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Abstract

Let G be a graph with n vertices. We denote the largest signless Laplacian eigen-
value of G by q1(G) and Laplacian eigenvalues of G by µ1(G) > · · · > µn−1(G) >
µn(G) = 0. It is a conjecture on Laplacian spread of graphs that µ1(G)−µn−1(G) 6
n − 1 or equivalently µ1(G) + µ1(G) 6 2n − 1. We prove the conjecture for
bipartite graphs. Also we show that for any bipartite graph G, µ1(G)µ1(G) 6
n(n − 1). Aouchiche and Hansen [Discrete Appl. Math. 2013] conjectured that
q1(G) + q1(G) 6 3n − 4 and q1(G)q1(G) 6 2n(n − 2). We prove the former and
disprove the latter by constructing a family of graphs Hn where q1(Hn)q1(Hn) is
about 2.15n2 +O(n).

Keywords: Signless Laplacian eigenvalues of graphs; Laplacian eigenvalues of
graphs; Nordhaus–Gaddum type inequalities; Laplacian spread

1 Introduction

Let G be a simple graph with vertex set V (G) = {v1, . . . , vn}. We denote the complement
graph of G by G, the adjacency matrix of G by A(G), and the degree of a vertex v ∈
V (G) by d(v). The Laplacian matrix and the signless Laplacian matrix of G are the
matrices L(G) = A(G) − D(G) and Q(G) = A(G) + D(G), respectively, where D(G)
is the diagonal matrix with d(v1), . . . , d(vn) on its main diagonal. It is well-known that
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L(G) and Q(G) are positive semidefinite and so their eigenvalues are nonnegative real
numbers. The eigenvalues of L(G) and Q(G) are called the Laplacian eigenvalues and
signless Laplacian eigenvalues of G, respectively, and are denoted by µ1(G) > · · · > µn(G)
and q1(G) > · · · > qn(G), respectively. We drop G from the notation when there is no
danger of confusion. Note that each row sum of L(G) is 0 and therefore µn(G) = 0. In fact
the multiplicity of 0 as an eigenvalue of L(G) equals the number of conncted components
of G.

Nordhaus and Gaddum [18] studied the chromatic number in a graph G and in its
complement together. They proved lower and upper bounds on the sum and on the
product of chromatic number of G and that of G in terms of the number of vertices G.
Since then, any bound on the sum and/or the product of an invariant in a graph G and
the same invariant in G is called a Nordhaus–Gaddum type inequality. In [2], Nordhaus–
Gaddum type inequalities for graph parameters were surveyed. Many of those inequalities
involve eigenvalues of adjacency, Laplacian and signless Laplacian matrices of graphs. The
first known spectral Nordhaus–Gaddum results belong to Nosal [19], and to Amin and
Hakimi [1], who showed that for every graph G of order n,

λ(G) + λ(G) <
√

2(n− 1),

where λ(H) denotes the largest eigenvalues of A(H). A minor improvement was obtained
by Nikiforov [17]. In the same paper he conjectured that

λ(G) + λ(G) <
4

3
n+O(1).

Csikvári [6] showed that λ(G) + λ(G) < 1+
√
3

2
n− 1 and observed that any asymptomatic

bound λ(G) + λ(G) < cn+ o(n), for some constant c, implies λ(G) + λ(G) < cn− 1. The
conjecture was proved by Terpai [20] who showed that

λ(G) + λ(G) <
4

3
n− 1.

In this paper we study Nordhaus–Gaddum type inequalities for Laplacian and signless
Laplacian eigenvalues of graphs. For Laplacian eigenvalues, we have µ1(G) + µ1(G) =
n+µ1(G)−µn−1(G). The quantity µ1(G)−µn−1(G) is called Laplacian spread of G. It is
a conjecture [22, 23] that µ1(G)−µn−1(G) 6 n−1 or equivalently µ1(G)+µ1(G) 6 2n−1.
We prove the conjecture for bipartite graphs. Partial results on this conjecture were
obtained by several authors [3, 5, 9, 10, 13, 14, 15, 21]. Also we show that for any
bipartite graph G, µ1(G)µ1(G) 6 n(n − 1). Aouchiche and Hansen [2] conjectured that
q1(G)+q1(G) 6 3n−4 and q1(G)q1(G) 6 2n(n−2). We prove the former and disprove the
latter by constructing a family of graphs Hn where q1(Hn)q1(Hn) is about 2.15n2 +O(n).

