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Abstract

Zarankiewicz’s Conjecture (ZC) states that the crossing number cr(Km,n) equals
Z(m,n) := bm

2 cb
m−1

2 cb
n
2 cb

n−1
2 c. Since Kleitman’s verification of ZC for K5,n (from

which ZC for K6,n easily follows), very little progress has been made around ZC; the
most notable exceptions involve computer-aided results. With the aim of gaining a
more profound understanding of this notoriously difficult conjecture, we investigate
the optimal (that is, crossing-minimal) drawings of K5,n. The widely known natu-
ral drawings of Km,n (the so-called Zarankiewicz drawings) with Z(m,n) crossings
contain antipodal vertices, that is, pairs of degree-m vertices such that their induced
drawing of Km,2 has no crossings. Antipodal vertices also play a major role in
Kleitman’s inductive proof that cr(K5,n) = Z(5, n). We explore in depth the role of
antipodal vertices in optimal drawings of K5,n, for n even. We prove that if n ≡ 2
(mod 4), then every optimal drawing of K5,n has antipodal vertices. We also exhibit
a two-parameter family of optimal drawings Dr,s of K5,4(r+s) (for r, s > 0), with
no antipodal vertices, and show that if n ≡ 0 (mod 4), then every optimal drawing
of K5,n without antipodal vertices is (vertex rotation) isomorphic to Dr,s for some
integers r, s. As a corollary, we show that if n is even, then every optimal drawing
of K5,n is the superimposition of Zarankiewicz drawings with a drawing isomorphic
to Dr,s for some nonnegative integers r, s.

Keywords: Crossing number; Turán’s Brickyard Problem; Zarankiewicz Conjec-
ture; optimal drawings; antipodal vertices
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1 Introduction
We recall that the crossing number cr(G) of a graph G is the minimum number of pairwise
crossings of edges in a drawing of G in the plane. A drawing of a graph is good if no
adjacent edges cross, and no two edges cross each other more than once. It is trivial to
show that every optimal (that is, crossing-minimal) drawing of a graph is good.

One of the most tantalizingly open crossing number questions was raised by Turán
in 1944: what is the crossing number cr(Km,n) of the complete bipartite graph Km,n?
Zarankiewicz [8] described how to draw Km,n with exactly Z(m,n) crossings, where

Z(m,n) :=
⌊
m

2

⌋⌊
m− 1

2

⌋⌊
n

2

⌋⌊
n− 1

2

⌋
.

Figure 1: Drawing of K5,6 with Z(5, 6) = 24 crossings.

Zarankiewicz’s construction is shown in Figure 1 for the case m = 5, n = 6. It is
straightforward to generalize this drawing to a drawing of Km,n with Z(m,n) crossings,
for all positive integers m and n, and so cr(Km,n) 6 Z(m,n). The drawings thus obtained
are the Zarankiewicz drawings of Km,n.

In [8], Zarankiewicz claimed to have proved that cr(Km,n) = Z(m,n) for all positive
integers m,n. However, Kainen and Ringel independently found a flaw in Zarankiewicz’s
argument (see [5]), and the statement cr(Km,n) = Z(m,n) is now known as Zarankiewicz’s
Conjecture.

Very little of substance is known about cr(Km,n). An elegant argument using purely
combinatorial arguments (namely, Turán’s theorem on the maximum number of edges in
a triangle-free graph) plus cr(K3,3) = 1 shows that cr(K3,n) = Z(3, n). An easy counting
argument shows that cr(K2s−1,n) = Z(2s− 1, n) (for any s > 1) implies that cr(K2s,n) =
Z(2s, n). Thus it follows that cr(K4,n) = Z(4, n). Kleitman [6] proved that cr(K5,n) =
Z(5, n). By our previous remark, this implies that cr(K6,n) = Z(6, n).
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After Kleitman’s theorem, most progress around Zarankiewicz’s Conjecture consists
of computer-aided results. Woodall [7] verified Zarankiewicz’s Conjecture for K7,7 and
K7,9. De Klerk et al. [3] showed that limn→∞ cr(K7,n)/Z(7, n) > 0.968 using semidefi-
nite programming techniques. Also using semidefinite programming and deeper algebraic
techniques, De Klerk et al. [4] proved that limn→∞ cr(K9,n)/Z(9, n) > 0.966. In a re-
lated result, De Klerk and Pasechnik [2] recently showed that the 2-page crossing number
ν2(K7,n) of K7,n satisfies limn→∞ cr(K7,n)/Z(7, n) = 1.

We finally mention that Christian et al. [1] proved that deciding Zarankiewicz’s Con-
jecture is a finite problem for each fixed m.

To give a brief description of our results, let us color the 5 degree-n vertices of K5,n

black, and color the n degree-5 vertices white. Two white vertices are antipodal in a
drawing D of K5,n if the drawing of the K5,2 they induce has no crossings. A drawing is
antipodal-free if it has no antipodal vertices.

Antipodal pairs are evident in Zarankiewicz’s drawings (moreover, the set of white
vertices can be decomposed into two classes, such that any two white vertices in distinct
classes are antipodal). Antipodal pairs are also crucial in the inductive step of Kleitman’s
proof, which does not concern itself with the different ways (if more than one) to achieve
Z(5, n) crossings with a drawing of K5,n.

Given their preeminence in Zarankiewicz’s Conjecture, we set out to investigate the
role of antipodal pairs in the optimal drawings of K5,n. Our main result (Theorem 1)
characterizes optimal drawings of K5,n, for even n, as follows. First, if n ≡ 2 (mod 4),
then all optimal drawings of K5,n have antipodal pairs. Second, if n ≡ 0 (mod 4), then
every antipodal-free optimal drawing of K5,n is isomorphic (we review vertex rotation
isomorphism in Section 2) to a drawing in a two-parameter family Dr,s of drawings we
have fully characterized. As a consequence of these facts, we show (Theorem 2) that if
n is even, then every optimal drawing of K5,n can be obtained by starting with Dr,s, for
some nonnegative (possibly zero) integers r and s, and then superimposing Zarankiewicz
drawings.

The rest of this paper is organized as follows. In Section 2 we review the concept
of vertex rotation, which is central to the criterion to decide when two drawings are
isomorphic. In Section 3 we describe the two-parameter family of optimal, antipodal-
free drawings Dr,s (for integers r, s > 0) of K5,4(r+s). In Section 4 we state our main
results. Theorem 1 claims that (i) if n ≡ 2 (mod 4), then every optimal drawing of
K5,n has antipodal vertices; and that (ii) if n ≡ 0 (mod 4), then every antipodal-free
optimal drawing of K5,n is isomorphic to Dr,s for some integers r, s such that 4(r+s) = n.
In Theorem 2 we state the decomposition of optimal drawings of K5,n, along the lines
of the previous paragraph. The proof of Theorem 2 is also given in this section; the
rest of the paper is devoted to the proof of Theorem 1. In Section 5 we introduce the
concept of a clean drawing. Loosely speaking, a drawing is clean if its white vertices
can be naturally partitioned into bags, so that vertices in the same bag have the same
(crossing number wise) properties. In Section 6 we introduce keys, which are labelled
graphs that capture the essential (crossing number wise) information of a clean drawing.
This abstraction (and the related concept of core) will prove to be extremely useful for
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the proof of Theorem 1. In Section 7 we investigate which labelled graphs can be the key
of a relevant (clean, optimal, antipodal-free) drawing. Cores are certain more manageable
subgraphs of keys, that retain all the (crossing number wise) useful information of a key.
We devote Sections 8, 9, 10, and 11 to the task of completely characterizing which graphs
can be the core of an antipodal-free optimal drawing. The information in these sections
is then put together in Section 12, where we show that the core of every optimal drawing
is isomorphic either to the 4-cycle or to the graph C6 obtained by adding to the 6-cycle
a diametral edge. The proof of Theorem 1, given in Section 13, is an easy consequence of
this full characterization of cores.

2 Rotations and isomorphic drawings
To help comprehension, throughout this paper we color the 5 degree-n vertices in K5,n

black, and the n degree-5 vertices white. We label the black vertices 0, 1, 2, 3, 4. Unless
otherwise stated, we label the white vertices a0, a1, . . . , an−1. We adopt the notation
[n] := {0, 1, . . . , n− 1}.

Given vertices ai, aj with i, j ∈ [n], we let S(ai) denote the star centered at ai, that
is, the subgraph (isomorphic to K5,1) induced by ai and the vertices 0, 1, 2, 3, 4. If D is a
drawing ofK5,n, we let crD(ai, aj) denote the number of crossings inD that involve an edge
of S(ai) and an edge of S(aj), and we let crD(ai) := ∑

k∈[n],k 6=i crD(ai, ak). Formalizing
the definition from Section 1, ai and aj are antipodal (in D) if crD(ai, aj) = 0.

The rotation rotD(ai) of a white vertex ai in a drawing D is the cyclic permutation
that records the (cyclic) counterclockwise order in which the edges leave ai. We use the
notation 01234 for permutations, and (01234) for cyclic permutations. For instance, the
rotation rotD(a3) of the vertex a3 in the drawing D in Figure 2 is (02431): following a
counterclockwise order, if we start with the edge leaving from a3 to 0, then we encounter
the edge leaving to 2, then the edge leaving to 4, then the edge leaving to 3, and then
the edge leaving to 1. We emphasize that a rotation is a cyclic permutation; that is,
(02431), (24310), (43102), (31024), and (10243) denote (are) the same rotation. We let Π
denote the set of all cyclic permutations of 0, 1, 2, 3, 4. Clearly, |Π| = 5!/5 = 4! = 24. The
rotation rotD(i) of a black vertex i is defined analogously: for each i ∈ [5], rotD(i) is a
cyclic permutation of a0, a1, . . . , an−1.

The rotation multiset RotM(D) of D is the multiset (that is, repetitions are allowed)
containing the n rotations rotD(ai), for i = 0, 1, . . . , n− 1. The rotation set Rot(D) of D
is the underlying set (that is, no repetitions allowed) of RotM(D). Thus, in the example
of Figure 2, RotM(D) = [(04321), (04321), (01234), (02431)] (we use square brackets for
multisets), and Rot(D) = {(04321), (01234), (02431)}.

