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Abstract

We investigate pattern avoidance in alternating permutations and an alternat-
ing analogue of Young diagrams. In particular, using an extension of Babson and
West’s notion of shape-Wilf equivalence described in our recent paper (with N.
Gowravaram), we generalize results of Backelin, West, and Xin and Ouchterlony to
alternating permutations. Unlike Ouchterlony and Boéna’s bijections, our bijections
are not the restrictions of Backelin, West, and Xin’s bijections to alternating permu-
tations. This paper is the second of a two-paper series presenting the work of Beyond
alternating permutations: Pattern avoidance in Young diagrams and tableauz (with
N. Gowravaram, arXiv:1301.6796v1). The first paper in the series is Beyond al-
ternating permutations: Pattern avoidance in Young diagrams and tableaur (with
N. Gowravaram, Electronic Journal of Combinatorics 20(4):#P17, 2013).

Keywords: pattern avoidance; alternating permutation; shape-Wilf equivalence

1 Introduction
This paper proves a special case of a conjecture of Gowravaram and the author [5, 6]. We

now review the definitions of AD-Young diagrams and the alternating and semi-alternating
conditions from the recent paper [6] in order to state our main result.
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1.1 AD-Young diagrams and the shape-equivalence of permuta-
tion matrices

For a nonnegative integer n, let [n] denote the set {1,2,3,...,n}. Given a permutation p,
. . . . . A
let M (p) denote its permutation matrix, and given matrices A and B, let AGB = 0 g} .

We assume that the reader is familiar with the basic terminology of Young diagrams and
tableaux; see, for example, [3, Chapters 2 and 6]. We draw Young diagrams in English
notation and use matrix coordinates, and for example (1,2) is the second square in the
first row of a Young diagram. Furthermore, we require all Young diagrams to have the
same number of rows and columns.

Definition 1.1 ([6], Definition 2.1). Let Y be a Young diagram with & rows. If A and
D are disjoint subsets of [k — 1] such that if i € AU D, then the ith and (i + 1)st rows
of Y have the same length, then we call the triple Y = (Y, A, D) an AD-Young diagram.
We call Y the Young diagram of ), A the required ascent set of ), and D the required
descent set of ). Figure 1 gives an example of an AD-Young diagram.

Figure 1: If Y = (42,2?), A= (), and D = {3}, then (Y, A, D) is an AD-Young diagram.

As in [1, 2|, a transversal of Young diagram Y is a set of squares T' = {(i,¢;)} such
that every row and every column of Y contains exactly one member of T'.

Definition 1.2 ([6], Definition 2.2). Given a transversal T' = {(i,¢;)}, let Asc(T) = {i €
[k —1] | t; < tiy1} and Des(T) = {i € [k — 1] | t; > t;41}. We call Asc(T") the ascent set
of T and Des(T) the descent set of T. If A C Asc(T') and D C Des(T), then we say that
T a wvalid transversal of ).

Ezxample 1.3 ([6], Example 2.3). If T' is a transversal of a Young diagram Y, then 7" is a
valid transversal of the AD-Young diagram (Y, (), 0).

In this paper, we restrict ourselves to the AD-Young analogues of alternating and
reverse alternating permutations, as defined below.

Definition 1.4 ([6], Definition 2.4). Given positive integers x,y and an AD-Young dia-
gram (Y, A, D) such that Y has k rows, we say that (Y, A, D) is z,y-alternating if A, D
satisfy the property that if x — 1 <i¢ <k —y, theni € Aif and only ifi +1 € D.

If Y is x, y-alternating, then ) is a, b-alternating for all a,b with a > x and b > y.
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Definition 1.5 ([6], Definition 2.5). If ) is 1,y-alternating, then we say that ) is y-
alternating, while if ) is 2, y-alternating, then we say that ) is y-semialternating.

In particular, if Y = (Y, A, D) is an AD-Young diagram with k£ > y columns and
1 € D, then Y cannot be y-alternating, but ) can be y-semialternating. Alternating AD-
Young diagrams are the counterpart of alternating permutations, while semialternating
AD-Young diagrams allow reverse alternating permutations.

Ezample 1.6 ([6], Example 2.6). Let Y = (4). Then, (Y, {1}, {2}) is 1-alternating, while
(Y,{1,3},{2}) is 2-alternating but not l-alternating. Furthermore, (Y,{2,4},{1,3}) is
1-semialternating but not y-alternating for y < 4.

The notion of pattern avoidance is exactly as in [1, 2]. A transversal T" = {(i,t;)} of
a Young diagram Y contains a r X r permutation matrix M if there are rows a; < ay <
-+ < a, and columns by < by < --- < b, of Y such that (a,,b,) € Y and the restriction of
T to the rows a; and the columns b; has contains exactly the squares where M has ones.
If 7" does not contain M, then T' avoids M (see Figure 2).

Figure 2: The transversal T = {(1,3),(2,4),(3,6), (4,5),(5,2),(6,1)} of Y = (6%,5,4)
contains M (231) because the restriction of 7" to the yellow columns and the pink rows
rows is a copy of M(231) in T. We require that X € Y. However, T" does not contain
M (4321): for example, the restriction of T to rows 3,4, 5,6 and columns 1,2,5, 6 is not a
copy of M(4321) in T because (6,6) ¢ Y.

Given an AD-Young diagram ) and a permutation matrix M, let Sy (M) denote the
set, of valid transversals of Y that avoid M.

Definition 1.7 ([6], Definition 2.7). If M and N are permutation matrices such that
|Sy(M)| = |Sy(N)| for all z-alternating AD-Young diagrams ), we say that M and N
are shape-equivalent for x-alternating AD-Young diagrams and write M ~ “ N. If we

x—AS
have |Sy(M)| = [Sy(N)| for all z-semialternating AD-Young diagrams ), then we say
that M and N are shape-equivalent for x-semialternating AD-Young diagrams and write

z—SASE

1.2 The main result of this paper

For a positive integer r, let F,. denote the permutation matrix M((r — 1)(r — 2)---1r).
In this paper, we prove the following result.
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Theorem 1.8. We have F5 ~ J3.
1-SASE

Due to the following result of Gowravaram and the author, Theorem 1.8 in fact yields
an infinite family of shape-equivalences.

Theorem 1.9 ([6], Extension Theorem 2.9). If permutation matrices M and M' are
shape-equivalent for x-alternating (resp. x-semialternating) AD-Young diagrams and C
s an r X r permutation matriz, then we have M & C ~ M &C (resp. ~ ).
(z+r)—ASE (z+r)—SASE

Theorem 1.8 has consequences in the theory of pattern-avoiding alternating permu-
tations. We now recall the basic definitions. Let S, denote the set of permutations of
[n] We treat a permutation w € S, as a sequence wjwows - - -w, that contains every
element of [n] exactly once. A permutation w is said to contain a permutation ¢ if there
is a subsequence of w that is order-isomorphic to ¢q. For example, the subsequence 246 of
214536 shows that 214536 contains 123. If w does not contain ¢, we say that w avoids
q. A permutation w € S, is called alternating if wy, < wy > w3 < --- and reverse al-
ternating if wy > we < w3 > --- . Reverse alternating permutations can be transformed
into alternating permutations (and vice versa) by the complementation map that sends a
permutation w = wywg - - wy, to w* = (n+1—w)(n+1—ws)---(n+1—w,). Given a
pattern ¢, let A, (q) (resp. A’ (q)) denote the set of alternating (resp. reverse alternating)
permutations of length n that avoid ¢. If p and ¢ are such that |A,(p)| = |A.(q)| (resp.
|A! (p)| = | AL (q)]) for all even n, we say that p and ¢ are equivalent for even-length alter-
nating (resp. reverse alternating) permutations and we write p o~ (resp. p er:e; q). We

make similar definitions for odd-length permutations.
Gowravaram and the author [6] proved the following two results that link shape-
equivalence for AD-Young diagrams to equivalence for alternating permutations.

Proposition 1.10 ([6], Proposition 2.8). Let p and q be permutations.
(a) If M(p)  ~  M(q), thenp ~ q.

(b) If M(p) ~ M(q), thenp ~" q.

1-SASE even

(¢c) If M(p) | ~. Ml(q), thenp ~ q.

even

(d) If M(p) | o~ M(q), thenp~"q.

2—SASE

The following corollaries of Theorem 1.8 follow immediately from Propositions 1.10
and 1.8, and the Extension Theorem 1.9.

Corollary 1.11. For allt > 3 and all permutations q of [t] \ [3], the patterns 213q, and
321q are equivalent for even- and odd-length alternating and reverse-alternating permuta-
tions.

Corollary 1.12. For all t > 3 and all permutations q of [t], the patterns (t — 1)t(t — 2)q
and (t — 2)(t — 1)tq are equivalent for even- and odd-length alternating permutations.
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1.3 Relationship to other work

Babson and West [1] proved that F3 and J; are shape-Wilf equivalent, which is the
analogue of Theorem 1.8 for ordinary Young diagrams. Backelin, West, and Xin [2]
proved that F,. and J,. are shape-Wilf equivalent. We apply the ideas behind Backelin,
West, and Xin’s work in defining bijections to prove Theorem 1.8.

