projection is
defined as a graph homomorphism p : X̃ → X which is surjective and locally bijective,
which means that the restriction p : N(ṽ) → N(v) is a bijection whenever ṽ is a vertex
of X̃ such that p(ṽ) = v ∈ V (X). We call X the base graph, X̃ a covering graph. A
covering projection p : X̃ → X is called regular if there exists a semi-regular subgroup
N of the automorphism group Aut(X̃) of X̃ such that the quotient graph X̃/N (with
vertices taken as the orbits of N , and two vertices adjacent whenever there exists an edge
between these two N -orbits) is isomorphic to X. In that case we call X̃ a regular cover
of X. The regular covering projection is called dihedral (or cyclic) if N is a dihedral (or
cyclic) group. Similarly, we say a regular covering projection is abelian (or elementary
abelian) when the group N is abelian (or elementary abelian).

Let p : X̃ → X be a covering projection, and suppose α and β are automorphisms of
X and X̃ such that α ◦ p = p ◦ β, that is, such that the following diagram commutes:

β
X̃ −→ X̃

p ↓ ↓ p

X̃ −→ X
α

Then we say that α lifts along p to β, and β projects to α, and also we call β a lift of α,
and α a projection of β. Note that α is uniquely determined by β, but β is not generally
determined by α. The set of all lifts of a given α ∈ Aut(X) is denoted by α̃. If every
automorphism of a subgroup G of Aut(X) lifts, then

⋃
α∈G α̃ is a subgroup of Aut(X̃),

called the lift of G.
In particular, the lift of the identity subgroup of Aut(X) (or equivalently, the subgroup

of all automorphisms of X̃ that project to the identity automorphism of X) is called the
group of covering transformations , or voltage group, and is sometimes denoted by CT(p).
The normalizer of CT(p) in Aut(X̃) projects to the largest subgroup of Aut(X) that
lifts. Hence in particular, if the latter subgroup is A, say, then the lift of A has a normal
subgroup CT(p) with quotient isomorphic to A.
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Two regular covering projections p : Y → X and p′ : Y ′ → X are called isomorphic if
there exist graph isomorphism θ̃ : Y → Y ′ and graph automorphism θ : X → X such that
θp = p′θ̃. In particular, isomorphic covering projections p and p′ are called equivalent, if θ
is the trivial automorphism. Similarly, two regular covers Y and Y ′ are called equivalent
if the two regular covering projections p and p′ are equivalent. Usually, regular covers are
studied up to equivalence.

For every symmetric cubic graph, we now know that the automorphism group is a
quotient of one of seven finitely-presented groups, which can be listed as G1, G

1
2, G

2
2, G3,

G1
4, G

2
4 and G5, and presented as follows (see [5, 4])

G1 = 〈h, a | h3 = a2 = 1 〉 ;

G 1
2 = 〈h, p, a | h3 = p2 = a2 = 1, php = h−1, a−1pa = p 〉;

G 2
2 = 〈h, p, a | h3 = p2 = 1, a2 = p, php = h−1, a−1pa = p 〉;

G3 = 〈h, p, q, a | h3 = p2 = q2 = a2 = 1, pq = qp, php = h, qhq = h−1, a−1pa = q 〉;

G 1
4 = 〈h, p, q, r, a | h3 = p2 = q2 = r2 = a2 = 1, pq = qp, pr = rp, (qr)2 = p,

h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G 2
4 = 〈h, p, q, r, a | h3 = p2 = q2 = r2 = 1, a2 = p, pq = qp, pr = rp, (qr)2 = p,

h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G5 = 〈h, p, q, r, s, a | h3 = p2 = q2 = r2 = s2 = a2 = 1, pq = qp, pr = rp, ps = sp,

qr = rq, qs = sq, (rs)2 = pq, h−1ph = p, h−1qh = r,

h−1rh = pqr, shs = h−1, a−1pa = q, a−1ra = s 〉.

