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Abstract

We give a necessary condition to reduce the Cayley isomorphism problem for
Cayley objects of a nilpotent or abelian group G whose order satisfies certain arith-
metic properties to the Cayley isomorphism problem of Cayley objects of the Sylow
subgroups of G in the case of nilpotent groups, and in the case of abelian groups to
certain natural subgroups. As an application of this result, we show that Zq×Z2

p×Zm
is a CI-group with respect to digraphs, where q and p are primes with p2 < q and
m is a square-free integer satisfying certain arithmetic conditions (but there are no
other restrictions on q and p).

Keywords: Cayley object; Cayley graph; isomorphism; CI-group

1 Introduction

In 1967 Ádám [1] conjectured that any two circulant graphs of order n are isomorphic if
and only if they are isomorphic by a group automorphism of Zn. While Ádám’s conjecture
was quickly shown to be false [4], the conjecture nonetheless generated much interest in
the following question: Are two Cayley graphs of a group G isomorphic if and only if
they are isomorphic by a group automorphism of G? If so, we say that G is a CI-
group with respect to graphs. This problem naturally generalizes to any class of
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combinatorial objects (see [11] for several equivalent formulations of the precise definition
of a combinatorial object). Namely, is it true that two Cayley objects of a group G in
some class K of combinatorial objects are isomorphic if and only if they are isomorphic
by a group automorphism of G? If so, we say that G is a CI-group with respect to
K. If G is a CI-group with respect to every class of combinatorial objects, we say that G
is a CI-group. In 1987, Pálfy [13] proved the following remarkable result:

Theorem 1. A group G is a CI-group if and only if gcd(n, ϕ(n)) = 1 or n = 4, where ϕ
is Euler’s phi function.

While Pálfy’s result is quite powerful, it does not tell us anything in general about
isomorphisms between Cayley objects of a group G if G is not a CI-group, other than there
exists isomorphic Cayley objects of G which are not isomorphic by a group automorphism
of G. For such groups, we are then left with the question of if two Cayley objects of G are
isomorphic, then what are the possible isomorphisms between them? This is sometimes
known as the Cayley isomorphism problem. Usually, one would like the solution to this
question to be a (hopefully) short list L of possible isomorphisms. That is, two Cayley
objects of G are isomorphic if and only if they are isomorphic by a function in the list
L. In 1999, Muzychuk [11] showed that if G is a cyclic group of order n and for any
distinct primes p and q dividing n we have that q does not divide p − 1, then any two
Cayley objects of G are isomorphic by an automorphism that can be found in a natural
way from isomorphisms of Cayley objects of prime-power orders that divide n. Thus
Muzychuk reduced the Cayley isomorphism problem for Cayley objects of cyclic groups
of some orders to the Cayley isomorphism problem for Cayley objects of cyclic groups
of prime-power orders. In 2003, the author [3], found a sufficient condition to extend
Muzychuk’s result to all abelian groups (with the same order conditions), and showed
this sufficient condition was satisfied by some abelian groups. In this paper, we extend
the author’s earlier result to nilpotent groups, as well as to abelian groups with more
general order conditions (Theorem 14). Finally, as an application we will extend the list
of CI-groups with respect to digraphs by showing that Zq × Z2

p × Zm is a CI-group with
respect to digraphs, where p and q are distinct primes with p2 < q and m satisfies certain
arithmetic conditions (Theorem 31).

Throughout this paper, G is a finite group. For group theoretic terms not defined in
this paper, see [2]. We begin with some definitions.

Definition 2. Let G be a transitive group acting on Ω. Let X be the set of all complete
block systems of G. Define a partial order on X by B � C if and only if every block of C
is a union of blocks of B. We define B|C to be the complete block system of StabG(C) =
{g ∈ G : g(C) = C}, the set-wise stabilizer of C ∈ C, consisting of all those blocks
of B that are contained in C, C ∈ C, and remark that B|C is a complete block system
of StabG(C) in its action on C. By fixG(B) we mean the subgroup of G which fixes each
block of B set-wise. That is, fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}. We denote
by StabG(x) the stabilizer of x ∈ X. That is, StabG(x) = {g ∈ G : g(x) = x}. Finally,
g ∈ G induces a natural permutation g/B in SB, and we set G/B = {g/B : g ∈ G}.
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Definition 3. Let n = Πr
i=1p

ai
i be the prime factorization of n and define Ω : N 7→ N by

Ω(n) = Σr
i=1ai. Setting m = Ω(n), we say a transitive group G of degree n is m-step

imprimitive if there exists a sequence of complete block system B0 ≺ B1 ≺ . . . ≺ Bm.
Note that B0 consists of singletons, while Bm consists of the entire set on which G acts.
A complete block system B will be said to be normal if B is formed by the orbits of
a normal subgroup. We will say that G is normally m-step imprimitive if each Bi,
0 6 i 6 m, is formed by the orbits of a normal subgroup of G.

2 The main tool

In this section, we will give a sufficient condition that will imply that the Cayley iso-
morphism problem for nilpotent groups of certain orders can be reduced to the Cayley
isomorphism problem for groups of prime-power order (Theorem 14 and Corollary 15),
and for abelian groups with more general arithmetic conditions (Theorem 14). That these
results have implications for the Cayley isomorphism problem is established in Theorem
26. The following result is straightforward, and so its proof is omitted.

Lemma 4. Let G1, G2 6 Sn be transitive such that both G1 and G2 admit B as a complete
block system. Then 〈G1, G2〉 admits B as a complete block system.

The following result is trivial after observing that the hypothesis implies that fixG(B) =
StabG(B).

Lemma 5. Let G 6 Sn be m-step imprimitive with sequence B0, . . . ,Bm. If G/Bm−1 is
cyclic of prime order p, then fixG(Bm−1)|B is (m−1)-step imprimitive for every B ∈ Bm−1,
with (m− 1)-step imprimitivity sequence B0|B, . . . ,Bm−1|B.