Two multisetsM,M ′ of rotations are equivalent (we writeM ∼= M ′) if one of them can
be obtained from the other by a relabelling (formally, a self-bijection) of 0, 1, 2, 3, 4. Two
drawings D,D′ of K5,n are isomorphic if RotM(D) ∼= RotM(D′). Loosely speaking, two
drawings D,D′ of K5,n are isomorphic if 0, 1, 2, 3, 4 and a0, a1, . . . , an−1 can be relabelled
(say in D′), if necessary, so that rotD(ai) = rotD′(ai) for every i ∈ [n].
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Figure 2: A drawing D of K5,4 with rotD(a0) = rotD(a1) = (04321), rotD(a2) = (01234), and
rotD(a3) = (02431). Thus the pair a0, a2 (as well as the pair a1, a2) is antipodal.

Our ultimate interest lies in optimal drawings (of K5,n). It is not difficult to see (we
will prove this later) that if D is an optimal drawing and ai, aj, ak, a` are vertices such
that rotD(ai) = rotD(aj) and rotD(ak) = rotD(a`), then crD(ai, ak) = crD(aj, a`). Thus
an optimal drawing of K5,n is adequately described by choosing a representative vertex of
each rotation, and giving the information of how many vertices there are for each rotation.
This supports the pertinence of focusing on the rotations as the criteria for isomorphism.

3 An antipodal-free drawing of K5,4(r+s)

In this section we describe an antipodal-free drawing Dr,s of K5,4(r+s), for each pair r, s of
nonnegative integers.

The construction is based on the drawing D∗ of K5,6 in Figure 3. As shown, the
rotations in D∗ of the white vertices are rotD∗(a0) = (01234), rotD∗(a1) = (04231),
rotD∗(a2) = (01342), rotD∗(a3) = (04312), rotD∗(a4) = (01432), rotD∗(a5) = (02314).

It is immediately checked that D∗ is antipodal-free. Note that D∗ itself is not optimal,
as it has 25 = Z(5, 6) + 1 crossings.

Suppose first that both r and s are positive. To obtain Dr,s, we add 4(r+ s)− 6 white
vertices to D∗. Now r − 1 of these vertices are drawn very close to a1, and r − 1 are
drawn very close to a2; s− 1 vertices are drawn very close to a4, and s− 1 are drawn very
close to a5; finally, r + s− 1 vertices are drawn very close to a0, and r + s− 1 are drawn
very close to a3. It is intuitively clear what is meant by having ai drawn “very close” to
aj. Formally, we require that: (i) ai and aj have the same rotation; (ii) crDr,s(ai, aj) = 4;
and (iii) for any other vertex ak, crDr,s(ai, ak) = crDr,s(aj, ak). These properties are easily
satisfied by having the added vertex ai drawn sufficiently close to aj, so that the edges
incident with ai follow very closely the edges incident with aj.

If one of r or s is 0, then we make the obvious adjustments. That is, (i) if r = 0, then
we remove a1 and a2, and for each i = 0, 3, 4, 5, we draw s− 1 new vertices very close to
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Figure 3: This antipodal-free drawing D∗ of K5,6 is the base of the construction of the optimal
antipodal-free drawing Dr,s of K5,4(r+s) for all r, s. It is easily verified that rotD∗(a0) = (01234),
rotD∗(a1) = (04231), rotD∗(a2) = (01342), rotD∗(a3) = (04312), rotD∗(a4) = (01432),
rotD∗(a5) = (02314).

ai; and (ii) if s = 0, then we remove a4 and a5, and for each i = 0, 1, 2, 3, we draw r − 1
new vertices very close to ai. (In the extreme case r = s = 0, we remove all the white
vertices from D∗, and are left with an obviously optimal drawing of K5,0).

For each i = 0, 1, 2, 3, 4, 5, the bag [ai] of ai is the set that consists of the vertices drawn
very close to ai, plus ai itself.

Note that each of [a0] and [a3] has r + s vertices, each of [a1] and [a2] has r vertices,
and each of [a4] and [a5] has s vertices.

An illustration of the construction for r = 2 and s = 1 is given in Figure 4, where the
gray vertices are the ones added to D∗.
Claim. For every pair r, s of nonnegative integers, Dr,s is an antipodal-free optimal
drawing of K5,4(r+s).

Proof. First we note that since D∗ is antipodal-free, it follows immediately that Dr,s is
also antipodal-free. Thus we only need to prove optimality.

An elementary calculation gives the number of crossings in Dr,s. For instance, take
a vertex u in [a0]. Now crDr,s(u, v) equals (i) 4 if v ∈ [a0], v 6= u; (ii) 1 if v ∈ [a1];
(iii) 2 if v ∈ [a2]; (iv) 1 if v ∈ [a3]; (v) 1 if v ∈ [a4]; and (vi) 2 if v ∈ [a5]. Since
|[a0]| = r + s, |[a1]| = r, |[a2]| = r, |[a3]| = r + s, |[a4]| = s, and |[a5]| = s, it follows that
crDr,s(u) = 4(r + s− 1) + r + 2r + (r + s) + s+ 2s = 4(2r + 2s− 1).

A totally analogous argument shows that, actually, crDr,s(w) = 4(2r + 2s − 1) for
every white vertex w. Since there are 4(r + s) white vertices in total, it follows that
cr(Dr,s) = (1/2)

(
4(r+s)

)(
4(2r+2s−1)

)
=
(
4(r+s)

)(
4(r+s)−2

)
= Z(5, 4(r+s)).
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Figure 4: The antipodal-free drawing D2,1. To obtain this optimal drawing of K5,12 = K5,4(2+1),
we start with the drawing in Figure 3 and add two vertices very close to a0, two vertices very
close to a3, one vertex very close to a1, and one vertex very close to a2. Since s − 1 = 0, no
vertices are added very close to either a4 or a5. The added vertices are colored gray in this
drawing.

4 Main results: the optimal drawings of K5,n, for n

even
We now state our main results.

Theorem 1. Let n be a positive even integer.

1. If n ≡ 2 (mod 4), then all optimal drawings of K5,n have antipodal vertices.

2. If n ≡ 0 (mod 4), then every antipodal-free optimal drawing of K5,n is isomorphic
to Dr,s (described in Section 3) for some integers r, s such that 4(r + s) = n.

Before moving on to the proof of Theorem 1 (the rest of the paper is devoted to this
proof), we will show that it implies a decomposition of all the optimal drawings of K5,n,
for n even.

In Section 1 we defined, somewhat informally, a Zarankiewicz drawing. Let us now
formally define these drawings using rotations (we focus on K5,n, although the definition
is obviously extended to Km,n for any m). For a nonnegative integer n, a drawing D of
K5,n is a Zarankiewicz drawing if the white vertices can be partitioned into two sets, of
sizes bn/2c and dn/2e, so that vertices in different sets are antipodal in D, and vertices
ai, aj in the same set satisfy crD(ai, aj) = 4 (see Figure 1 for a Zarankiewicz drawing of
K5,6). A quick calculation shows that every Zarankiewicz drawing of K5,n is an optimal
drawing.
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Figure 5: An optimal drawing of K5,10 that is neither a Zarankiewicz drawing nor the superim-
position of Zarankiewicz drawings. As predicted by Theorem 2, this is the superimposition of
a Zarankiewicz drawing (the K5,2 induced by a8, a9 and the five black vertices) plus a drawing
Dr,s (namely with r = s = 1).

Theorem 2 (Decomposition of optimal drawings of K5,n, for n even). Let D be an
optimal drawing of K5,n, with n even. Then the set of n white vertices can be partitioned
into two sets A,B (one of which may be empty), with |A| = 4t for some nonnegative integer
t, such that: (i) the vertices in B can be decomposed into |B|/2 antipodal pairs; and (ii)
the drawing of K5,4t induced by A is antipodal-free, and it is isomorphic to the drawing
Dr,s described in Section 3, for some integers r, s such that r+ s = t. Equivalently, either
D is the superimposition of Zarankiewicz drawings, or it can be obtained by superimposing
Zarankiewicz drawings to the drawing Dr,s described in Section 3, for some integers r, s
(see Figure 5).
Proof. We proceed by induction on n. It is trivial to check that the two white vertices of
every optimal drawing of K5,2 are an antipodal pair, and so the statement holds in the
base case n = 2. For the inductive step, we consider an even integer n, and assume that
the statement is true for all k < n.

Let D be an optimal drawing of K5,n. If D has no antipodal pairs, then the statement
follows immediately from Theorem 1 (without even using the induction hypothesis). Thus
we may assume that D has at least one antipodal pair ai, aj. It suffices to show that
the drawing D′ that results by removing ai and aj from D is an optimal drawing of
K5,n−2, as then the result follows by the induction hypothesis. Clearly cr(D) = cr(D′) +∑

k∈[n]−{i,j}(crD(ai, ak) + crD(aj, ak)) > cr(D′) + (n − 2)Z(5, 3) = cr(D′) + 4n − 8. Thus
cr(D′) 6 cr(D) − 4n + 8 = Z(5, n) − 4n + 8. An elementary calculation shows that
Z(5, n) − 4n + 8 = Z(5, n − 2), so we obtain cr(D′) 6 Z(5, n − 2). Since cr(K5,n−2) =
Z(5, n − 2), it follows that cr(D′) = Z(5, n − 2), that is, D′ is an optimal drawing of
K5,n−2.
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5 Clean drawings
A good drawing of K5,n is clean if for all distinct white vertices ai, aj, ak, a`:

1. if rotD(ai) = rotD(aj), we have crD(ai, aj) = 4;

2. if rotD(ai) = rotD(aj) and rotD(ak) = rotD(a`), we have crD(ai, ak) = crD(aj, a`);
and

3. crD(ai, ak) 6 4.

Proposition 3. Let D be an optimal drawing of K5,n. Then there is an optimal drawing
D′, isomorphic to D, that is clean.

Proof. For each white vertex ai, define di := ∑
{a` | rotD(a`)6=rotD(ai)} crD(ai, a`). Let π ∈

Rot(D). Take a white vertex ai with rotD(ai) = π, such that for all j with rotD(aj) = π
we have di 6 dj. It is easy to see that we can move every vertex aj with rotD(aj) = π
very close to ai, so that crD(ai, ak) = crD(aj, ak) for every white vertex ak /∈ {ai, aj}, and
so that crD(ai, aj) = 4. If we perform this procedure for every rotation in Rot(D), the
result is an optimal drawing D′, isomorphic to D, that satisfies (1) and (2).