If a finite group G acts as an s-arc-regular group of automorphisms of a cubic graph
X, then G is a smooth quotient of Gs or G i

s, where i = 1 or 2 depending on whether
or not the group contains an involution a that reverses an arc (in the cases where s is
even). (Note, ‘smooth’ here means that the orders of the generators are preserved.) Let
U be either Gs or G i

s, then G is a smooth quotient U/K of U by some torsion-free normal
subgroup K. If X̃ is a regular cover of X admitting a group action of the same type, then
there exists a normal subgroup L of U contained in K, with U/L being the corresponding
group automorphisms of X̃. Then the group U/L is an extension of the covering group
K/L by the given group G = U/K. In order to find all cyclic covers, we need to find
all possibilities for L such that K/L is cyclic. The presentation of K can be found using
Reidemeister-Schreier Theory, or by use of the Rewrite command in Magma [1]. In the
cases we will consider, K is a free abelian group of finite rank d, namely the Betti number
of the base graph X, with some basis {w1, w2, · · · , wd}. Algebraic or computational
techniques can be applied to find the actions by conjugation of the generators of U on
the generators of K. And these actions induce linear transformations of the free abelian
group K. Equivalently, a d-dimensional matrix representation of the group G = U/K
can be given. Therefore, in order to find all the cyclic covers, we need to find all the G-
invariant subgroups L of rank d−1, equivalently we need to find all the (d−1)-dimensional
representation of G.
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More details of Conder and the author’s universal group method can be seen in [3]
and [8]. Here we introduce some computational techniques that involves using Magma.
To find all finite cyclic regular covers with cyclic covering groups of exponent m, we may
consider the action of G by conjugation on the generators of K/K(m), where K(m) is the
characteristic subgroup of K generated by the mth powers of all elements of K. Since
K/K(m) is G-invariant, we use Magma to construct a finite group K/K(m) oG which is
the extension group of G by K/K(m). Note that this can be done, since both K/K(m) and
G are finitely-presented subgroups of U . With a finite group stored in Magma we can use
the commands NormalSubgroups and meet to find all the subgroups L of K/K(m) which
are normal in K/K(m) o G. Note that the ‘type’ of group K/K(m) o G may not work
for using the above commands in Magma, then what one needs to do is using the double
coset graph construction method (more details can be seen in [3, Section 2]) to transform
it into a permutation group (namely, an arc-transitive group of automorphisms). This
method works successfully for ‘small’ integer m. Generally, if m = pe11 p

e2
2 · · · pett is the

prime-power factorisation of m with distinct primes pi, then the factor K/L is a direct
product of its Sylow subgroups. It follows that we need only consider the G-invariant
subgroups of prime-power index in K/K(m).

Once all the possibilities for L have been found, we can determine additional informa-
tion, such as uniqueness up to isomorphism and arc-transitivity of the covering graphs.

3 Arc-transitive cyclic regular covers of the Möbius-

Kantor graph

In this section, we classify all the arc-transitive cyclic covering graphs of the Möbius-
Kantor graph GP (8, 3). The automorphism group of GP (8, 3) is isomorphic to GL(2, 3)o
C2 and acts 2-arc-regularly on the arcs. There are two other 1-arc-regular subgroups
GL(2, 3) and SL(2, 3) o C2.

Take the group G 1
2 , with presentation G = 〈h, a, p | h3 = p2 = a2 = (ph)2 = [a, p] = 1〉.

The group G 1
2 has two normal subgroups of index 96, both with quotient GL(2, 3) o C2,

but these are interchanged by the outer automorphism that takes the three generators
h, a and p to h, ap and p respectively, so without loss of generality we can take either one
of them.

We will take the one that is contained in the subgroup G1 = 〈h, a〉; this is a normal
subgroup N of index 48 in G1 with G1/N ∼= GL(2, 3).