We will use the following basic (and known) result implicitly throughout the paper.

Lemma 6. Let G 6 Sn be transitive with H 6 G a transitive abelian subgroup. Then
every complete block system of G is normal and is formed by the orbits of a normal
subgroup of H.

Proof. Let B be a complete block system of G consisting of m blocks of size k. As a
transitive abelian group is regular [14, Proposition 1.4.4], we have that H/B is regular of
degree m, so that fixH(B) 6= 1 and has order k. As StabH(B) = fixH(B) for every B ∈ B
and StabH(B)|B is transitive [2, Exercise 1.5.6], we have that fixH(B)|B is transitive for
every B ∈ B. As the blocks of B have size k, we conclude that the orbits of fixH(B) 6
fixG(B) form B.

Definition 7. Let G be a permutation group acting on X and H a permutation group
acting on Y . Define the wreath product of G and H , denoted G oH, to be the group
of all permutations of G×H of the form (x, y)→ (g(x), hx(y)).
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Lemma 8. Let n be a positive integer and G1, G2 be transitive abelian groups of degree
n such that 〈G1, G2〉 is m-step imprimitive. Let n = pa11 p

a2
2 · · · parr be the prime-power

decomposition of n. Then there exists δ ∈ 〈G1, G2〉 and a sequence of primes q1, . . . , qm
such that n = q1 · · · qm and 〈G1, δ

−1G2δ〉 is permutation isomorphic to a subgroup of
AGL(1, q1) o (AGL(1, q2) o (· · · o AGL(1, qm))). Furthermore, if 〈G1, G2〉 is solvable, then
we may take δ = 1.

Proof. We proceed by induction on m. If m = 1, then n is prime, and both G1 and G2

are Sylow n-subgroups of Sn. Hence there exists δ ∈ 〈G1, G2〉 such that δ−1G2δ = G1,
and the result is trivial as 〈G1, δ

−1G2δ〉 is cyclic of order n. Now assume that the result
is true for all m − 1 > 1, and let G1, G2 be transitive abelian groups of degree n, where
Ω(n) = m, such that 〈G1, G2〉 is m-step imprimitive.

As 〈G1, G2〉 is m-step imprimitive, 〈G1, G2〉 admits a normal complete block system
B consisting of n/qm blocks of size qm for some prime qm|n, and both G1/B and G2/B
are transitive abelian groups of degree n/qm and Ω(n/qm) = m − 1. Furthermore, as
〈G1, G2〉 is m-step imprimitive, 〈G1, G2〉/B is (m− 1)-step imprimitive by [3, Lemma 8],
so by the induction hypothesis, there exists δ1 ∈ 〈G1, G2〉 such that 〈G1, δ

−1
1 G2δ〉/B is

permutation isomorphic to a subgroup of AGL(1, q1) o (AGL(1, q2) o (· · · o AGL(1, qm−1)))
for some sequence of primes q1, . . . , qm−1 such that n/qm = q1 · · · qm−1, and if 〈G1, G2〉
is solvable, we may take δ1 = 1. Furthermore, fixG1(B) is semiregular of order qm, and
fixδ−1

1 G2δ1
(B) is also semiregular of order qm. Hence there exists δ2 ∈ fix〈G1,δ

−1
1 G2δ1〉(B) such

that δ−1
2 fixδ−1

1 G2δ1
(B)δ2 is contained in the same Sylow qm-subgroup of fix〈G1,δ

−1
1 G2δ1〉(B)

as fixG1(B). If 〈G1, G2〉 is solvable, then fix〈G1,G2〉(B) is solvable, so fix〈G1,G2〉(B)|B is
solvable, and by [2, Exercise 3.5.1], fix〈G1,G2〉(B)|B has a unique Sylow qm-subgroup, so we
may take δ2 = 1. Let δ = δ1δ2. As a Sylow qm-subgroup of fix〈G,δ−1Gδ〉(B) is contained in
1Sn/qm

o Zqm we have that both G1 and δ−1G2δ normalize 1Sn/qm
o Zqm . This then implies

that Stab〈G1,δ−1G2δ〉(B)|B has a normal Sylow qm-subgroup, so that Stab〈G1,δ−1G2δ〉(B)|B is
permutation isomorphic to a subgroup of AGL(1, qm) for every B ∈ B. It then follows by
the Embedding Theorem [9, Theorem 2.6], that 〈G1, δ

−1G2δ〉 is permutation isomorphic
to a subgroup of AGL(1, q1) o (AGL(1, q2) o (· · · o AGL(1, qm))), and the result follows by
induction.

Definition 9. Let π be a set of primes. A π-group G is a group such that every prime
divisor of |G| is contained in π. A subgroup H of G is an Sπ-subgroup of G if no
prime in π divides |G|/|H|. By π′, we denote the set of primes dividing |G| that are not
contained in π.

We shall have need a consequence of the preceding result.

Lemma 10. Let n be a positive integer and π be the set of distinct prime numbers di-
viding n. If G1, G2 are transitive abelian groups of degree n such that 〈G1, G2〉 is m-step
imprimitive then there exists δ ∈ 〈G1, G2〉 such that 〈G1, δ

−1G2δ〉 is a solvable π-group.

Proof. Let n = pa11 · · · parr be the prime-power decomposition of n. By Lemma 8, there
exists δ1 ∈ 〈G1, G2〉 and a sequence q1, . . . , qm of primes such that n = q1 · · · qm and
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〈G1, δ
−1
1 G2δ1〉 6 AGL(1, q1) o (AGL(1, q2) o (· · · o AGL(1, qm))). As AGL(1, qi) is solvable

for every 1 6 i 6 m, 〈G1, δ
−1
1 G2δ1〉 is solvable. By Hall’s Theorem [5, Theorem 6.4.1],

we have that G1 is contained in an Sπ-subgroup H1 of 〈G1, δ
−1
1 G2δ1〉 and that G2 is

contained in an Sπ-subgroup H2 of 〈G1, δ
−1
1 G2δ1〉. Also by Hall’s Theorem, there exists

δ2 ∈ 〈G1, δ
−1
1 G2δ1〉 such that δ−1

2 H2δ = H1. Let δ = δ1δ2. Then 〈G1, δ
−1G2δ〉 6 H1, and

H1 is a solvable π-group.

