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Abstract

Two different elementary approaches for deriving an explicit formula for the
distribution of the range of a simple random walk on Z of length n are presented.
Both of them rely on Hermann Weyl’s discrepancy norm, which equals the maximal
partial sum of the elements of a sequence. By this the original combinatorial problem
on Z can be turned into a known path-enumeration problem on a bounded lattice.
The solution is provided by means of the adjacency matrix Qd of the walk on
a bounded lattice (0, 1, . . . , d). The second approach is algebraic in nature, and
starts with the adjacency matrix Qd. The powers of the adjacency matrix are
expanded in terms of products of non-commutative left and right shift matrices.
The representation of such products by means of the discrepancy norm reveals the
solution directly.

Keywords: random walk, discrepancy norm, lattice path-enumeration

1 Introduction

The problem of determining the distribution of the range of a simple random walk has
been treated extensively in the literature. Feller [5] computes the distribution of the
range of a standard Brownian motion and derives estimates for the discrete case. In this
article he points out that the problem of finding exact formulae for the distribution of
the range is difficult to solve in the discrete case. The asymptotic behaviour of the range
is investigated, e.g., by [4], [7], [13]. In 1996 the problem was solved by P. Vallois by
exploiting martingale techniques [14].
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In this paper we demonstrate that Feller’s problem can be solved in an elementary
and concise manner. We present two approaches, both of them rely on Hermann Weyl’s
discrepancy measure [15]. The first approach, Section 2, exploits the fact that the range of
the partial sums of the elements of a sequence defines a norm, the discrepancy norm. The
n-dimensional unit balls of this norm can be characterized as a zonotope. This allows us to
turn the original combinatorial problem on Z into a known path-enumeration problem on
a bounded lattice Ld = (0, 1, . . . , d). The solution is expressed in terms of the adjacency
matrix Qd of the corresponding bounded walk. The second approach, Section 4, exploits
the algebraic structure of the adjacency matrix Qd by representing it as sum of a left
and a right shift matrix, Q−d and Q+

d , respectively. It is shown that a product of these
non-commutative matrices can be represented in terms of the discrepancy norm of the
sequence of the corresponding signs, −1 and +1, respectively. This leads to the intuitive
Lost Walker Lemma, which immediately provides the solution.

2 Discrepancy Norm

Let us consider a path γ = ((0, 0)T , (1, x1)
T , (1, x1)

T + (1, x2)
T , . . . ,

∑n
i=1(1, xi)

T ) in (N0×
R)n+1. The diameter (range) of γ in the direction of (0, 1)T is given by

max
16n16n26n

∣∣∣∣∣
n2∑
i=n1

〈
(1, xi)

T , (0, 1)T
〉∣∣∣∣∣ = max

16n1,n26n

∣∣∣∣∣
n2∑
i=n1

xi

∣∣∣∣∣ = max
16i6n

i∑
j=0

xj − min
16i6n

i∑
j=0

xj, (1)

where 〈., .〉 denotes the usual inner product, and x0 = 0. Hermann Weyl [15] introduced
the measure

‖.‖D : Rn → R+
0 , (x1, . . . , xn) 7→ max

16a6b6n

∣∣∣∣∣
b∑
i=a

xi

∣∣∣∣∣ , (2)

in the context of measuring irregularities of distributions. It satisfies the axioms of a norm
and was investigated in the context of numerical integration [12], computational geome-
try [2], pattern recognition [11], image processing [1, 8] and level crossing sampling [10].

