
The minimum number of nonnegative edges

in hypergraphs

Hao Huang∗

DIMACS

Rutgers University

New Brunswick, U.S.A.

huanghao@math.ias.edu

Benny Sudakov†

Department of Mathematics

ETH

8092 Zurich, Switzerland

benjamin.sudakov@math.ethz.ch

Submitted: May 26, 2014; Accepted: Jul 3, 2014; Published: Jul 10, 2014

Mathematics Subject Classifications: 05C35, 05C65, 05D05

Abstract

An r-uniform n-vertex hypergraph H is said to have the Manickam-Miklós-Singhi

(MMS) property if for every assignment of weights to its vertices with nonnegative

sum, the number of edges whose total weight is nonnegative is at least the min-

imum degree of H. In this paper we show that for n > 10r3, every r-uniform

n-vertex hypergraph with equal codegrees has the MMS property, and the bound

on n is essentially tight up to a constant factor. This result has two immediate

corollaries. First it shows that every set of n > 10k3 real numbers with nonnegative

sum has at least
(
n−1
k−1
)

nonnegative k-sums, verifying the Manickam-Miklós-Singhi

conjecture for this range. More importantly, it implies the vector space Manickam-

Miklós-Singhi conjecture which states that for n > 4k and any weighting on the

1-dimensional subspaces of Fnq with nonnegative sum, the number of nonnegative

k-dimensional subspaces is at least
[
n−1
k−1
]
q
. We also discuss two additional gener-

alizations, which can be regarded as analogues of the Erdős-Ko-Rado theorem on

k-intersecting families.

1 Introduction

Given an r-uniform n-vertex hypergraph H with minimum degree δ(H), suppose every

vertex has a weight wi such that w1 + · · · + wn > 0. How many nonnegative edges must

H have? An edge of H is nonnegative if the sum of the weights on its vertices is > 0.
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Let e+(H) be the number of such edges. By assigning weight n − 1 to the vertex with

minimum degree, and −1 to the remaining vertices, it is easy to see that the number of

nonnegative edges can be at most δ(H). It is a very natural question to determine when

this easy upper bound is tight, which leads us to the following definition.

Definition 1.1. A hypergraph H with minimum degree δ(H) has the MMS property if for

every weighting w : V (H) → R satisfying
∑

x∈v(H)w(x) > 0, the number of nonnegative

edges is at least δ(H).

The question, which hypergraphs have MMS property, was motivated by two old

conjectures of Manickam, Miklós, and Singhi [9, 10], both of which were raised in their

study of so-called first distribution invariant of certain association schemes.

Conjecture 1.2. Suppose n > 4k, and we have n real numbers w1, · · · , wn such that

w1+· · ·+wn > 0, then there are at least
(
n−1
k−1

)
subsets A of size k satisfying

∑
wi∈Awi > 0.

The second conjecture is an analogue of Conjecture 1.2 for vector spaces. Let V be a n-

dimensional vector space over a finite field Fq. Denote by
[
V
k

]
the family of k-dimensional

subspaces of V , and the q-Gaussian binomial coefficient
[
n
k

]
q

is defined as
∏

06i<k
qn−i−1
qk−i−1 .

Conjecture 1.3. Suppose n > 4k, and V is the n-dimensional vector space over Fq.
Let w :

[
V
1

]
→ R be a weighting on the one-dimensional subspaces of V such that∑

v∈[V1 ]
w(v) = 0, then the number of k-dimensional subspaces S with

∑
v∈[V1 ],v⊂S

w(v) > 0

is at least
[
n−1
k−1

]
q
.

Conjecture 1.2 can be regarded as an analogue of the famous Erdős-Ko-Rado theorem

[4]. The latter says that for n > 2k, a family of k-subsets of [n] with the property

that every two subsets have a nonempty intersection has size at most
(
n−1
k−1

)
. In both

problems, the extremal examples correspond to a star, which consists of subsets containing

a particular element in [n]. The Manickam-Miklós-Singhi conjecture has been open for

more than two decades, and various partial results were proven. There are several works

verifying the conjecture for small k [6, 8, 11]. But most of the research focus on proving

the conjecture for every n greater than a given function f(k). Manickam and Miklós

[9] verified the conjecture for n > (k − 1)(kk + k2) + k. Later Tyomkyn [14] improved

this bound to n > eck log log k. Alon, Huang, and Sudakov [1] obtained the first polynomial

bound n > 33k2. Later, Frankl [5] gave a shorter proof for a cubic range n > 3
2
k3. A linear

bound n > 1046k was obtained by Pokrovskiy [12]. He reduced the conjecture to finding a

k-uniform hypergraph on n vertices satisfying the MMS property (similar techniques were

also employed earlier in [9]). The second conjecture, Conjecture 1.3, was very recently

proved by Chowdhury, Sarkis, and Shahriari [3] simultaneously with our work. They also

proved a quadratic bound n > 8k2 for Conjecture 1.2.

We observe that both conjectures can be reduced to proving that certain hypergraph

has the MMS property. For the first conjecture, simply let the hypergraph H1 be the
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complete k-uniform hypergraph on n vertices. For the second conjecture, one can take the[
k
1

]
q
-uniform hypergraph H2 with vertex set

[
V
1

]
and let edges correspond to k-dimensional

subspaces. Both hypergraphs are regular, and moreover the codegree of every pair of

vertices is the same. It is tempting to conjecture that all such hypergraphs satisfy the

MMS property. The requirement that all the codegrees are equal may not be dropped. For

instance, the tight Hamiltonian cycle (the edges are consecutive r-tuples modulo n) when

n ≡ 1 (mod r) is not MMS. This can be seen by choosing the weights w(xr + 1) = n

for x = 0, · · · , n/r and all the other weights to be −n+r
r−1 , which results in only r − 1

nonnegative edges, as opposed to the fact that the degree is r. Our main theorem indeed

confirms that equal codegrees imply the MMS property.

Theorem 1.4. Let H be an r-uniform n-vertex hypergraph with n > 10r3 and all the

codegrees equal to λ. Then for every weighting w : V (H) → R with
∑

v wv > 0, we have

e+(H) > δ(H). Moreover in the case of equality, all nonnegative edges form a star, i.e.,

contain a fixed vertex of H.

The lower bound on n in this theorem is tight up to a constant factor. Our result

immediately implies two corollaries. First it verifies Conjecture 1.2 for a weaker range

n > Ω(k3). Moreover it also provides a proof of Conjecture 1.3.

As mentioned earlier, there are some subtle connections between Manickam-Miklós-

Singhi conjecture and the Erdős-Ko-Rado theorem on intersecting families. In [4], Erdős,

Ko and Rado also initiated the study of k-intersecting families (any two subsets have at

least k common elements). They show that for k < t, there exists an integer n0(k, t) such

that for all n > n0(k, t) the largest k-intersecting family of t-sets are the k-stars, which

are of size
(
n−k
t−k

)
. This result is equivalent to saying that in the

(
t
k

)
-uniform hypergraph H

whose vertices are k-subsets of [n] and edges correspond to t-subsets of [n], the maximum

intersecting sub-hypergraph has size
(
n−k
t−k

)
. The following theorem says that for large n,

this hypergraph has the MMS property. Note that this is not implied by Theorem 1.4,

because the codegree of two vertices (as k-subsets) depends on the size of their intersection.