Now to prove that D′ also satisfies (3) we suppose, by way of contradiction, that there
exist ai, ak such that crD(ai, ak) > 4. Define di, dk as in the previous paragraph. We may
assume without loss of generality that di 6 dk. Now let D′′ be the drawing that results
from moving ak very close to ai, making it have the same rotation as ai, and so that
crD′′(ai, a`) = crD′′(ak, a`) for every ` 6∈ {i, k}, and crD′′(ai, ak) = 4. It is readily checked
that D′′ has fewer crossings than D′, contradicting the optimality of D′.

Remark 4. We are interested in classifying optimal drawings up to isomorphism (The-
orem 1). In view of Proposition 3, we may assume that all drawings of K5,n under
consideration are clean. We will work under this assumption for the rest of the paper.

6 The key of a clean drawing
We now associate to every clean drawing of K5,n an edge-labeled graph that (as we will
see) captures all its relevant crossing number information.

Let D be a clean drawing of K5,n. The key Φ(D) of D is the (edge-labeled) complete
graph whose vertices are the elements of Rot(D), and where each edge is labeled according
to the following rule: if π, π′ ∈ Rot(D), with rotD(ai) = π and rotD(aj) = π′, then the
label of the edge joining π and π′ is crD(ai, aj). It follows from the cleanness of D that
crD(ai, aj) does not depend on the choice of ai and aj, and so Φ(D) is well-defined for
every clean drawing D. Moreover, it also follows that every edge label in Φ(D) is in
{0, 1, 2, 3, 4}. The core of D is the subgraph Φ1(D) of Φ(D) that consists of all the
vertices of Φ(D) and the edges of Φ(D) with label 1. In Figure 6 we give a (clean and
optimal) drawing D of K5,3, and illustrate its key and its core.
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Our main interest is in antipodal-free drawings, that is, those drawings in which every
edge label in Φ(D) is in {1, 2, 3, 4}. A key is 0–free (respectively, 4-free) if none of its
edges has 0 (respectively, 4) as a label. A key is {0, 4}-free if it is both 0- and 4-free.

π0

3 0

1
π1 π2

π0

1
π1 π2

a2

a1

a0

Figure 6: A drawing D of K5,3. By letting rotD(a0) = π0, rotD(a1) = π1, and rotD(a2) = π2,
we obtain the key Φ(D) (right, above) and the core Φ1(D) (right, below) of D.

The main step in our strategy to understand optimal drawings is to characterize which
labelled graphs are the key of some optimal drawing. To this end, we introduce a system
of linear equations associated to each key, as follows.

Definition 5 (The system of linear equations of a key). Let D be an optimal drawing of
K5,n, with n even. Let the vertices of Φ(D) (that is, the elements of Rot(D)) be labelled
π0, π1, . . . , πm−1, and let λij denote the label of the edge πiπj, for all i 6= j. For each
i ∈ [m], the linear equation E(πi,Φ(D)) for πi in Φ(D) is the linear equation on the
variables t0, t1, . . . , tm−1 given by

E(πi,Φ(D)) : 2ti +
∑

j∈[m], j 6=i

(λij − 2)tj = 0.

The set {E(πi,Φ(D))}i∈[m] is the system of linear equations associated to Φ(D), and is
denoted L(Φ(D)).

The characterization of when a labelled graph is the key of an optimal drawing is
mainly based on the following crucial fact.

Proposition 6. Let D be an optimal drawing of K5,n, with n even. Then the system of lin-
ear equations L(Φ(D)) associated to Φ(D) has a positive integral solution (t0, t1, . . . , tm−1)
such that t0 + t1 + · · ·+ tm−1 = n.

Proof. First we show that if D is an optimal drawing of K5,n with n even, then for every
i = 0, 1, . . . , n− 1, we have crD(ai) = 2n− 4. To this end, suppose that crD(ai) > 2n− 4
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for some i. Since D is optimal, cr(D) = Z(5, n) = n(n − 2), and so the drawing D′

of K5,n−1 that results by removing ai from D has fewer than n(n − 2) − (2n − 4) =
n2−4n+4 = (n−2)2 = Z(5, n−1) crossings, contradicting that cr(K5,n−1) = Z(5, n−1).
Thus crD(ai) 6 2n − 4 for every i. Now suppose that crD(ai) < 2n − 4 for some i.
Then cr(D) = (1/2)∑j∈[n] crD(aj) < (1/2)(2n − 4)n = n(n − 2), contradicting that
cr(K5,n) = Z(5, n) = n(n − 2). Thus for every i ∈ [n] we have crD(ai) = 2n − 4, as
claimed.

Now let π0, π1, . . . , πm−1 be the elements of Rot(D) (that is, the vertices of Φ(D)),
and for each i, j ∈ [m], i 6= j, let λij denote the label of the edge πiπj in Φ(D). For
each i ∈ [m], let ti be the number of vertices with rotation πi in D. Then (using that
D is clean) for every i ∈ [m] and every white vertex ak with rotD(ak) = πi we have
crD(ak) = 4(ti − 1) + ∑

j∈[m],j 6=i λijtj. Now from the previous paragraph for each ak we
have crD(ak) = 2n− 4. Using that n = ∑

j∈[m] tj, we obtain 4(ti − 1) +∑
j∈[m],j 6=i λijtj =

2∑j∈[m] tj − 4. Equivalently, 2ti + ∑
j∈[m],j 6=i(λij − 2)tj = 0, for every i ∈ [m]. Thus

(t0, t1, . . . , tm−1) is a positive integral solution of L(Φ(D)).

7 Properties of the key of a clean drawing
We start with an easy, yet crucial, observation.

Proposition 7. Let D be an optimal drawing of K5,n. Then, for any three distinct white
vertices ai, aj, ak, crD(ai, aj) + crD(aj, ak) + crD(ai, ak) is an even number greater than or
equal to 4.

Proof. This follows since cr(K5,3) = Z(5, 3) = 4 and (see for instance [6]) every good
drawing of K5,3 has an even number of crossings.

The following is an equivalent form of this statement, in the setting of keys.

Proposition 8. Let D be a clean drawing of K5,n, and let π0, π1, π2 be vertices of Φ(D).
Let λij be the label of the edge πiπj, for i, j ∈ {0, 1, 2}, i 6= j. Then λ01 + λ12 + λ02 is an
even number greater than or equal to 4. �

Let γ, κ be cyclic permutations on the same set of symbols. A route from γ to κ
is a set of distinct transpositions, which may be ordered into some sequence such that
the successive application of (all) the transpositions in this sequence takes γ to κ. For
instance, if γ = (abcd) and κ = (acdb), then {(bd), (bc)} is a route from γ to κ: if we
apply first (bc) to γ, and then (bd) to the resulting cyclic permutation, we obtain κ.

The size |P | of a route P is its number of transpositions. An antiroute from γ to
κ is a route from γ to the reverse cyclic permutation κ of κ. Note that if P is a route
(respectively, antiroute) from γ to κ, then P is also a route (respectively, antiroute) from κ
to γ. The antidistance between two cyclic permutations is the smallest size of an antiroute
between them.

The following is an easy consequence of (the proof of) Theorem 5 in [7].

the electronic journal of combinatorics 21(4) (2014), #P4.1 11



π3 = (03421)

2

π0 = (01234)

2

π1 = (01432)

1

π2 = (04312)

2

1 1

Figure 7: This cannot be the key of a clean drawing of K5,n.

Lemma 9. Let D be a good drawing of K5,2, with white vertices a0, a1. Then there is an
antiroute from rotD(a0) to rotD(a1) of size crD(a0, a1). �

The following statement is implicitly proved in the discussion after the proof of [7,
Theorem 5].

Lemma 10. Let D be a clean drawing of K5,r with white vertices a0, a1, . . . , ar−1, and let
πi := rotD(ai). Suppose that πi 6= πj whenever i 6= j, and for all i 6= j let λij := crD(ai, aj).
For k = 0, 1, 2, 3, 4, let γk := rotD(k). Then there exist:

1. for all i, j ∈ [r] with i 6= j, an antiroute Pij from πi to πj of size λij;

2. for all k, ` ∈ [5] with k 6= `, an antiroute Qk` from γk to γ`;

such that the transposition (ai aj) is in Qk` if and only if the transposition (k `) is in Pij.
�

We now use these powerful statements to prove that certain graphs cannot be the
subgraphs of the key of a clean drawing.

Proposition 11. The graph in Figure 7 does not occur as an induced subgraph of the key
of any clean drawing of K5,n.

Proof. Since an induced subgraph of a key is a key, it suffices to prove that this graph
cannot be the key of a clean drawing of K5,n.

Suppose by way of contradiction that the graph in Figure 7 is the key of some clean
drawing ofK5,n. This implies in particular that there exists a drawingD ofK5,4 with white
vertices a0, a1, a2, a3 such that rotD(ai) = πi for i = 0, 1, 2, 3, with π0 = (01234), π1 =
(01432), π2 = (04312), and π3 = (03421), and crD(a0, a1) = crD(a0, a2) = crD(a0, a3) = 1,
and crD(a1, a2) = crD(a1, a3) = crD(a2, a3) = 2.
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The required contradiction is obtained by showing that there do not exist rotations
rotD(0), rotD(1), rotD(2), rotD(3), rotD(4), and antiroutes Pij, Qk` that satisfy Lemma 10
(with the given values of crD(ai, aj) for i, j ∈ {0, 1, 2, 3}, i 6= j). We start by determining
the possible antiroutes Pij (these depend only on the information we already have). Then
we investigate the possible antiroutes Qk` consistent with each choice of the antiroutes
Pij, and prove that, in all cases, every possible choice of rotD(0), rotD(1), rotD(2), rotD(3)
and rotD(4) leads to an inconsistency.

The following facts are easily verified: (i) the only antiroute from π0 to π1 of size 1 is
{(01)}; (ii) the only antiroute from π0 to π2 of size 1 is {(12)}; (iii) the only antiroute from
π0 to π3 of size 1 is {(34)}; (iv) the only antiroute of size 2 from π1 to π2 is {(02), (34)};
(v) there are two distinct antiroutes of size 2 from π2 to π3, namely {(01), (02)} and
{(03), (04)}; and (vi) there are two distinct antiroutes of size 2 from π1 to π3, namely
{(02), (12)} and {(23), (24)}.