2 Preliminaries

We denote the number of edges of G by e(G). We also denote the complete graph on
n vertices by Kn and the complete bipartite graph with parts of sizes r and s by Kr,s.
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The maximum and minimum degrees of G are denoted by ∆(G) and δ(G), respectively.
For a vertex v ∈ V (G), m(v) denotes the average degree of the neighbors of v, i.e.
m(v) = 1

d(v)

∑
u∼v d(u). For any graph parameter p(G) we occasionally use p to denote

p(G).

Lemma 1. ([7, p. 222]) Suppose that G is a graph and G′ is obtained by removing one
edge from G. Then the signless Laplacian eigenvalues of G and G′ interlace:

q1(G) > q1(G
′) > q2(G) > q2(G

′) > · · · > qn(G) > qn(G′).

Lemma 2. ([7, p. 217]) If G is a bipartite graph, then the matrices L(G) and Q(G) are
similar, i.e. the Laplacian and signless Laplacian eigenvalues of G are the same.

The following lemma is easy to prove.

Lemma 3. (i) The signless Laplacian eigenvalues of Kn are 2n − 2 with multiplicity
1 and n − 2 with multiplicity n − 1. The Laplacian eigenvalues of Kn are n with
multiplicity n− 1 and 0 with multiplicity 1.

(ii) The (signless) Laplacian eigenvalues of Kr,s are r + s with multiplicity 1, r with
multiplicity s− 1, s with multiplicity r − 1, and 0 with multiplicity 1.

Lemma 4. ([7, p. 185]) For any graph G, µi(G) = n− µn−i(G) for i = 1, . . . , n− 1.

From Lemma 4, one concludes the following.

Lemma 5. For any graph G with n vertices, µ1(G) 6 n with equality if and only if G is
disconnected.

Lemma 6. (Das [8]) Let G be a graph with n vertices, e edges, and ∆, δ be the largest
degree and the smallest degree of G, respectively. Then for any vertex v,

d(v) +m(v) 6
2e

n− 1
+
n− 2

n− 1
∆ + (∆− δ)

(
1− ∆

n− 1

)
. (1)

If G is connected, then the equality holds if and only if either d(v) = n − 1 or d(v) = ∆
and all neighbors of v have degrees ∆ and all non-neighbors of v have degrees δ.

From the Perron–Frobenius Theorem (see [4, p. 22]) it follows that the largest eigen-
value of any non-negative square matrix M does not exceed the maximum row-sum of
M . Consider the matrix M = D−1QD = D−1AD+D. The row-sum of M corresponding
with vertex v is d(v) + m(v). Since q1(G) is the largest eigenvalue of M we have the
following.

The following lemma is due to Merris [16]. The case of equality was obtained in [11].

Lemma 7. For any graph G,

q1(G) 6 max{d(v) +m(v) | v ∈ V (G)}. (2)

If G is connected, then the equality holds if and only if G is regular or bipartite semiregular.
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For a graph G, consider a partition P = {V1, . . . , Vm} of V (G). The partition of P is
equitable if each submatrix Qij of Q(G) formed by the rows of Vi and the columns of Vj
has constant row sums rij. The m ×m matrix R = (rij) is called the quotient matrix of
Q(G) with respect to P . The proof of the following theorem is similar to the one given
in [7, p. 187] where a similar result is presented for Laplacian matrix.

Lemma 8. Any eigenvalue of the quotient matrix R is an eigenvalue of Q(G). Moreover,
the largest eigenvalue of R is the largest eigenvalue of Q(G).

We will use a variant of Lemma 8 as follows. We denote the largest eigenvalue of a
matrix M by λmax(M).

Lemma 9. Let G be graph and P = {V1, . . . , Vm} be a partition of V (G). Suppose that
each submatrix Qij of Q(G) formed by the rows of Vi and the columns of Vj has row sum
at most rij and form the m×m matrix R = (rij). Then q1(G) 6 λmax(R).

Proof. For all 1 6 i, j 6 m, we multiply each row of Qij by some number (larger than
or equal to 1) so that all the row sums of the resulting matrix Q′ij are equal to rij. Let
Q′ be the matrix obtained from Q(G) by replacing the submatrices Qij by Q′ij for all
1 6 i, j 6 m. Each entry of Q′ is larger than or equal to the corresponding entry of Q,
hence from Perron–Frobenius Theorem it follows that λmax(Q) 6 λmax(Q

′). On the other
hand, {V1, . . . , Vm} is an equitable partition for Q′ with the qutiont matrix R = (rij). So,
by Lemma 8, λmax(Q

′) = λmax(R). This completes the proof.