Theorem 1.5. Let k, t be positive integers with t > k, n > Ct3k+3 for sufficiently large C

and let {wX}X∈([n]
k ) be a weight assignment with

∑
X∈([n]

k )wX > 0. Then there are always

at least
(
n−k
t−k

)
subsets T of size t such that

∑
X⊂T wX > 0.

This result can be regarded as an analogue of the k-intersecting version of the Erdős-

Ko-Rado theorem. Moreover, the Manickam-Miklós-Singhi conjecture is a special case of

this theorem corresponding to k = 1 and t = r. Using a similar proof one can also obtain

a generalization of the vector space version of Manickam-Miklós-Singhi conjecture.

Theorem 1.6. Let k, t be positive integers with t > k, n > Ck(t−k) for sufficiently large

C, V be the n-dimensional vector space over Fq and let {wX}X∈[Vk ] be a weight assignment

with
∑

X∈[Vk ]wX > 0. Then there are always at least
[
n−k
t−k

]
q
t-dimensional subspaces T

such that
∑

X∈[Vk ],X⊂T wX > 0.
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The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.4 and

deduce Conjecture 1.3 as a corollary. In Section 3 we will have two constructions, showing

that the n > Ω(k3) bound for Theorem 1.4 is essentially tight. The ideas presented in

Section 2 are not enough to prove Theorem 1.5. Hence, in Section 4 we develop more

sophisticated techniques to prove this theorem. We also sketch the lemmas needed to

obtain Theorem 1.6 and leave the proof details to the appendix. The final section contains

some open problems and further research directions.

2 Equal codegrees and MMS property

In this section we prove Theorem 1.4. Without loss of generality, we may assume that

V (H) = [n], and the weights are 1 = w1 > w2 > · · · > wn, such that
∑n

i=1wi = 0.

Throughout this section wi is also used to indicate the vertex i when there is no confusion.

Suppose the number of edges in H is e. By double counting, we have that H is d-regular

with d = n−1
r−1λ and that dn = re. By considering the 2r-th largest weight w2r, we will

verify Theorem 1.4 for the following three cases respectively: (i) w2r 6 1
2r2

; (ii) w2r > 1
2r

;

and (iii) 1
2r2
6 w2r 6 1

2r
.

Lemma 2.1. If w2r 6 1
2r2

, then e+(H) > d.

Proof. First we show that among the d edges containing w1, the number of negative edges

is at most 5d
6r

. Denote these negative edges by e1, · · · , em and the nonnegative edges by

em+1, · · · , ed. By the definition of a negative edge, for every 1 6 i 6 m we have∑
j∈ei\{1}

wj < −w1 = −1.

Summing these inequalities, we get
m∑
i=1

∑
j∈ei\{1}

wj < −m.

Now we consider the sum
∑d

i=m+1

∑
j∈ei\{1}wj and rewrite it as

∑
j αjwj. The sum of

coefficients αj’s is equal to (d−m)(r−1). Note that in this sum w2, · · · , w2r each appears

at most λ times (their codegree with {1}) and they are bounded by 1, so in total they

contribute no more than 2rλ. The remaining variables w2r+1, · · · , wn contribute less than

(d−m)(r − 1)w2r <
d−m
2r

. Combining these three estimates, we obtain that∑
1∈e

∑
j∈e\{1}

wj < −m+ 2rλ+
d−m

2r
.

By double counting, the left hand side is equal to λ(w2 + · · · + wn) = −λ. Comparing

these two quantities and doing simple calculations we get

m < 2rλ+
d

2r + 1
<

d

5r
+

d

2r + 1
<

5d

6r
.
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Here we used that n > 10r3 and λ = r−1
n−1d < d/(10r2). Therefore we may assume there

are at least (1− 5
6r

)d nonnegative edges through w1.

If every edge through w1 is positive, then we are already done; so we assume that there

exists a negative edge e through w1. Suppose wu is the largest positive weight of vertex

not contained in e. Such u exists since otherwise
∑n

i=1wi < 0, so we may assume that

u > 2 and {1, · · · , u−1} ⊂ e. We claim that in this case there are many nonnegative edges

through wu which are disjoint from e. Consider the set S of r-tuples consisting of all the

edges through wu which are disjoint from e. Since each of the r vertices of e has at most λ

common neighbors with wu, we have |S| > d− rλ. Denote by S− the set of negative edges

in S and consider the sum
∑

f∈S−
∑

j∈f\{u}wj. Obviously it is at most −wu|S−|. Rewrite

this sum as λ · (
∑

j 6∈e∪{u} αjwj). Since all codegrees are λ, αj ∈ [0, 1] and
∑

j 6∈e∪{u} αj =

(r−1)|S−|/λ, which implies that
∑

j 6∈e∪{u}(1−αj) = (n−r−1)−(r−1)|S−|/λ. Therefore

−wu <
∑

j 6∈e∪{u}

wj =
∑

j 6∈e∪{u}

αjwj +
∑

j 6∈e∪{u}

(1− αj)wj

< −|S
−|
λ
· wu + (n− r − 1− (r − 1)|S−|/λ) · wu,

The first inequality uses that the sum of all the weights is zero and that e is a negative

edge, so
∑

j∈ewj < 0. To see the second inequality, just observe that wj 6 wu for every

j 6∈ e ∪ {u}.
By simplifying the last inequality we get |S

−|
λ

< n−r
r

. Therefore the number of non-

negative edges containing w2 that are disjoint from e is at least

|S| − |S−| > d− rλ− n− r
r

λ =
n− (r3 − 2r2 + 2r)

r(n− 1)
d,

which is greater than 5d
6r

if n > 10r3. These nonnegative edges, together with the (1− 5
6r

)d

nonnegative edges through w1, already give more than d nonnegative edges.

Lemma 2.2. If w2r > 1
2r

, then e+(H) > d.

Proof. First we claim for any 1 6 i 6 2r, there are at least 3
5r
d nonnegative edges

containing wi. Let Si be the set of negative edges containing wi, then for any edge e ∈ Si,∑
j∈e\{i}wj < −wi. Summing up these inequalities, we have∑

e∈Si

∑
j∈e\{i}

wj < −|Si|wi.

Like the previous case, suppose the left hand side can be rewritten as λ ·
∑

j 6=i αjwj, then

αj ∈ [0, 1], and
∑

j 6=i αj = (r−1)|Si|/λ, which implies
∑

j 6=i(1−αj) = n−1−(r−1)|Si|/λ.
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Since
∑

j 6=iwj = −wi, we have

−wi =
∑
j 6=i

αjwj +
∑
j 6=i

(1− αj)wj

< −|Si|
λ
wi +

∑
16j62r

wj + wi ·
∑
j>2r

(1− αj)

6 −|Si|
λ
wi + 2rw1 +

(
n− 1− (r − 1)

|Si|
λ

)
wi.

Substituting λ = r−1
n−1d and wi > w2r > 1

2r
, gives

|Si| 6 (n+ 4r2)
λ

r
=

(r − 1)(n+ 4r2)

r(n− 1)
d,

which is less than (1 − 3
5r

)d when n > 10r3. So there are at least 3
5r
d nonnegative edges

containing wi. Note that for 1 6 i < j 6 2r, wi and wj are simultaneously contained in

at most λ edges. Therefore the total number of nonnegative edges is at least

2r · 3

5r
d−

(
2r

2

)
· λ > 6

5
d− 2r2(r − 1)

n− 1
d.