Gowravaram and the author [5, 6] proved the equivalence F; | Nep Jo and conjectured

that F,. S J, holds for » > 3. This conjecture has recently been fully proven by

Yan [9]. Béna [4] proved special cases of the consequences of Gowravaram and the author’s
result that Fy g Jo, while Ouchterlony [8] proved a variant of the shape-equivalence

£y g Jo for doubly alternating permutations, which are alternating permutations

whose inverses are alternating. Several related conjectures were posed by Lewis [7].

Our bijection between the sets Sy (F3) and Sy (J3) differs from Backelin, West, and
Xin’s and Yan’s bijections in many cases when ) has non-empty sets of required ascents or
descents. On the other hand, the bijections of Béna [4], Ouchterlony [8], and Gowravaram
and the author [6] are restrictions of Backelin, West, and Xin’s bijections to alternating
permutations. The essential difficulty is that the bijection that Backelin, West, and Xin
use to prove that F3 and J; are shape-Wilf equivalent does not preserve ascents and
descents, and therefore the induced bijection between S,(321¢) and S,(213¢) does not
preserve the alternating property.

This paper is the second of a two-paper series presenting the work of [5] (joint work
with N. Gowravaram); the first paper is [6].

1.4 Outline of the paper

The remainder of this paper is devoted to the proof of Theorem 1.8. The idea of the proof
is to establish a bijection between Sy (F3) and Sy(J3) for )V a l-alternating AD-Young
diagram. Similar to the first proof of [2, Proposition 3.1], our bijection selects a copy of J;
(resp. F3) in a transversal and removes it, but significant complications arise due to the
required ascent and descent sets. We divide into cases based on the locations of required
ascents and descents near the rightmost entry of the copy of J3 (resp. Fj3) and convert
the copy to an instance of Fj (resp. J3) in a manner that maintains required ascents and
descents. The fact that rows of Y have equal size at required ascents and descents of )
plays a critical role in ensuring that the replacement algorithm returns a valid transversal
of Y. Similar to Backelin, West, and Xin [2]’s method, we restrict ourselves to so-called
separable transversals (a class of transversals that contains any transversal that avoids
F5 or J3) because the two replacement procedures are not inverse in general for non-
separable transverals. Due to the more elaborate process of removing copies of J; and
F3, our notion of separability becomes slightly more technical than the notion implicitly
used by Backelin, West, and Xin [2].

The organization of the paper is as follows. In Section 2, we fix some useful notation
that we use to describe our bijections. In Section 3, we state our bijection, and in Section 4,
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we prove Theorem 1.8. In Section 5, we explain a difference between our bijection and
that of Backelin, West, and Xin. The proofs of two technical results used in the proof of
Theorem 1.8 are deferred to Sections 6 and 7.

2 Cyclic Shifts

Fix a Young diagram Y with n columns for the entirety of this section and let "= {(7, ;) }
be a transversal of Y. Let 7 denote the set of transversals of Y. We define a function
wliy T — T for sets M, P C [1,n] with m = max M and p = max P, such that the mth
row of Y has at least p squares. Let ¢; < i3 < -+ < 4 denote the indices 7; € M with
bi, € P. Take the index j of i; modulo k, and let I'};(T') = {4, | j € [k]}. Then, we define

wir(T) =T\ {5, 5,) | i € [k + 1} U{(ij, bi,,) | 5 € [K]}-

We now define the function 01, : 7 — T, which takes the same arguments as w; and will
be proven to be the inverse of wl;. Let {i; < iy < -+ < iy} =T1,(T), and we define

O (T) =T\ A{(ij bi,) |4 € [k + 1} U{(5,05,,,) | 5 € [K]}-

Because the mth row of Y has at least p boxes, wl; and 6 return transversals of Y.
Notice that
Th(T) = Ty (wn (7))

and hence wh;(+) and 0%;(-) are inverses of each other. Furthermore, if i ¢ M, the position
of the element of T in the ith column of Y is the same as that of w!,(T) and in 0,(T).
If M x P and M' x P are disjoint, then it is clear that w?,(-) and 6 (-) each commute
with w!,(-) and 0%, (). The functions wi, and 6% cyclically alter certain entries b; of a
transversal 7' = {(i,b;)}. See Figure 3 for an example of cyclic shifts.

°
°
<& ® | X
o
o X | <
X S| e

Figure 3: Let Y = (62,5%) and let T' = {(1,3),(2,6),(3,4),(4,1),(5,2),(6,5)}. Then,
T suse(T) = {3.5,6}, and thus wiys o o (T) = {(1,3),(2,6),(3,5), (4,1), (5.4), (6,2)}
and nggu[aﬁ}(T) = {(1,3),(2,6),(3,2),(4,1),(5,5),(6,4)}. Bullets mark elements of

T and crosses mark elements of w[[;g]]u[w] (T') \ T, while diamonds mark elements of

(2,5]
O 05,6 (TN T

2,3
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3 Statement of the Bijection

We first prove that F3 e J3. To this end, suppose that Y = (Y, A, D) is a 1-alternating

AD-Young diagram with n rows. We shall define a bijection ® : Sy (F3) — Sy(J3) and its
inverse W : Sy(J3) — Sy(F3). To define ® and ¥, we first define functions ¢ and 1, and
then obtain ® and W by iterating ¢ and 1, respectively. Let T' = {(i,b;)} be a transversal
of Y. If a1 < as < ag € [n], then we say that (ay,as,a3) is a copy of J3 (resp. F3) in T if
{(ai,bs,) | i € [3]} is a copy of J3 (resp. F3) in 7.

Let T'= {(i,b;)} be a transversal of ) that contains J3. Suppose that (a1, as,a3) is a
copy of Js in T. We define auxiliary functions ¢{"**>* (T for ¢ € [3] (the functions take
arguments (aq,ag, as) and T, and return only transversals of the Young diagram (n") a
priori). We define

ai,a2,as 1,bq
1LY = 000 1y (T)
a1,a2,a [1,ba,]
o5 NT) = oyt (D)
§a1;a2,a3)<T) _ w[ba:svbaﬂ <w[ba3vba1](T)> _

[1,(11]U{CL3+1} [O,Q,CLS}

The operation ¢; is the one used by Backelin, West, and Xin in their proof of [2, Propo-
sition 3.1].

Let U(T') denote the set of triples a € [n]? that are copies of J3inT. If a = (ay, ag, a3) €
U(T), then define the J-type of a in the following cases.

Case 1: If(a3—1¢ D orb, < bs,—1)and az ¢ A, we say that (ai, as,a3) is of J-type
1.

Case 2: Ifaz—1€ D and b,,_1 < b,,, we say that (ay,as,a3) is of J-type 2.

Case 3: If(ag—1¢ D orby,_1 > b, ) and az € A, we say that (ai, as,a3) is of J-type
3.

See Figures 4, 5, and 6 for geometric descriptions of the functions ¢;.

o L)

Figure 4: We show the effect of ¢{"*>*) on a transversal T. Black boxes mark the

selected elements of T while crosses mark elements of ¢\**%)(T) \ T.

For u = (uy,us,uz) € N3 let #(u) = (u3,u1,uz). Let hy(T) be the triple a € U(T)
that minimizes #(a) in the lexicographic order. This is exactly the way in which a copy
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a?’agl:::@::g::@:::“'

Figure 5: We show the effect of ¢{"**>*) on a transversal T. Black boxes mark the
selected elements of T" and bullets mark other elements of T', while crosses mark elements

of ¢y =™ (T)\ T.

w1 EBHHHH

Figure 6: We show the effect of ¢; (a1,02, “3)(T ) on a transversal T', supposing that {iy, iy} =
ples bal}(T) and {d},i,} = F[ba3 bal](T). Black boxes mark the selected elements of T and

1,a1) (a2,a3)

bullets mark other elements of T, while crosses mark elements of ¢{*"*"*) \ T

of J3 is chosen to be removed in the proof of [2, Proposition 3.1]. If h;(T) is of J-type t,
let ¢(T) = o7 @) (T), and we say that T is of J-type t.
We define the functions vy, which take the same arguments as the ¢, and return only
transversals of (n™) d priori. For ¢ € [3], let
a1,a2,a3 1,bq
e = s (1)

w2a1 ,02,a3) 9[1 1bas] (T)

{ai,a3}
a1,a2,a3) agsDag) [bag bas]
wg 1,02,a3) _ 9[“22a3 51] (8 1 ;l]u‘f{as}(T)) .

The operation ¢ is the one used by Backelin, West, and Xin in their proof of [2, Propo-
sition 3.1].

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(3) (2014), #P3.9 8



Let V(T) denote the set of triples a = (ay,as,a3) € [n]® that are copies of Fy in T
such that ag ¢ A. For each a € V(T'), we define a triple S(a) that will depend on the
F-type of a. The triple S(a) will be independent of T', and v will convert a copy of Fj at
a to a copy of Js at S(a). For a = (ay,as,a3) € V(T), we define the F-type of @ in the in
the following cases.

Case 1: Ifaz—1¢ A, let S(a) = (as,ar,as). We say that a is of F-type 1.

Case 2: Ifaz—1€ Aand ay =a3z—1, let S(a) = (a3 + 1,a;1,0). We say that a is of
F-type 2.

Case 3: Ifaz—1¢€ Aanday #as—1,let S(a) = (a3 —1,a1,as). We say that a is of
F-type 3.

See Figures 7, 8, and 9 for geometric descriptions of the functions ).