Let L = LG be the set of all normal complete block systems of a transitive group G.
Then � is a canonical partial order on L. Define operations ∪ and ∩ on L by B ∪ C
is the normal complete block system of G formed by the orbits of 〈fixG(B), fixG(C)〉 =
fixG(B) · fixG(C) (as both of these groups are normal), and B ∩ C is the normal complete
block system of G formed by the orbits of fixG(B) ∩ fixG(C). Notice that both of these
operation do in fact give normal complete block systems as 〈fixG(B), fixG(C)〉 / G and
fixG(G)∩fixG(C)/G. Thus LG is a lattice. See [6] for terms regarding lattices not defined
here. We also have that

Lemma 11. If G contains a transitive abelian group H, then LG is a modular lattice.

Proof. We must show that if B � A, then A∩ (B∪C) = B∪ (A∩C). By Lemma 6, there
exists A,B,C 6 H such that A is formed by the orbits of A, B is formed by the orbits of
B, and C is formed by the orbits of C. As B � A, we have that B 6 A. By [6, Theorem
8.4.1], we have that A ∩ (B · C) = B · (A ∩ C). Then the orbits of A ∩ (B · C) are the
same as the orbits of B · (A ∩ C).

We remark that the previous result is contained in [12, Theorem 2.10]
In the following three results, we will have in the hypothesis that gcd(ni, nj ·ϕ(nj)) = 1.

Notice that this implies that gcd(ni, nj) = 1, and that if pi|ni is prime, then pi does not
divide pj − 1 for any prime pj|nj.

Lemma 12. Let n1, . . . , nr be positive integers such that if i 6= j, then gcd(ni, nj ·ϕ(nj)) =
1, πi the set of primes dividing ni, and Hi be a transitive, solvable, πi-group of degree ni,
1 6 i 6 r. Let G be a transitive m-step imprimitive subgroup of Πr

i=1Hi acting coordinate-
wise, where Ω(n1 · · ·nr) = m. Then there exists transitive subgroups Li 6 Hi such that
G = Πr

i=1Li.

Proof. It is not difficult to see that Πr
i=1Hi admits complete block systems Ci consisting

of n/ni blocks of size ni, 1 6 i 6 r, formed by the orbits of Hi. As each Hi is solvable,
we have that G is solvable, and so contains an Sπi-subgroup Li for every 1 6 i 6 r. As
Πr
i=1Hi/Ci is a π′i-group, G/Ci is also a π′i-group, and so fixG(Ci) = Li. Then Li ∩ Lj = 1

for every i 6= j, Li / G, and 〈Li : 1 6 i 6 r〉 = G. The result now follows.

We now need only one more tool to prove the main result (Theorem 14) of this section.
Before proceeding to this last tool, it will be useful to develop some terminology which
will simplify the statement. First, the proof of Theorem 14 will proceed by induction on
m = Ω(n). So when proving Theorem 14, we will be assuming that the conclusion of
Theorem 14 holds for all integers n/p, where p divides n is prime. In particular, with
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m,n1, . . . , nr and n satisfying the hypothesis of Theorem 14 and G1, G2 transitive abelian
or nilpotent groups of degree n, then whenever K1, K2 are transitive nilpotent or abelian
groups of degree n/p - and to simplify our notation, there is no harm in assuming that
p|n1 - such that 〈K1, K2〉 are (m−1)-step imprimitive, then there exists δ ∈ 〈K1, K2〉 such
that 〈K1, δ

−1K2δ〉 6 Πr
i=1H̄i, where H̄i is a solvable π̄i group of degree n̄i. Here n̄i = ni if

i 6= 1 while n̄1 = n1/p, and π̄i is the set of prime divisors of n̄i. In this situation, we will
say that n satisfies the main induction hypothesis.

Lemma 13. Let n1, . . . , nr be positive integers such that if i 6= j, then gcd(ni, nj ·ϕ(nj)) =
1. Let n = n1 · · ·nr with Ω(n) = m, p|n (and without loss of generality, p|n1), and
π̄ = ∪j∈I π̄j for some I ⊆ [r]. If

1. n satisfies the main induction hypothesis,

2. 〈G1, G2〉 is m-step imprimitive,

3. 〈G1, G2〉 admits a complete block system B of p blocks of size n/p, and

4. 〈G1, G2〉/B is a p-group,

then there exists δ ∈ 〈G1, G2〉 such that 〈G1, δ
−1G2δ〉 admits a complete block system

formed by the orbits of the unique Sπ̄-subgroup of fixGi
(B), i = 1, 2.

Proof. Let B ∈ B and Ki = fixGi
(B)|B, i = 1, 2. As 〈G1, G2〉/B has prime order p, we

must have that Stab〈G1,G2〉(B) = fix〈G1,G2〉(B). Note that Ki is transitive on B, and if Gi is
nilpotent or abelian, then Ki is nilpotent or abelian, i = 1, 2. Clearly fixG1(B), fixG2(B) 6
fix〈G1,G2〉(B). By Lemma 5, fix〈G1,G2〉(B)|B is (m − 1)-step imprimitive, so that 〈K1, K2〉
is (m− 1)-step imprimitive.