When n > 10r3, this gives more than d nonnegative edges.

Lemma 2.3. If 1
2r2
6 w2r 6 1

2r
, then e+(H) > d.

Proof. Let t be the index such that wt > 2rw2r and wt+1 < 2rw2r. Since w1 = 1 > 2rw2r

such t exists and is between 1 and 2r. For arbitrary 1 6 i 6 t, let Ti be the set of negative

edges containing wi. Similarly as before, we assume∑
e∈Ti

∑
j∈e\{i}

wj = λ ·
∑
j 6=i

αjwj.

Then
∑

j 6=i αjwj < −wi|Ti|/λ, and
∑

j 6=i(1− αj) = n− 1− (r − 1)|Ti|/λ. We also have

−wi =
∑
j 6=i

wj =
∑
j 6=i

αjwj +
∑
j 6=i

(1− αj)wj

< −|Ti|
λ
wi +

∑
16j6t

(1− αj)wj +
∑
t<j62r

(1− αj)wj +
∑
j>2r

(1− αj)wj

6 −|Ti|
λ
wi + t+ (2r − t)wt + (n− 1− (r − 1)|Ti|/λ)w2r

6 −|Ti|
λ
wi + t+ (2r − t)wt + (n− 1− (r − 1)|Ti|/λ)

wt
2r
.

Suppose |Ti|/λ > 1. Since wi > wt, we then have(
|Ti|
λ
− 1− (2r − t)− n− 1− (r − 1)|Ti|/λ

2r

)
wt 6 t 6 t · 2r2w2r 6 rtwt.
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Using that n > 10r3, t 6 2r and λ = r−1
n−1d and rearranging the last inequality gives

|Ti| 6
2r

3r − 1

(
n− 1

2r
+ (r − 1)t+ 2r + 1

)
λ 6

2r

3r − 1

(
n− 1

2r
+ 2r2 + 1

)
r − 1

n− 1
d <

7

15
d.

Since λ < d/(10r2), the above inequality also holds when |Ti| < λ. Therefore there are

at least 8
15
d nonnegative edges through wi. This completes the proof for t > 2, as the

number of nonnegative edges through w1 and w2 is already at least 16
15
d − λ > d (when

n > 10r3).

If t = 1, it means that w2 < 2rw2r. For 2 6 i 6 2r, as before denote by Ui the set of

all the negative edges through wi. Then similarly we define∑
f∈Ui

∑
j∈f\{i}

wj = λ
∑
j 6=i

αjwj.

Note that αi ∈ [0, 1],
∑

j 6=i αjwj < −wi|Ui|/λ and
∑

j 6=i(1− αj) = n− 1− (r − 1)|Ui|/λ.

So

−wi =
∑
j 6=i

wj =
∑
j 6=i

αjwj +
∑
j 6=i

(1− αj)wj 6 −
|Ui|
λ
wi +

2r∑
i=1

wi +
∑
j>2r

(1− αj)wj

6 −|Ui|
λ
wi + 1 + 2rw2 + ((n− 1− (r − 1)|Ui|)/λ)wi

We have (
r
|Ui|
λ
− n

)
wi 6 1 + 2rw2 6 2r2w2r + 2r · 2rw2r = 6r2w2r 6 6r2wi.

Therefore when n > 10r3,

|Ui| 6
6r2 + n

r
· r − 1

n− 1
· d 6

(
1− 2

5r

)
d.

Hence there are at least 2
5r
d nonnegative edges through every wi when 2 6 i 6 2r, together

with the 8
15
d nonnegative edges through w1. Thus the total number of nonnegative edges

is at least

8

15
d+

2

5r
d(2r − 1)−

(
2r

2

)
λ =

(
4

3
− 2

5r
− 2r3 − 3r2 + r

n− 1

)
d > d,

where we used that λ = r−1
n−1d and n > 10r3.

Combining Lemma 2.1, Lemma 2.2 and Lemma 2.3 we show that e+(H) > d. From

the proofs it is not hard to see that when n > 10r3 the only way to achieve the inequality

is when the nonnegative edges form a star, i.e. contain a fixed vertex of H. This concludes

the proof of Theorem 1.4. �
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Next we use Theorem 1.4 to prove the vector space analogue of Manickam-Miklós-

Singhi conjecture.

Proof of Conjecture 1.3: Let H be the hypergraph such that the vertex set V (H)

consists of all the 1-dimensional subspaces of V = Fnq . Obviously the number of vertices

is equal to
[
n
1

]
q
. Every k-dimensional subspace of V defines an edge of H which contains

exactly
[
k
1

]
q

vertices. Therefore H is an r-uniform hypergraph on n′ vertices with r =
[
k
1

]
q

and n′ =
[
n
1

]
q
. Since every two 1-dimensional subspaces span a unique 2-dimensional

subspace, the codegree of any two vertices in H is equal to
[
n−2
k−2

]
q
. Applying Theorem 1.4,

as long as n′ > 10r3, the minimum number of nonnegative edges in H is at least equal to

its degree, which is equal to
[
n−1
k−1

]
q
. Actually the condition that n′ > 10r3 is equivalent to

qn − 1

q − 1
> 10

(
qk − 1

q − 1

)3

.

Since n > 4k, we have qn − 1 > q4k − 1. Moreover (q4k − 1)/(qk − 1)3 = (q3k + q2k + qk +

1)/(q2k − 2qk + 1) > qk. From k > 2, we also have (q − 1)2qk > q2(q − 1)2 > 10 if q > 3.

Therefore
qn − 1

q − 1
>

(qk − 1)3qk

q − 1
> 10

(
qk − 1

q − 1

)3

.

For q = 2, it is not hard to verify that the inequality is still satisfied when k > 3. The

only remaining case is when (q, k) = (2, 2). Again it is easy to check that the inequality

holds when n > 9. The case n = 8 was resolved by Manickam and Singhi [10], who proved

their conjecture when k divides n.

Remark. The statement of Conjecture 1.3 is known to be false only for n < 2k. Hence,

it would be interesting to determine the minimal n = n(k) which implies this conjecture.

Note that Theorem 1.4 can be used to prove the assertion of Conjecture 1.3 also for

n < 4k. For example it shows that this conjecture holds for n > 3k and q > 5, n > 3k+ 1

and q > 3 or n > 3k + 2 and all q. For large q the proof will work already starting with

n = 3k − 1.

3 The tightness of Theorem 1.4

In the previous section, we show that for every r-uniform n-vertex hypergraph with equal

codegrees and n > 10r3, the minimum number of nonnegative edges is always achieved by

the stars. Here we discuss the tightness of this result. As a warm-up example, recall that

a finite projective plane has N2 +N + 1 points and N2 +N + 1 lines such that every line

contains N + 1 points. Moreover every two points determine a unique line, and every two

lines intersect at a unique point. If we regard points as vertices and lines as edges, this

naturally corresponds to a (N +1)-uniform (N +1)-regular hypergraph with all codegrees

equal to 1. Let us assign weights 1 to the N + 1 points on a fixed line l, and weights
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−N+1
N2 to the other points. Obviously the sum is nonnegative. On the other hand every

line other than l contains at most one point with positive weight, thus its sum of weight

is at most 1 − N · N+1
N2 < 0. Therefore there is only one nonnegative edge. This already

gives us a hypergraph with n ∼ r2 that is not MMS.

The next theorem provides an example of a hypergraph with n ∼ r3 for which there

is a configuration of edges, different from a star, that also achieves the minimum number

of nonnegative edges.