WYX
w {33

Figure 7: We show the effect of 1\**>®) on a transversal T. Black boxes mark the

selected clements of T', while crosses mark elements of "% (T) \ T.

a D@l

BEE

Figure 8: We show the effect of Lb(al @2:93) o a transversal T. Black boxes mark the

selected elements of T, while crosses mark elements of 1\ **>*)(T) \ T

For u,u’ € V(T'), we write u> ' if S(u) > S(u') in the lexicographic order. We will
select a copy of F3 to eliminate by treating > as a total order on V(7). To do so, we
require the following lemma.

Lemma 3.1. S is injective, and thus > is a total order on V(T).

Proof. Suppose that S(u) = (ds,dy,ds). If dy = 0, then w and «’ are of F-type 2, and
thus u = (dy,ds — 2,d3 — 1). If dy # 0 and d3 € A, then u and v are of F-type 3, and
hence u = (dy,ds,ds + 1). Otherwise, we have dy # 0 and d3 ¢ A, which implies that u
is of F-type 1 and u = (dy,ds,ds). It follows that S has a left inverse and is therefore
injective. The fact that o is a total order follows. O
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i9
a1

a2

. 5 -0-0-0

iIHHHHH@ZI

Figure 9: We show the effect of wgal’az’a?’) on a transversal T, supposing that {i;, iy} =
plexbesl(p (T') and {d},i5} = F[ba2 bag](T). Black boxes mark the selected elements of 7' and

[1,(11) ag a3)

bullets mark other elements of T, while crosses mark elements of ¢{"**>*)(T)\ T.

...-g..@..g...@..@.@..,@...

Let hp(T) denote the maximum of V(T') with respect to the restriction of . If
A =D =), then hp(T) agrees with Backelin, West, and Xin’s selection of a copy of F3 to
remove in their proof of [2, Proposition 3.1], but in general, hp(7T) differs from Backelin,
West, and Xin’s selection. If hp(T) is of F-type t, let ¢(T') = hp (T) (T'), and we say that
T is of F-type t.

4 Proof of Theorem 1.8

The functions ¢ and @ are not inverses on general transversals of ), but we are only
interested in the transversals ¢™(7T") and ¥ (T') for T € Sy(F3) U Sy(J3). We now define
the class of transversals that we will consider. A transversal T is said to be separable
if it satisfies the property that if u € U(T) and v’ = S (V(T)), then #(u) > «’ in the
lexicographic order. Any element of Sy(J3) (resp. Sy(Fj)) is separable, as U(T) (resp.
V(T)) is empty. We restrict our attention to separable transversals.

The critical properties of ¢ and v are the following two propositions.

Proposition 4.1. If T is a separable valid transversal of Y that contains J3, then ¢(T') is a
separable valid transversal of Y and we have Y(¢(T)) = T. Furthermore, if T = {(i,b;)}
and ¢(T) = {(i,¢)}, then we have (by, by, ..., b,) > (c1,¢2,...,¢,) in the lexicographic
order.

Proposition 4.2. If T is a separable valid transversal of Y that contains F3, then ¢¥(T) is
a separable valid transversal of Y and we have ¢((T')) = T. Furthermore, if T' = {(i,b;)}
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and Y(T) = {(i,c;)}, then we have (by,bs,...,b,) < (c1,¢a,...,¢,) in the lezicographic
order.

We defer the proofs of Propositions 4.1 and 4.2 to Sections 6 and 7, respectively. To
complete the proof of Theorem 1.8, we require a simple technical lemma to extend from
alternating to semialternating AD-Young diagrams. The lemma follows immediately from
the definitions of ¢ and v, and so we omit its proof.

Lemma 4.3. Let T' = {(i,b;)} be a valid transversal of Y with by = 1. If T' contains Js
and ¢(T) = {(i,¢;)}, then we have ¢y = 1. If T' contains F5 and (T) = {(i,¢;)}, then we
have ¢; = 1.

Proof of Theorem 1.8 assuming Propositions 4.1 and 4.2. Let Y be a l-alternating AD-
Young diagram with n rows and let T € Sy (F3). Because V(T') = (), the transversal T is
separable. We claim that there exists an integer m such that ¢™(T") € Sy(J3). It follows
from by Proposition 4.1 that for all m > 1, the iterate ¢™(T') exists and is a separable, valid
transversal of ) provided that the iterate ¢ !(T') exists, is a separable valid transversal
of Y, and contains J3. Assume for sake of deriving a contradiction that ¢™(7T") ¢ Sy(T) for
all m. In this case, ¢™(T) exists and is a separable, valid transversal of ) that contains J3,
for all m > 0. The finiteness of the set of valid transversals of ) implies that there exist
integers p < ¢ such that ¢?(T") = ¢4(T). Let ¢™(T") = {(4, bgm)) | i € [n]}. Proposition 4.1
implies that (b(lm), bgm), cee bﬁZ’”) > (b§m+”, b(2m+2), cee b%mH)) in the lexicographic order

for all m > 0. Therefore, we have (b@,b&’% o ,bﬁ{”) > (b@,bg‘”, o ,b%’) in the lexi-

cographic order, which contradicts the assumption that ¢?(T) = ¢9(T). Hence, we can
conclude that there exists an integer m such that ¢™ (7)) € Sy(J3).

Let M be the smallest integer m such that ¢™(T) € Sy(J3). Then, let ®(T) =
¢™(T), and ® defines a function from Sy (F3) to Sy(J3). Define U : Sy(J3) — Sy(F3)
analogously, using Proposition 4.2. We claim that ® and ¥ are inverses of each other.
Let T' € Sy(F3), and suppose that ®(T") = ¢™(T). By m applications of Proposition 4.1,
we have ¢ (®(T)) = T, and because (W) is defined only for W ¢ Sy (F3), we have
U(O(T)) =¢™(P(T)) =T. A similar argument using Proposition 4.2 demonstrates that
O(U(T)) =T for all T € Sy(J3), and therefore & and ¥ define inverse bijections.

Suppose that J' = (Y’ A’, D’) is a 1-semialternating AD-Young diagram, and let Y’ =
(Y], Yy, ...,Y). If 1 ¢ D' then it is clear that ) is 1-alternating and | Sy (F3)| = [Sy(Js)] .
If1 e D,thenletY = (V/+1,Y/+1, Y +1,Y{+1,...,Y +1),let A={1}U(A +1), and
let D’ = D+ 1. The AD-Young diagram Y = (Y, A, D) is 1-alternating. For T" = {(i,0})}
a valid transversal of )’ let a(7T) = {(1,1)} U{(i + 1,4, + 1) | i € [n]}. It is clear that
a(T) is a valid transversal of ), and that « is injective. Furthermore, if 77 € Sy (F3)
(resp. Syr(J3)), then a(T") € Sy (F3) (resp. Sy(F3)) because (1,1) cannot be an element
of any copy of Fs (resp. J3) in a(T”). Define & = a~! o ® o @. Lemma 4.3 implies that
® sends the range of o to the range of a. Together with the fact that a is injective, it
follows that ®'(T') is defined (and well-defined) for all T € Sy(F3). It is clear that ¢’
sends Sy (F3) to Sy/(J3). We define ¥ analogously. Because & and U are inverses of
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each other, so are ®" and ¥'. Hence, we have that | Sy (F3)| =[Sy (J3)|, and the fact that

F;  ~  J; follows. O]
1-SASE

5 Comparison with Backelin et al.’s Bijection

Let Y = (5°), A = {3}, and D = {4}, and let T = {(1,5),(2,4), (3,1),(4,3),(5,2)} be a
transversal of Y = (Y, A, D). Then, T avoids Fj but contains J3. Indeed, we have h;(T") =
(1,2,3), the transversal is of J-type 3, and ¢(T") = {(1,3),(2,1), (3,4), (4,5), (5,2)} avoids
J3. Thus, we have ®(T') = ¢(T). However, Backelin, West, and Xin [2]’s version of ®
would send T to 7" = {(1,3),(2,1),(3,5),(4,2), (5,4)} after two iterations of the corre-
sponding version of ¢. Because ®(T") # 1", our bijections are not the restrictions of those
of Backelin, West, and Xin [2]. Indeed, 7" is not a valid transversal of ). In the case when
the ascent and descent sets of an AD-Young diagram are empty, then all transversals are
of J-type and F-type 1, and our bijections agree with those of Backelin, West, and Xin [2].

6 Proof of Proposition 4.1

Backelin, West, and Xin’s proof of [2, Proposition 3.1] involves a subboard E. We consider
a similar board, and it plays a substantial role in the following proofs. Let T be a separable
valid transversal of ) that contains Js, and let h;(T) = (a1, as,a3). We define a subset
of Y called E4(T') that will be free of elements of 7" by the definition of h;. Let

_ ([1,&1) X [ba27Ya3]) U ((a1’a2) X [ba3aba1])
BT = (o) S0P (o % sy )Y

The critical property of E4(T) is the following lemma, which plays a critical role in the
proof of Proposition 4.1.

Lemma 6.1. If T is a separable valid transversal of Y that contains Js, then E4(T') does
not contain any element of T'.

Proof. 1f (i,b;) € [1,a1) X [bay, Yas], then (i,a2,a3) € U(T). If (i,b;) € (a1,a2) X [bas, ba, ],
then (aq,i,a3) € U(T). If (i,b;) € (az,a3) X [1,bs,], then (ay,a2,7) € U(T). All three
contradict the definition of h .