Now for i, j ∈ {0, 1, 2, 3}, i 6= j, let Pij be the antiroute guaranteed by Lemma 10.
By the previous observations it follows that necessarily P01 = {(01)}, P02 = {(12)},
P03 = {(34)}, and P12 = {(02), (34)}. Also by the previous observations there are two
choices for P23, namely {(01), (02)} and {(03), (04)}; and there are two choices for P13,
namely {(02), (12)} and {(23), (24)}.

Thus P01, P02, P03, P12 are all determined:

P01 = {(01)}, P02 = {(12)}, P03 = {(34)}, P12 = {(02), (34)},

and there are four possible combinations of P13 and P23:

(a) P23 = {(01), (02)} and P13 = {(02), (12)}.

In this case, by Lemma 10, we have Q01 = {(a0a1), (a2a3)}, Q02 = {(a1a2), (a2a3),
(a1a3)}, Q03 = ∅, Q04 = ∅, Q12 = {(a0a2), (a1a3)}, Q13 = ∅, Q14 = ∅, Q23 = ∅,
Q24 = ∅, and Q34 = {(a0a3), (a1a2)}.

(b) P23 = {(01), (02)} and P13 = {(23), (24)}.

In this case, by Lemma 10, we have Q01 = {(a0a1), (a2a3)}, Q02 = {(a1a2), (a2a3)},
Q03 = ∅, Q04 = ∅, Q12 = {(a0a2)}, Q13 = ∅, Q14 = ∅, Q23 = {(a1a3)}, Q24 =
{(a1a3)}, and Q34 = {(a0a3), (a1a2)}.

(c) P23 = {(03), (04)} and P13 = {(02), (12)}.

In this case, by Lemma 10, we have Q01 = {(a0a1)}, Q02 = {(a1a2), (a1a3)}, Q03 =
{(a2a3)}, Q04 = {(a2a3)}, Q12 = {(a0a2), (a1a3)}, Q13 = ∅, Q14 = ∅, Q23 = ∅, Q24 =
∅, and Q34 = {(a0a3), (a1a2)}.

(d) P23 = {(03), (04)} and P13 = {(23), (24)}.

In this case, by Lemma 10, we have Q01 = {(a0a1)}, Q02 = {(a1a2)}, Q03 =
{(a2a3)}, Q04 = {(a2a3)}, Q12 = {(a0a2)}, Q13 = ∅, Q14 = ∅, Q23 = {(a1a3)}, Q24 =
{(a1a3)}, and Q34 = {(a0a3), (a1a2)}.
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Figure 8: This cannot be the key of a clean drawing of K5,n.

We only analyze (that is, derive a contradiction from) (a). The cases (b), (c), and (d)
are handled in a totally analogous manner.

Since Q13 = Q14 = ∅, it follows that rotD(3) and rotD(4) are both equal to the
reverse of rotD(1); in particular, rotD(3) = rotD(4). Since Q01 = {(a0a1), (a2a3)} and
Q12 = {(a0a2), (a1a3)}, it follows that in rotD(1): (i) a0 and a1 must be adjacent; (ii) a2
and a3 must be adjacent; (iii) a0 and a2 must be adjacent; and (iv) a1 and a3 must be
adjacent. It follows immediately that rotD(1) is either (a0a2a3a1) or (a0a1a3a2). Since
rotD(3) and rotD(4) are both the reverse of rotD(1), then each of rotD(3) and rotD(4)
is either (a0a1a3a2) or (a0a2a3a1). However, since Q34 = {(a0a3), (a1a2)}, then one must
reach the reverse of rotD(4) from rotD(3) by applying the transpositions (a0a3) and (a1a2)
(in some order). Since neither of these transpositions may be applied to (a0a1a3a2) or
(a0a2a3a1), we obtain the required contradiction.

Proposition 12. The graph in Figure 8 does not occur as an induced subgraph of the key
of any clean drawing of K5,n.

Proof. Since an induced subgraph of a key is a key, it suffices to prove that this graph
cannot be the key of a clean drawing of K5,n.

Suppose by way of contradiction that the graph in Figure 8 is the key of some clean
drawing of K5,n. Thus there exists a drawing D of K5,4 with white vertices a0, a1, a2, a3
such that rotD(ai) = πi for i = 0, 1, 2, 3, with π0 = (01234), π1 = (01432), π2 = (03241),
and π3 = (04231), and crD(a0, a1) = crD(a1, a2) = crD(a2, a3) = crD(a0, a3) = 1, and
crD(a0, a2) = crD(a1a3) = 2. For i, j ∈ {0, 1, 2, 3}, i 6= j, let Pij be the antiroute guar-
anteed by Lemma 10. It is easy to verify that the only antiroute of size 1 from π0 to π1
is {(01)}, and so necessarily P01 = {(01)}. Analogous arguments show that necessarily
P23 = {(01)} and that P12 = P03 = {(23)}. It is also readily checked that there are two
antiroutes of size 2 from π0 to π2, namely {(04), (14)} and {(24), (34)} (moreover, these
are also the two antiroutes of size 2 from π1 to π3). Thus each of P02 and P13 is either
{(04), (14)} or {(24), (34)}.
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Thus P01, P03, P12, and P23 are all determined:

P01 = P23 = {(01)}, P03 = P12 = {(23)},

and there are four possible combinations of P02 and P13:

(a) P02 = P13 = {(04), (14)}.

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = {(a0a2), (a1a3)}, Q14 =
{(a0a2), (a1a3)}, Q23 = {(a0a3), (a1a2)}, and Q02 = Q03 = Q12 = Q13 = Q24 =
Q34 = ∅.

(b) P02 = {(04), (14)} and P13 = {(24), (34)}.

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = Q14 = {(a0a2)}, Q23 =
{(a0a3), (a1a2)}, Q24 = Q34 = {(a1a3)}, and Q02 = Q03 = Q12 = Q13 = ∅.

(c) P02 = {(24), (34)} and P13 = {(04), (14)}.

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = Q14 = {(a1a3)}, Q23 =
{(a0a3), (a1a2)}, Q24 = Q34 = {(a0a2)}, and Q02 = Q03 = Q12 = Q13 = ∅.

(d) P02 = P13 = {(24), (34)}.

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q23 = {(a0a3), (a1a2)}, Q24 =
Q34 = {(a0a2), (a1a3)}, and Q02 = Q03 = Q04 = Q12 = Q13 = Q14 = ∅.

We only analyze (that is, derive a contradiction from) (a). The cases (b), (c), and (d)
are handled analogously.

Since Q02 = Q03 = Q12 = Q13 = Q24 = Q34 = ∅, it follows that rotD(2) and rotD(3) are
equal to each other, and equal to the reverse of each of rotD(0), rotD(1), and rotD(4). Thus
rotD(0) = rotD(1) = rotD(4). Since Q01 = {(a0a1), (a2a3)} and Q04 = {(a0a2), (a1a3)}, it
follows that in rotD(0): (i) a0 and a1 must be adjacent; (ii) a2 and a3 must be adjacent;
(iii) a0 and a2 must be adjacent; and (iv) a1 and a3 must be adjacent. Thus rotD(0)
is either (a0a2a3a1) or (a0a1a3a2). Now since Q23 = {(a0a3), (a1a2)}, it follows that in
rotD(2) (and hence in its reverse rotD(0)) we have that a0 is adjacent to a3, and that a1
is adjacent to a2. But this is impossible, since in neither (a0a2a3a1) nor (a0a1a3a2) any of
these adjacencies occurs.

8 Properties of cores. I. Forbidden subgraphs
We recall that the core of a clean drawing D of K5,n is the subgraph Φ1(D) of Φ(D) that
consists of all the vertices of Φ(D) and the edges of Φ(D) with label 1. Note that while
Φ(D) is obviously connected, Φ1(D) may be disconnected. As all edges of a core are
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labelled 1, we sometimes omit the reference to the edge labels altogether when working
with Φ1(D).

Our first result on the structure of cores is a workhorse for the next few sections.

Claim 13. If π1, π2 and π3 are distinct rotations for white vertices in a drawing of K5,n,
then there exists at most one rotation π0 such that there is an antiroute of size 1 from π0
to each of π1, π2, and π3.

Proof. By way of contradiction, suppose that there exist distinct vertices π0, π1, π2, π3, π4
and antiroutes of size 1 from πi to π1, π2, and π3, for i = 0 and 4. For j = 1, 2, 3 the
antiroutes from π0 and π4 to πj induce a route P04(j) of size two from π0 to π4. Assume
without loss of generality that π0 = (01234).

Suppose that for some j, the transpositions in P04(j) involve (in total) four distinct
elements in {0, 1, 2, 3, 4}. It is immediately checked that this implies that P04(j) is the
only route of size 2 from π0 to π4, and that this in turn implies that at least two of π1, π2,
and π3 are equal to each other, a contradiction. Thus each of P04(1), P04(2), and P04(3)
involve fewer than four elements in {0, 1, 2, 3, 4}.

None of these routes can involve only two elements (since they have size 2, and π0 6=
π4), and so we conclude that each of P04(1), P04(2), and P04(3) involve exactly three
elements in {0, 1, 2, 3, 4}. In particular, P04(1) must equal either {(k, k+ 1), (k, k+ 2)} or
{(k + 1, k + 2), (k, k + 2)}, for some k ∈ {0, 1, 2, 3, 4} (operations are modulo 5; we note
that we deviate from the usual notation and separate the elements of a transposition with
a comma, for readability purposes).

We derive a contradiction assuming that the first possibility holds; the other possibil-
ity is handled analogously. Relabelling 0, 1, 2, 3, and 4, if needed, we may assume that
P04(1) = {(01), (02)}. Thus π4 is (03412). It is readily verified that the only routes of size
2 from π0 = (01234) to π4 = (03412) are P04(1) = {(01), (02)} and {(03), (04)}. This in
turn immediately implies that the antiroutes of size 1 from π0 to π1, π2, and π3 are either
{(01)} or {(04)}, since the transpositions (02) and (03) cannot be applied to π0. But then
we arrive from π0 to two elements in {π1, π2, π3} by applying the same transposition; that
is, πi = πj for some i, j ∈ {1, 2, 3}, i 6= j, a contradiction.

Proposition 14. Let D be an optimal drawing of K5,n. Suppose that Φ(D) is {0, 4}-free.
Then:

1. Φ1(D) does not contain K2,3 as a subgraph.

2. Φ1(D) has maximum degree at most 3.

3. Φ1(D) does not contain as a subgraph the graph obtained from K4 by subdividing
exactly once each of the edges in a 3-cycle (see Fig. 9).