Using the Rewrite command in Magma, we find that the subgroup N is free of rank
9, on generators

w1 = (h−1ahaha)2 w2 = (h−1ahah−1a)2

w3 = (h−1ah−1aha)2 w4 = (hahah−1a)2

w5 = (hah−1aha)2 w6 = (hah−1ah−1a)2

w7 = h−1ah−1ah−1ahah−1ah−1ah−1 w8 = ahahahahah−1ah−1ah−1ah−1

w9 = ah−1ah−1ah−1ahah−1ah−1ah−1a
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Easy calculations show that the generators h, a and p act by conjugation as below:
(Note that the actions of generator ap is just the composition of a and p.)

w1
a = w3

−1 w1
h = w7

−1 w1
p = w6

w2
a = w5

−1 w2
h = w2

−1w4 w2
p = w5

w3
a = w1

−1 w3
h = w3

−1w5 w3
p = w4

w4
a = w6

−1 w4
h = w2

−1 w4
p = w3

w5
a = w2

−1 w5
h = w3

−1 w5
p = w2

w6
a = w4

−1 w6
h = w1

−1 w6
p = w1

w7
a = w9 w7

h = w6 w7
p = w7

−1

w8
a = w8

−1 w8
h = w1w9 w8

p = w7
−1w8w9

w9
a = w7 w9

h = w1
−1w7w8

−1w9
−1 w9

p = w9
−1

Now take the quotient G1/N
′ where N ′ is the derived subgroup of N , which is an

extension of the free abelian group N/N ′ ∼= Z9 by the group G1/N ∼= GL(2, 3), and
replace the generators h, a and all wi by their images in this group. Also let K denote the
subgroup N/N ′, and let G be G1/N

′. Then, in particular, G is an extension of GL(2, 3)
by Z9.

By the above observations, we see that the generators h, a and p induce linear trans-
formations of the free abelian group K ∼= Z9 as follows:

a 7→



0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0


,

h 7→



0 0 0 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 −1 0 1 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 1 −1 −1


,
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and

p 7→



0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 0 −1


.

These matrices generate a group isomorphic to Aut(GP (8, 3)), with the first two gen-
erating a subgroup isomorphic to GL(2, 3); and the first and the product of the first and
the third generating a subgroup isomorphic to SL(2, 3) o C2. Note that the matrices of
orders 3, 2 and 8 representing h, a and ha have traces −3,−1 and 1, respectively.

Next, the character table of the group GL(2, 3) is given in Table 1, with γ being the
zeroes of the polynomial t2 + 2t+ 3.

Table 1: The character table of the group GL(2, 3)

Element order 1 2 2 3 4 6 8 8

Class size 1 1 12 8 6 8 6 6

χ1 1 1 1 1 1 1 1 1

χ2 1 1 −1 1 1 1 −1 −1

χ3 2 2 0 −1 2 −1 0 0

χ4 2 −2 0 −1 0 1 γ −γ
χ5 2 −2 0 −1 0 1 −γ γ

χ6 3 3 1 0 −1 0 −1 −1

χ7 3 3 −1 0 −1 0 1 1

χ6 4 −4 0 1 0 −1 0 0

By inspecting traces, we see that the character of the 9-dimensional representation
of GL(2, 3) over Q associated with the above action of G = 〈h, a〉 on K is the character
χ3 + χ4 + χ5 + χ7, which is reducible to the sum of χ3, χ4 + χ5 and χ7, which are
characters of three irreducible 2-, 4- and 3-dimensional representations over the rational
field Q. Especially, the 4-dimensional representation is reducible to two 2-dimensional
irreducible representations over fields containing zeroes of the polynomial t2 + 2t + 3.
Therefore, for any prime k other than 2 and 3, there is no G-invariant subgroup of rank
8.
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For prime integers 2 and 3, with the help of Magma by using the commands GModule
and Submodules for matrix groups over prime fields, there is a unique G-invariant sub-
group U of rank 8, which is generated by w1w9, w2w

−1
9 , w3w

−1
9 , w4w9, w5w9, w6w

−1
9 , w7w

−1
9

and w8 when k = 3. In particular, for prime integer 3 and exponent 32, using the
NormalSubgroups command in Magma we can show that there is no normal subgroup
of rank 8 and exponent 9.

Next, by calculation, we can see that the subgroup U is also p-invariant for the addi-
tional generator p. Hence the full automorphism group GL(2, 3) o C2 can be lifted, and
the covering graph is at least 2-arc-transitive.