Theorem 3.1. For infinitely many r there is an r-uniform hypergraph H with equal

codegrees on (r3 − 2r2 + 2r) vertices, and a weighting w : V (H) → R with nonnegative

sum, such that there are δ(H) nonnegative edges that do not form a star.

Proof. Let r = q + 1, where q is a prime power. Denote by Fq the finite field with q

elements. Define a hypergraph H with the vertex set V (H) consisting of points from the

3-dimensional projective space PG(3,Fq). Here PG(n,Fq) = (Fn+1
q \{0})/ ∼, with the

equivalence relation (x0, · · · , xn) ∼ (σx0, · · · , σxn), where σ is an arbitrary number from

Fq. It is easy to see that n = |V (H)| = q3+q2+q+1 = r3−2r2+2r. Every 1-dimensional

subspace of PG(3,Fq) defines an edge of H with q + 1 = r elements. It is not hard to

check that H is d-regular for d = q2 + q + 1, and every pair of vertices has codegree 1.

Now we assign the weights to V (H) in the following way. Let S be the set of points

of a 2-dimensional projective subspace of V (H), then |S| = q2 + q+ 1. Every vertex from

S receives weight 1, and every vertex outside S has weight − q2+q+1
q3

, such that the total

weight is zero. Note that every edge has size q + 1, so if it contains at most one vertex

from S, its total weight is at most 1 − q · q2+q+1
q3

< 0. Therefore every nonnegative edge

must contain at least two vertices from S. Since S is a subspace, the lines containing 2

points from S are completely contained in S. There are precisely q2 + q + 1 = d lines in

S (these are all the nonnegative edges in H) and they do not form a star.

Finally, we give an example which shows that one might find hypergraphs with n ∼ r3

and weights such that the number of nonnegative edges is strictly smaller than the vertex

degree. Recall that in number theory, a Mersenne prime is a prime number of the form

2n − 1.

Theorem 3.2. If q and q + 1 are both prime powers, then there exists a (q + 1)-uniform

(q + 1)2-regular hypergraph H on (q3 + 2q2 + q + 1) vertices with all codegrees equal to

1, and an assignment of weights with nonnegative sum such that there are strictly less

than (q+ 1)2 nonnegative edges in H. In particular if there are infinitely many Mersenne

primes, then we obtain infinitely many such hypergraphs.

Proof. Let V (H) = V1∪V2, such that |V1| = q2 + q+1, and |V2| = q2(q+1). We first take

H1 to be the projective plane PG(2,Fq) on V1 with edges corresponding to the projective

lines. In other words H1 is a (q + 1)-uniform hypergraph with degree q + 1 and codegree

1. The hypergraph H2 consists of some (q + 1)-tuples that intersect V1 in exactly one
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vertex and intersect V2 in q vertices, such that e(H2) = (q2 + q + 1)(q2 + q). H3 is a

(q + 1)-uniform hypergraph on V2 with q3 edges. We will carefully define the edges of H2

and H3 soon.

We hope H2 and H3 to satisfy the following properties: (i) for every pair of vertices

u ∈ V1 and v ∈ V2, their codegree in H2 is equal to 1; (ii) note that every edge in H2

naturally induces a clique of size q in
(
V2
2

)
; while every edge in H3 induces a clique of

size q + 1 in
(
V2
2

)
. We hope these cliques form an edge partition of the complete graph

K|V2| = Kq2(q+1). It is not hard to see that if (i), (ii) are both satisfied, then the hypergraph

H = H1 ∪H2 ∪H3 has codegree δ = 1. Note that H is a regular hypergraph with degrees

equal to

δ · n− 1

r − 1
=

(q3 + 2q2 + q + 1)− 1

(q + 1)− 1
= (q + 1)2.

Now we assign weights to V (H), such that every vertex in V2 receives a weight −1,

while every vertex in V1 receives a weight q2(q+1)
q2+q+1

, so the total weight is zero. If an edge

is nonnegative, it must contain at least two vertices from V1, since q2(q+1)
q2+q+1

+ (−1) · q < 0.

Such an edge can only come from H1. However we have e(H1) = q2 + q + 1, which is

strictly smaller than the degree (q+ 1)2. Therefore what remains is to show the existence

of H2 and H3 satisfying (i), (ii). In other words, we need to find a clique partition in (ii)

with

Kq2(q+1) = q3 ·Kq+1 ∪ (q2 + q + 1)(q2 + q) ·Kq.

Moreover, condition (i) requires that the family of Kq’s can be partitioned into Kq-factors.

A natural idea is to partition [q2(q + 1)] = S1 ∪ · · · ∪ Sq with |Si| = q(q + 1). Observe

that the projective plane PG(2,Fq) defines a clique partition Kq2+q+1 = (q2 + q+ 1)Kq+1.

By removing one vertex from it, we obtain a partition Kq2+q = (q+ 1) ·Kq ∪ q2 ·Kq+1. By

doing this for every Si, we get the q3 copies of Kq+1 we want, and (q + 1)q copies of Kq,

which clearly form a Kq-factor, since the (q + 1) copies of Kq from each Si are pairwise

disjoint. We still need to find an edge partition of the balanced complete q-partite graph

Kq2+q,··· ,q2+q into (q2 + q)2 copies of Kq, so that they also can be grouped into q2 + q

disjoint Kq-factors.

Suppose we know that q + 1 is also a prime power. Label the vertices in Kq2+q,··· ,q2+q
by (x, y, z) where x ∈ Fq, y ∈ Fq, and z ∈ Fq+1. Two vertices (x, y, z) and (x′, y′, z′) are

adjacent iff x 6= x′. Now we define (q2 + q)2 cliques Ci,j,k,l’s for i, k ∈ Fq and j, l ∈ Fq+1.

The clique Ci,j,k,l consists of vertices in the form of (x, i + kx, j + lf(x)) for all x ∈ Fq,
where f is a fixed injective map from Fq to Fq+1. Suppose (x, y, z) and (x′, y′, z′) with

x 6= x′ are both contained in the clique Ci,j,k,l, then we have

i+ kx = y i+ kx′ = y′

j + lf(x) = z j + lf(x′) = z′.

Since x 6= x′, the first two equations uniquely determine i and k. Moreover, f(x) and f(x′)

are different elements of Fq+1 since f is injective, thus j, l are also uniquely determined.
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Therefore {Ci,j,k,l} forms a Kq-partition of the edges of Kq2+q,··· ,q2+q, and it is not hard to

see that they can be partitioned into Kq-factors by fixing k and l.

By the above discussions, if we have both of q and q + 1 to be powers of prime, in

particular when q = 2n − 1 is a Mersenne prime, then we can explicitly construct the

hypergraph.

4 Two additional generalizations

In the next two subsections we discuss generalizations of the two Manickam-Miklós-Singhi

conjectures and prove Theorem 1.5 and Theorem 1.6. For k = 1 they follow from The-

orem 1.4, thus we can assume that k > 2. In that case, as we mentioned earlier in the

introduction, these two theorems are not direct consequences of Theorem 1.4 because the

codegrees in the corresponding hypergraphs are not equal.