By hypothesis, there exists δ1 ∈ 〈fixG1(B), fixG2(B)〉 such that

〈fixG1(B), δ−1
1 fixG2(B)δ1〉|B 6 Πr

j=1H̄B,j,

where each H̄B,j is a transitive solvable π̄j-group of degree n̄j. Similarly, if B 6= B′ ∈ B,
then there exists δ2 ∈ 〈fixG1(B), δ−1

1 fixG2(B)δ1〉 such that

〈fixG1(B), δ−1
2 δ−1

1 fixG2(B)δ1δ2〉|B′ 6 Πr
j=1H̄B′,j,

where each H̄B′,j is a transitive solvable π̄j-group of degree n̄j. Furthermore, we have that
δ2|B ∈ 〈fixG1(B), δ−1

1 fixG2(B)δ1〉|B. This then implies that

〈fixG1(B), δ−1
2 δ−1

1 fixG2(B)δ1δ2〉|B 6 〈fixG1(B), δ−1
1 fixG2(B)δ1〉|B.

Hence 〈fixG1(B), δ−1
2 δ−1

1 fixG2(B)δ1δ2〉|B 6 Πr
j=1H̄B,j. Continuing inductively, we have that

there exists δ ∈ 〈fixG1(B), fixG2(B)〉 such that 〈fixG1(B), δ−1fixG2(B)δ〉|B 6 Πr
j=1H̄B,j for

every B ∈ B, where each H̄B,j is a transitive solvable π̄j-group of degree n̄j. Note
that δ−1fixG2(B)δ = fixδ−1G2δ(B) as δ/B = 1. For ease of notation, we will replace
δ−1G2δ by G2 and thus assume without loss of generality that 〈fixG1(B), fixG2(B)〉|B 6
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Πr
j=1HB,j for each B ∈ B. By Lemma 12, we may assume without loss of generality that
〈fixG1(B), fixG2(B)〉|B = Πr

j=1H̄B,j for each B ∈ B.
As 〈fixG1(B), fixG2(B)〉|B = Πr

j=1HB,j for each B ∈ B, 〈fixG1(B), fixG2(B)〉|B has a
normal subgroup LB with orbits of size Πj∈I n̄j, and so 〈fixG1(B), fixG2(B)〉|B admits a
complete block system CB formed by the orbits of LB, B ∈ B. Also note that the Sπ̄-
subgroup of fixGi

(B)|B must be contained in LB, as otherwise (fixGi
(B)|B)/CB contains

a nontrivial normal subgroup with orbits of size dividing Πj∈I n̄j, i = 1, 2. However,
(fixGi

(B)|B)/CB is a solvable π̄′-subgroup and gcd(Πj∈I n̄j,Πj 6∈I,j∈[r]n̄j) = 1, i = 1, 2, a
contradiction. Then fixGi

(B)|B, i = 1, 2, admit complete block systems DB formed by the
orbits of their unique Sπ̄-subgroups, respectively, and these complete block systems must
be precisely CB, for B ∈ B.

Let C = ∪B∈BCB. Clearly a normal Sπ̄-subgroup of fixGi
(B) has relatively prime order

and index in fixGk
(B), i = 1, 2. Hence by [6, Theorem 1.1.13], an Sπ̄-subgroup of fixGi

(B)
is characteristic in fixGi

(B), i = 1, 2. Whence an Sπ̄-subgroup of fixGi
(B) is normal in Gi,

i = 1, 2. Thus Gi admits complete block systems formed by the orbits of the Sπ̄-subgroup
of fixGi

(B), i = 1, 2. As each CB is formed by the orbits of the Sπ̄-subgroup of fixGi
(B)

restricted to the block B ∈ B, the orbits of the Sπ̄-subgroup of fixGi
(B) form the complete

block system C, i = 1, 2. Hence C is a block system of Gi, i = 1, 2, and so by Lemma 4,
C is a complete block system of 〈G1, G2〉.

We now prove the main result of this section.

Theorem 14. Let n1, . . . , nr be positive integers such that gcd(ni, nj ·ϕ(nj)) = 1 if i 6= j,
and πi be the set of distinct prime numbers dividing ni. Let n = n1 · · ·nr and m = Ω(n).
If either

1. each ni is a prime-power, and G1, G2 are transitive nilpotent groups of degree n such
that 〈G1, G2〉 is m-step imprimitive, or

2. G1, G2 are transitive abelian groups of degree n such that 〈G1, G2〉 is m-step im-
primitive,

then there exists δ ∈ 〈G1, G2〉 such that 〈G1, δ
−1G2δ〉 = Πr

i=1Hi, where each Hi is a
transitive solvable πi-group of degree ni.

Proof. Throughout the proof, if case (1) holds, we let pi be prime such that ni = paii ,
ai > 1. First suppose that case (1) holds and r = 1. Then G1 6 Π1, G2 6 Π2, where
Π1,Π2 are Sylow p1-subgroups of 〈G1, G2〉. By a Sylow Theorem, there exists δ ∈ 〈G1, G2〉
such that δ−1G2δ 6 Π1. Then 〈G1, δ

−1G2δ〉 is a p1-group and so nilpotent.
In both cases, we proceed by induction on m. Suppose that m = 1. Then the only case

that occurs is case (1) and r = 1. The result then follows by arguments above. Assume
that the result is true for all G1 and G2 that satisfy the hypothesis with Ω(n) = m−1 > 1,
and let G1, G2 6 Sn satisfy the hypothesis where Ω(n) = m. In case (1), by arguments
above, we may assume that r > 2. In case (2), if r = 1 then the result follows from
Lemma 10, so in any case we may assume without loss of generality that r > 2. Let B1
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be a complete block system of 〈G1, G2〉 consisting of pi blocks of size n/pi, where pi|mi.
Then B1 is a complete block system of both G1 and G2. As both G1 and G2 are nilpotent,
G1/B1 and G2/B1 are nilpotent. We conclude that both G1/B1 and G2/B1 are pi-groups.
Hence there exists δ1 ∈ 〈G1, G2〉 such that 〈G1, δ

−1G1δ〉/B1 has order pi. We thus assume
without loss of generality that 〈G1, G2〉/B1 has order pi.