3 Nordhaus–Gaddum type inequalities for Laplacian

eigenvalues

In this section we study Nordhaus–Gaddum type inequalities for both sum and product
of Laplacian eigenvalues of a graph. In view of Lemma 4, µ1(G) + µ1(G) = n + µ1(G)−
µn−1(G). So to study µ1 + µ1 it is enough to consider µ1 − µn−1. Some authors have
studied this quantity and it is called Laplacian spread. Most of the results on Laplacian
spread of graphs are around the following conjecture which was posed in [23] and appeared
as a question in [22].

Conjecture 10. For any graph G with n vertices, µ1(G)−µn−1(G) 6 n−1 (or equivalently
µ1(G) + µ1(G) 6 2n − 1) and equality holds if and only if G or G is isomorphic to the
join of K1 and a disconnected graph of order n− 1.

So far, the conjecture has been proved for trees [10], unicyclic graphs [3], bicyclic
graphs [9, 13, 15], tricyclic graphs [5], cactus graphs [14], and quasi-tree graphs [21]. We
remark that Conjecture 10 also holds if G or G is disconnected. To see this, assuming G
is disconnected, by Lemma 5, µ1(G) 6 n and µ1(G) 6 n − 1 and the equality holds in
the latter if and only if G has a connected component of order n− 1, say H, such that H
is disconnected. In other words, µ1(G) = n− 1 if and only if G = K1 ∨H with H being
disconnected where ‘∨’ shows the join of two graphs.
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In this section we prove Conjecture 10 for bipartite graphs (and their complements).
Therefore, our focus in this section will be on bipartite graphs. By Lemma 2, we may
consider Q(G) instead of L(G) whenever is required, though we insist to state our results
in terms of Laplacian eigenvalues.

We start with the following theorem which provides a lower bound on µn−1(G) (also
called algebraic connectivity of G [12]). For a polynomial f(x) with real zeros, we use
the notation zmin(f) and zmax(f) to denote the smallest and largest real zeros of f(x),
respectively.

Theorem 11. Let G be a bipartite graph with bipartition (X, Y ) and |Y | > |X|. If X
contains some vertices of degree |Y | and Y contains ` vertices of degree |X|, then

µn−1(G) >
`

|Y |
.

Equality holds if and only if G is a star.

Proof. Let k := |X| 6 n/2 and so |Y | = n − k. Suppose that X0 is the set of vertices
in X of degree n − k with t := |X0| and Y0 is the set of vertices in Y of degree k, so
|Y0| = `. If X = X0 or Y = Y0, then G is the complete bipartite graph Kn−k,k and by
Lemma 3, µn−1(G) = k. Thus assume that 1 6 t 6 k − 1 and 1 6 ` 6 n − k − 1. Let
H be the graph obtained from G by removing the edges between X \X0 and Y \ Y0. By
Lemma 1, µn−1(G) > µn−1(H). So it suffices to prove the assertion for H. In H, any
v ∈ X \X0 has degree ` and any v ∈ Y \ Y0 has degree t. It turns out that the partition
(X0, X \X0, Y0, Y \Y0) is an equitable partition for H. The corresponding quotient matrix
for Q(H) is

R =


n− k 0 ` n− k − `

0 ` ` 0
t k − t k 0
t 0 0 t

 .

The characteristic polynomial of R is xf(x) where

f(x) := x3 − (n+ `+ t)x2 + (kt+ nk + `n− `k + 2`t− k2)x− `tn. (3)