Now we consider the lifting of SL(2, 3) o C2, which is an 1-arc-regular subgroup gen-
erated by the cosets Nh and Nap of the quotient G1/N .

With the help of Magma, a reduced character table of group SL(2, 3) o C2 is given
in Table 2 where δ is a primitive 3rd root and φ is a primitive 4th root.

Note that the traces of matrices induced by h, ap, hap, (haph)2 and (haph)3 of orders
3, 2, 12, 6 and 4, respectively, are equal to −3, −3, 1, 1 and 1.

Table 2: The character table of the group SL(2, 3) o C2

Element order 1 2 3 4 6 12

Class size 1 6 4 6 4 4

χ1 1 1 1 1 1 1

χ4 1 −1 δ 1 −1− δ −δ
χ5 1 −1 −1− δ 1 δ 1 + δ

χ7 2 0 −1 0 1 −φ
χ8 2 0 −1 0 1 φ

χ14 3 −1 0 −1 0 0

Hence we can see that the character of the 9-dimensinal representation of SL(2, 3)oC2

over Q associated with the above action of 〈h, ap〉 on K is χ4 +χ5 +χ7 +χ8 +χ14, which is
reducible to the sum of χ4 +χ5, χ7 +χ8 and χ14. In particular, if there exists a primitive
3rd root δ, then χ4 + χ5 is reducible to χ4 and χ5; if there exists a primitive 4th root φ,
then χ7 + χ8 is reducible to χ7 and χ8.

Therefore, we can see that for prime k /∈ {2, 3}, if a primitive 3rd root δ exists, K
is a direct sum of four G-invariant subgroups of ranks 1, 1, 3 and 4; and if a primi-
tive 4th root φ exists, K is a direct sum of four G-invariant subgroups of ranks 2, 2, 2
and 3. (Note that, here we are only interested in the existence of G-invariant subgroups
of rank 8.) In fact, with the help of Magma, if δ exists then these four G-invariant

subgroups are generated by {w1w
δ2

2 w
δ
3w4w

δ2

5 w
δ
6w7w

δ2

8 w
−δ
9 }, {w1w

δ
2w

δ2

3 w4w
δ
5w

δ2

6 w7w
δ
8w
−δ2
9 },

{w1w
−1
6 w−17 , w2w

−1
4 w5w

−1
6 w−18 , w3w

−1
4 w9}, and {w1w6w8, w3w4w8, w2w

−1
4 w−15 w6w

−1
9 ,

w7w
−1
9 }, respectively. Especially, by the conjugation action of generator a, we can see
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that a maps w1w
δ2

2 w
δ
3w4w

δ2

5 w
δ
6w7w

δ2

8 w
−δ
9 to (w1w

δ
2w

δ2

3 w4w
δ
5w

δ2

6 w7w
δ
8w
−δ2
9 )δ. Hence these

two cyclic covers are isomorphic, and we now take them as one cover. However, no cyclic
covers exist for k /∈ {2, 3} when lifting the subgroup GL(2, 3). Therefore, the cyclic
covering graph is 1-arc-transitive but not 2-arc-transitive.

By [4, Proposition 2.3], this covering graph can not be 3-arc-transitive. Suppose this
graph is 4-arc-transitive, then it is a cover of the Heawood graph, by [4, Proposition 3.2].
Thus the cyclic covering group must be of order 7e for some e. The full automorphism
group of the cyclic cover is of order 16 · 8 · 7e. Since the 4-arc-transitive symmetric cubic
graphs have vertex-stabilizer S4, hence the order of cyclic covering graph is equal to
16 · 8 · 7e/24 which is not an integer, contradiction. Therefore the cyclic covering graph
cannot be 4-arc-transitive. Finally, again by [4, Proposition 3.4], if the covering graph
is 5-arc-transitive, then it is a cover of the Biggs-Conway graph which is of order 2352.
Similar to the above argument, the covering graph cannot be 5-arc-transitive. Therefore,
these cyclic covering graphs are 1-arc-transitive.