Let π = ∪j∈Jπj where J = [r]− {i}. As |G1/B1| = |G2/B1| = pi, the Sπ-subgroups of
G1 and G2 are contained in fix〈G1,G2〉(B1). By Lemma 13 and the induction hypothesis,
there exists δ2 ∈ 〈G1, G2〉 such that 〈G1, δ

−1
2 G2δ2〉 admits a complete block system C of ni

blocks of size n/ni formed by the Sπ-subgroups of G1 and G2. We thus assume without
loss of generality that 〈G1, G2〉 admits C as a complete block system. Similarly, by Lemma
13 and the induction hypothesis, there exists δ3 ∈ 〈G1, G2〉 such that 〈G1, δ

−1
3 G2δ3〉 admits

a complete block system D formed by the orbits of an Sπi-subgroup of fixGk
(B1), k = 1, 2,

(we remark that if ni is prime, then D is trivial). We thus also assume without loss of
generality that 〈G1, G2〉 admits D as well.

If ni 6= pi, then 〈G1, G2〉/D is (m− (ai − 1))-step imprimitive, where Ω(ni) = ai, and
Gk/D is nilpotent, k = 1, 2. Hence by the induction hypothesis there exists δ4 ∈ 〈G1, G2〉
such that 〈G1, δ

−1
4 G2δ4〉/D 6 Pi × Πr

j=1,j 6=iH
′
j, where H ′j 6 Snj

is a transitive solvable

πj-group, and Pi is a pi-group of degree pi. Then 〈G1, δ
−1
4 G2δ4〉/D admits a complete

block system E ′ of n/(ni/pi) blocks of size pi, so that 〈G1, δ
−1
4 G2δ4〉 admits a complete

block system E of n/ni blocks of size ni.
If ni = pi, then as 〈G1, G2〉 is m-step imprimitive, 〈G1, G2〉 admits a complete block

system B2 such that B2 � B1 and B2 consists of pipj blocks of size n/(pipj) for some
pj|nj with j 6= i. Then G1/B2 and G2/B2 are nilpotent and transitive. We conclude
that G1/B2 and G2/B2 are cyclic. By Theorem 1, there exists δ3 ∈ 〈G1, G2〉 such that
〈G1, δ

−1
3 G2δ3〉/B2 is cyclic. We thus assume without loss of generality that 〈G1, G2〉/B2 is

cyclic. Thus 〈G1, G2〉/B2 admits a complete block system of pj blocks of size pi, so that
〈G1, G2〉 admits a complete block system B′1 of pj blocks of size n/pj, and by Lemma 5
fix〈G1,G2〉(B′1)|B′ is (m−1)-step imprimitive for every B′ ∈ B′1. Hence by Lemma 13, there
exists δ4 ∈ 〈G1, G2〉 such that 〈G1, δ

−1
4 G2δ4〉 admits a complete block system E of n/ni

blocks of size ni formed by the orbits of an Sπi-subgroup of fixGk
(B′1), k = 1, 2. Hence

regardless of the value of ni, we may assume without loss of generality that 〈G1, G2〉
admits C and E as complete block systems. As 〈G1, G2〉 admits a complete block system
C of ni blocks of size n/ni, 〈G1, G2〉 6 Sni

oSn/ni
. As 〈G1, G2〉 also admits E as a complete

block system and gcd(ni, n/ni) = 1, we have that 〈G1, G2〉 6 Sn/ni
o Sni

. We conclude
that 〈G1, G2〉 6 (Sni

o Sn/ni
) ∩ (Sn/ni

o Sni
) = Sni

× Sn/ni
. We now consider (1) and (2)

separately.
(1) By the induction hypothesis, we may, after a suitable conjugation, assume that

〈G1, G2〉/D 6 Πj∈[r]−{i}Smj
, so that 〈G1, G2〉 6 Πr

j=1Smj
. The result then follows by

inductively applying a Sylow Theorem and then Lemma 12.
(2) By Lemma 6 every complete block system is a normal complete block system.

As L〈G1,G2〉 is a modular lattice by Lemma 11, it follows by the Jordan-Dedekind Chain
Condition [6, pg. 119] that all finite chains between two elements have the same length. As
〈G1, G2〉 admits E as a complete block system, any maximal chain between the complete
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block systems consisting of singletons and the complete block system consisting of one
block that contain E must have length m as 〈G1, G2〉 is normally m-step imprimitive. We
conclude that 〈G1, G2〉/E is (m− ai)-step imprimitive, so by the induction hypothesis we
may assume after a suitable conjugation that 〈G1, G2〉/E 6 Πr

j=1,j 6=iHj, where Hj 6 Snj

is a transitive solvable πj-group. Similarly, we may assume that 〈G1, G2〉/C 6 Hi, where
Hi is a transitive solvable πi-group. As C ∩ E is a singleton, for every C ∈ C, E ∈ E , we
have that 〈G1, G2〉 6 Πr

j=1Hj. By Lemma 12, we may assume that 〈G1, G2〉 = Πr
j=1Hj as

required. The result then follows by induction.

It may be worthwhile restating Theorem 14 (1) in the following form:

Corollary 15. Let n = pa11 · · · parr , the prime-power decomposition of n, be such that
pi 6 |(pj − 1), 1 6 i, j 6 r. Let Ω(n) = m. If G1, G2 are transitive nilpotent groups of
degree n such that 〈G1, G2〉 is m-step imprimitive, then there exists δ ∈ 〈G1, G2〉 such that
〈G1, δ

−1G2δ〉 is nilpotent.

3 Solving Sets

In this section, we further develop the terminology regarding solving sets as well as the
characterizations of when a particular set is a solving set that will be needed for our main
results.

Definition 16. Let G be a group and define gL : G → G by gL(x) = gx. Let GL =
{gL : g ∈ G}. Then GL is the left-regular representation of G. We define a Cayley
object of G to be a combinatorial object X (e.g. digraph, graph, design, code) such
that GL 6 Aut(X), where Aut(X) is the automorphism group of X (note that this
implies that the vertex set of X is in fact G). If X is a Cayley object of G in some class
K of combinatorial objects with the property that whenever Y is another Cayley object
of G in K, then X and Y are isomorphic if and only if they are isomorphic by a group
automorphism of G, then we say that X is a CI-object of G in K. If every Cayley
object of G in K is a CI-object of G in K, then we say that G is a CI-group with
respect to K. If G is a CI-group with respect to every class of combinatorial objects,
then G is a CI-group.