4.1 Generalization of MMS

In this subsection we will prove Theorem 1.5. This requires some new ideas and techniques

since direct adaptation of the proof of Theorem 1.4 does not work. Indeed, it is easy to

construct a weighting such that there is no nonnegative edge through the vertex (a k-set)

of maximal weight. For example say k = 2, one can take w{1,2} = 1, the weights of all the

2n − 4 pairs containing 1 or 2 to be −n−3
10

, and the rest to have weights roughly 2
5
. For

sufficiently large n, no t-set containing {1, 2} has nonnegative total weights.

First we prove a simple lemma from linear algebra.

Lemma 4.1. Suppose the s× s lower triangular matrix β = {βi,j} satisfies that βi,i > 0

and for every j < k 6 i, 0 6 βi,j 6 βi,k. Then for a given vector ~b = (b1, · · · , bs) such

that b1 > · · · > bs > 0, the equation ~b = ~γ · β has a unique solution ~γ = (γ1, · · · , γs) and

moreover 0 6 γi 6 bi/βi,i.

Proof. The existence and uniqueness of ~γ follow from the fact that β is invertible. Next

we inductively prove 0 6 γi 6 bi/βi,i. We start from γs, from the equation we know

bs = γsβs,s. So γs = bs/βs,s and the inductive hypothesis is true. Suppose 0 6 γi 6 bi/βi,i
for every i > k. Now from the linear equation, we have bk = βk,kγk+βk+1,kγk+1 · · ·+βs,kγs.
Since γi and βi,k are nonnegative for i > k, we have γk 6 bk/βk,k. Note that βi,j is

increasing in j, so for every k + 1 6 i 6 s, βi,k 6 βi,k+1. Therefore bk 6 βk,kγk +∑s
i=k+1 βi,k+1γi = βk,kγk + bk+1. Since 0 6 bk+1 6 bk, we know that γk > 0.

Without loss of generality, we may assume that
∑

X⊂([n]
k )wX = 0; and w{1,··· ,k}, or

alternatively written as w[k], has the largest positive weight. We may let w[k] = 1, then

wX 6 1 for every k-set X. Throughout this section, we also assume that n > Ct3k+3, here

C is some sufficiently large constant. The next lemma shows that if the sum of weights

of certain edges is very negative, then we already have enough nonnegative edges.
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Lemma 4.2. If for some subset |L| = k,∑
L⊂Y,|Y |=t

∑
L6=X⊂Y

wX 6 −
1

13t2k

(
n− k
t− k

)
,

and
∑

X 6=LwX > −1, then there are more than
(
n−k
t−k

)
nonnegative edges in H.

Proof. We may rewrite the left hand side of the inequality as(
n− 2k

t− 2k

) ∑
|X∩L|=0

wX +

(
n− 2k + 1

t− 2k + 1

) ∑
|X∩L|=1

wX + · · ·+
(
n− k − 1

t− k − 1

) ∑
|X∩L|=k−1

wX

=

(
n− k − 1

t− k − 1

) ∑
|X∩L|6k−1

wX −
k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
.

Here we let bj =
(
n−k+1
t−k+1

)
−
(
n−2k+j
t−2k+j

)
. Note that

∑
|X∩L|6k−1wX =

∑
X 6=LwX > −1. Since

n > Ct3k+3, this implies

k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
>

1

13t2k

(
n− k
t− k

)
−
(
n− k − 1

t− k − 1

)
>

1

14t2k

(
n− k
t− k

)
. (1)

For a fixed integer 0 6 y 6 k − 1, denote by Dy the number of nonnegative t-sets Z

with |Z ∩ L| = y. If Dy >
(
n−k
t−k

)
then we are done. Otherwise assume Dy 6

(
n−k
t−k

)
for

every y. We estimate the following sum:∑
|Z∩L|=y,|Z|=t

∑
X⊂Z

wX .

Since every nonnegative t-set contributes to the sum at most
(
t
k

)
, it is at most

(
t
k

)
Dy 6(

t
k

)(
n−k
t−k

)
. By double counting, the above sum also equals

∑y
j=0(βy,j ·

∑
|X∩L|=j wX), where

βy,j =
(
k−j
y−j

)(
n−2k+j
t−k−y+j

)
, note that βy,j = 0 when j < k + y − t. When j > k + y − t,

since n � t, for fixed y, βy,j is increasing in j. Also note that bj is decreasing in j. Let

~γ = (γ0, · · · , γk−2) be the unique solution of the system of equations ~b = ~γ · β, then by

Lemma 4.1
k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
=

k−2∑
j=0

k−2∑
y=j

βy,jγy
∑
|X∩L|=j

wX =
k−2∑
y=0

γy ·
y∑
j=0

(
βy,j ·

∑
|X∩L|=j

wX

)

6

(
t

k

)(
n− k
t− k

) k−2∑
y=0

γy 6

(
t

k

)(
n− k
t− k

) k−2∑
y=0

by
βy,y

.

Since by/βy,y =
((

n−k−1
t−k−1

)
−
(
n−2k+y
t−2k+y

))
/
(
n−2k+y
t−k

)
6
(
n−k−1
t−k−1

)
/
(
n−2k
t−k

)
. We have

k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
6

(
t

k

)(
n− k
t− k

)
· (k − 1) ·

(
n−k−1
t−k−1

)(
n−2k
t−k

) 6 tk+1

n

(
n− k
t− k

)
.

For n > Ct3k+3 this contradicts (1).
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We now assume that the tk-th largest weight in H is wP and consider several cases.

Lemma 4.3. If wP >
1
t2k

, there are more than
(
n−k
t−k

)
nonnegative edges in the hypergraph

H.

Proof. We will show that every vertex whose weight is larger than wP is contained in

at least 3
2tk

(
n−k
t−k

)
nonnegative edges, otherwise there are already >

(
n−k
t−k

)
nonnegative

edges. For simplicity we just need to prove this statement for wP itself. Suppose there

are S negative edges containing wP , which are denoted by e1, · · · , eS (as t-subsets). And

eS+1, · · · , e(n−k
t−k) are the other (thus nonnnegative) edges containing wP . We have

(n−k
t−k)∑
i=1

∑
P 6=X⊂ei

wX =
S∑
i=1

∑
P 6=X⊂ei

wX +

(n−k
t−k)∑

i=S+1

∑
P 6=X⊂ei

wX

6 −wP · S + wP ·
((

n− k
t− k

)
− S

)
·
((

t

k

)
− 1

)
+ tk ·

(
n− k − 1

t− k − 1

)
(2)

Here we used that there are at most tk sets X whose weight is larger than wP (but always

6 1), and the number of times every such set appears in the sum is at most
(
n−k−1
t−k−1

)
. If

S > (1− 3
2tk

)
(
n−k
t−k

)
, then the above expression is at most

−
(
n− k
t− k

)((
1− 3

2tk

)
wP −

3

2tk
·
(
t

k

)
· wP −

tk+1

n

)
,

which can be further bounded by

−
(
n− k
t− k

)((
1− 3

2tk
− 3

2 · k!

)
wP −

tk+1

n

)
< −

(
n− k
t− k

)
· 1

13
wP 6 −

(
n− k
t− k

)
· 1

13t2k
.

The last inequality uses that n > Ct3k+3, t > k > 2 and therefore 1 − 3
2tk
− 3

2·k! >
1 − 3

2·32 −
3

2·2! = 1
12

. Since we also have
∑

X 6=P wX = −wP > −1, Lemma 4.2 for L = P

immediately gives >
(
n−k
t−k

)
nonnegative edges.