For simplicity, let r := n−k. Note that in the matrices Q(H)−rI, Q(H)−`I, Q(H)−kI
and Q(H) − tI, respectively, the rows corresponding to the vertices in X0, X \ X0, Y0,
and Y \ Y0 are identical. So the four matrices above, respectively, have nullities at least
|X0| − 1, |X \X0| − 1, |Y0| − 1, and |Y \ Y0| − 1. It follows that Q(H) has eigenvalues r,
`, k, and t with multiplicities at least t− 1, k − t− 1, `− 1, and r − `− 1, respectively.
On the other hand, we have

f(r) = −2t(r − n/2)(r − `),
f(k) = −2`(k − n/2)(k − t),
f(`) = t(r − `)(k − t),
f(t) = `(r − `)(k − t).
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If k < n/2, then none of r, `, k, t is a zero of f . It turns out that the polynomial

x(x− r)t−1(x− k)`−1(x− `)k−t−1(x− t)r−`−1f(x) (4)

is the characteristic polynomial of Q(H). If k = n/2, then k = r is a zero of f . From the
above argument, x(x−n/2)t+`−3(x−`)n/2−t−1(x−t)n/2−`−1f(x) is a factor of characteristic
polynomial of Q(H) and thus n − 1 eigenvalues of Q(H) are determined. To determine
the remaining eigenvalue we use the fact that the sum of all eigenvalues of Q(H) equals
2e(H); it turns out that the remaining eigenvalue is also n/2. So in this case also the
characteristic polynomial of Q(H) is given by (4). Note that as f is a cubic polynomial
with a positive leading coefficient and as f(t) > 0, f(`) > 0, and f(r) 6 0, it follows that
two zeros of f are greater than ` and zmin(f) < min{`, t}. Therefore, µn−1(H) = zmin(f)
and further if we show that f(`/r) < 0, then we can conclude that zmin(f) > `/r. We
proceed to show that f(`/r) < 0.

We have

r3

`
f

(
`

r

)
= −r4 + (n− t+ `− tn)r3 + (2t`+ tn)r2 − (t`+ `2 + `n)r + `2

= (−`r − r3 + 2r2`+ r2n− r3n)t+ `2 − r4 − `2r − `rn+ r3`+ r3n.

It is easy to see that the coefficient of t is always negative, so f(`/r) is maximized only if
t = 1. Therefore,

r3

`
f

(
`

r

)
6 F (r, `) := −r4 + (`− 1)r3 + (n+ 2`)r2 − (`+ `2 + `n)r + `2.

As n 6 2r and ` 6 r, we have

∂F

∂`
= r3 + 2r2 − nr − 2`(r − 1)− r

> r3 + 2r2 − 2r2 − 2r(r − 1)− r = r(r − 1)2 > 0.

So, F is increasing in ` and thus F (r, `) < F (r, r) = 0. Therefore, f(`/r) < 0 and so
µn−1(G) > µn−1(H) > `/r.

Now we consider the case of equality. For a star obviously equality occurs. Conversely,
suppose that µn−1(G) = `/|Y |. Note that `/|Y | is an algebraic integer only if ` = |Y |.
Hence G = Kk,n−k and thus k = µn−1(G) = `/|Y | = 1. This means that G is a star.

Theorem 12. Let G be a bipartite graph with n vertices, e edges, and bipartition (X, Y ).
If |X| 6 |Y |, then

µ1(G) 6 |Y |+ e

|Y |
.

Moreover, if Y contains ` vertices of degree |X|, then

|Y |+ e

|Y |
6 n− 1 +

`

|Y |
.

The equality µ1(G) = n− 1 + `/|Y | holds if and only if G is a complete bipartite graph.
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Proof. Let k := |X| 6 n/2 and so |Y | = n − k. Let v ∈ V (G) and d = d(v) and
m(v) = S/d. Then

d+
S

d
6 (n− k) +

e

n− k
⇐⇒ (n− k)d+ (n− k)

S

d
6 (n− k)2 + S + (e− S)

⇐⇒ (n− k − d)

(
n− k − S

d

)
+ (e− S) > 0, (5)

where the last inequality holds as d and S/d are at most n − k and S 6 e. Hence, by
Lemma 7, we have µ1(G) 6 n − k + e/(n − k). Since Y contains ` vertices of degree k,
we have e 6 (n− k)(k − 1) + ` and so n− k + e/(n− k) 6 n− 1 + `/(n− k).

Now we consider the equality case. If G is a complete bipartite graph, then µ1 = n and
the equality holds in both inequalities of the theorem. Conversely, if µ1 = n− 1 + `/|Y |,
then we must have the equality in (5) which is possible only if either d(v) = n − k or
m(v) = S/d = n − k. This means that we must have some vertices in X (or in Y if
k = n/2) of degree n − k. We must also have the equality in (2) which implies that all
the vertices in X have degree n− k, and thus G is Kn−k,k.

Combining Theorems 11 and 12, we conclude the following. We note that Theorem 11
may not hold in the case that X0 = ∅ in which case we have µ1(G) < n− 1 by Part 4 of
Theorem 14.