Definition 17. Let G be a finite group. We say that S ⊆ SG is a solving set for a
Cayley object X in a class of Cayley objects K if for every X ′ ∈ K such that X ∼= X ′,
there exists s ∈ S such that s(X) = X ′, s(1G) = 1G for every s ∈ S, and Aut(G) 6 S. We
say that S ⊆ SG is a solving set for a class K of Cayley objects of G if whenever
X,X ′ ∈ K are Cayley objects of G and X ∼= X ′, then s(X) = X ′ for some s ∈ S, and
s(1G) = 1G for every s ∈ S, and Aut(G) 6 S. Finally, a set S is a solving set for G
if whenever X,X ′ are isomorphic Cayley objects of G in any class K of combinatorial
objects, then s(X) = X ′ for some s ∈ S, s(1G) = 1G for all s ∈ S, and Aut(G) 6 S.

Remark 18. Note that the definition of a solving set given above differs from those in [11]
and [3], as here, to simplify both the statements of results and their proofs, we insist that
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every element of the solving set fixes 1G. It is easy to see that α−1GLα = GL for every
α ∈ Aut(G), so the image of a Cayley object of G under a group automorphism of G is a
Cayley object of G. That is, in order to test for isomorphism, automorphisms of G must
be considered. However, it is not always the case that every automorphism of G needs to
be considered when testing for isomorphism. For example, Cayley graphs of cyclic groups
of order n each have an automorphism x→ −x that is also a group automorphism of Zn,
and so the image of a Cayley graph under this automorphism of Zn is itself. So, while
our definition of a solving set is convenient for this paper, it does not always capture the
idea behind a solving set (i.e. that it should be as small as possible) exactly, but will only
necessarily include extra automorphism of G (which could then be excluded). Also note
that in [11] and [3], solving sets were only defined for abelian groups.

Let X be a Cayley object of G in K. We define a CI-extension of G with respect
to X, denoted by CI(G,X), to be a set of permutations in SG that each fix 1G and
whenever δ ∈ SG such that δ−1GLδ 6 Aut(X), then there exists v ∈ Aut(X) such that
v−1δ−1GLδv = t−1GLt for some t ∈ CI(G,X).

Lemma 19. Let G be a finite group, and X a Cayley object of G in some class K of
combinatorial objects. Then CI(G,X) exists.

Proof. To show existence, we only need show that there is a set of permutations T
in SG such that whenever δ ∈ SG such that δ−1GLδ 6 Aut(X) and v ∈ Aut(X),
then v−1δ−1GLδv = t−1GLt for some t ∈ T and t(1G) = 1G. This follows almost im-
mediately. As δv is a permutation, there exists g ∈ G such that δv(1G) = g. Let
tδv = g−1

L δv. Then tδv(1G) = g−1
L δv(1G) = g−1

L (g) = g−1g = 1G. Furthermore, t−1
δv GLtδv =

v−1δ−1gLGLg
−1
L δv = v−1δ−1GLδv, and existence is established with T = {tδv : δ−1GLδ 6

Aut(X), v ∈ Aut(X)}.

Note for X a Cayley object of G in K, CI(G,X) is not unique as if T is CI-extension
of X with respect to G, then for α ∈ Aut(G), {αt : t ∈ T} is also a CI-extension of X
with respect to G. The following result shows the importance of CI(G,X), as if CI(G,X)
is known, then the isomorphism problem is solved.

Lemma 20. Let G be a finite group, and X a Cayley object of G in some class K of
combinatorial objects. Then the following are equivalent:

1. S = {αt : α ∈ Aut(G), t ∈ T} is a solving set for X,

2. T is a CI(G,X).

Proof. 1) implies 2). Let δ ∈ SG such that δ−1GLδ 6 Aut(X). Then δ(X) is a Cayley
object of G in K as Aut(δ(X)) = δAut(X)δ−1 > GL. As S is a solving set for X,
δ(X) = s(X) for some s ∈ S, and s = αt for some α ∈ Aut(G) and t ∈ T . Thus
v = δ−1s ∈ Aut(X). Then

v−1δ−1GLδv = s−1δδ−1GLδδ
−1s

= s−1GLs = t−1α−1GLαt

= t−1GLt
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and T is a CI(X,G).
2) implies 1). Let X and X ′ be isomorphic Cayley objects of G in K. Then there

exists δ ∈ SG such that δ(X) = X ′. As GL 6 Aut(X ′), δ−1GLδ 6 Aut(X). As T is a
CI(X,G), there exists t ∈ T and v ∈ Aut(X) such that v−1δ−1GLδv = t−1GLt. Hence
tv−1δ−1GLδvt

−1 = GL. As GL is transitive, there exists h ∈ G such that hLδvt
−1(1G) =

1G. Clearly then tv−1δ−1h−1
L GLhLδvt

−1 = GL so that hLδvt
−1 normalizes GL and fixes 1G.

By [2, Corollary 4.2B], we have that hLδvt
−1 = α ∈ Aut(G). Then αtv−1δ−1h−1

L = (1G)L
and αt = hLδv. Then αt(X) = hLδv(X) = hLδ(X) = hL(X ′) = X ′.

The following result shows that if a solving set for X has been found, then some
CI(G,X) has also been found.

Lemma 21. Let G be a group, X a Cayley object of G, and S a solving set for X. Define
an equivalence relation ≡ on S by s1 ≡ s2 if and only if s1 = αs2 for some α ∈ Aut(G).
Let T be a set consisting of one representative from each equivalence class of ≡. Then T
is a CI(G,X).