First of all let us prove some fundamental properties of the discrepancy norm. We call
J a minimal interval with maximal discrepancy (MMD), if |

∑
k∈J xk| = ‖x‖D = d and if

L ( J implies |
∑

k∈L xk| < d, where L is a subinterval of J . Note that MMD intervals
are mutually disjoint. Let K denote the number of MMD intervals, and let us enumerate
these K MMD intervals, (Jj)j=1,...,K , in an increasing order, such that j1 < j2 implies
a < b for all a ∈ Jj1 and b ∈ Jj2 . By this we obtain the partition of subintervals

{1, . . . , n} = J̃0 ∪
K⋃
i=1

(Jj ∪ J̃j) (3)

with MMD intervals Jj = {aj, . . . , bj}, and |
∑

k∈J̃l xk| < d, l = 0, . . . , K. Observe that,

in analogy to the Chebychev alternation theorem, the signs (σj)j=1,...,K ∈ {−1, 1}K of the
sums

∑
k∈Jj xk are alternating. As a direct consequence of the MMD property we obtain

Lemma 1.
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Figure 1: Illustration of bijection between the set of vertices of the n-dimensional unit
ball of the discrepancy norm and those of the (n+ 1)-dimensional hypercube without the
diaognal elements for n = 2.

Lemma 1 (MMD Lemma). Let n, d ∈ N, x = (xi)i=1,...,n ∈ {−1, 1}n. Let (Jk)k=1,...,K,
Jk = {ak, . . . , bk}, be the MMD intervals in increasing order, and (σk)k=1,...,K the cor-
responding signum values of the partial sums over the MMD intervals. Then, for any
k ∈ {1, . . . , K} there holds σk

∑i
j=ak

xk > 0 and σk
∑bk−i

j=0 xbk−j > 0 for all i ∈ {ak, . . . , bk}.

The geometric approach of Section 3 is motivated by the characterization of the n-
dimensional unit ball of ‖.‖D by means of a zonotope, that is a projection mapping from
the hypercube [0, 1]n+1, see [9]. The unit ball of ‖.‖D turns out to be a polytope, whose
vertices 1-1 correspond to the vertices of the hypercube [0, 1]n+1 without the elements
0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). See Figure 1 for an illustration for n = 2. Lemma 2
formulates this result in terms of walks comprising −1 and 1 steps with range d. Though
Lemma 2 can be directly followed from the zonotope characterization theorem of [9], we
provide an alternative self-contained proof.

Lemma 2 (Zonotope Lemma). Let n, d ∈ N and x = (x1, . . . , xn) ∈ {−1, 1}n. Then,

‖x‖D = d⇐⇒∃1z1, . . . , zn+1 ∈ {0, 1, . . . , d} : xi = zi+1 − zi, (4)

|zi+1 − zi| = 1,min
i
zi = 0,max

i
zi = d.

Proof. First of all, note that, if there is a representation of x such that ‖x‖D = d,then, in
terms of zn+1 ∈ {0, 1, . . . , d} : xi = zi+1 − zi, |zi+1 − zi| = 1,mini{zi} = 0,maxi{zi} = d,
it is unique. This follows from the fact that the equations xi = zi+1 − zi are determined
up to one degree of freedom. With the additional property mini zi = 0, we see that no
degree of freedom remains.

The ⇐ implication is immediately checked by considering zh = mini zi = 0, zk =
maxi zi = d and |

∑max{h,k}−1
i=min{h,k} zi+1 − zi| = |zh − zk| = d.

In order to prove the ⇒ implication let us assume ‖x‖D = d and the notation of the
MMD Lemma 1.

the electronic journal of combinatorics 21(4) (2014), #P4.10 3



Next we construct a sequence (z1, . . . , zn+1) ∈ {0, . . . , d}n+1 such that xi = zi+1 − zi,
|zi+1 − zi| = 1, mini zi = 0, and maxi zi = d.

We distinguish two cases σ1 = ±1:

Case 1 In case of σ1 > 0 let us set za1 = 0, zi =
∑i−1

j=a1
xj if i ∈ {a1, . . . , n + 1}, and

za1−i = −
∑i

j=1 xa1−j if a1 > 1 and i ∈ {1, . . . , a1 − 1}. Elementary algebra shows
that xi = zi+1 − zi. The assumption ‖x‖D 6 d immediately implies ∀i : zi 6 d.