If (i,0;) € (as, 00) X (ba,, 00), then v = (ag, as, i) isa copy of F3inT. If i € A, replace v
by (as, as,i+1). Then, we have v € V(T'), and S(v) > (a3, as,0) > (a3, a1, as) = #(hs(T))
in the lexicographic order, which contradicts the separability of T'. O

The following lemma will be used in the proof of Proposition 4.1 for the case in which
T is of J-type 2.

Lemma 6.2. Let T be a separable, valid transversal of Y of J-type 2, and let h;(T) =
(a1,a9,a3). Then, by, < bos—1 and az —ay = 3.
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Proof. 1f by, > bg,—1, then (ay,as,a3 — 1) € U(T), which contradicts the definition of h;.

If az — a1 < 2, then we have a3 = a; + 1 and ay = a; + 1. Because Y is 1-alternating
and az —1 € D, we have a; = az —2 € A. Therefore, we have b,, < b,,, which contradicts
the validity of T m

The following lemma will be used repeatedly in the proof of Proposition 4.1 for the
case in which T is of J-type 3.

Lemma 6.3. Let T = {(i,b;)} be a separable, valid transversal of Y of J-type 3, and let
o(T) ={(i, ci)}-

(a) ]fl € Fﬁisl’l)’al}(’]_’)} then ba3+1 < bz < ba2. Let FE‘?;;;’M](T) = {21 <ty < -0 < Zk}

Then b, < b, <---<b;, andc; <cj, < - <¢.

(b) Let TLol(T) = {iy < iy < -+ < iy}, then by, < by, < - < by, and ci, < ¢;, <
bas borl 7y then by, < b

[a27a3)

o0 < ¢ < Cay. In particular, if i € T

Proof. First, we prove part (a). Let i € FH"‘L‘;’I’?”](T). If b; < bayt1, then (i,a3,a3 +1) €
V(T) and S(i,a3,a3 + 1) = (a3 + 2,4,0) > (a3, a1,az2) in the lexicographic order, which
contradicts the separability of 7. The fact that b; > b,, follows from Lemma 6.1. If
J < j' with b;, > bi,, then (ij,ij,a3) € U(T), which contradicts the definition of h;.
Because ¢;; = b;;,, for j € [k — 1], it suffices to prove that ¢;; < ¢;,. This follows from
Ciy = ba3+1 < bi1 = Cjy-

The proof of part (b) is similar. If j < j" with b;; < b;, then (a1,4;,4;) € U(T), which
contradicts the definition of h;. Once again, to finish it suffices to prove that ¢;, < ¢;,,
but this follows from ¢;, = b,, < b;, = c¢;,. [

Proof of Proposition 4.1. We divide into cases based on the J-type of T. Let h;(T) =
a = (a1, as,as).

6.1 T is of J-type 1

See Figure 10. First, we prove that ¢(T") is a valid transversal of ). To verify that if
i€ A (resp. i € D) then i € Asc(4(T)) (resp. i € Des(¢(T'))), we divide into cases based
on the value of 1.

Case 1: {i,i+1}N{a1,as,a3} = 0. Because (a1, az,a3) is a copy of J3 in T', we have
(a3,bq,) € Y, which implies that ¢(7') is a transversal of Y. If {i,i + 1} N
{a1,a2,a3} = 0, then we have b; = ¢; and b;y1 = ¢;11, S0 7 is an ascent (resp.
descent) of T"if and only if 7 is an ascent (resp. descent) of ¢(T').

Case 2: i=a; —1. By Lemma 6.1, we have that b,, 1 & [bs,, bs,|, which implies that
a; — 1 is an ascent (resp. descent) of ¢(7") if and only if it is an ascent (resp.
descent) of T
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Figure 10: The squares marked with a solid black box are the elements of the chosen copy
of J;3 for a separable, valid transversal T of J-type 1. The crosses mark new elements
of ¢(T), i.e. elements of ¢(T) \ T, while the gray squares are free of elements of T' (and

¢(T)).

Case 3: i=a;. By Lemma 6.1, we have by, 11 & [bas, bo,]. Provided that as # a3 + 1,
this implies that a; is an ascent (resp. descent) of ¢(T") if and only if it is an

ascent (resp. descent) of T. However, if as = a; + 1, then it is clear a; is a
descent of both T and ¢(T).

Case 4: i=ay— 1+# ay. Because as # a; + 1, Lemma 6.1 implies that b,, 1 < by, (=
Cay) < bg,. Therefore, as — 1 is an ascent of both 7" and ¢(7').

Case 5: i =ay. If ag # as + 1, then by Lemma 6.1, we have by,+1 > by, > bay = Ca,,
which implies that as + 1 is an ascent of both 7" and ¢(T). If a3 = ay + 1,
then we have ay ¢ D by definition, and because b,, > b,,, we have as ¢ A.

Case 6: i = a3 — 1. By Lemma 6.1, we have b,,—1 = by, > bs,, which implies that
as — 1 ¢ A.

Case 7: i=a3. Because ) is l-alternating, we have a3 ¢ D, and we also have a3 ¢ A
by the definition of J-type.

It follows that ¢(7T') is a valid transversal of ).

Next, we prove that hp(¢(T)) = a. It is clear that a € V(¢(T)), and because a3 — 1 ¢
A, we have S(a) = (a3, a1,as). Suppose that o' = (a},aj, ay) € U(T) with S( "y > S(a)
in the lexicographic order. Because a3 — 1 ¢ A, we must have aj > a3. If a§ > ag, then
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we have c,, = by, < bs, by Lemma 6.1. For i € [2], let

: /
as if adi = ay
d’L:{ g

a;  otherwise.

Because by, < ba,, we have aj, ¢ (a2, az) by Lemma 6.1, from which it follows that d; < ds.
We have bq, = by for i € [2], which implies that v = (di, dy, a3) € V(T'). Because a3 ¢ A,
the first component of S(v) is greater than ag, and this contradicts the definition of hp.
Hence, we may assume that af = a3, and because a3 — 1 ¢ A, the first component of
S(a') is az. If @} > ay, then (a1, d), ay) € U(T), which contradicts the definition of h;. If
a) = ay, then Lemma 6.1 implies that a} < as. The fact that hp(T") = a follows by the
definition of hp. It is clear that ¢(T') is of F-type 1 and that ¢ (¢(T)) = T.

We prove that if e = (ey, eq,e3) € U(¢(T)), then we have #(e) > #(a) in the lexico-
graphic order. Assume for sake of contradiction that #(e) < #(a) in the lexicographic
order. If e3 < a3, then we derive contradictions by dividing into cases based on the relative
values of ¢, and ¢, .

Case 1: c., > ¢,. We have ¢,, = b, for all i. Therefore, (ey,eq,e3) € U(T), which
contradicts the definition of h;.

Case 2: c., =c,. We have es = a; and b., = ¢, > Y,, > b,, by Lemma 6.1. Hence,
e € U(T'), which contradicts the choice of a.

Case 3: c., < c,. We have e3 < ag by Lemma 6.1. Therefore, we can include this
case in the following cases.

Case 4: e3 < ag. Assume for sake of deriving a contradiction that b., # c.,. Then,
we have e; = a; and c., = ¢,,, which we have shown to be impossible in a
prior case. It follows that b., = c.,.

Assume for sake of deriving a contradiction that e = a;. Then, we have
be, = Cey > Ya, 2 bay > bey = Cey

by Lemma 6.1. Because es = a;, we have e € U(T), which contradicts the
choice of a. Hence, we may assume that e; # a;.

Because Y, > Y, = by, > ¢,, holds, we have (ey, s, e3) € U(T') regardless of
whether a; equals e;. This contradicts the choice of a.

Case 5: e3 = ag and ¢, < ¢,,. We have (e, ey,a3) € U(T), which contradicts the
choice of a.

Case 6: e3 = ay and ¢., = ¢,,- By Lemma 6.1 and because e; < ey < e3, we have
Cey < Cay = Cqy, Which contradicts the assumption that e € U(¢(T)).

Case T7: e3 = ag and ¢, > c,,. then we have c., = b., > Y., > b,, by Lemma 6.1,
which implies that (e, aq,as) € U(T), contradiction.
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Hence, we may assume that es = as. If e; < a1, we have ¢., < ¢, < ¢, by Lemma 6.1,
which contradicts the assumption that e € U(¢(7T)). Because ¢, < ¢qy, it is impossible
for ey to equal a;. Therefore, we have e; > a1, and the separability of ¢(7T") follows.

We have b; = ¢; for all i < ay, and b,, > b,, = ¢4, Therefore, (by,bs,...,b,) >
(¢1,¢9,...,¢p) in the lexicographic order.

6.2 T is of J-type 2

See Figure 11. First, we prove that ¢(7') is a valid transversal of ). Because Y,, 1 >
Y., = ba,, the set ¢(T) is a transversal of Y. To verify that if i € A (resp. ¢ € D) then
i € Asc(o(T)) (resp. i € Des(¢(T))), we divide into cases based on the value of i.