For either k equal to 2 or 3, similar to the lifting of GL(2, 3) with the help of Magma,
there is only one G-invariant subgroup of rank 8 of exponent 3. Hence not only the
subgroup SL(2, 3)oC2 can be lifted but also the full automorphism group Aut(GP (8, 3))
can be lifted. In particular, by Conder’s list [2] we know that there is only one symmetric
cubic graph of order 48; in which case the covering graph is 2-arc-regular.

Theorem 1. Let n = ke be any power of a prime k, with e > 0. Then the arc-transitive
cyclic regular covers of the Möbius-Kantor graph with cyclic covering group of exponent
n are as follows:

(1) For k ≡ 1 mod 3, only the subgroup SL(2, 3)oC2 can be lifted, and there is one
1-arc-regular cover.

(2) For k = 3 and e = 1, there is a unique 2-arc-regular cover.

4 Arc-transitive cyclic regular covers of the Desar-

gues graph

In this section, we classify all the arc-transitive cyclic regular covering graphs of the
Desargues graph GP (10, 3). The automorphism group of GP (10, 3) is isomorphic to
S5×C2 and acts 3-arc-regularly on the arcs. There are two other 2-arc-regular subgroups
S5 and A5 × C2.

Take the group G3, with presentation G = 〈h, a, p, q | h3 = p2 = q2 = a2 = (qh)2 =
[p, q] = [h, p] = [a, p] = apaq = 1〉. This group G3 has a unique normal subgroup N of
index 240, with quotient S5 × C2.

Using the Rewrite command in Magma, we find that the subgroup N is free of rank
11, on generators
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w1 = pqahah−1ah−1ahahah−1 w2 = pqah−1ah−1ahahah−1ah−1

w3 = qhahah−1ah−1ahahap w4 = qhah−1ah−1ahahah−1ap

w5 = hpqahah−1ah−1ahahah w6 = hpqah−1ah−1ahahah−1ah

w7 = pahah−1ahahah−1ah−1ah−1aq w8 = qahah−1ahahah−1ah−1ah−1ap

w9 = hqahah−1ahahah−1ah−1ah−1aph−1 w10 = ahahahahahah−1ah−1ah−1ah−1ah−1

w11 = (ahah−1)5

Easy calculations show that the generators h, a and p act by conjugation as below:
(Note that the action of q can be given by the composition apa.)

w1
a = w3 w1

h = w4 w1
p = w2

w2
a = w2

−1 w2
h = w3 w2

p = w1

w3
a = w1 w3

h = w6 w3
p = w4

w4
a = w4

−1 w4
h = w5 w4

p = w3

w5
a = w7

−1 w5
h = w1 w5

p = w6

w6
a = w8 w6

h = w2 w6
p = w5

w7
a = w5

−1 w7
h = w5

−1w6w9
−1 w7

p = w7
−1

w8
a = w6 w8

h = w3w4
−1w7

−1 w8
p = w8

−1

w9
a = w9w10w

−1
11 w9

h = w8 w9
p = w9

−1

w10
a = w−110 w10

h = w3w9
−1w10

−1w11 w10
p = w8

−1w9w10

w11
a = w−111 w11

h = w6
−1w8w10

−1 w11
p = w7w9

−1w11

Now take the quotient G3/N
′, which is an extension of the free abelian group N/N ′ ∼=

Z11 by the group G3/N ∼= S5 × C2, and replace the generators h, a, p and all wi by their
images in this group. Also let K denote the subgroup N/N ′, and let G be G3/N

′. Then,
in particular, G is an extension of S5 × C2 by Z11.

By the above observations, we see that the generators h, a and p induce linear trans-
formations of the free abelian group K ∼= Z11 as follows:

h 7→



0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 −1 0 0
0 0 1 −1 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 −1 −1 1
0 0 0 0 0 −1 0 1 0 −1 0


,
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a 7→



0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1


,

and

p 7→



0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 1 1 0
0 0 0 0 0 0 1 0 −1 0 1


.