Now, suppose that σ1 > 0 and zi < 0. If i ∈ J̃0 then zi = −
∑a1−1

j=i xj < 0, hence

0 <
∑a1−1

j=i xj and
∑b1

j=i xj > d, which contradicts the assumed MMD property of J1.

If i ∈ J̃k, k > 0, then zi =
∑

1 +
∑

2, where
∑

1 =
∑bk

j=a1
xj and

∑
2 =

∑i
j=b1+1 xj.

For even k we have
∑

1 = 0, hence,
∑bk

j=ak
xj = −d and

∑
2 < 0. But then we get∑i

j=ak
xj < −d, which contradicts the MMD property of Jk.

For odd k we have
∑

1 = d. The assumption zi < 0 implies
∑

1 +
∑

2 < 0, hence,∑
2 < −d, which contradicts the assumption that ‖x‖D 6 d.

Now, consider i ∈ Jk. First, assume that k is even. Then, zi +
∑bk

j=i+1 xj = 0, hence∑bk
k=i+1 xj > 0. On the other hand, we have −d =

∑bk
j=ak

xj =
∑i

j=ak
xj+

∑bk
j=i+1 xj,

hence
∑i

j=ak
xj < −d, which contradicts ‖x‖D 6 d. Next, assume that k is odd.

Then,
∑bk

j=a1
xj = d = zi +

∑bk
j=i+1 xj entails

∑bk
j=i+1 xj > d, which contradicts

‖x‖D 6 d. From this we conclude that zi > 0.

Case 2 In case of σ1 < 0 let us set za1 = d, zi =
∑i−1

j=a1
(d+xj) if i ∈ {a1, . . . , n+ 1}, and

za1−i = d−
∑i

j=1 xa1−j if a1 > 1 and i ∈ {1, . . . , a1− 1}. Again, elementary algebra
yields xi = zi+1 − zi, and, analogous reasoning as in case 1 shows that zi > 0.

The algebraic approach of Section 4 relies on the following Lemma 3, by which the
discrepancy norm of a binary walk can be determined by means of a tree. See Figure 3
for an illustration.

Lemma 3 (Zero-Bounded Subtraction Lemma). Let τ :
⋃
n>0{−1, 1}n → N0 be

defined by τ(∅) = 0, τ(x,+1) = τ(x) + 1 and τ(x,−1) = (τ(x) − 1)+, where (t)+ =
max{t, 0}. Then

‖x‖D = τ(x) + τ(−x). (5)

Proof. Given x ∈ {−1, 1}n, n ∈ N, d = ‖x‖D and 1 6 i 6 n, we define τ(x, i) =
τ((x1, . . . , xi)). Note that for 1 6 i1 6 i2 6 n there holds

i2∑
j=i1

xj 6 τ(x, i2) 6 ‖x‖D. (6)
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Figure 2: Illustration of definition (8) for σk < 0, i.e., for a decreasing sequence of partial
sums αi =

∑li
j=ak

xj.

Using the notation of Lemma 3, equation (6) implies

bk∑
j=ak

xj = d = τ(x, bk) (7)

for σk > 0. Next, we show that τ(x, bk) = 0 if σk < 0. For d = 1 the sequence
x is alternating in sign. Therefore, we have k = ak = bk, which immediately implies
τ(x, k) = (σk + 1)/2. For d > 1 consider l1 = ak and

li = min

{
l > li−1

∣∣∣∣∣
∣∣∣∣∣

l∑
j=ak

xj

∣∣∣∣∣ =

∣∣∣∣∣
li−1∑
j=ak

xj

∣∣∣∣∣+ 1

}
(8)

for 2 6 i 6 d. Then, observe that
k∑

j=li+1

xj > 0 (9)

for any k ∈ {li + 1, . . . , li+1 − 1}. See Figure 2 for an illustration. (9) implies