Proof. We start by noting that (1) follows immediately by Claim 13 and Lemma 9.
Suppose now by way of contradiction that Φ1(D) has a vertex π0 of degree at least 4.

Thus Φ1(D) has distinct vertices π1, π2, π3, π4 such that the edge joining π0 to πi has label
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Figure 9: The graph obtained by subdividing exactly once each of the edges in a 3-cycle
of K4.

1, for i = 1, 2, 3, 4. Thus, for i = 1, 2, 3, 4, there exists an antiroute from π0 to πi of size
1. Without loss of generality we may assume π0 = (01234). The five cyclic rotations that
have an antiroute of size 1 to π0 are (01432), (03214), (03421), (04312), and (04231). By
performing a relabelling j → j+ 1 on {0, 1, 2, 3, 4} for some j ∈ {0, 1, 2, 3, 4} (with opera-
tions modulo 5) if needed (note that the cyclic permutation π0 = (01234) is left unchanged
in such a relabelling), we may assume without loss of generality that {π1, π2, π3, π4} =
{(01432), (03214), (03421), (04312)}. By exchanging π1, π2, π3, π4 if needed, we may as-
sume that π1 = (01432), π2 = (04312), and π3 = (03421).

Since Φ(D) is {0, 4}-free, it follows by Proposition 8 that the edge joining πi to πj has
label 2, for i, j ∈ {1, 2, 3}, i 6= j. Thus, for i, j = 1, 2, 3, i 6= j, there exists an antiroute
from πi to πj of size 2. Thus Φ(D) contains as a subgraph the graph in Figure 7,
contradicting Proposition 11. This proves (2).

We finally prove (3). Suppose by way of contradiction that Φ1(D) contains as a
subgraph the graph obtained from K4 by subdividing once each of the edges in a 3-cycle
(Fig. 9). Let ρ0 be the “central vertex” in Fig. 9, that is, the only vertex in Φ1(D)
adjacent to three degree-3 vertices, and let ρ1, ρ3, ρ4 denote these three vertices. An
argument similar to the one in the second paragraph of this proof shows the following:
if ρ0 = (01234) is a vertex adjacent to vertices ρ1, ρ3, ρ4 in Φ1(D), then we may assume
(that is, perhaps after a relabelling of 0, 1, 2, 3, 4), that ρ1 = (01432), ρ3 = (04231), and
ρ4 = (04312). Now let ρ2 be the vertex adjacent to ρ1 and ρ3 in Φ1(D). Thus it follows
that in Φ(D), the edges joining ρ0 and ρ1, ρ0 and ρ3, ρ1 and ρ2, and ρ2 and ρ3 are labelled
1. By Proposition 8, the edge joining ρ1 and ρ3, as well as the edge joining ρ0 and ρ2 have
even labels, which must be 2 since Φ(D) is {0, 4}-free. Now it is easy to verify that the
only cyclic permutation other than ρ0 which has antiroutes of size 1 to both ρ1 and ρ3 is
(03241). Thus ρ2 must be (03241). But then the subgraph of Φ(D) induced by ρ0, ρ1, ρ2,
and ρ3 is isomorphic to the graph in Figure 8, contradicting Proposition 12.

9 Properties of cores. II. Structural properties
Proposition 15. Let D be an optimal drawing of K5,n, with n even. Suppose that Φ(D)
is {0, 4}-free. Then:

1. Φ1(D) is bipartite.
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2. Φ1(D) is connected.

Proof. Suppose that C = (π0, π1, π2, . . . , πr−1, πr, π0) is an odd cycle in Φ1(D). It follows
from Proposition 8 that π0π2 must have an even label in Φ(D), since π0π1 and π1π2
are both labelled 1 in Φ(D); now this even label must be 2, since Φ(D) is {0, 4}-free.
Similarly, since π2π3 and π3π4 are also labelled 1 in Φ(D), then π2π4 must also be labelled
2 in Φ(D). Now since both π0π2 and π2π4 have label 2 in Φ(D), it follows that π0π4 also
has label 2 in Φ(D). By repeating this argument we find that π0πj must have label 2 in
Φ(D) for every even j. In particular, π0πr must have label 2, contradicting that π0πr is
in Φ1(D) (that is, that the label of π0πr in Φ(D) is 1). Thus Φ1(D) cannot have an odd
cycle. This proves (1).

To prove (2) we assume, by way of contradiction, that Φ1(D) is not connected.
We start by observing that Φ(D) must have at least one edge labelled 1. Indeed,

otherwise every edge Φ(D) has label of at least 2, and so cr (D) > 2
(

n
2

)
= n(n − 1) >

Z(5, n), contradicting the optimality of D.
Thus there exists a component H of Φ1(D) with at least 2 vertices. Let U be the set

of white vertices whose rotation is a vertex in H, and let V be all the other white vertices.
Let r := |U | and s := |V |. Note that

cr (D) =
∑

ai,aj∈U,

ai 6=aj

crD(ai, aj) +
∑

ai,aj∈V,

ai 6=aj

crD(ai, aj) +
∑

ai∈U,aj∈V

crD(ai, aj)

> Z(5, r) + Z(5, s) + 2rs, (1)

since every vertex of U is joined to every vertex of V by an edge with a label 2 or greater.
We claim that, moreover, strict inequality must hold in (1). To see this, first we

note that, since H has at least 2 vertices, it follows that there exist white vertices ak, a`

whose rotations are in H and such that crD(ak, a`) = 1. Since by assumption Φ1(D) is
not connected, there is a vertex π in Φ1(D) not in H. Let ai be a white vertex such
that rotD(ai) = π. Now crD(ak, ai) and crD(a`, ai) are both at least 2. However, we
cannot have crD(ak, ai) and crD(a`, ai) both equal to 2, since then crD(ak, a`) = 1 would
contradict Proposition 7. Thus either crD(ak, ai) or crD(a`, ai) is at least 3. This proves
that Inequality (1) must be strict, that is,

cr (D) > Z(5, r) + Z(5, s) + 2rs. (2)

Independently of the parity of r and s, cr (K5,r) > r(r − 2) and cr (K5,s) > s(s −
2). Using (2), we obtain cr (D) > r(r − 2) + s(s − 2) + 2rs = (r + s)(r + s − 2) =
Z(5, r + s) = Z(5, n), contradicting the optimality of D. This finishes the proof of
Proposition 15(2).

10 Properties of cores. III. Minimum degree
Proposition 16. Let D be an optimal drawing of K5,n, with n even. Suppose that Φ(D)
is {0, 4}-free. Let π0, π1, π2, π3 be a path in Φ1(D). Suppose that in Φ1(D), π1 is the only
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vertex adjacent to both π0 and π2, and π2 is the only vertex adjacent to both π1 and π3.
Then:

1. every vertex in Φ1(D) is adjacent (in Φ1(D)) to a vertex in {π0, π1, π2, π3}; and

2. π0 and π3 are adjacent in Φ1(D).

Proof. Let π0, π1, . . . , πr−1 be the vertices of Φ1(D) (and of Φ(D) as well). For i, j ∈
[r], i 6= j, let λij denote the label of the edge that joins πi to πj in Φ(D). Recall that
Φ1(D) is bipartite (Proposition 15(1)). Since π0, π1, π2, π3 is a path in Φ(D), it follows
that π0 and π2 are in the same chromatic class A, and π1 and π3 are in the same chromatic
class B. Moreover, since Φ(D) is {0, 4}-free, it follows from Proposition 8 that λij = 2
whenever πi and πj belong to the same chromatic class. Thus we have λ02 = λ13 = 2 and
(since π0, π1, π2, π3 is a path in Φ1(D)) λ01 = λ12 = λ23 = 1. It follows that the equations
of L(Φ(D)) corresponding to π0, π1, π2, and π3 are:

E0 : 2t0 − t1 + (λ03 − 2)t3 + ∑
j∈[r]
j>3

(λ0j − 2)tj = 0,

E1 : −t0 + 2t1 − t2 + ∑
j∈[r]
j>3

(λ1j − 2)tj = 0,

E2 : − t1 + 2t2 − t3 + ∑
j∈[r]
j>3

(λ2j − 2)tj = 0,

E3 : (λ03 − 2)t0 − t2 + 2t3 + ∑
j∈[r]
j>3

(λ3j − 2)tj = 0,

where for simplicity we define Ei := E(πi,Φ(D)) for i ∈ {0, 1, 2, 3}. Summing up these
four linear equations we obtain

(λ03 − 1)t0 + (λ03 − 1)t3 +
∑

j∈[r],j>3
(λ0j + λ1j + λ2j + λ3j − 8)tj = 0 (3)

We claim all the coefficients in (3) are nonnegative. Since λ03 > 1, this is true for the
coefficients of t0 and t3. Since Φ(D) is {0}-free, each λij > 1, for i, j ∈ {0, 1, 2, 3}.

Now fix j > 3. For the sake of definiteness, suppose πj is in the same chromatic class
of Φ1(D) as π0 and π2. (The other possibility is completely analogous.) Then πj is not
adjacent to either π0 and π2, so λ0j > 2 and λ2j > 2. The hypothesis about π2 implies
πj is not adjacent to both π1 and π3. Thus, λ1j + λ3j > 1 + 3 = 4, so ∑3

i=0 λij > 8, as
required.

Since each tj is positive and each coefficient is nonnegative, (3) implies that λ03 = 1,
and, for each j > 3, λ0j + λ1j + λ2j + λ3j = 8. The former yields Item (2).

For j > 3, in the case πj is in the same chromatic class as π0 and π2, we conclude
from the above remarks that λ0j = 2, λ2j = 2, and λ1j + λ3j = 4, whence πj is adjacent
to precisely one of π1 and π3. If πj is in the other chromatic class of Φ1(D), then πj is
adjacent to precisely one of π0 and π2. This proves (1).
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Proposition 17. Let D be an optimal drawing of K5,n, with n even. Suppose that Φ(D)
is {0, 4}-free. Then Φ1(D) has minimum degree at least 2.