Theorem 13. If G or G is a bipartite graph with n vertices, then the following equivalent
inequalities hold:

• µ1(G) + µ1(G) 6 2n− 1;

• µ1(G)− µn−1(G) 6 n− 1;

• µn−1(G) + µn−1(G) > 1.

Equality holds if and only if G or G is a star.

We now proceed to establish a Nordhaus–Gaddum type inequality for the product of
Laplacian eigenvalues. More precisely we will show that µ1µ1 6 n(n − 1) for bipartite
graphs. However, this cannot be concluded from Theorems 11 and 12. We need to obtain
sharper bounds on the eigenvalues. This will be done in the next theorem.

Theorem 14. Let G be a bipartite graph with bipartition (X, Y ) and |Y | > |X| > 2.
Suppose that X contains t vertices of degree |Y | and Y contains ` vertices of degree |X|.

1. If t > 2 and ` > 2, then either µn−1 > 1 or µ1 6 n− 1.

2. For ` = 1: if t 6 k − 2, then µ1 < n − 1; if t = k − 1 < n/2 − 1, then µ1 <
n − 1 + 1/n; if t = k − 1 = n/2 − 1, then µ1 = 1

2

(
n+
√
n2 − 4n+ 8

)
and µn−1 =

1
2

(
n−
√
n2 − 4n+ 8

)
.

3. If t = 1 and n > 7, then µ1 < n− 1 + `/n.
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4. If either t = 0 or ` = 0, then µ1 < n− 1.

Proof. Let k := |X| 6 n/2 and |Y | = n−k. If t = 0, i.e. all the vertices in X have degree
at most n− k − 1, then by applying Lemma 9 for bipartition of G, we have

µ1 < λmax

(
n− k − 1 n− k − 1

k k

)
= n− 1.

Similarly, if ` = 0, then µ1 < n − 1. This implies Case 4. In the rest of the proof we
assume that t > 1 and ` > 1.
Case 1. t > 2 and ` > 2.

Suppose that X0 is the set of vertices in X of degree n−k and Y0 is the set of vertices
in Y of degree k. If we apply Lemma 9 on Q(G) with the partition (X0, X \X0, Y0, Y \Y0),
it turns out that µ1 does not exceed the largest eigenvalue of the matrix

R =


n− k 0 ` n− k − `

0 n− k − 1 ` n− k − `− 1
t k − t k 0
t k − t− 1 0 k − 1

 .

The characteristic polynomial of R is xg(x) where

g(x) = x3 +(2−2n)x2 +(n2 +nk−2n−k2−`− t)x+`n+nk2 +2nk−`k+ tk−n2k−2k2.

We have
g(n− 1) = (k − t− 1)n− k2 + `+ t+ tk − `k + 1.

On the other hand, from the proof of Theorem 11 we know that µn−1 > zmin(f) with f(x)
given in (3). Also, if we have f(1) < 0, then zmin(f) > 1. Since g(n− k) = t(2k − n) 6 0
and g(k) = `(n−2k) > 0, two zeros of g are at most n−k. It follows that if g(n−1) > 0,
then zmax(g) < n− 1. Next, note that

f(1) = (`+ k − t`− 1)n− t− `− `k + kt+ 2t`− k2 + 1,

and thus
g(n− 1)− f(1) = (n− 2)(t`− t− `).

By the assumptions t > 2 and ` > 2, we have t`− t− ` > 0. Hence g(n− 1)− f(1) > 0.
Now, if µn−1 6 1, then zmin(f) 6 1, hence f(1) > 0. From the above equation it follows
that g(n − 1) > 0, and so µ1 6 zmax(g) 6 n − 1. Therefore, we have either µn−1 > 1 or
µ1 6 n− 1.
Case 2. ` = 1.

In this case we have g(n− 1) = (k− t)(n− 1− k) + 2−n. It follows that g(n− 1) > 0
provided that k− t > 2. Hence, if t 6 k−2, then µ1 < n−1, and we are done. So, assume
that t = k − 1. It turns out that in this subcase, there are no edges between X \X0 and
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Y \ Y0 and hence G is isomorphic to the graph H of Theorem 11. So µ1 = zmax(f). First
assume that k < n/2. We have,

f

(
n− 1 +

1

n

)
=

1

n3

(
n4 − 2(k + 1)n3 + (2k + 3)n2 − (k + 3)n+ 1

)
,

which is minimized when k is maximized, i.e. k = (n − 1)/2. Thus f(n − 1 + 1/n) >
(3n2/2−5n/2+1)/n3 which is positive for n > 2. Therefore, µ1 < n−1+1/n. If k = n/2,
then the three zeros of f are n

2
, 1
2

(
n±
√
n2 − 4n+ 8

)
.