τ(x, li) = τ(x, li+1 − 1) (10)

for 1 6 i 6 d− 1. Due to σk < 0 and the fact, that {ak, . . . , bk} is an MMD interval, the
corresponding sequence αi =

∑li
j=ak

xj is strictly decreasing from α1 = −1 to α1 = −d.
Because of (6) there is an index i0 ∈ {1, . . . , d}, such that

τ(x, ak − 1) +

li0∑
j=l1

xj = τ(x, li0) = 0. (11)

Now, let us apply induction. Suppose that τ(x, li) = 0. Taking (10) into account yields
τ(x, li) = τ(x, li+1 − 1) = 0. Since the sequence (αi)i is strictly decreasing, we obtain
τ(x, li+1) = 0. From this it follows that τ(x, ld) = τ(x, bk) = 0.

As a result we obtain τ(x, bk) = d, if σk > 0, and τ(x, bk) = 0, if σk < 0. Note that
x and −x have the same MMD intervals but with flipping signs, i.e., σk(x) = −σk(−x),
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Figure 3: Illustration of the tree τ in Lemma 3. Flipping the signs along a branch
x ∈ {−1, 1}n in the tree and adding the corresponding leaves yields the discrepancy norm
‖x‖D = τ(−x) + τ(x). E.g., ‖(+ +−)‖D = τ(+ +−) + τ(−−+).

where σk(x) denotes the signum of the k-th MMD interval induced by x. From this it
follows that

τ(x, bK) + τ(−x, bK) = d. (12)

If bK = n we have finished. Otherwise, suppose that bK < n. Without loss of
generality we may assume that σK > 0. The MMD property of the interval {aK , . . . , bk}
and the fact that K is the last MMD interval, implies that −d <

∑i
j=bK+1 xj 6 0 for all

i ∈ {bK + 1, . . . , n}, hence

τ(x, n) = d+
n∑

j=bK+1

xj. (13)

Next, consider −x such that σK(−x) = −σK(x) = −1. The MMD property guarantees
that

∑i
j=bK+1(−xj) > 0 for i ∈ {bK + 1, . . . , n}, hence

τ(−x, n) = 0 +
n∑

j=bK+1

(−xj). (14)

Combining results (13) and (14) demonstrates the truth of (5).

3 Geometric Approach

Lemma 2 relates the problem of determining #{x ∈ {−1, 1}n| ‖x‖D 6 d} with the path-
enumeration problem #{(z1, . . . , zn+1) ∈ {0, . . . , d}n+1| |zi+1 − zi| = 1} on the bounded
lattice Ld = (0, . . . , d). The enumeration of paths of walks comprising −1 and 1 steps on
a bounded lattice Ld is well understood by means of the corresponding (d+ 1)× (d+ 1)
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adjacency matrix Qd+1, see, e.g., [3, 6],

Qd+1 =



0 1 0 · · · · · · 0

1 0 1
. . . . . . 0

0 1 0
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
0 0 · · · 0 1 0


. (15)

From [6] the total number of different paths on Ld of length n starting at level j ∈ Ld and
ending at level k ∈ Ld is given by eTj Qn

d+1ek. This implies Lemma 4, where 1 = (1, . . . , 1)T :

Lemma 4. Let n, d ∈ N, then #{(z1, . . . , zn+1) ∈ {0, . . . , d}n+1| |zi+1 − zi| = 1} =
1TQn

d+11.

Taking Lemma 2 and Lemma 4 together immediately yields the solution for the enu-
meration of symmetric walks with maximal range d, as presented in Theorem 5.

Theorem 5. Let n, d ∈ N, then #{x ∈ {−1, 1}n| ‖x‖D 6 d} = 1TQn
d+11− 1TQn

d1.