Proof. By way of contradiction, suppose that Φ1(D) has a vertex of degree 0 or 1.
Suppose first that Φ1(D) has a vertex of degree 0. Then the connectedness of Φ1(D)

implies that this is the only vertex in Φ1(D) (and, consequently, the only vertex in Φ(D)).
Thus all vertices of D have the same rotation. Since if ai, aj have the same rotation in a
drawing D′ then crD′(ai, aj) = 4, it follows that cr(D) > 4

(
n
2

)
= 2n(n− 1) > n(n− 2) =

Z(5, n), a contradiction.
Thus we may assume that Φ1(D) has a vertex of degree 1.
Let π0, π1, . . . , πm−1 denote the vertices of Φ1(D). Without any loss of generality we

may assume that π0 has degree 1 in Φ1(D). For i, j ∈ [m], let λij denote the label of the
edge πiπj.

We divide the rest of the proof into two cases.

Case 1. Φ1(D) has a path with 4 vertices starting at π0.

Without loss of generality, let π0, π1, π2, π3 be this path. Since π0 is a leaf, it follows
that π1 is the only vertex of Φ1(D) adjacent to both π0 and π2. We note that then there
must be a vertex in Φ1(D) (say π4, without loss of generality) adjacent to both π1 and π3,
as otherwise it would follow by Proposition 16(2) that π0 is adjacent to π3, contradicting
that π0 is a leaf. Thus (π1, π2, π3, π4, π1) is a cycle.

For i, j ∈ [5], let λij denote the label of πiπj in Φ(D). Since the edges π0π1, π1π2, π2π3,
π3π4 and π1π4 are all in Φ1(D), it follows that λ01 = λ12 = λ23 = λ34 = λ14 = 1. Now
since Φ(D) is {0, 4}-free, using Proposition 8 it follows that λ02 = λ04 = λ24 = λ13 = 2
and (since π0π3 is not in Φ1(D)) that λ03 = 3.
Subcase 1.1. π0, π1, π2, π3, π4 are all the vertices in Φ1(D).

In this case the linear system L(Φ(D)) reads:

E0 : 2t0 − t1 + t3 = 0,
E1 : −t0 + 2t1 − t2 − t4 = 0,
E2 : − t1 + 2t2 − t3 = 0,
E3 : t0 − t2 + 2t3 − t4 = 0,
E4 : − t1 − t3 + 2t4 = 0,

where for brevity we let Ei := E(πi,Φ(D)) for i ∈ [5].
Subtracting E4 from E2, we obtain that t2 = t4. Adding the equations E0, E1, E2,

and using t2 = t4, we obtain t0 = 0. Thus the system L(Φ(D)) has no positive integral
solution, contradicting (by Proposition 6) the optimality of D.
Subcase 1.2. Φ1(D) has a vertex not in {π0, π1, π2, π3, π4}.

The connectedness of Φ1(D) implies there is a vertex π5 not in {π0, π1, π2, π3, π4} but
adjacent to one of π0, . . . , π4. Since π0 is a leaf only adjacent to π1, then i 6= 0. Since
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π1 already has degree 3 in Φ1(D), it follows from Proposition 14(2) that i 6= 1. Thus i
is either 2, 3 or 4. Since the roles of 2 and 4 are symmetric, we may conclude that π5 is
adjacent to either π2 or to π3.

Suppose first that π5 is adjacent to π3 in Φ1(D).
In this case λ35 = 1. Using Proposition 8, that Φ(D) is {0, 4}-free, that π0 is only

adjacent to π1, and Claim 13, we obtain λ05 = λ25 = λ45 = 2 and that λ15 = 3. Thus in
this case the 0-th and the 5-th equations of the system L(Φ(D)) read:

E0 : 2t0 − t1 + t3 + ∑
j∈[m],j>5

(λ0j − 2)tj = 0.

E5 : + t1 − t3 + 2t5 + ∑
j∈[m],j>5

(λ5j − 2)tj = 0.

where for brevity we let Ei := E(πi,Φ(D)) for i = 0 and 5.
Adding these equations, we get

2t0 + 2t5 +
∑

j∈[m],j>5
(λ0j + λ5j − 4)tj = 0. (4)

We now argue that λ0j + λ5j − 4 > 0 whenever j > 5. To see this, note that π0 and π5
are in the same chromatic class. If πj is in the same chromatic class, then, since Φ(D) is
{0, 4}-free, it follows that λ0j and λ5j are both 2, and so λ0j + λ5j − 4 > 0, as claimed. If
πj is in the other chromatic class, then both λ0j and λ5j are odd. Since π0 is a leaf whose
only adjacent vertex is π1, it follows that λ0j = 3. On the other hand, λ5j is either 1 or 3.
In particular, λ5j > 1, and thus also in this case λ0j + λ5j − 4 > 0, as claimed. It follows
from this observation and (4) that

2t0 + 2t5 6 0,

and so the system L(Φ(D)) has no positive integral solution, contradicting Proposition 6.
Suppose finally that π5 is adjacent to π2 in Φ1(D).
Consider then the path π0, π1, π2, π5. Since π0 is a leaf, it follows that π1 is the only

vertex adjacent to both π0 and π2. Now note that π2 is the only vertex adjacent to both
π1 and π5, since by Proposition 14(2) π1 cannot be adjacent to any vertex other than
π0, π2, and π4. Thus Proposition 16 applies, and so we must have that π0 and π5 are
adjacent in Φ1(D). But this is impossible, since the only vertex in Φ1(D) adjacent to the
leaf π0 is π1.

Case 2. Φ1(D) has no path with 4 vertices starting at π0.

We recall that π0 is a leaf in Φ1(D). Let π1 be the vertex adjacent to π0.
Suppose first that π0 and π1 are the only vertices in Φ1(D). Then L(Φ(D)) consists

of only two equations, namely 2t1− t0 = 0 and 2t0− t1 = 0. This system obviously has no
positive integral solutions, contradicting Proposition 6. We may then assume that there
is an additional vertex π2 in Φ1(D).

We recall that π0 is a leaf in Φ1(D). Let π1 be the vertex adjacent to π0. Since Φ1(D)
is connected and has no path of four vertices containing π0, it follows that every other
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vertex of Φ1(D) is adjacent to π1; that is, Φ1(D) is K1,r for some r > 1. Proposition 14(2)
implies r 6 3.

The equation for π1 is: 2t1 −
∑

j 6=1 tj = 0, while, for j 6= 1, the equation for πj is
2tj − t1 = 0. Using only the last equations, all the tj other than t1 are the same value t
and t1 = 2t. Now the t1-equation is 4t−rt = 0. Since r 6 3, this implies the contradiction
that t = 0.

11 Properties of cores. IV. Girth and maximum size
Proposition 18. Let D be an optimal drawing of K5,n, with n even. Suppose that Φ(D)
is {0, 4}-free. Then:

1. Φ1(D) has girth 4.

2. If v is a degree-2 vertex in Φ1(D), then v is in a 4-cycle in Φ1(D).

3. Φ1(D) has at most 7 vertices.

Proof. By Proposition 17, the minimum degree of Φ1(D) is at least 2. Since Φ1(D) is
simple and bipartite, it immediately follows that the girth of Φ1(D) is a positive number
greater than or equal to 4. Let π0, π1, π2, π3 be a path in Φ1(D). If there is a vertex
other than π1 adjacent to both π0 and π2, or a vertex other than π2 adjacent to both π1
and π3, then Φ1(D) clearly has a 4-cycle, and we are done. Otherwise, it follows from
Proposition 16(2) that π0 is adjacent to π3, and so (π0, π1, π2, π3, π0) is a 4-cycle. Thus
(1) follows.

Now let π1 be a degree-2 vertex in Φ1(D). Since Φ1(D) has minimum degree at least
2, using (1) it obviously follows that there exists a path π0, π1, π2, π3 in Φ1(D). If there
is a vertex adjacent to both π0 and π2 other than π1, then π1 is obviously contained in
a 4-cycle. In such a case we are done, so suppose that this is not the case. Since π1 is
only adjacent to π0 and π2, using that the degree of π1 is 2 it follows that no vertex other
than π2 is adjacent to both π1 and π3. Thus it follows from Proposition 16(2) that π0 and
π3 are adjacent in Φ1(D). Thus π1 is contained in the 4-cycle (π0, π1, π2, π3, π0), and (2)
follows.

Let C = (π0, π1, π2, π3, π0) be a 4-cycle in Φ1(D); the existence of C is guaranteed
from (1). By Proposition 14(1) Φ1(D) contains no subgraph isomorphic to K2,3, and so,
in Φ1(D), no vertex other than π1 or π3 is adjacent to both π0 and π2, and no vertex
other than π2 or π0 is adjacent to both π1 and π3. Thus Proposition 16 applies. Using
Proposition 14(2) and Proposition 16(1), we obtain that Φ1(D) has at most 4 vertices
other than π0, π1, π2, and π3; that is, Φ1(D) has at most 8 vertices in total; moreover,
if Φ1(D) has exactly 8 vertices, then every vertex of C has degree 3. Since C was an
arbitrary 4-cycle, we have actually proved that if Φ1(D) has 8 vertices, then every vertex
contained in a 4-cycle must have degree 3. In view of (2), this implies that if Φ1(D) has
8 vertices, then it must be cubic.
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Now the unique (up to isomorphism) cubic connected bipartite graph on 8 vertices is
the 3-cube. Since the 3-cube contains as an induced subgraph the graph in Figure 9, it
follows that Φ1(D) cannot have exactly 8 vertices.

12 The possible cores of an antipodal-free optimal
drawing

Our goal in this section is to establish Lemma 21, which states that the core of every
antipodal-free optimal drawing of K5,n is isomorphic to either a 4-cycle or to the graph
C6 obtained from the 6-cycle by adding an edge joining two diametrically oposed vertices
(see Figure 10).

Figure 10: The graph C6.

We first show this for the particular case in which Φ(D) is not only antipodal-free
(that is, 0-free), but also 4-free:

Proposition 19. Let D be an optimal drawing of K5,n, with n even. If Φ(D) is {0, 4}-
free, then Φ1(D) is isomorphic to the 4-cycle or to C6.

Proof. By Proposition 14(2) and Proposition 17, every vertex of Φ1(D) has degree 2 or
3. If Φ1(D) has no degree 3 vertices, then Φ1(D) is a cycle. Proposition 18(1) implies
Φ1(D) is a 4-cycle, as required.

Thus, we may assume Φ1(D) has a vertex of degree 3. Since all vertices of Φ1(D)
have degree 2 or 3, there is an even number of vertices of degree 3. Thus, Φ1(D) is a
subdivision of a cubic graph H and the degree-3 vertices of Φ1(D) are its nodes.

Since by Proposition 18(3) Φ1(D) has at most seven vertices, it has either 2, 4, or 6
nodes.