Therefore we can assume that for the tk sets with largest weights, the number of

nonnegative edges containing each such set is at least 3
2tk

(
n−k
t−k

)
. Using the union bound,

the number of nonnegative edges is at least

tk · 3

2tk

(
n− k
t− k

)
−
(
tk

2

)(
n− k − 1

t− k − 1

)
,

which is also larger than
(
n−k
t−k

)
.

The next lemma covers the case when wP is smaller than 1
t2k

, and there are significant

number of negative edges containing {1, · · · , k}.
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Lemma 4.4. If the tk-th largest weight wP is smaller than 1/t2k, and there are less

than (1− 1
tk

)
(
n−k
t−k

)
nonnegative edges containing {1, · · · , k}, then there are at least

(
n−k
t−k

)
nonnegative edges in H.

Proof. We consider all the t-tuples containing {1, · · · , k}, similarly as before suppose there

are S > 1
tk

(
n−k
t−k

)
negative edges e1, · · · , eS and nonnegative edges eS+1, · · · , e(n−k

t−k), we get

∑
[k]⊂Z,|Z|=t

∑
X⊂Z,X 6=[k]

wX =
S∑
i=1

∑
X⊂ei,X 6=[k]

wX +

(n−k
t−k)∑

i=S+1

∑
X⊂ei,X 6=[k]

wX

6 −S +
1

t2k
·
((

n− k
t− k

)
− S

)
·
((

t

k

)
− 1

)
+ tk ·

(
n− k − 1

t− k − 1

)
6 −

(
S − 1

k! · tk

((
n− k
t− k

)
− S

)
− tk

(
n− k − 1

t− k − 1

))
The first inequality is by bounding the tk largest weights in the second sum by 1 and the

rest by 1
t2k

. It also uses the fact that two sets are contained in at most
(
n−k−1
t−k−1

)
edges.

Since S > 1
tk

(
n−k
t−k

)
and k > 2, we have

∑
[k]⊂Z,|Z|=t

∑
X⊂Z,X 6=[k]

wX 6 −
(

1

2tk

(
n− k
t− k

)
− tk

(
n− k − 1

t− k − 1

))

6 −
(

1

2tk
− tk+1

n

)(
n− k
t− k

)
.

For large n the right hand side is at most − 1
3tk

(
n−k
t−k

)
. We also have

∑
X 6=[k]wX = −w[k] =

−1. Now we once again can apply Lemma 4.2 for L = {1, · · · , k} to show the existence

of >
(
n−k
t−k

)
nonnegative edges.

It remains to prove the case when {1, · · · , k} is contained in at least (1 − 1
tk

)
(
n−k
t−k

)
nonnegative edges.

Lemma 4.5. If {1, · · · , k} is contained in at least (1− 1
tk

)
(
n−k
t−k

)
nonnegative edges, then

there are at least
(
n−k
t−k

)
nonnegative edges in H.

Proof. Note that if every edge containing {1, · · · , k} is nonnegative, this already gives(
n−k
t−k

)
nonnegative edges and the lemma is proved. So we may assume that there is a

negative edge f (as t-subset) through {1, · · · , k} with
∑

X⊂f wX < 0. Suppose the largest

weight outside the edge f is wQ, where |Q ∩ f | 6 k − 1. Now we define new weights w′,

such that

w′X =

{
−
(
t
k

)
if X ⊂ f

wX/wQ otherwise.
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Then for every X 6⊂ f , w′X 6 1 and w′Q = 1. Now we consider all the
(
n−k
t−k

)
t-tuples

containing the k-set Q. As usual, assume that S of them has negative sum according to

w′. If S > (1− 3
2tk

)
(
n−k
t−k

)
, we have the following estimate:

∑
Q⊂Y,|Y |=t

∑
X⊂Y,X 6=Q

w′X 6 − S +

((
n− k
t− k

)
− S

)
·
(
t

k

)

6 −
(
n− k
t− k

)
·
(

1− 3

2tk
− 3

2tk

(
t

k

))
6 −

(
n− k
t− k

)
·
(

1− 3

2tk
− 3

2k!

)
6 − 1

12

(
n− k
t− k

)
.

Note that since
∑

X⊂f wX < 0, we have

∑
X 6=Q

w′X =
∑
X 6=Q

wX/wQ −
∑
X⊂f

(
wX/wQ +

(
t

k

))
> −1−

(
t

k

)2

> −t2k.

If we apply Lemma 4.2 for L = Q and the weight w′′X = w′X/t
2k, we get >

(
n−k
t−k

)
nonnega-

tive edges for the new weight function w′. Note that every such nonnegative edge can not

share with f a common k-subset, otherwise its total weight is at most (
(
t
k

)
− 1)−

(
t
k

)
< 0.

Hence these nonnegative edges are also nonnegative edges for the original weight function

w.

By the above discussion, it remains to consider the case S < (1 − 3
2tk

)
(
n−k
t−k

)
. Then

there are at least 3
2tk

(
n−k
t−k

)
nonnegative edges containing Q, together with the (1− 1

tk
)
(
n−k
t−k

)
nonnegative edges containing {1, · · · , k}. Since {1, · · · , k} and wQ have codegree at most(
n−k−1
t−k−1

)
< 1

2tk

(
n−k
t−k

)
, we have in total more than

(
n−k
t−k

)
nonnegative edges.

4.2 Generalization of vector MMS

Our techniques from the previous section also allow us to prove a generalization of the

vector space version of Manickam-Miklós-Singhi conjecture. Since the proof of this result

is very similar to that of Theorem 1.5 we only state the appropriate variants of the lemmas

involved. The detailed proofs of these lemmas can be found in the appendix of this paper.

The proof of Theorem 1.6 follows immediately from combining these lemmas. As before,

we define the hypergraph H to have the vertex set
[
V
k

]
and every edge corresponds to a

t-dimensional subspace. It is easy to check that the hypergraph is
[
t
k

]
q
-uniform on

[
n
k

]
q

vertices. Like the previous section, we also assume that [k] is the k-dimensional subspace

with w[k] = 1 and for every X, wX 6 1. All the following lemmas are proven under the

assumption that n > C(t− k)k for sufficiently large constant C.
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Lemma 4.6. If for some k-dimensional subspace L,∑
L⊂Y,Y ∈[Vt ]

∑
L6=X⊂Y

wX 6 −
1

24
[
t
k

]2
q

[
n− k
t− k

]
q

,

and
∑

X 6=LwX > −1, then there are more than
[
n−k
t−k

]
q

nonnegative edges in H.

We now assume that the 3
[
t
k

]
q
-th largest weight in H is wP , and consider the following

cases.

Lemma 4.7. If wP > 1/(4
[
t
k

]2
q
), there are more than

[
n−k
t−k

]
q

nonnegative edges in H.

Lemma 4.8. If wP 6 1/(4
[
t
k

]2
q
), and there are less than (1 − 1

2[tk]q
)
[
n−k
t−k

]
q

nonnegative

edges containing [k], then there are at least
[
n−k
t−k

]
q

nonnegative edges in H.

Lemma 4.9. If [k] is contained in at least (1− 1

2[tk]q
)
[
n−k
t−k

]
q

nonnegative edges, then there

are at least
[
n−k
t−k

]
q

nonnegative edges in H.