SREERE
-
izi-z'

1
2

L
[ ]

a1—1
3]

a1+1

a1+2

CL2—1
a2

CL2—|—1
a2+2

CL3—2

CL3—1
as

a3—|—1

e
Aemuganasien § 0 § B

Figure 11: The squares marked with a solid black box are the elements of the chosen copy
of J3 for a separable, valid transversal 7" of J-type 2. The bullets mark other elements
of T, and the crosses mark new elements of ¢(7), i.e. elements of ¢(7T") \ T. The gray
squares are free of elements of 7' (and ¢(7T')).

Case 1: {i,i+1}N{ay,a3 —1} = 0. We have b; = ¢; and b;.1 = ¢;11, and thus i is
an ascent (resp. descent) of 7' if and only if it is an ascent (resp. descent) of

o(T).

Case 2: i=a; —1,a;. By Lemma 6.1, we have by, 1, 04,11 & [bays bay] C [bas—1,ba,] =
[Cay bay ], Where the subset relation holds by Lemma 6.2. By Lemma 6.2 again,
we have a3 — 1 > a; + 1, and it follows that b,,+1 = ¢4, 41 and by, 1 = ¢4, 1.
Therefore, i is an ascent (resp. descent) of ¢(T') if and only if it is an ascent
(resp. descent) of T', for i = a; — 1, a4.
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Case 3: i=a3—2,a3—1. We have c,,—1 = by, > bgy—1 > bgy—2,bs,. By Lemma 6.2,
we have that az — 2 > a;, which yields that b,,_2 = c4,—2 and b,, = cg,-
Therefore, az — 2 is an ascent of ¢(7T') and az — 1 a descent.

It follows that ¢(7") is a valid transversal of ), as desired.

Next, we prove that hp(¢(T)) = (a1, a3 —2,a3—1). Tt is clear that (a;,a3—2,a3—1) €
V(o(T)), and we have S(ay, a3 — 2,a3 — 1) = (a3, a1,0). Suppose for sake of deriving a
contradiction that d = (dy,ds,d3) € V(T) with S(d) > (as,a1,0) in the lexicographic
order. If d3 > as, then by Lemma 6.1, we have ¢4, = bgy, < bg,. This implies that
ba, = cq, for i = 1,2 and it follows that (dy,ds,d3) € V(T). If dy < ay, then the second
component of S(d) is less than a;, which implies that first component of S(d) is greater
than ag. It follows that S(d) > (as,ai,as) in the lexicographic order, which contradicts
the separability of T'. It is clear that dy # ay. If d; > ay, then (ay,e1,e5) € U(T), which
contradicts the definition of h;. Thus, we have hp(¢(T)) = (a1, a3 — 2,a3 — 1). It follows
that ¢(7T) is of F-type 2, and it is clear that ¥(¢(T)) = T.

We prove that if e = (eq, e, e3) € U(H(T)), then #(e) = (as, a,0) in the lexicographic
order. Let e € U(¢(T)). First, we claim that ey # a;. Assume for sake of deriving a
contradiction that e; = a;. The fact that ¢,, < c4,—1 implies that es # a3 — 1. By
Lemma 6.1 we have b., > b,,, which implies that (e, es,e3) € U(T'). This contradicts the
choice of a. Hence, we have ey # a;. Assume for sake of deriving a contradiction that
e3 < az. We divide into cases based on the values of ey, eq, €3 to derive contradictions.

Case 1: e3 < az — 1. We have (e, ez,e3) € U(T) because b, = ¢, for i = 2,3 and
be, = ce,, which contradicts the choice of a.

Case 2: e3=ag— 1. The fact that ¢,, < c,, implies that ey, es # a; and b., = c,, for
i =1,2. Because by,_1 < Cqy—1, We have (e, g, €3) € U(T'), which contradicts
the choice of a.

Hence, we may assume that ez = a3. If {e1,e2} and {a1, a3 — 1} are disjoint, then clearly
we have (eq,eq,e3) € U(T), which implies that #(e) > #(a) by the choice of a. It is
impossible for e; to equal ag — 1, and if e = a3 — 1, then we have e; # a; and hence
(e1,€9,e3) € U(T), which contradicts the choice of a. If e; = ay, then the fact that
ba, > ¢4, implies that (e, es,e3) € U(T), which contradicts the choice of a. We have
already dealt with the case of e = a;. Hence, the separability of T" follows.

We have b; = ¢; for all i < ay, and by, > by,—1 = ¢4, Therefore, (by,ba,...,b,) >
(¢1,¢€9,...,¢p,) in the lexicographic order.

6.3 T is of J-type 3

See Figure 12. We first prove that ¢(7") is a valid transversal of ). Because Y1 =
Y., = ba,, the set ¢(T) is a transversal of Y. To verify that if i € A (resp. ¢ € D) then
i € Asc(¢(T)) (resp. i € Des(¢(T))), we divide into cases based on the value of i.
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Figure 12: The squares marked with a solid black box are the elements of the chosen
copy of J3 for a separable, valid transversal T" of J-type 3. The bullets mark some other
elements of 7', while the crosses mark new elements of ¢(7'), i.e. elements of (T)\T. The
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gray squares are free of elements of T' (and ¢(7')). We suppose that F[las “1]( T) = {i1, 12}
and Dyol(T) = (i, i),

(a2,a3)

Case 1: {i,i+ 1} and Fﬁ?gﬁ&l[imaﬁl] (T') are disjoint. We have b; = ¢; and b;1 = ¢;41,
and thus 7 is an ascent (resp. descent) of ¢(T') if and only if it is an ascent
(resp. descent) of T'.

o g by
Case 2: i,i+1¢€ F[1,21]u1[a2,as]

and ¢; < ¢iqq.

(T') with i # a1, a3 — 1. By Lemma 6.3, we have b; < b; 11

Case 3: i€ K= FE‘EI’TS[(]I%%](T), i+1¢ K, and i # a1, a3. We have by, < b;, ¢; < by,

Furthermore, we have b; ;1 € [bas, ba, |, and therefore ¢; ¢ [by,, bs,]. It follows

that i is an ascent (resp. descent) of ¢(7T) if and only if it is (resp. descent)
of T.
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Case 4:

Case 5:

Case 6:

i¢ K= [lbea be] (T),i+ 1€ K, and i # ay,ay — 1,a3. The argument is

Ras [1,a1]U[az,as] \
similar to the preceding case.

i =aj,ay — 1. Because by, 11,b4,—1 & [bas, ba,| by Lemma 6.1, we have by, 11 <
by, if and only if by, 41 < ¢4y, and by,—1 < by, if and only if b,,—1 < c4,. If
as # aj + 1, then we have ¢, 41 = by, +1 and ¢4,—1 = b4,—1, Which implies that
that a; is an ascent (resp. descent) of ¢(T") if and only if it is an ascent (resp.
descent) of T, and similarly for ay — 1. If ay = a; + 1, then a; = as — 1 is a
descent of both T and ¢(T).

1 = ag,az + 1. We have a3 € A, and because ) is l-alternating, we have
a3+ 1€ D and a3 — 1 ¢ A. By the definition of F-type we have a3 —1 ¢ D
or (bas—1 > by, > Coy). Furthermore, we have ¢y, < by, = Coyr1 and coypq =
ba, > bag1 > bast2 = Cay+2 by the definition of J-type and Lemma 6.1.

It follows that ¢(7') is a valid transversal of ).

Next, we prove that hp(¢(T)) = (ay,a2,a3 + 1). It is clear that (ay,a9,a3 + 1) €
V(o(T)) and S(ai,as,a3 + 1) = (as,ar,a2) = #(a). Let (di,ds,d3) € V(4(T)) and
suppose for sake of deriving a contradiction that S(d) > #(a) in the lexicographic order.
We divide into cases based on the values of ds, ds, bg, to prove that ds < as + 1.

Case 1:

Case 2:

Case 3:

Case 4:

ds > a3+ 1 and by, > by,11. We have (a3 + 1,a3 + 2,d3) € V(T') because
az + 1 € D. This contradicts the separability of T because S(as + 1,a3 +
2,d3) = (a3 + 2,a1,0) in the lexicographic order.

ds > az+1, by, < bgst1, and dy, ds # ay. We have by, = ¢4, for all ¢. It follows
that (dy,ds, ds) € V(T), which contradicts the separability of T

ds > a3 + 1, bg, < bgyq1, and di = a2. Lemma 6.1 implies that ds > as.
Therefore, we have (a3, dy,d3) € V(T),which contradicts the separability of
T.

ds > a3+ 1, by, < byyy1, and dy = as. We have (dy,as,ds) € V(T), contra-
diction, which contradicts the separability of T'.

Hence, we may assume that ds < ag+ 1. Because S(d) > #(a) in the lexicographic order,
we have (d is of F-type 2, a3 —1 € D, dy = a3 —2, and d3 = a3 — 1) or d3 = a3 + 1.

Case 1:

ds3 < az+1 (the former case). Lemma 6.3 implies that by, ¢ [bas, ba,], and the
fact that as — 1 > ay then yields that by, > b,, by Lemma 6.1. Because dy =
as—2 > ay, we have by, > b,, by Lemma 6.1. Regardless, if by, < b,,, then we
have d; > a9, and it follows that ¢4, < ¢4, by Lemma 6.3, which contradicts
the assumption that d € V(¢(T')). Hence, we have by, > b,,, which implies
that by, = cq,. It is clear that by, < max{cg,,bq,}, and therefore, we have
(dy,dsy,d3) € V(T), which contradicts the separability of T
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Case 2: d3=a3+1. If dy = as, then by Lemma 6.1 we have d; > as, but this implies

that d; € F%Z‘;f;i‘zl](T), which contradicts Lemma 6.3. We may assume that
dy # a3, which implies that d is of J-type 3 and S(d) = (as,d;, d2). The fact
that S(d) > #(a) in the lexicographic order implies that d; > a;. We divide

into subcases based on the relative values of ¢4, and b,,.