Claim 1. Φ1(D) does not have six nodes.

Proof. Suppose the contrary. Then Φ1(D) has at most one vertex of degree 2, so Φ1(D)
is H with at most one edge subdivided at most once. Since by construction Φ1(D) is
simple and by Proposition 15(1) it is bipartite, it follows that H is simple. There are only
two simple cubic graphs with six vertices, namely K3,3 and the triangular prism T3 (this
is the simple cubic graph with a matching whose removal leaves two disjoint 3-cycles).
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Because T3 is not bipartite and no single subdivision makes T3 into a bipartite graph,
H must be K3,3. In this case, Φ1(D) has K2,3 as an induced subgraph, contradicting
Proposition 14(1). �

Claim 2. Φ1(D) does not have four nodes.

Proof. If H has a loop, then it must be subdivided three times to make Φ1(D) simple
and bipartite. Thus, H without this loop is a bipartite, simple graph with three vertices
of degree 3 and one vertex of degree 1; this is impossible.

If H has a pair of parallel edges, then these must be subdivided in total at least twice
to make Φ1(D) simple and bipartite. Thus, there is only one such pair of parallel edges.
Deleting one of these parallel edges produces a simple graph with two degree-3 vertices
and two adjacent degree-2 vertices. This is also not possible.

Therefore, H is simple and so it is K4. It is readily seen that there are only two ways
to turn K4 into a bipartite graph using at most three edge subdivisions. One way is to
subdivide once each of the edges in a 3-cycle of K4, and the other way is to subdivide
(once) two nonadjacent edges (in the latter case, we obtain a graph that has a subgraph
isomorphic to K2,3). By Proposition 14, neither of these graphs can be the core of D. �

Claims 1 and 2 show that Φ1(D) has precisely two nodes. Thus, H is either an edge
with each end incident with a loop or H is three parallel edges. If the former, then each
loop must be subdivided at least three times to obtain the simple, bipartite graph Φ1(D).
But then Φ1(D) has at least 8 vertices, contradicting Proposition 18(3). Thus, H is three
parallel edges. Because Φ1(D) is bipartite, each edge of H is subdivided the same number
of times, modulo 2, to produce Φ1(D).

If some edge is subdivided three or more times, then Φ1(D) has a vertex of degree 2
that is not in any 4-cycle, contradicting Proposition 18(2). If no edge is subdivided twice,
then each edge is subdivided exactly once. In this case, Φ1(D) is K2,3, contradicting
Proposition 14(1).

Therefore, some edge of H is subdivided twice. It follows that each edge is subdivided
either 0 or 2 times, so two are subdivided twice and one not at all. Thus, Φ1(D) is C6,
as required.

Proposition 20. Let D be an antipodal-free, optimal drawing of K5,n, with n even. Then
Φ(D) is 4-free.

Proof. By way of contradiction, suppose that Φ(D) is not 4-free. Then there exist distinct
rotations π, π′, and white vertices ai, aj such that rotD(ai) = π and rotD(aj) = π′, and
crD(ai, aj) = 4.

Without loss of generality, suppose that crD(ai) 6 crD(aj). We move, one by one,
every vertex aj with rotation π′ very close to ai, so that in the resulting drawing D′ we
have crD′(aj, ak) = crD′(ai, ak) for every vertex k /∈ {i, j}. It is readily checked that the
resulting drawing D′ is also optimal, and Φ(D′) has one fewer edge with label 4 than
Φ(D). By repeating this process as many times as needed, we arrive to a drawing Do

such that Φ(Do) has exactly one edge with label 4 (if Φ(D) has exactly one edge with
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label 4 to begin with, then we let Do = D). Denote by π0, π1 the vertices of Φ(Do) whose
joining edge has label 4.

If we apply the described process one more time to Do with π = π0 and π′ = π1,
we obtain a {0, 4}-free optimal drawing E of K5,n. By Proposition 19, Φ1(E) contains a
4-cycle (π0, π2, π3, π4, π0). Now if we apply the process to Do with π = π1 and π′ = π0,
then we obtain another {0, 4}-free optimal drawing F of K5,n. Note that π2, π3, π4 are
not affected in the process, and so (π1, π2, π3, π4, π1) is a 4-cycle in Φ1(F ). Thus it follows
that Φ1(Do) has two degree-3 vertices π2 and π4, plus the vertices π0, π1, π3, each of which
is joined to both π2 and π4 with an edge labelled 1. This contradicts Claim 13.

Lemma 21. Let D be an antipodal-free, optimal drawing of K5,n, with n even. Then
Φ1(D) is isomorphic either to the 4-cycle or to C6.

Proof. By Proposition 20, Φ(D) is 4-free. By hypothesis Φ(D) is also 0-free (since D is
antipodal-free), and soΦ(D) is {0, 4}-free. The lemma then follows by Proposition 19.

13 Proof of Theorem 1
We need one final result before moving on to the proof of Theorem 1. In the follow-
ing proposition and its proof, for clarity we sometimes add commas to present a cyclic
permutation as (i, j, k, `,m), rather than our usual (ijk`m).

Proposition 22. Let D be a drawing of K5,n. Suppose that Φ(D) is {0, 4}-free, and
that Φ1(D) is a 4-cycle (π0, π1, π2, π3, π0). Suppose that π0 = (01234). Then there exists
an m ∈ {0, 1, 2, 3, 4} and a relabelling of {0, 1, 2, 3, 4} that leaves π0 invariant, such that
(operations are modulo 5):

• π2 = (m,m+ 1,m+ 3,m+ 4, m+ 2); and

• {π1, π3} = {(m,m+ 4,m+ 2,m+ 3,m+ 1), (m,m+ 4,m+ 3,m+ 1,m+ 2)}.

Proof. The reverse permutation π0 of π0 is (43210). Since π0π1 and π0π3 have label
1 in Φ(D), it follows that each of π1 and π3 is obtained from π0 by performing one
transposition. Thus there exist distinct k,m ∈ {0, 1, 2, 3, 4} such that {π1, π3} = {(k, k+
4, k + 2, k + 3, k + 1), (m,m+ 4,m+ 2,m+ 3,m+ 1)}.

Suppose that k = m + 3. Using a relabelling on {0, 1, 2, 3, 4} that leaves (01234)
invariant, we may assume that m = 2 and k = 0. Then {π1, π3} = {(04231), (03214)}.
Now since the edge joining π2 to each of π1 and π3 in Φ(D) has label 1, it follows that
there are antiroutes of size 1 from π2 to each of π1 and π3. It is easy to check that the only
such possibility is that π2 = (04132). Using the relabelling j 7→ j − 2 on {0, 1, 2, 3, 4}, we
get {π0, π1, π2, π3} = {(01234), (01432), (03241), (04231)}. But then Φ(D) is the labelled
graph in Fig. 8, contradicting Proposition 12. An analogous contradiction is obtained
under the assumption k = m+ 2. Thus k = m+ 1 or k = m+ 4.

Suppose that k = m + 1. Thus {π1, π3} = {(m + 1,m,m + 3,m + 4,m + 2), (m,m +
4,m+ 2,m+ 3,m+ 1)}. Using the relabelling j 7→ j−1 on {0, 1, 2, 3, 4} (which obviously
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leaves (01234) invariant), we obtain {π1, π3} = {(m,m+4,m+2,m+3,m+1), (m+4,m+
3,m+ 1,m+ 2,m)} = {(m,m+ 4,m+ 2,m+ 3,m+ 1), (m,m+ 4,m+ 3,m+ 1,m+ 2)},
as required. Finally, since the edge joining π2 to each of π1 and π3 in Φ(D) has label 1,
it follows that π2 = (m,m+ 1,m+ 3,m+ 4,m+ 2). The case k = m+ 4 is handled in a
totally analogous manner.

Proposition 23. Suppose that D is a drawing of K5,n. Suppose that Φ(D) is {0, 4}-
free, and that Φ1(D) is isomorphic to C6. Let the vertices of Φ1(D) be labeled π0, π1,
π2, π3, π4, π5, so that (π0, π1, π2, π3, π0) and (π0, π4, π5, π3, π0) are 4-cycles. Suppose that
π0 = (01234). Then there exists an m ∈ {0, 1, 2, 3, 4} and a relabelling of {0, 1, 2, 3, 4}
that leaves π0 invariant, such that (operations are modulo 5):

• π3 = (m,m+ 4,m+ 3, m+ 1,m+ 2);

• {(π1, π2), (π4, π5)} = {((m,m+ 4,m+ 2,m+ 3,m+ 1), (m,m+ 1,m+ 3,m+ 4,m+
2)), ((m,m+ 1,m+ 4,m+ 3,m+ 2), (m,m+ 2,m+ 3,m+ 1,m+ 4))}.

Proof. By Proposition 22, there exists an m ∈ {0, 1, 2, 3, 4} such that π2 = (m,m+1,m+
3,m + 4,m + 2) and {π1, π3} = A := {(m,m + 4,m + 2,m + 3,m + 1), (m,m + 4,m +
3,m + 1,m + 2)}. By the same proposition, there exists a k ∈ {0, 1, 2, 3, 4} such that
π5 = (k, k+ 1, k+ 3, k+ 4, k+ 2) and {π3, π4} = B := {(k, k+ 4, k+ 2, k+ 3, k+ 1), (k, k+
4, k + 3, k + 1, k + 2)}.

Since π2 6= π5, it follows that m 6= k. Thus k is either m+ 1,m+ 2,m+ 3, or m+ 4.
Note that if k = m+2 or k = m+3 then A∩B = ∅, which contradicts that {π3} = A∩B.
Thus k is either m+ 1 or m+ 4.

We work out the details for the case k = m+1; the case k = m+4 is handled in a totally
analogous manner. Since {π3} = A∩B, it follows that π3 = (m,m+4,m+2,m+3,m+1) =
(m + 1,m,m + 4,m + 2,m + 3). Therefore π1 = (m,m + 4,m + 3,m + 1,m + 2) =
(m+ 1,m+ 2,m,m+ 4,m+ 3), π2 = (m,m+ 1,m+ 3,m+ 4,m+ 2) = (m+ 1,m+ 3,m+
4,m+2,m), π4 = (m+1,m,m+3,m+4,m+2), and π5 = (m+1,m+2,m+4,m,m+3).
Using the relabelling j → j − 1 on {0, 1, 2, 3, 4} (which leaves (01234) invariant), we
obtain π1 = (m,m + 1,m + 4,m + 3,m + 2), π2 = (m,m + 2,m + 3,m + 1,m + 4),
π3 = (m,m + 4,m + 3,m + 1,m + 2) π4 = (m,m + 4,m + 2,m + 3,m + 1), and π5 =
(m,m+ 1,m+ 3,m+ 4,m+ 2).