Proof. It is straightforward to show that ≡ is indeed an equivalence relation. Choose a
T as is given in the statement. Let X ′ be a Cayley object of G isomorphic to X with
δ : X → X ′ an isomorphism. Then δ−1GLδ 6 Aut(X). Also, as S is a solving set for
X, there exists s ∈ S such that s(X) = X ′ so that v = δ−1s ∈ Aut(X). Let t ∈ T such
that t ≡ s so that αt = s for some α ∈ Aut(G). Then v−1δ−1GLδv = t−1α−1GLαt =
t−1GLt.

Let K be a class of combinatorial objects, and G a group. We define a CI-extension
of G with respect to K, denoted by CI(G,K), to be a set of permutations in SG that
each fix 1G and whenever X ∈ K is a Cayley object of G and δ ∈ SG such that δ−1GLδ 6
Aut(X), then there exists t ∈ CI(G,K) and v ∈ Aut(X) such that v−1δ−1GLδv = t−1GLt.
The proofs of the following results are straightforward.

Lemma 22. Let G be a finite group, and K a class of combinatorial objects. Then the
following are equivalent:

1. S = {αt : α ∈ Aut(G), t ∈ T} is a solving set for G in K,

2. T is a CI(G,K).

Lemma 23. Let G be a group, K a class of combinatorial objects, and S a solving set
for G in K. Define an equivalence relation ≡ on S by s1 ≡ s2 if and only if s1 = αs2 for
some α ∈ Aut(G). Let T be a set consisting of one representative from each equivalence
class of ≡. Then T is a CI(G,K).

Let G be a finite group. We define a CI-extension of G, denoted by CI(G), to be
a set of permutations in SG that each fix 1G and whenever X ∈ K is a Cayley object of
G in some class K of combinatorial objects, and δ ∈ SG such that δ−1GLδ 6 Aut(X),
then there exists t ∈ CI(G) and v ∈ 〈GL, δ

−1GLδ〉 such that v−1δ−1GLδv = t−1GLt.
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Repeated application of Lemma 19 for every combinatorial object X in every class K of
combinatorial objects shows that CI(G) exists. The proofs of the following results are
straightforward.

Lemma 24. Let G be a finite group. Then the following are equivalent:

1. S = {αt : α ∈ Aut(G), t ∈ T} is a solving set for G,

2. T is a CI(G).

Lemma 25. Let G be a group, and S a solving set for X. Define an equivalence relation
≡ on S by s1 ≡ s2 if and only if s1 = αs2 for some α ∈ Aut(G). Let T be a set consisting
of one representative from each equivalence class of ≡. Then T is a CI(G).

4 Applications

At the present time, the isomorphism problem has not been solved for any nilpotent
group that is not abelian in any class of combinatorial objects, so there are not at this
time any applications for Theorem 14 (1) (although as soon as the isomorphism problem
has been solved for any nonabelian p-group in certain classes of combinatorial objects,
such as color digraphs, that will change immediately). We do though have an application
of Theorem 14 (2) which will not only provide new examples of CI-groups with respect to
color digraphs, but also illustrate how Theorem 14 (2) generalizes the main result of [3].

The following result weakens the hypothesis (replacing normally s-step imprimitive
with s-step imprimitive) of [3, Theorem 16] and generalizes this result from abelian to
nilpotent groups.

Theorem 26. Let n1, . . . , nr be positive integers such that gcd(ni, nj ·ϕ(nj)) = 1 if i 6= j,
and πi be the set of distinct prime numbers dividing ni. Let n = n1 · · ·nr, Ω(n) = m, and
G a nilpotent group of degree n. Let G = Πr

i=1Ni where each Ni is a πi-subgroup of G,
and S(i) a solving set for Ni. If

1. each ni is prime-power or G is abelian, and

2. whenever δ ∈ SG there exists φ ∈ 〈GL, δ
−1GLδ〉 such that 〈GL, φ

−1δ−1GLφδ〉 is
m-step imprimitive,

then Πr
i=1S(i) is a solving set for G.

Proof. Let δ ∈ SG. By the hypothesis, we have that there exists φ ∈ 〈GL, δ
−1GLδ〉

such that 〈GL, φ
−1δ−1GLδφ〉 is m-step imprimitive. By Theorem 14, there exists ω ∈

〈GL, φ
−1δ−1GLδφ〉 such that L = 〈GL, ω

−1φ−1δ−1GLδφω〉 = Πr
i=1Li, where each Li is a

transitive πi-group of degree ni, 1 6 i 6 r. Let CI(Ni) be a CI-extension of Ni as given
by Lemma 25. As S(i) is a solving set for Ni, by Lemma 24 there exists ti ∈ CI(Ni)
and vi ∈ Li such that v−1

i ((ω−1φ−1δ−1GLδφω)/Ci)vi = t−1
i (GL/Ci)ti, where Ci is the

complete block system of L formed by the orbits of Πr
j=1,j 6=iLi. Let t = (t1, . . . , tr)

the electronic journal of combinatorics 21(3) (2014), #P3.8 12



and v = (v1, . . . , vr). Note that t fixes 1G. As L = Πr
i=1Li, we have that v ∈ L

and t−1GLt = v−1ω−1φ−1δ−1GLδφωv. By definition, Πr
i=1CI(Ni) is a CI-extension of

G, and so by Lemma 24, S = {αt : t ∈ Πr
i=1CI(Ni), α ∈ Aut(G)} is a solving set

for G. Finally, it is not difficult to see that Aut(G) = Πr
i=1Aut(Ni) as G is nilpo-

tent and if i 6= j then gcd(ni, nj) = 1, and so α = (α1, α2, . . . , αr), αi ∈ Aut(Ni).
Then αt = (α1t1, α2t2, . . . , αrtr), αi ∈ Aut(Ni) and ti ∈ CI(Ni). Thus αt ∈ Πr

i=1S(i),
S 6 Πr

i=1S(i), and Πr
i=1S(i) is a solving set for G.