Subcase 2.1: ¢4, > b,,. By Lemma 6.1, we have that d; < a;, which contradicts
the assumption that S(d) > #(a) in the lexicographic order.

Subcase 2.2: ¢4 = b,,. We have by, = cq4, < by, and as < dy < ag, but the
existence of such a dy contradicts Lemma 6.1.

Subcase 2.3: ¢4 < b,,. We have ¢4, = by, for ¢ = 1,2. Hence, we have
(dy,dy, a3+ 1) € V(T), which contradicts the separability of 7.

Thus, we can conclude that hp(¢(T)) = (a1, aq,a3 + 1). It is clear that ¢(T") is of F-type
3. We have ¢,, = by, and c4y+1 = b,,, which implies that

[bagsbar] ( plbag,ba,] [bagbaq] [bag ;ba; ] -
V(A1) = 01,7 <9[1,§1]u{a3+1} (w[l,;ﬂu{ag—l-l} (W[a;ag] (T))>> =T,
as desired.
We prove that if e = (e1, ea,e3) € U(¢(T)), then ez > as. Let e € U(4(T')). Suppose

for sake of contradiction that es < az. We divide into cases based on the value of ¢, to
derive a contradiction.

Case 1: c., > b,. We have (e, e9,e3) € U(T), which contradicts the choice of a.

Case 2: b,, < ¢y < by,. By Lemma 6.1, we have ay < e3 < asz. By Lemma 6.3 and
because e; > es with c., > c.,, we have b., > b,, or es < ay. However, the
latter case implies that b., > b,, by Lemma 6.1 again. Then, (e, e2,¢e3) €
U(T), which contradicts the choice of a.

Case 3: by < Cey < by,. By Lemma 6.1 we have e3 < ay. By Lemma 6.3, we have
be, > bg,. It follows that (e, eq, e3) € U(T'), which contradicts the choice of
a.

Case 4: c¢., = b,,. By Lemma 6.3, we have b,, > b,, (because if b.,, < b,,, then
Ce; < Cey by Lemma 6.3, which contradicts the assumption that e € U(¢(T))).
This implies that (eq,a1,a2) € U(T), which contradicts the choice of a.

Case 5: c., < b,,. By Lemma 6.1, we have e3 < ag. By Lemma 6.3 and because
e, ey < ag, at most one of ¢, ,c., can be an element of [b,,, by, ]. It follows
that (ey, eq,e3) € U(T'), which contradicts the choice of a.

The separability of ¢(T") follows.

Let m = min Fﬁfjal](T). We have b; = ¢; for all i < m. Because by, > by, > bgyi1 by
Lemma 6.1, Lemma 6.3 implies that b,, > by, 11 = ¢;,. Therefore, (b, b, ..., b,) is greater
than (¢, ca, ..., ¢,) in the lexicographic order, as desired. ]
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7 Proof of Proposition 4.2

The proof of Proposition 4.2 is similar to the proof of Proposition 4.1. First, we de-
fine E4(T) C Y, which is the analogue E4(T). Let T' = {(i,b;)} be a separable, valid
transversal of ) that contains F3, and let hp(T) = (aq, az, az). Then, let

_ ([17@1) X [bawns]) U ((a’lan) X [bazvbGSD
Bu(T) = ( U (a2, as) % [1,ba,]) U (a3, 00) X (b, 50)) ) ny

Once again, the critical property of E(7') is the following lemma.

Lemma 7.1. If T is a separable valid transversal of Y that contains Fs, then Ey(T) does
not contain any element of T

Proof. 1f (i,b;) € [1,a1)X[ba,, Yas], then (i, a1, as) € U(T'), which contradicts the separabil-
ity of T. If (i,b;) € (a1, a2) X [bay, bay], then (i, ag, az) € V(T') and S(i, ag, az) > S(ai, as, a3)
in the lexicographic order. If (i,b;) € (ag,as) x [1,b4,], then (a1,i,a3) € V(T) and
S(ay,1,a3) > S(ai,az,as) in the lexicographic order. Both contradict the definition of
h,F.
If (i,b;) € (a3, 00) X (ba,,00), then v = (ay, as, i) is a copy of F3in T. If i € A, replace
v by (ag,as, i+ 1). Then, we have v € V(T'), and S(v) > S(hp(T)) in the lexicographic
order, which contradicts the definition of Ap. O

The analogue of Lemma 6.3 is the following lemma, which will be used repeatedly in
the proof of Proposition 4.2 for the case in which 7" has F-type 3.

Lemma 7.2. Let T = {(i,b;)} be a separable, valid transversal of Y of F-type 3, and let
O(T) = {(i,ci)}-
(a) Let TR N(T) = {iy < iy < - <ig}. Then, by, < by, < - < by and c;, < ci, <
oo < ¢y In particular, if i € Fﬁijl’?%](T), then b; < by, .

(b) Let T2 ™3)(T) = {3, < iy < -+ < iy}, then by, < by, < by, < -+ < b;, and

[az,a3)
Ciy < Ciy < -+ < ¢,. Furthermore, we have b, < ¢jy < -+ < ¢j, < Cqy-

Proof. First, we prove part (a). If j < j/ with b;, > by, then (ij,15,a3—1) € U(T), which
contradicts the separability of T'. Because ¢;; = b;,_,, to prove that ¢;; < ¢, < - - <¢y
it suffices to prove that ¢;; < ¢;,. But, if ¢;; > ¢;,, we have by, = ¢;;, > ¢, = b;;, and
therefore (i1, a3—1,a3) € V(T). However, then we have S(iy,a3—1,a3) = (az+1,i,+1,0),
which contradicts the definition of hp. The last sentence follows because b;, = by, .

The proof of part (b) is similar. Let ig = a;. If j < j' with b;, > b;,,, then (4,15, a3 —
1) € U(T'), which contradicts the separability of 7. To prove that ¢;, < ¢, < -+ < ¢,
it suffices to prove that ¢;; < ¢;,, but this is clear because ¢;, = b,, < b;; = ¢;,. Let
ir+1 = az. The last sentence follows because ¢;,,, = b;; for j € [k]. O

The following additional lemma will be also used in proof of Proposition 4.2 for T of
F-type 3.
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Lemma 7.3. Let T be a separable, valid transversal of Y of F-type 3, let hp(T) =

(ay,a9,a3), and let m = min Fﬁ‘jjﬁ%](T). Then, the set (az,00) X (by,o0) NY does not
contain any element of T

Proof. Suppose for sake of deriving a contradiction that (i,b;) € (a3, 00) X (b, 00) NY.
Then, (m,aq,i) € V(T') and S(m,as,i) = (az,m,0) > (a3 — 1,a1,a2) = S(hr(T)) in the
lexicographic order, which contradicts the definition of hp. O

Proof of Proposition 4.2. If x = (z1,x2,x3) is a copy of F3 in T, then either x3 ¢ A and
x € V(T) or x5 € A and (x1, 29,23 + 1) € V(T'). Thus, if T contains Fj, then ¢(7T) is
defined. We divide into cases based on the F-type of T'. Let hp(T') = a = (aq, az, as).

7.1 T is of F-type 1

See Figure 13. First, we prove that ¢(7") is a valid transversal of ). Because Y, > b,,,
the set ¢(7T') is a transversal of Y. To verify that if i € A (resp. i € D) then i € Asc(¢(T))
(resp. i € Des(¢(T))), we divide into cases on the value of i.

(11—]_

aq X"
CL1+1 :
a1—|—2 L
a2—1 .:_
az o o o . o .._
CL2+1 ]
a2+2 :
oo~ 1 - RSN
as . ._
CL3+1

CL3+2

Figure 13: The squares marked with a solid black box are the elements of the chosen copy
of F3 for a separable, valid transversal T of F-type 1. The crosses mark new elements
of ¥(T), i.e. elements of ¢)(T) \ T, and the gray squares are free of elements of T (and

(1))

Case 1: {i,i+ 1} N{a1,as,a3} = (. Then, b; = ¢; and b1 = ¢;41, which implies
that 4 is an ascent (resp. descent) of ¥(7') if and only if it is an ascent (resp.
descent) of T
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Case 2: i = a; — 1l,a1,as — 1. By Lemma 7.1, we have by, _1,b4,41 ¢ (bay,bay) =
(baysCay)), and bay—1,bays1 € (bay,Cay). Thus, t = a3 — 1 is an ascent (resp.
descent) of ¥(7T) if and only if it is an ascent (resp. descent) of 7. If ay #
a1+ 1, then the same holds for ¢t = a; and t = ay — 1, and if ay = a; + 1, then
a; = as — 1 is a descent of both T and ¥(T).