Proof of Theorem 1. Let D be an antipodal-free drawing of K5,n, with n even. In view of
Proposition 3 (see Remark 4), we may assume that D is clean, so that Φ(D) and Φ1(D)
are well-defined.

In view of Lemma 21, Φ1(D) is isomorphic either to the 4-cycle or to C6.
Case 1. Φ(D) is isomorphic to C6.

In this case Φ(D) has 6 vertices, which we label π0, π1, π2, π3, π4, π5, so that (π0, π1, π2,
π3, π0) and (π0, π4, π5, π3, π0) are 4-cycles. For i, j ∈ {0, 1, 2, 3, 4, 5}, i 6= j, let λij be
the label of the edge πiπj. Since (π0, π1, π2, π3, π0) and (π0, π4, π5, π3, π0) are 4-cycles
in Φ1(D), it follows that all the edges in these 4-cycles have label 1 in Φ(D); that is,
λ01 = λ12 = λ23 = λ03 = λ04 = λ45 = λ35 = 1. By Proposition 8, λ02 is even. Since
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Φ(D) is antipodal-free, and (by Property (2) of a clean drawing) λij 6 4 for all i, j, it
follows that λ02 is either 2 or 4. By Proposition 20 Φ(D) is 4-free, hence λ02 = 2. The
same argument shows that λ05 = λ13 = λ14 = λ25 = λ34 = 2. Since λ35 = 1 and λ13 = 2,
by Proposition 8, λ15 is odd. If λ15 = 1, then {π0, π5} ∪ {π1, π2, π4} is a K2,3 in Φ1(D),
contradicting Proposition 8; thus λ15 = 3. An analogous argument shows that λ24 = 3.

The linear system L(Φ(D)) associated to Φ(D) (see Definition 5) is then:

E0 : 2t0 − t1 − t3 − t4 = 0.
E1 : −t0 + 2t1 − t2 + t5 = 0.
E2 : − t1 + 2t2 − t3 + t4 = 0.
E3 : −t0 − t2 + 2t3 − t5 = 0.
E4 : −t0 + t2 + 2t4 − t5 = 0.
E5 : t1 − t3 − t4 + 2t5 = 0.

(5)

It is straightforward to check that if (t0, t1, t2, t3, t4, t5) is a positive solution to this
system, then t1 = t2, t4 = t5 and t0 = t3 = t1 + t4. By Proposition 6, this implies that
n ≡ 0 (mod 4). This proves (1).

We have thus proved that the white vertices of D are partitioned into 6 classes
C0, C1, C2, C3, C4, C5, such that |C1| = |C2|, |C4| = |C5|, |C0| = |C3| = |C1| + |C4|, and such
that for i = 0, 1, 2, 3, 4, 5, each vertex in Ci has rotation πi. Let r := |C1| and s := |C4|, so
that |C2| = r, |C5| = s, and |C0| = |C3| = r + s. Note that 4(r + s) = n.

If necessary, relabel {0, 1, 2, 3, 4} so that π0 = (01234). By Proposition 23, perhaps
after a further relabelling of {0, 1, 2, 3, 4} (that leaves π0 invariant), there exists an m ∈
{0, 1, 2, 3, 4} such that π3 = (m,m+ 4,m+ 3, m+ 1,m + 2), and {(π1, π2), (π4, π5)} =
{((m,m + 4,m + 2,m + 3,m + 1), (m,m + 1,m + 3,m + 4,m + 2)), ((m,m + 1,m +
4,m + 3,m + 2), (m,m + 2,m + 3,m + 1,m + 4))}. Now perform the further relabelling
j 7→ j−m. After this relabelling (which again leaves π0 invariant), we have π3 = (04312)
and {(π1, π2), (π4, π5)} = {((04231), (01342)), ((01432), (02314))}.

We have thus proved that (perhaps after a relabelling of {0, 1, 2, 3, 4}) there exist
integers r, s such that D has r + s vertices with rotation π0 = (01234), r vertices with
rotation π1 = (04231), r vertices with rotation π2 = (01342), r + s vertices with rotation
π3 = (04312), s vertices with rotation π4 = (01432), and s vertices with rotation π5 =
(02314). That is, D is isomorphic to the drawing Dr,s from Section 3.
Case 2. Φ(D) is isomorphic to the 4-cycle.

In this case Φ(D) has 4 vertices, which we label ρ0, ρ1, ρ2, ρ3, so that (ρ0, ρ1, ρ2, ρ3, ρ0)
is a cycle. The linear system L(Φ(D)) associated to Φ(D) is the one that results by
taking t4 = t5 = 0 in the linear system (5), and omitting the equations E4 and E5.

It is straightforward to check that if (t0, t1, t2, t3) is a solution to this system, then
t0 = t1 = t2 = t3. By Proposition 6, this implies that n ≡ 0 (mod 4). This proves (1).

Thus the white vertices of D are partitioned into 4 classes C0, C1, C2, C3, each of size
n/4, so that each vertex in class Ci has rotation ρi.

Label the vertices 0, 1, 2, 3, 4 so that ρ0 = (01234). Then, by Proposition 22, possibly
after a relabelling of {0, 1, 2, 3, 4} that leaves ρ0 invariant, there is an m ∈ {0, 1, 2, 3, 4}
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such that ρ2 = (m,m+ 1,m+ 3,m+ 4, m+ 2), and {ρ1, ρ3} = {(m,m + 4,m + 2,m +
3,m+ 1), (m,m+ 4,m+ 3,m+ 1,m+ 2)}. Now we perform the relabelling j 7→ j−m on
{0, 1, 2, 3, 4} (which obviously leaves ρ0 invariant), we obtain ρ2 = (01342) and {ρ1, ρ3} =
{(04231), (04312)}.

We have thus proved that D has r vertices with rotation (01234), r vertices with
rotation (01342), r vertices with rotation (04231), and r vertices with rotation (04312).
That is, D is isomorphic to the drawing Dr,0 from Section 3, with r = n/4.

14 Concluding remarks
A reviewer of an earlier version of this paper asked the following:

Question 24. Under what conditions can we superimpose Zarankiewicz drawings of
K5,t1 , K5,t2 , . . . , K5,tk

, and a Dr,s, to obtain an optimal drawing of K5,n with n = t1 +
t2 · · ·+ tk + 4(r + s)?

A natural starting point to tackle this question is the following (in principle, weaker)
problem:

Question 25. Under what conditions can we superimpose Zarankiewicz drawings of
K5,t1 , K5,t2 , . . . , K5,tk

, to obtain an optimal drawing of K5,n with n = t1 + t2 · · ·+ tk?

Suppose we are given Zarankiewicz drawings D1, D2, . . . , Dk of K5,t1 , K5,t2 , . . . , K5,tk
,

respectively. Since each Di is a Zarankiewicz drawing, the rotation set of Di consist of
only two cyclic permutations πi, ρi, which are reverse permutations of each other. We may
assume without any loss of generality that for all distinct i, j ∈ [k], {πi, ρi}∩{πj, ρj} = ∅.
Now in order to superimpose D1, D2, . . . , Dk successfully, there must exist a drawing D
of K5,k with white vertices a1, a2, . . . , ak such that:

(a) for each i ∈ [k], the white vertex ai has rotation πi;

(b) for each i, j ∈ [k], i 6= j, the number of crossings in D between the star with center
ai and the star with center aj equals the antidistance between πi and πj.

We do not have a characterization of which collections {π1, π2, . . . , πk} have a drawing
satisfying these conditions. So far we have found that whenever k 6 3, such a drawing
exists (although we do not have a proof of this apparently simple statement). On the
other hand, there are examples with k = 4 for which no such drawing exists; this was first
observed by Kleitman [6]. We are nowhere near a complete characterization which, as we
have observed, would be required to give an answer to Questions 24 and 25.

Acknowledgments
We thank an anonymous reviewer for many insightful comments and suggestions.

the electronic journal of combinatorics 21(4) (2014), #P4.1 28



References
[1] Robin Christian, R. Bruce Richter, and Gelasio Salazar. Zarankiewicz’s conjecture is

finite for each fixed m. J. Combin. Theory Ser. B, 103 (2013), 237–247.
[2] E. de Klerk and D. V. Pasechnik. Improved lower bounds for the 2-page crossing

numbers of Km,n and Kn via semidefinite programming. SIAM J. Optim., 22 (2013),
581–595.

[3] Etienne de Klerk, John Maharry, Dmitrii V. Pasechnik, R. Bruce Richter, and Gelasio
Salazar. Improved bounds for the crossing numbers of Km,n and Kn. SIAM J. Discrete
Math., 20 (2006), 189–202.

[4] Etienne de Klerk, Dmitrii V. Pasechnik, and Alexander Schrijver. Reduction of sym-
metric semidefinite programs using the regular ∗-representation. Math. Program. Ser
B, 109 (2007), 613–624.

[5] Richard K. Guy. The decline and fall of Zarankiewicz’s theorem. In Proof Techniques
in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich.,
1968), pages 63–69. Academic Press, New York, 1969.

[6] Daniel J. Kleitman. The crossing number of K5,n. J. Combinatorial Theory, 9 (1970),
315–323.

[7] D. R. Woodall. Cyclic-order graphs and Zarankiewicz’s crossing-number conjecture.
J. Graph Theory, 17 (1993), 657–671.

[8] K. Zarankiewicz. On a problem of P. Turan concerning graphs. Fund. Math., 41
(1957), 137–145.

the electronic journal of combinatorics 21(4) (2014), #P4.1 29


	Introduction
	Rotations and isomorphic drawings
	An antipodal-free drawing of K5,4(r+s)
	Main results: the optimal drawings of K5,n, for n even
	Clean drawings
	The key of a clean drawing
	Properties of the key of a clean drawing
	Properties of cores. I. Forbidden subgraphs
	Properties of cores. II. Structural properties
	Properties of cores. III. Minimum degree
	Properties of cores. IV. Girth and maximum size
	The possible cores of an antipodal-free optimal drawing
	Proof of Theorem ??
	Concluding remarks