These matrices generate a group isomorphic to S5×C2, with the first two generating a
subgroup isomorphic to A5×C2; and the first and the product of the other two generating
a subgroup isomorphic to S5. Note that the matrices of orders 3, 2, 2, 6 and 6 representing
h, a, ap, hap and (ha)2h−1a have traces −1,−3,−1, 1 and 1, respectively.

By inspecting traces and the character tables (which can be easily given by the
CharacterTable command in Magma) of groups A5 × C2 and S5, we see that the 11-
dimensional representation of S5 over Q associated with the above action of 〈h, ap〉 on K
is a sum of U and V , which are two irreducible 6-dimensional and 5-dimensional represen-
tations over the rational field Q. Also the 11-dimensional representation of A5 × C2 over
Q associated with the action of 〈h, a〉 on K is a sum of ϕ1 and ϕ2, which are characters
of two irreducible 6-dimensional and 5-dimensional representations over the rational field
Q. However, in particular, if there exist zeros of the polynomial t2− t− 1, ϕ1 is reducible
to a sum of ϕ1,1 and ϕ1,2 each of which is a character of an irreducible 3-dimensional
representation.

Therefore, for any prime k other than 2, 3 and 5, there is no 〈h, ap〉- and 〈h, a〉-invariant
subgroup of rank 10; equivalently, no cyclic regular cover exists.

For prime k = 3 and 5, with the help of Magma, there is also no 〈h, ap〉- and 〈h, a〉-
invariant subgroup of rank 10. Thus there are no cyclic regular covers.

For prime k = 2, with the help of Magma, there are only two 〈h, a〉-invariant sub-
groups of rank 10 of exponent 2 and 4, respectively. Thus, correspondingly, there are two
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cyclic covering graphs of order 40 and 80. Also there are only two 〈h, ap〉-invariant sub-
groups of rank 10 of exponent 2 and 4. By Conder’s list [2], we know that there are unique
symmetric cubic graphs of orders 40 and 80, respectively, each of which is 3-arc-regular.
Hence the above two cyclic covering graphs are exactly these two graphs.

Theorem 2. There are only two arc-transitive cyclic regular covers of the Desargues
graph, both are 3-arc-transitive, with cyclic covering groups C2 and C4, respectively.

5 Dihedral regular covers of cubic graphs

First of all, arc-transitive cubic graphs of small order like the complete graph K4, the
complete bipartite graph K3,3, the 3-cube Q3 and the Petersen graph are well known.
The arc-transitive properties of each of the above graphs are as follows.

The complete graph K4 is 2-arc-regular with automorphism group S4, and the only
arc-transitive subgroup of automorphisms of K4 is the subgroup A4, which acts regularly
on the arcs. The complete bipartite graph K3,3 is 3-arc-regular. Its automorphism group
is the wreath product S3 o C2, and this contains three arc-transitive subgroups which
act 1-, 2- and 2-arc-regularly on the arcs of K3,3, respectively. In particular, two of
these three subgroups are minimal, one is the group A3 o C2 which acts 1-arc-regularly,
while the other is (A3 × A3) o C4 which acts 2-arc-regularly. The 3-cube Q3 is 2-arc-
regular, and its automorphism group is the direct product S4 × C2. And the only arc-
transitive proper subgroups of automorphisms are S4 and A4 × C2, each of which acts
1-arc-regularly on the arcs of Q3. And finally, the Petersen graph is a 3-arc-regular graph.
Its automorphism group is the symmetric group S5, and the only other arc-transitive
subgroup of automorphisms is the subgroup A5, which acts 2-arc-regularly.

Before investigating the dihedral covers, we remind readers of the following useful
result given by Gardiner and Praeger in [6].

Theorem 3. [6] Let Γ be a connected G-symmetric graph of valency p a prime. For each
normal subgroup N of G one of the following holds:

(a) Γ is N-symmetric;
(b) N acts regularly on vertices, so Γ is a Cayley graph for N ;
(c) N has just two orbits on vertices and Γ is bipartite; or
(d) N has r > p + 1 orbits on vertices, the natural quotient graph ΓN on N-orbits is

G/N-symmetric of valency p, and Γ is a topological cover of ΓN .