Case 3: i=uay#a3— 1. If ax # a3 — 1, then ay is an ascent (resp. descent) of ¥ (7")
if and only if it is an ascent (resp. descent) of T

Case 4: i=a3—1,a3. By the definition of F-type and V(T'), we have a3 — 1,a3 ¢ A,
and the fact that ) is 1-alternating implies that ag — 1, a3 ¢ D. Furthermore,
if ag = a3 — 1, then ay ¢ A, D.

It follows that ¢ (T') is a valid transversal of ).

Next, we prove that hy(¢(T)) = (a1,as,a3). It is clear that (ay,as,a3) € U((T)).
Suppose for sake of deriving a contradiction that d € U(¢(T)) with #(d) < #(a) in the
lexicographic order. We divide into cases based on the values of d3 and bg,.

Case 1: d3 < ay or by, > b,,. Then, by, = ¢4, for all i € [3] and d € U(T'), which
contradicts the separability of T'.

Case 2: d3=a;. We have ¢4, > by, and by, = ¢g4, for all i € [2]. Therefore, d € U(T),
which contradicts the separability of 7.

Case 3: d3 = ay. We divide into subcases based on the value of d;.

Subcase 3.1: d; = a;. We have b,, < by, = cq, < by, With a1 < dy < ag, which
contradicts Lemma 7.1.

Subcase 3.2: d; # a;. We have by, = cq4,, as well as ¢q, > bg, > b,,. Therefore,
d € U(T), which contradicts the separability of T

Case 4: a; <d3 < ay and by, < b,,. Lemma 7.1 yields that bg, < b,,. We now divide
into subcases based on the value of d;.

Subcase 4.1: d; = a;. Lemma 7.1 yields that by, < b,,. Therefore d € U(T),
which contradicts the separability of T'.

Subcase 4.2: d; # a;. We have by, = ¢4, and
Chy = bg, = min{bg,, ca,} > Ca5 = bys.
It follows that d € U(T'), which contradicts the separability of 7'
Case 5: ap < d3 < azand by, < b,,. We divide into subcases based on {a;} N{dy, ds}.

Subcase 5.1: d; = a;. By Lemma 7.1 we have ¢4, = b4, > by, = cq4,, which
yields that dy # as. Furthermore, by Lemma 7.1 again and be-
cause by, < by, < cq, = bsy, We have dy > ao, but the fact that
(a1,ds,a3) € V(T') contradicts the definition of hp.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(3) (2014), #P3.9 23



Subcase 5.2: dy = a;. We have (dy,ai,a2) € U(T), which contradicts the
separability of 7.

Subcase 5.3: a; ¢ {di,d>}. We have d € U(T'), which contradicts the separa-
bility of T'.

It follows that h;(T) = (a1, as,as), and it is clear that ¢ (7T') is of J-type 1. Therefore,
we have ¢(¢(T)) =T, as desired.

We prove that if e = (e, e9,e3) € V(¢(T')), then S(e) < S(a) in the lexicographic
order. Suppose for sake of deriving a contradiction that S(e) > S(a) in the lexicographic
order. First, suppose that e3 > as, hence that b., = c¢.,. Furthermore, because az ¢ A,
the first component of S(e) must be greater than az. By Lemma 7.1, we have b, < by,
We divide into cases based on the value of {e1,ex} N {as}.

Case 1: e; =az. We have (ag, es,e3) € V(T), but the first component of S(as, ez, €3)
is greater than as, which contradicts the definition of Ap.

Case 2: ey =as. We have b,, < c., < b,,, which yields that b., = c.,. By Lemma 7.1,
we have e; < aq, and hence (eq,aq,e3) € V(T), but the first component of
S(ey, €2, e3) is greater than as, which contradicts the definition of hp.

Case 3: az ¢ {e1,e2}. It follows from Lemma 7.1 that b., = ¢, for all i and thus
e € V(T'), which contradicts the definition of hp.

Hence, we may assume that e; < as. Because S(e) > S(a) in the lexicographic order,
either (e is of F-type 2, a3 —2 € A, e3 = a3 — 1 and es = az — 2) or (e is of F-type 1 and
€3 = CL3).

Case 1: eisof F-type 2. Because a3—2 > ay, we have as—1 € D, we have b,, < b,,_1,
which implies that b,,_1 = c¢,,—1. Additionally, by Lemma 7.1 and because
Cay = ba,, We have cq,_o > b, and because S(e) > S(a) in the lexicographic
order, we have e; > a;. Therefore, we have c., > b,, and thus c., = b.,. It
is also clear that b., < c,. It follows that e € U(T"), which contradicts the
separability of T

Case 2: e is of F-type 1. Because b., < ¢., = by, for i € [2], we have b,, = c., for
i € [2]. Therefore, we have e € U(T'), which contradicts the separability of

T.
The separability of ¢(T") follows.
For i < ay, we have b; = ¢; and ¢,, = bg, > b,,. Thus, (by,bo,...,b,) is less than
(c1,ca,...,¢y) in the lexicographic order, as desired.

7.2 T is of F-type 2

See Figure 14. First, we prove that ¢(T) is a valid transversal of Y. It is clear that ¢ (7T)
is a transversal of Y. To verify that if i € A (resp. ¢ € D) then i € Asc(¢(T)) (resp.
i € Des(¢(T))), we divide into cases based on the value of i.
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a; —1--
ai

ar+ 1]
a1+2...
o1
a9 . .
as
az+ 1]
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Figure 14: The squares marked with a solid black box are the elements of the chosen copy
of F3 for a separable, valid transversal T of F-type 2, and the crosses mark new elements
of Y(T), i.e. elements of ¥)(T))\ T. The gray squares are free of elements of T' (and (T)).

Case 1: {i,i+1}n{as,a3} =0. Then, b; = ¢; and b; 11 = ¢;+1, which implies that 7 is
an ascent (resp. descent) of ¢(T") if and only if it is an ascent (resp. descent)
of T.

Case 2: i=ua; —1,a;. By Lemma 7.1, we have by, _1,b4,41 ¢ (bay, bas) 2 (bay, Cay)- 1t
follows that a; — 1 is an ascent (resp. descent) of ¢(7") if and only if it is an
ascent (resp. descent) of T', and the same for a;.

Case 3: i=a3—1. Wehaveas— 1€ A, but we also have c,_1 = by, < by, = coy and
thus a3 — 1 is an ascent of ¢(7).

Case 4: i = az. Because ) is l-alternating, we have ag € D. However, by Lemma 7.1,
we have ¢y, 11 = bygi1 < bay = Cay, and thus ag is a descent of (7).

It follows that t(T") is a valid transversal of ), as desired.

Next, we prove that there is an integer y such that h;(T) = (a1,y,as3 + 1). First,
because Yo 11 = Ya, = bay = o, and gy = by, > Cayr1 (which follows from Lemma 7.1),
we have (ay,as,a3 + 1) € U(y(T)). Suppose for sake of deriving a contradiction that
d = (dy,ds,d3) € U((T)) with #(d) < (a3 + 1,a;,0) in the lexicographic order. We
divide into cases based on the values of dy, ds, d3 to derive contradictions.

Case 1: d3y < ajor (a; <ds < az—1and a; ¢ {di,d2}). We have by, = ¢4, for all
i € [3], and thus d € U(T'), which contradicts the separability of 7.

Case 2: dj = a;. Because b,, < by, = ¢4y, we have d € U(T'), contradiction.

Case 3: d; = a; for some i € [2] and a3 ¢ {di,ds,d3}. By Lemma 7.1, we have
ba,,, & (bay,ba,). Therefore, we have (dy,dy,ds) € U(T), which contradicts
the separability of T

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(3) (2014), #P3.9 25



Case 4: d3 = a3 and a; ¢ {di,d>}. Tt is clear that dy # a3 — 1. Thus, we have
(dy,dy,a3 — 1) € U(T) because by, = ¢q4, for i € [2] and c¢uy > Coq-1 = bay—1-
This contradicts the separability of T

Case 5: d3 = a3 and d; = a;. We have a; < dy < a3 with bg, € (bay,bas), which
contradicts Lemma 7.1.

Case 6: d3 = a3 and dy = ay, then we have
ba, = €4, > Cay = bay > bay = Cag > Cay—1 = bag—1,

where the last inequality follows from Lemma 7.1. Hence, we have (dy, ds, az—
1) € U(T), which contradicts the separability of T

Hence, we may assume that d3 = a3 + 1. Because #(d) < (as + 1,a1,0), we may also
assume that d; < a;, which implies that by, = ¢4,. Lemma 7.1 yields that by, < b,,, and
thus by, = cq4, for all ¢ € [3]. It follows that d € U(T), which contradicts the separability
of T. The fact that h;(T) = (a1,y,as + 1) for some y follows. It is clear that ¢ (7T') is of
J-type 2 and that ¢(¢(7)) =T.

We prove that if e = (eq, ez,e3) € V(¥(T)), then S(e) > S(hp(T)) in the lexicographic
order. If e3 = ag, then b., = ¢, for all i € [2], and b., > c.,. It follows that e € V(T),
which contradicts the definition of hr. Hence, we may assume that ez > ag, and it follows
that b., = c.,. Lemma 7.1 yields that b., < b,,, and thus ¢, < b,, for all ¢, which yields
that be, = ¢, for all 4. This implies that e € V(7'), which contradicts the definition of hp.
The separability of ¢(T") follows.