Case 3. t = 1.
In this case we show that zmax(g) < n−1+`/n. It suffices to show that g(n−1+`/n) >

0. We have g(n− 1 + `/n) = n−3h(k, `) where

h(k, `) = (k − 2)n4 + (k − k2 + `+ 2)n3 − `(k2 + 2)n2 − n`2 + `3.

By computation, for n > 7, we have

h(2, `) = `(n3 − 6n2 − n`+ `),

> `(n3 − 6n2 − n2 + `) > 0.

So we may assume that k > 3. We may write h(k, `) = h1(`) + n2h2(k, `) where

h1(`) = 2n3 − 2`n2 − n`2 + `3,

h2(k, `) = (k − 2)n2 + (k − k2)n+ `(n− k2).

The function h1 is decreasing in `, and so h1(`) > h1(n) = 0. Now for showing the
positivity of h2 we consider two subcases: n > k2 and n < k2. If n > k2, then

h2(k, `) > (k − 2)n2 − (k − 1)nk

which is positive for k > 3. Next suppose that n < k2. As ` 6 n− k− 1 (for if ` = n− k,
then t = k > 2), we have

h2(k, `) > (k − 2)n2 + (k − k2)n+ (n− k − 1)(n− k2)
= (k − 1)n2 − (2k2 + 1)n+ k2(k + 1). (6)

If k = 3, then the right side of (6) becomes 2n2−19n+36 which is positive for n > 7. The
zeros of the quadratic form (k−1)x2−(2k2+1)x+k2(k+1) are (2k2+1±

√
8k2 + 1)/(2k−2),

and for k > 4 we have
2k2 + 1 +

√
8k2 + 1

2k − 2
< 2k.

Since n > 2k, it follows that h2(k, `) > 0.
Therefore, g(n− 1 + `/n) > 0 and thus µ1 6 zmax(g) < n− 1 + `/n.

Theorem 15. Let G be a bipartite graph with n vertices. Then µ1(G)µ1(G) 6 n(n− 1),
equality holds if and only if either G or G is a star.
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Proof. As discussed in the paragraph following Conjecture 10, if either G or G is discon-
nected, then µ1(G) 6 n and µ1(G) 6 n−1 with equality if and only if G is a star. Hence,
we may assume that both G and G are connected. We use the notation of Theorem 14.
If k = 1, then G is a star and we are done. So assume that k > 2. The connectedness of
G also implies that t 6 k − 1 and ` 6 n− k − 1. The theorem for bipartite graphs under
the above conditions with n 6 6 can be easily verified. So we may assume that n > 7.

By Lemma 4, we have µ1 = n− µn−1. Therefore, in view of Theorem 11,

µ1 < n− `

n− k
. (7)

If one of the cases t = ` = 0, or t > 2, ` > 2, or ` = 1, t 6 k − 2 occurs, then by
Theorem 14 we have either µ1 6 n − 1 or µ1 < n − 1, and we are done. If ` = 1 and
t = k − 1 < n/2− 1, then by Theorem 14 and (7),

µ1µ1 <

(
n− 1 +

1

n

)(
n− 1

n− k

)
< n(n− 1).

If ` = 1 and t = k − 1 = n/2− 1, then by Theorem 14,

µ1µ1 =
1

4

(
n+
√
n2 − 4n+ 8

)2
which is smaller than n(n − 1) for n > 4. If t = 1, the result follows similarly from
Theorem 14 and (7).

Based on the above results, we pose the following conjecture.

Conjecture 16. For any graph G with n vertices, µ1(G)µ1(G) 6 n(n − 1) and equality
holds if and only if G or G is isomorphic to the join of K1 and a disconnected graph of
order n− 1.

4 Nordhaus–Gaddum type inequalities for signless

Laplacian eigenvalues

In this section we study Nordhaus–Gaddum type inequalities for signless Laplacian eigen-
values of a graph. Aouchiche and Hansen [2] surveyed Nordhaus–Gaddum type inequal-
ities for graph parameters. Among other things, they gave the following two conjectures
which is the subject of this section.