Now, suppose graph X̃ is an arc-transitive dihedral regular Dn-cover of cubic graph
X where dihedral group Dn is of degree n (here, we always assume n > 2), then we have
the following lemma:

Lemma 4. X̃ is a cyclic regular cover of a 2-cover of X.

Proof. Since X̃ is an arc-transitive dihedral cover of X, then there exists an arc-transitive
subgroup DnoA of Aut(X̃) which is the lifting subgroup of an arc-transitive subgroup A
of Aut(X). Let Cn be the cyclic subgroup of Dn, then Cn is normal in DnoA. Especially,
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Cn is a semi-regular subgroup of Aut(X̃). Thus by Theorem 3, the quotient graph X̃/Cn
is an arc-transitive 2-cover of X.

For the complete graph K4, we have the following classification of all arc-transitive
dihedral regular Dn-covers.

Theorem 5. For n 6= 2, graph X is an arc-transitive dihedral regular Dn-cover of K4 if
and only if it is an arc-transitive cyclic regular Cn-cover of the 3-cube Q3.

Before proving the above theorem, in [3], Conder and Ma gave the following results:

Theorem 6. [3] Let n = ke be any power of a prime k, with e > 0. Then the arc-
transitive cyclic regular covers of the 3-cube Q3 with cyclic covering groups of exponent n
are as follows:

(1) if k ≡ 1 mod 3, only the subgroup A4 × C2 can be lifted and there is one 1-arc-
regular cover.

(2) If k = 3 and e = 1, there is one 2-arc-regular cover.
(3) If k = 2 and e = 1, there is one 2-arc-regular cover.

Proof of Theorem 5: By Lemma 4, we know that X is an arc-transitive cyclic cover
of the Q3 which is the only arc-transitive 2-cover of the K4. From the above Theorem 6,
we know that there are only three types of cyclic covers. The first type, namely when
k ≡ 1 mod 3, is of automorphism group Cno (A4×C2). Note that from [3, Section 6],
we know that Cno (A4×C2) is generated by (the images of) elements vt and h, ap where
〈vt〉 ∼= Cn and 〈h, ap〉 ∼= A4×C2. And also by [3, Page 235, Paragraph 8] we have vt

h = vt
t

and vt
ap = vt

−1, hence vt
(hap)3 = vt

−1 where (hap)3 is of order 2 and 〈(hap)3〉 ∼= C2 which
is normal in A4 × C2. Therefore we have Cn o (A4 × C2) ∼= Dn oA4 which suggests that
X is a dihedral regular cover of K4.

For k = 3, similarly, by [3, Page 235, Paragraph -2] the order 3 covering group is
generated by uv, and the conjugation action of h and ap are (uv)h = uv and (uv)ap =
(uv)−1. Thus (uv)(hap)

3
= (uv)−1. Hence C3o (A4×C2) ∼= D3oA4. (Note that the cyclic

covering graph is of order 24, the structure of the automorphism group can also be easily
checked by Magma.) �

Remark 7. We know that there is a unique symmetric cubic graph of order 16 which is
the Möbius-Kantor graph. In particular, from [3], we know that it is a cyclic C4-cover of
the complete graph K4 and also a 2-cover of the 3-cube Q3.

Corollary 8. Let X be an arc-transitive dihedral regular Dn-cover of K4, then n is of the
following possibilities:

(1) 3 or 6; or
(2) 2i3jke for i, j ∈ {0, 1} and prime integer k ≡ 1 mod 3 and e > 0.

Note that the the product of integers 2, 3 and ke is just the order of each cyclic covering
group which comes from the direct product of cyclic groups C2, C3 and Cke.

About the complete graph K3,3, we have the following result.
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Theorem 9. The complete bipartite graph K3,3 has no arc-transitive dihedral regular
cover.