5 Concluding Remarks

A r–(n, t, λ) block design is a collection of t-subsets of [n] such that every r elements

are contained in exactly λ subsets. In [13], Rands proved the following generalization of

Erdős-Ko-Rado theorem: given a r–(n, t, λ) block design H and 0 < s < r, then there

exists a function f(t, r, s) such that if H has an s-intersecting subhypergraph H ′, then

if n > f(t, r, s), the number of edges in H ′ is at most bs, which is the number of blocks

through s vertices. Note that Erdős-Ko-Rado theorem corresponds to the very special

case when H =
(
[n]
t

)
and s = 1. Moreover, when (s, r) = (1, 2), this is an analogue of

our Theorem 1.4, and when the block design is complete, it is similar to Theorem 1.5.

Using tools developed in the previous section, we can prove the following generalization

of Manickam-Miklós-Singhi conjecture to designs. Given an r–(n, t, λ) design H, for j =

1, · · · , t, let dj be the number of blocks containing a fixed set of j elements. Obviously

dr = λ, and by double counting, dj =
(n−j
r−j)

(t−j
r−j)

λ.

Theorem 5.1. Let k, r, t be positive integers with t > r > 2k, n > Ct3k+3 for sufficiently

large C and let {wX}X∈([n]
k ) be a weight assignment with

∑
X∈([n]

k )wX > 0. Then for a

given r–(n, t, λ) design H, the number of blocks B with
∑

X⊂B,X∈([n]
k )wX > 0 is at least

dk =
(n−k
r−k)

(t−k
r−k)

λ.
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It would be interesting if one can remove the condition t > r > 2k in this statement.

This will give a result generalizing our Theorems 1.4 and 1.5 for a weaker range of n.

The only additional ingredient needed to prove the above theorem is the following fact.

For two disjoint vertex subsets |A| = a and |B| = b of a r–(n, t, λ) design, the number

of edges containing every vertex from A while not containing any vertex in B is equal to
(n−r−b

t−r )
(n−r
t−r)

(n−a−b
r−a )

(t−a
r−a)

· λ. We will omit any further details here and will return to this problem

in the future.

In Section 3, we gave an example of infinitely many r-uniform n-vertex hypergraphs

with equal codegrees and n ∼ r3 not having the MMS property, based on the assumption

that there are infinitely many Mersenne primes. Since the largest known Mersenne number

has more than ten million digits, our example already gives (unconditionally) a huge

hypergraph with n cubic in r. Still it would be interesting to construct infinitely many

such hypergraphs directly, without relying on the existence of Mersenne primes.

In Section 4, we proved two additional generalizations of the Manickam-Miklós-Singhi

conjecture. Both results can be regarded as the analogues of the Erdős-Ko-Rado theorem

on the k-intersecting families for sufficiently large n. It would be interesting to determining

the exact range for which these theorems hold. For example when k = 1, Theorem 1.5

only gives n > t6 while we know from [12] that it is true already for n linear in t.
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attention a Manikam-Miklos-Sighi conjecture for vector spaces and for sharing with us
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Note added. After this paper was submitted, we learned that Ihringer [7] recently proved

that for large q, Conjecture 1.3 holds for n > 2k. This bound is sharp and settles our

question at the end of Section 2 for large q.
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A Missing proofs from Section 4.2

Throughout this section we use that for a > b, q(a−b)b 6
[
a
b

]
q
6 q(a−b)b+b.

Proof of Lemma 4.6: We may rewrite the left hand side of the inequality as[
n− 2k

t− 2k

]
q

∑
dim(X∩L)=0

wX +

[
n− 2k + 1

t− 2k + 1

]
q

∑
dim(X∩L)=1

wX + · · ·+
[
n− k − 1

t− k − 1

]
q

∑
dim(X∩L)=k−1

wX

=

[
n− k − 1

t− k − 1

]
q

∑
dim(X∩L)6k−1

wX −
k−2∑
j=0

(
bj ·

∑
dim(X∩L)=j

wX

)
.

Here we let bj =
[
n−k+1
t−k+1

]
q
−
[
n−2k+j
t−2k+j

]
q
. Note that

∑
dim(X∩L)6k−1wX =

∑
X 6=LwX > −1.

Since n > Ck(t− k), this implies

k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
>

1

24
[
t
k

]2
q

[
n− k
t− k

]
q

−
[
n− k − 1

t− k − 1

]
q

>
1

25
[
t
k

]2
q

[
n− k
t− k

]
q

. (3)

For a fixed integer 0 6 y 6 k − 1, denote by Dy the number of nonnegative t-

dimensional subspaces Z with dim(Z∩L) = y. IfDy >
[
n−k
t−k

]
q

then we are done. Otherwise
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assume Dy 6
[
n−k
t−k

]
q

for every y. We estimate the following sum:∑
dim(Z∩L)=y,dimZ=t

∑
X⊂Z

wX .

Since every nonnegative t-dimensional subspace contributes to the sum at most
[
t
k

]
q
, it is

at most
[
t
k

]
q
Dy 6

[
t
k

]
q

[
n−k
t−k

]
q
. By double counting, the above sum also equals

∑y
j=0(βy,j ·∑

dim(X∩L)=j wX). Here for a k-dimensional subspace X with dim(X∩L) = j, βy,j denotes

the number of t-dimensional subspaces Z such that X ⊂ Z and dim(Z ∩ L) = y. There

are (qk−qj)···(qk−qy−1)
(qy−qj)···(qy−qy−1)

ways to extend X ∩ L to Z ∩ L. Let Q = span{X,Z ∩ L}, and

R = span{X,L}. Then dimQ = k+y−j, dimR = 2k−j, and Q ⊂ R. The next step is to

extendQ to Z such that Z∩R = Q. The number of ways is equal to (qn−q2k−j)···(qn−qt+k−y−1)
(qt−qk+y−j)···(qt−qt−1)

.

Note that this is only nonzero for j > k + y − t, in this case βy,j is the product of these

two expressions, which is roughly q(k−y)(y−j)+(n−t)(t−k+j−y). Since t − k + j − y > 0, it is

increasing in j for large n. Also note that bj is decreasing in j. Let ~γ = (γ0, · · · , γk−2) be

the unique solution of the system of equations ~b = ~γ · β, then by Lemma 4.1

k−2∑
j=0

(
bj ·

∑
dim(X∩L)=j

wX

)
=

k−2∑
j=0

k−2∑
y=j

βy,jγy
∑

dim(X∩L)=j

wX

=
k−2∑
y=0

γy ·
y∑
j=0

(
βy,j ·

∑
dim(X∩L)=j

wX

)

6

[
t

k

]
q

[
n− k
t− k

]
q

k−2∑
y=0

γy

6

[
t

k

]
q

[
n− k
t− k

]
q

k−2∑
y=0

by
βy,y

.

It is easy to check that βy,y > q(n−t)(t−k) and so

by/βy,y = (

[
n− k − 1

t− k − 1

]
q

−
[
n− 2k + y

t− 2k + y

]
q

)/q(n−t)(t−k) 6

[
n− k − 1

t− k − 1

]
q

/q(n−t)(t−k).