Definition 27. Let Ω be a set. A k-ary relational structure on Ω is an ordered
pair (Ω, U), where U ⊆ Ωk = Πk

i=1Ω. A group G 6 SΩ is called k-closed if G is the
intersection of the automorphism groups of some set of k-ary relational structures. The
k-closure of G, denoted G(k), is the intersection of all k-closed subgroups of SΩ that
contain G.

Note that a 2-closed group is the automorphism group of a color digraph. The following
result of Kalužnin and Klin [7] will prove useful.

Lemma 28. Let G 6 SX and H 6 SY . Let G × H act canonically on X × Y . Then
(G×H)(k) = G(k) ×H(k) for every k > 2.

If, in Theorem 26, K is the class of k-ary relational structures, and the groups L/Ci
are as in the proof of Theorem 26, then by Lemma 28 we may assume that each L/Ci is
k-closed (although there is no reason to believe that each L/Ci is a πi-subgroup - but this
fact is not used in the proof of Theorem 26). Proceeding as in Theorem 26 and applying
Lemma 22 instead of Lemma 24, we have the following result.

Corollary 29. Let n1, . . . , nr be positive integers such that gcd(ni, nj ·ϕ(nj)) = 1 if i 6= j,
and πi be the set of distinct prime numbers dividing ni. Let n = n1 · · ·nr, Ω(n) = m, and
G a nilpotent group of degree n. Let G = Πr

i=1Ni where each Ni is a πi-subgroup of G,
and S(i) a solving set for Ni in the class of k-ary relational structures. If

1. each ni is prime or G is abelian, and

2. whenever δ ∈ SG there exists φ ∈ 〈GL, δ
−1GLδ〉 such that 〈GL, φ

−1δ−1GLφδ〉 is
m-step imprimitive,

then Πr
i=1S(i) is a solving set for G in the class of k-ary relational structures.

We now give the promised application of Theorem 14 (2) which gives new CI-groups
with respect to Cayley color digraphs of a particular group. Using the results in [3], this
result could be obtained but only in the special cases where the following additional arith-
metic conditions hold: p does not divide q − 1, and each ni is prime. Before proceeding,
we need a preliminary lemma.

Lemma 30. Let n be a positive integer with a prime divisor p|n such that n/p < p. If
G is a regular group of order n, and φ ∈ Sn, then there exists δ ∈ 〈G, φ−1Gφ〉 such that
〈G, δ−1φ−1Gφδ〉 admits a normal complete block system with blocks of size p.
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Proof. First observe that as n/p < p, G must have a unique cyclic Sylow p-subgroup P
of order p. So P /G and G admits a normal complete block system B consisting of blocks
of size p, formed by the orbits of P . Furthermore, a Sylow p-subgroup of Sn is of the
form 1Sn/p

o Zp, so we see that 〈P |B : B ∈ B〉 is a Sylow p-subgroup of Sn. By a Sylow

theorem, there exists δ ∈ 〈G, φ−1Gφ〉 such that δ−1φ−1Gφδ 6 〈P |B : B ∈ B〉. Let P1 be
the largest subgroup of 〈G, δ−1φ−1Gφδ〉 contained in 〈P |B : B ∈ B〉. Then G normalizes
P1 as does δ−1φ−1Gφδ. Hence the orbits of P1, which is B, is a complete block system of
〈G, δ−1φ−1Gφδ〉 and the result follows.

Theorem 31. Let p and q be distinct primes with p2 < q, and q1, . . . , qr distinct primes
such that qp2 < q1 and qp2q1 · · · qi < qi+1, 1 6 i 6 r − 1. Let m = q1 · · · qr, n0 = p2q,
and n1, . . . , ns divisors of m such that n1 · · ·ns = m. If gcd(ni, nj · ϕ(nj)) = 1 then
Zq × Z2

p × Zm is a CI-group with respect to digraphs.

Proof. Let Γ be a Cayley color digraph of G = Zq × Z2
p × Zm, and φ ∈ SG such that

φ−1GLφ 6 Aut(Γ). We first show by induction on r that 〈GL, φ
−1GLφ〉 is s-step imprim-

itive, where s = r + 3. If r = 0, then as p2 < q by Lemma 30 we may assume after
an appropriate conjugation that 〈G, φ−1Gφ〉 admits a (normal) complete block system
Bq with blocks of size q. Then GL/Bq and φ−1GLφ/Bq are contained in conjugate Sylow
p-subgroups of 〈GL, φ

−1GLφ〉/Bq, and so after another appropriate conjugation we may
assume that 〈GL, φ

−1GLφ〉/Bq is a p-group. The center of 〈GL, φ
−1GLφ〉/Bq contains an

element of order p whose orbits give a complete block system Bp consisting of blocks of
size p. Then Bp induces a complete block system Bq ≺ Bpq of 〈GL, φ

−1GLφ〉 with blocks
of size pq. Hence 〈GL, φ

−1GLφ〉 is 3-step imprimitive. Assume that 〈GL, φ
−1GLφ〉 is s-

step imprimitive when r > 0 and let GL be such that m is a product of r + 1 primes.
Again, after an application of Lemma 30, we may assume that 〈GL, φ

−1GLφ〉 admits
a complete block system Br+1 with blocks of size qr+1. By induction we may assume
that 〈GL, φ

−1GLφ〉/Bqr+1 is (r + 3)-step imprimitive. It is then not difficult to see that
〈GL, φ

−1GLφ〉 is (r + 4)-step imprimitive. By induction, we then have 〈GL, φ
−1GLφ〉 is

(r + 3)-step imprimitive as required.
Write GL = Πs

i=0Gi, where Gi 6 GL is of order ni. As Gi is a CI-group with respect
to Cayley color digraphs by [8] if i = 0 and by [10] otherwise, by Corollary 29, we see that
if S is a solving set of G in the class of color digraphs then S ⊆ Πr

i=1Aut(Gi) 6 Aut(G).
Hence G is a CI-group with respect to color digraphs.
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