Proof. Suppose K3,3 has an arc-transitive dihedral regular cover D, then by Lemma 4,
D is a cyclic regular cover of a 2-cover of K3,3. However, we know that K3,3 has no
arc-transitive 2-cover, and in fact, there is no arc-transitive cubic graph of order 12,
contradiction. Hence K3,3 has no arc-transitive dihedral covering graph.

For the 3-cube graph Q3, the classification of arc-transitive dihedral covers is as follows.

Theorem 10. Let X be an arc-transitive dihedral regular Dn-cover of the Q3, then n is
equal to 3.

Proof. We know that each dihedral regular cover of Q3 is a cyclic regular cover of the
Möbius-Kantor graph. In Theorem 1, there are two types of cyclic regular covers of
the Möbius-Kantor graph. Firstly, if there exists a primitive 3rd root δ, then the cyclic
covering groups of the cyclic covers are generated by u = {w1w

δ2

2 w
δ
3w4w

δ2

5 w
δ
6w7w

δ2

8 w
−δ
9 }

and v = {w1w
δ
2w

δ2

3 w4w
δ
5w

δ2

6 w7w
δ
8w
−δ2
9 }, respectively. Since these two covering graphs are

isomorphic, here we only consider the covering group generated by u. The images of u
under the conjugation actions of generators h and ap are u4 and u−1. Since SL(2, 3)oC2 =
〈h, ap〉, there is a unique normal subgroup of order 2 which is generated by (haph)6. And
the image of u by the conjugation action of (haph)6 is equal to u16

6
. Since k ≡ 1 mod 3

but 166 + 1 ≡ 2 mod 3. Hence u16
6 6= u−1, which suggests there is no dihedral normal

subgroup of SL(2, 3) o C2.
Secondly, for k = 3 and the cyclic covering group of order 3, the covering graph is

2-arc-regular and of order 48. With the help of Magma, we can easily verify that its
a dihedral regular covering graph of the Q3, with automorphism group isomorphic to
D3 o (S4 × C2).

In [7], the author classified all the arc-transitive cyclic covers of the dodecahedron
graph, and gave the following result.

Theorem 11. [7] Let n = k` be any power of a prime k, with ` > 0. Then the arc-
transitive cyclic regular covers of the dodecahedron graph with covering group of exponent
n are as follows :

(a) If k = 2, there are exactly two such covers, namely

• one 3-arc-transitive cover with covering group Z2 where ` = 1,

• one 3-arc-transitive cover with covering group Z4 where ` = 2.

(b) If k = 3, there is exactly one such cover, namely

• one 2-arc-transitive cover with covering group Z3 where ` = 1.

(c) There is no arc-transitive cyclic cover for other prime integer k 6= 2, 3.

Corollary 12. All the arc-transitive cyclic regular covering graphs of the Desargues graph
are also arc-transitive cyclic regular covers of the dodecahedron graph.
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Now, we can give the following results for arc-transitive dihedral regular Dn-covers of
the Petersen graph.

Theorem 13. Let X be an arc-transitive dihedral regular Dn-cover of the Petersen graph,
then n is equal to either 3 or 6.

Proof. First of all, every dihedral regular cover of the Petersen graph is a cyclic regular
cover of a 2-cover of the Petersen graph. And we know that there are two 2-covers of the
Petersen graph which are the dodecahedron graph and the Desargues graph. However by
Corollary 12, we only need to consider the cyclic covers of the dodecahedron graph.

By Theorem 11, we know that there are only finitely many cyclic covers. For n = 2,
by [3], we know that the Petersen graph has a (C2)

2-cover. For n = 4, the covering graph
is of order 80 with automorphism group isomorphic to Q8oS5 where Q8 is the quaternion
group of order 8. Hence its a ‘quaternion’ Q8-cover of the Petersen graph instead of a
dihedral cover.

Similarly, for n = 3, we have a 2-arc-transitive C3-covering graph of automorphism
group C3 o (A5 × C2). With the help of Magma, we have C3 o (A5 × C2) ∼= D3 o A5

which suggests that its a dihedral regular D3-cover of the Petersen graph.
Therefore, the Petersen graph only has two dihedral covers with covering groups D3

and D6.
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