Therefore

k−2∑
j=0

(
bj ·

∑
|X∩L|=j

wX

)
6

[
t

k

]
q

[
n− k
t− k

]
q

· (k − 1) ·

[
n−k−1
t−k−1

]
q

q(n−t)(t−k)

6 (k − 1)

[
t

k

]
q

qt−k−(n−t)
[
n− k
t− k

]
q

,

that for n > Ck(t− k) contradicts (3).
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Proof of Lemma 4.7: We will show that every k-subspace whose weight is larger than

wP is contained in at least 1

2[tk]q

[
n−k
t−k

]
q

nonnegative edges, otherwise there are already more

than
[
n−k
t−k

]
q

nonnegative edges. For simplicity we just need to prove this statement for wP
itself. Suppose there are S negative edges containing wP , which are denoted by e1, · · · , eS
(as t-dimensional subspaces). And eS+1, · · · , e[n−k

t−k ]
q

are the other (thus nonnnegative)

edges containing wP . We have

[n−k
t−k ]

q∑
i=1

∑
P 6=X⊂ei

wX =
S∑
i=1

∑
P 6=X⊂ei

wX +

[n−k
t−k ]

q∑
i=S+1

∑
P 6=X⊂ei

wX

6 −wP · S + wP ·

([
n− k
t− k

]
q

− S

)
·

([
t

k

]
q

− 1

)
+ 3

[
t

k

]
q

·
[
n− k − 1

t− k − 1

]
q

(4)

Here we used that there are at most 3
[
t
k

]
q

vertices X whose weight is larger than wP (but

always 6 1), and the number of times every such weight appear in the sum is at most[
n−k−1
t−k−1

]
q
. If S >

(
1− 1

2[tk]q

)[
n−k
t−k

]
q
, then the above expression is at most

−
[
n− k
t− k

]
q

((
1− 1

2
[
t
k

]
q

)
wP −

1

2
[
t
k

]
q

·
[
t

k

]
q

· wP − 3

[
t

k

]
q

· q
t−k − 1

qn−k − 1

)
,

which can be further bounded by

−
[
n− k
t− k

]
q

((1

2
− 1

2
[
t
k

]
q

)
wP − 3

[
t

k

]
q

· q
t−k − 1

qn−k − 1

)
< −

[
n− k
t− k

]
q

· 1

3
wP

6 −
[
n− k
t− k

]
q

· 1

12
[
t
k

]2
q

.

The first inequality is because t > k > 2 and q > 2, so
[
t
k

]
q
> 7, and also because

n > Ck(t − k) for large C. Since we also have
∑

X 6=P wX = −wP > −1. Lemma 4.6 for

L = P immediately gives >
[
n−k
t−k

]
q

nonnegative edges.

Therefore we can assume that for the 3
[
t
k

]
q

vertices with largest weights, the number

of nonnegative edges containing each such vertex is at least 1

2[tk]q

[
n−k
t−k

]
q
. Using the union

bound, the number of nonnegative edges is at least

3

[
t

k

]
q

· 1

2
[
t
k

]
q

[
n− k
t− k

]
q

−
(

3
[
t
k

]
q

2

)[
n− k − 1

t− k − 1

]
q

>
3

2

1−
3
[
t
k

]2
q

qn−t

[n− k
t− k

]
q

,

which is also larger than
[
n−k
t−k

]
q

when n > Ck(t− k).
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Proof of Lemma 4.8: We consider all the t-dimensional subspaces containing [k], simi-

larly as before suppose there are S > 1

2[tk]q

[
n−k
t−k

]
q

negative edges e1, · · · , eS and nonnegative

edges eS+1, · · · , e[n−k
t−k ]

q

, we get

∑
[k]⊂Z,dimZ=t

∑
X⊂Z,X 6=[k]

wX

=
S∑
i=1

∑
X⊂ei,X 6=[k]

wX +

[n−k
t−k ]

q∑
i=S+1

∑
X⊂ei,X 6=[k]

wX

6 − S +
1

4
[
t
k

]2
q

·

([
n− k
t− k

]
q

− S

)
·

([
t

k

]
q

− 1

)
+ 3

[
t

k

]
q

·
[
n− k − 1

t− k − 1

]
q

6 −
[
n− k
t− k

]
q

(
S[

n−k
t−k

]
q

− 1

4
[
t
k

]
q

− 3

[
t

k

]
q

· q
t−k − 1

qn−k − 1

)

6 −
[
n− k
t− k

]
q

(
1

2
[
t
k

]
q

− 1

4
[
t
k

]
q

− 3

[
t

k

]
q

q−(n−t)

)
.

The first inequality is by bounding the 3
[
t
k

]
q

largest weights in the second sum by 1 and

the rest by 1

4[tk]
2

q

. It also uses the fact that two k-dimensional subspaces are contained in

at most
[
n−k−1
t−k−1

]
q
t-dimensional subspaces. For n > Ck(t− k), we have

∑
[k]⊂Z,dimZ=t

∑
X⊂Z,X 6=[k]

wX 6 −
[
n− k
t− k

]
q

· 1

5
[
t
k

]
q

.

We also have
∑

X 6=[k]wX = −w[k] = −1. Now we once again can apply Lemma 4.6 for

L = [k] to show the existence of >
[
n−k
t−k

]
q

nonnegative edges.

Proof of Lemma 4.9: Note that if every t-dimensional subspaces containing [k] is

nonnegative, this already gives
[
n−k
t−k

]
q

nonnegative edges and the lemma is proved. So

we may assume that there is a negative edge f (as t-dimensional subspace) containing

[k] with
∑

X⊂f wX < 0. Suppose the largest weight outside the edge f is wQ, where

dim(Q ∩ f) 6 k − 1. Now we define new weights w′, such that

w′X =

{
−
[
t
k

]
q

if X ⊂ f

wX/wQ otherwise.

Then for every X 6⊂ f , w′X 6 1 and w′Q = 1. Now we consider all the
[
n−k
t−k

]
q
t-dimensional

subspaces containing Q. As usual, assume that S of them has negative sum according to
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w′. If S >
(

1− 2

3[tk]q

)[
n−k
t−k

]
q
, we have the following estimate:

∑
Q⊂Y,dimY=t

∑
X⊂Y,X 6=Q

w′X

6 − S +

([
n− k
t− k

]
q

− S

)
·
[
t

k

]
q

6 −
[
n− k
t− k

]
q

·

(
1− 2

3
[
t
k

]
q

− 2

3

)

6 − 1

12

[
n− k
t− k

]
q

.

Note that since
∑

X⊂f wX < 0, we have

∑
X 6=Q

w′X =
∑
X 6=Q

wX/wQ −
∑
X⊂f

(
wX/wQ +

[
t

k

]
q

)
> −1−

[
t

k

]2
q

.

If we apply Lemma 4.6 for L = Q and the new weighting w′′X = w′X/(2
[
t
k

]2
q
), we get

>
[
n−k
t−k

]
q

nonnegative edges for weight w′. Note that every such nonnegative edge cannot

share with f a common k-dimensional subspace, otherwise its total weight is at most

(
[
t
k

]
q
− 1) −

[
t
k

]
q
< 0. Hence these nonnegative edges are also nonnegative edges for the

original weighting w.

By the above discussion, it remains to consider the case

S <
(

1− 2

3
[
t
k

]
q

)[n− k
t− k

]
q

.

Then there are at least
2

3
[
t
k

]
q

[
n− k
t− k

]
q

nonnegative edges containing Q, together with the(
1− 1

2
[
t
k

]
q

)[n− k
t− k

]
q

nonnegative edges containing [k]. Since [k] and wQ have codegree at most[
n− k − 1

t− k − 1

]
q

6
1

6
[
t
k

]
q

[
n− k
t− k

]
q

,

we have in total more than
[
n−k
t−k

]
q

nonnegative edges.
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