Conjecture 17. (Aouchiche and Hansen [2]) Let G be a simple graph on n > 2 vertices.
Then q1(G) + q1(G) 6 3n− 4. Equality holds if and only if G is the star K1,n−1.

Conjecture 18. (Aouchiche and Hansen [2]) Let G be a simple graph on n > 2 vertices.
Then q1(G) · q1(G) 6 2n(n− 2). Equality holds if and only if G is the star K1,n−1.
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We remark that Conjecture 17 can be proved easily as follows. Das [8] showed that
d(v) + m(v) 6 2e/(n− 1) + n− 2. Combining this with Lemma 7 imply the well-known
bound q1(G) 6 2e/(n− 1) + n− 2 with equality if G or G is a star. Applying this bound
to G and adding the two inequalities implies Conjecture 17. In what follows we manage
to prove a stronger inequality than Conjecture 17 and also disprove Conjecture 18.

Theorem 19. Let G be a simple graph on n > 2 vertices. Then

q1(G) + q1(G) 6 2n− 2 + (∆− δ)
(

2− ∆− δ + 1

n− 1

)
. (8)

Equality holds if and only if G is either regular or the star K1,n−1.

Proof. By Lemmas 6 and 7 we have

q1 + q1 6
2e+ 2e

n− 1
+
n− 2

n− 1
(∆ + ∆) + (∆− δ)

(
1− ∆

n− 1

)
+ (∆− δ)

(
1− ∆

n− 1

)
.

By the fact that e+ e = n(n− 1)/2, ∆ = n− 1− δ and δ = n− 1−∆, we obtain

q1 + q1 6 n+
n− 2

n− 1
(∆− δ + n− 1) + (∆− δ)

(
1− ∆

n− 1
+

δ

n− 1

)
.

This implies (8).
Now we consider, the equality case in (8). If G is regular both side of (8) are equal

2n − 2. If G = K1,n−1, both sides of (8) are equal 3n − 4. Now, assume that equality
occurs in (8) for G. Then the equalities must hold in (1) and (2) for both G and G.
We may assume that G is not regular. By the case of equality in (2), G must be a
bipartite semiregular for which the equality does not occur in (1) unless ∆ = n − 1.
Hence G = K1,n−1.

Remark 20. The inequality of Theorem 19 is stronger than Conjecture 17 as shown
below. By Theorem 19, it suffices to show that

(∆− δ)
(

2− ∆− δ + 1

n− 1

)
6 n− 2.

Note that for any graph G, ∆− δ 6 n− 2. Let

f(x) := x

(
2− x+ 1

n− 1

)
.

Then f ′(x) = 2− (2x+ 1)/(n− 1) which is positive for x < n− 3/2. It follows that

f(∆− δ) 6 f(n− 2) = n− 2,

as desired. The equality holds if and only if ∆ − δ = n − 2. From the equality case in
Theorem 19, this is possible if and only if G = K1,n−1.
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Noting that 5
18

(
4 +
√

14
)
≈ 2.15, the following proposition disproves Conjecture 18.

Proposition 21. For any positive integer n, there is a graph Hn on n vertices with

q1(Hn)q1(Hn) =
5

18

(
4 +
√

14
)
n2 +O(n).

Proof. Let n = 6k+ s for some positive integers k and −3 6 s 6 2. Set Hn = Kn−k ∨Kk,
where ‘∨’ shows the join of two graphs. Then, Hn = Kn−k∪Kk with q1(Hn) = 2(n−k−1).
The partition of V (Hn) into the k-clique and the (n− k)-independent set is an equitable
partition with the quotient matrix(

n+ k − 2 n− k
k k

)
.

It follows that

q1(Hn) =
n

2
+ k − 1 +

1

2

√
n2 + 4nk − 4n− 4k2 + 4.

Substituting k = (n− s)/6 yields that

q1(Hn)q1(Hn) =
5n+ s− 6

18

(
4n− s− 6 +

√
14n2 − 4ns− 36n− s2 + 36

)
=

5

18

(
4 +
√

14
)
n2 +O(n).

Based on the above result, we pose the following.

Problem. Let ρ(n) := max{q1(G)q1(G) | G is a simple graph of order n}. Is it true that

lim
n→∞

ρ(n)

n2
exists and equals 5

18

(
4 +
√

14
)
?
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