For ¢ < a;, we have b; = ¢;. Because b,, < b,, = ¢4, we have (by, by, ..., b,) <
(¢1,¢€9,...,¢y) in the lexicographic order, as desired.

7.3 T is of F-type 3

See Figure 15. First, we prove that ¢ (7T) is a valid transversal of ). This paragraph is

similar to the first paragraph of the proof of Proposition 4.1 for the case in which T is of

J-type 3. If b; > b,, or i > ag, it is clear that b, = ¢;, and therefore 7" is a transversal of

Y. To verify that if i € A (resp. i € D) then i € Asc(¢(T)) (resp. ¢ € Des(¢(T))), we

divide into cases based on the value of i.

Case 1: {i,i+ 1} and Fﬁajl?g’fiz)as](T) are disjoint. Then, b; = ¢; and b;; 1 = ¢;41, and
thus 7 is an ascent (resp. descent) of ¢(T') if and only if it is an ascent (resp.
descent) of T.

.. [bag,bas]
Case 2: 4,i+1 € F[l,jl]u?faz,aa—ll

bi < bi—i—l and C < Ciy1-

(T') with ¢ # a;,a3 — 2. By Lemma 7.2, we have

Case 3: ic K = Fﬁ?ﬁ;ﬁi%%_l](T% i+1 ¢ K,andi # aj,a3—1. We have b,, < b;, ¢; <

ba, and b1 ¢ [ba,,bas], which implies that ¢ is an ascent (resp. descent) of
¢(T) if and only if it is (resp. descent) of T
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Figure 15: The squares marked with a solid black box are the elements of the chosen
copy of Fj for a separable, valid transversal T' = {(i,b;)} of F-type 3. The bullets mark
some other elements of 7, while the crosses mark new elements of ¢(7'), i.e. elements
of ¢(T) \ T. The gray squares are free of elements of T (and ¢(7")). We suppose that

T2l (T) = {iy, iy} and Tzl (T) = {if, i)

[1,0,1) (ag,a3—1)

Case 4: i¢ K = [bez bes] (T),i+1 € K, and i # a1,a3—1,a3—1. The argument

: o [1 al]U[ag az— 1] ]
is similar to that of the preceding case.

Case 5: i=aj,as— 1. Because by, 11,04,-1 ¢ [ba,, bas] by Lemma 7.1, we have b,, 1 <
be, if and only if by, 11 < ¢4y, and by,—1 < by, if and only if by,—1 < cq,. If
as # aj + 1, then we have ¢,,+1 = by, +1 and ¢,,—1 = b4,—1, Which implies that
that a; is an ascent (resp. descent) of ¥(7T) if and only if it is an ascent (resp.
descent) of T', and similarly for ag — 1. If ay = a; + 1, then a; = as — 1l is a
descent of both T" and (7).

Case 6: i =a3—2,a3 — 1,a3. We have a3 — 1 € A, and because ) is l-alternating,
we have a3 € D and a3 —2 ¢ A. If a3 —2 € D, we have by,_o > bgy_1,
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and Lemma 7.2 implies that ag — 2 ¢ F{Z‘;Q(i“f]l]. Therefore, we have c,, o =

bas—2 > bay—1 > Cay—1. Regardless, we have c,,_1 = by, < ¢4y by the definition
of 9. By Lemma 7.3 and the definition of ¢, we have c,,11 = bgy11 < Cay-

It follows that ¢(T") is a valid transversal of ).

Next, we prove that h;(¢(T)) = (a1,as,a3 — 1). It is clear that (a;,as,a3 — 1) €
U((T)). Suppose for sake of deriving a contradiction that (di,ds,ds) € U(y(T)) with
#(d) < (a3—1, ay, az) in the lexicographic order. We divide into cases based on the values
of ds and by, to prove that ds = a3 — 1.

Case 1: by, > by,. We have by, = ¢4, for all i € [3], and thus d € U(T), which
contradicts the separability of T'.

Case 2: (ds<agz—1andb,, < by <b,,)ords=ay ByLemma 7.1, we have d3 > as,
and Lemma 7.2 yields that that ¢4, > b,,. Then, by Lemma 7.2, we have
dy < ag or bg, > by,. We treat the two subcases separately.

Subcase 2.1: dy < as. Because cq, > ¢4y, > b,,, we have dy = ay or by, > b,,. If
dy = aq, then we have (di, a1, as) € U(T), which contradicts the
separability of T'. If by, > b,,, then we can apply the following
subcase.

Subcase 2.2: by, > b,,. We have (dy,ds,ds) € U(T), which contradicts the
separability of T

Case 3: d3 <as—1andb,, <bg <b,. By Lemma 7.1 we have d3 < a;. Lemma 7.2
implies that by, > b, from which it follows that cs, = bg, > bsy, > bgs.
Therefore, we have (dy,dy,d3) € U(T'), which contradicts the separability of
T.

Case 4: d3 <az—1and by < b,,. By Lemma 7.1 we have d3 < ay. By Lemma 7.2,

at most one of dy,dy can be in Fﬁi’jf“?’}(T), while by Lemma 7.1, any d; ¢

Fﬁ‘f;l’?a?’}(T) must satisfy by, & [ba,,bas]. It follows that (dy,ds,ds) € U(T),
which contradicts the separability of T'.

Hence, we may assume that d3 = a3 — 1. If dy < ay, then it follows from Lemma 7.2
that cq, & (bay,bas). Lemma 7.1 yields that cg, ¢ (ba,, Ya,). Therefore, we have ¢4, < by,
which implies that ¢4, € (bay,bs, ). By Lemma 7.2, we have by, € (bay, bs, ), and Lemma 7.1
yields that dy < a;. Applying Lemma 7.2 again yields that ¢4, > c4,, which contradicts
the assumption that d € U(¢(T')). Hence, we may assume that d; = aq, in which case
Lemma 7.1 implies that dy > as. It follows that h;(¢(T)) = (a1, az, a3 — 1), and therefore
¥(T) is of J-type 3. Because ¢, = byyt1 and ¢,y = bg,, we have

[Bag ba] By bas] ( lbagsbaz] ( olbas:bas]
SU(T)) = w2ty (whanind (B, (o), (D)) = T.
as desired.
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We prove that if e = (e, ea,e3) € V(¢(T)), then S(e) = S(hp(T)) in the lexicographic
order. Let e € V(¢(T)). Suppose for sake of deriving a contradiction that S(e) <
S(hp(T)) in the lexicographic order. First, we prove that e < as. Suppose for sake of
deriving a contradiction that es > a3. Let m = min F{I;‘jjl’?as](T). By Lemma 7.3, we have
Ces = bey < by, = Cay1. If €1 > a3, then e € V(T), which contradicts the definition of
hr, and thus we may assume that e; < a3. Lemmata 7.1 and 7.2 imply that e; = a3 or

e; < ag, and we treat the two cases separately.

Case 1: e = a3. Then, we have (ag, e, e3) € V(T'), which contradicts the definition
of hF

Case 2: e¢; < as. By Lemma 7.1 and because b, < ¢, for all z € F{Iiajl’?”], we have

be, < b, and hence b.,, = ¢, for all i. Thus, (e1,ez,e3) € U(T), which
contradicts the definition of hp.

Hence, we may assume that ez < a3. Because e3 # a3 — 1 and the first component of S(e)
is at least ag — 1, either (e is of F-type 2, a3 —2 € D, e5 = az3 — 3 and e3 = ag — 2) or
e3 = a3, and we treat the cases separately.

Case 1: eis of F-type 2. Because b,,_2 > b4y—1, Lemma 7.2 implies that b,,_o > bg,
and therefore b,, o = c4,—2. By Lemma 7.1, we have b,,_3 > b,,, and it
follows that b,,—3 < max{bs,, Cas—3 < Caz—2 = baz—o2. Lemma 7.1 implies that
be, > by, or €1 > dy. In the latter case, the fact that c., > c., implies that
be, > bay as well. Thus, b., = ¢, and (e, eq,e3) € V(T'), which contradicts
the definition of hAp.

Case 2: e3 = as. By Lemma 7.1 and by the definition of v, there does not exist an

index ¢ < ag — 1 such that c,,—1 < ¢; < ¢4y. Therefore, we have e; # a3 — 1.

Because ag — 1 ¢ A, it follows that e is of F-type 3. If e = ag — 1, then we

have b,, = caqy > Ce; > Ce, = by,, and by Lemma 7.1 and the definition of 1,
we have e; < a;. Thus, e; € Fﬁajl’?a?'} with ¢., < b, < ¢, which contradicts
Lemma 7.2. Therefore, we mayjassume that e < az — 1 and e is of F-type
3. The fact that S(e) > S(hp(T)) in the lexicographic order implies that
e1 = ay, but ¢,, > c,, and thus we may in fact assume that e; > ay. By
Lemma 7.1 and the definition of ¢, we have c., < b,,, which implies that
be, = ¢, for i € [2]. Therefore,(ey,e9,e3) € V(T'), which contradicts the
definition of hp.

The separability of ¢(T") follows.
For all i < m, we have b; = ¢;. If m < ay, then let m' = min FE:?L;?]”](T). By
Lemma 7.2, we have ¢, = b,y > by,. If m = ay, then we have ¢, = b,; > by,. It follows

that (b1, b,...,b,) > (c1,¢a,...,¢y) in the lexicographic order, as desired. ]
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