Proof. Note, that

1TQn
d+11− 1TQn

d1 = #{(zi)i ∈ {0, . . . , d}n+1| |zi+1 − zi| = 1,max
i
zi = d} (16)

= #
d⋃

k=0

{(zi)i ∈ {0, . . . , d}n+1| |zi+1 − zi| = 1,max
i
zi = d,min

i
zi = k}

= #{x ∈ {−1, 1}n| ‖x‖D 6 d}, (17)

where (16) follows from Lemma 4 and (17) is a consequence of Lemma 2.

4 Algebraic Approach

For ease of notation, let 0k = (0, . . . , 0) denote the zero vector with k entries, and,
analogously, 1k = (1, . . . , 1).

Lemma 6 (Lost Walker Lemma). Let d ∈ N. Let Q
(−1)
d = (qi,j)i,j be the d × d left

shift matrix with 1 in the subdiagonal, i.e., qi−1,i = 1 and 0 else. Further, let Q
(+1)
d be the

transpose of Q
(−1)
d , that is the corresponding right shift matrix. Let x = (x1, . . . , xn) ∈

{−1, 1}n, then

(0τ(−x),1d−(τ(x)+τ(−x)),0τ(x))
T =

n∏
i=1

Q
(xj)
d 1. (18)
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Figure 4: Illustration of equation (18) of the Lost Walker Lemma. The number #{1, 2, 3}
of lost walkers equals the discrepancy norm ‖x‖D = τ(−x, n) + τ(x, n) of the route
x ∈ {−1, 1}n.

Proof. Result (18) follows immediately from the τ recursion defined in Lemma 3 by check-
ing

(0k1+1,1d−(k1+1+(k2−1)+)),0(k2−1)+)T = Q
(−1)
d (0k1 ,1d−(k1+k2)),0k2)

T

(0(k1−1)+ ,1d−((k1−1)++k2+1)),0k2+1)
T = Q

(+1)
d (0k1 ,1d−(k1+k2)),0k2)

T .

(18) can be illustrated by considering a group of walkers, where each unit vector ei
represents a walker starting at level i. x controls the route for the walk in the bounded
lattice (1, . . . , d). See Figure 4 for an illustration. If the route for a walker leads outside
the lattice, this walker gets lost. The discrepancy norm ‖x‖D equals the total number of
lost walkers.

Lemma 6 allows us to represent the expression 1T
∏n

i=1 Q
(xj)
d 1 in terms of the discrep-

ancy norm of x. Corollary 7 is a direct consequence of Lemma 6.

Corollary 7. Let d, n ∈ N, x = (xi)i ∈ {−1, 1}n. Then,

1T
n∏
i=1

Q
(xj)
d 1 = (d− ‖x‖D)+. (19)

Theorem 5 follows from Corollary 7 by considering

1TQn
d+11 = 1T

(
Q

(−1)
d+1 + Q

(+1)
d+1

)n
1

=
∑

(xi)i∈{−1,1}n
1T

n∏
i=1

Q
(xj)
d+11

=
∑

x∈{−1,1}n
(d+ 1− ‖x‖D)+. (20)
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Equation (20) yields

1TQn
d+11− 1TQn

d1 =
∑

x∈{−1,1}n,‖x‖D6d

d+ 1− ‖x‖D −
∑

x∈{−1,1}n,‖x‖D6d−1

d− ‖x‖D

=
∑

x∈{−1,1}n,‖x‖D=d

1 +
∑

x∈{−1,1}n,‖x‖D6d−1

1

= #{x ∈ {−1, 1}n| ‖x‖D 6 d}. (21)

5 Asymmetric Walks

Consider independent and identically distributed random variables Xi, each taking a step
−1 or +1 with step probabilities P (X = +1) = p and P (X = −1) = 1 − p = q,
respectively. Sn =

∑n
j=iXi defines a random walk on Z induced by Xi. Let Xn =

(X1, . . . , Xn), further, let N+(x) denote the number of +1 steps of the walk x ∈ {−1, 1}n.
Now, we use Theorem 5 to determine the distribution P (‖X‖D 6 d). For this let us
introduce the matrix Qd+1,p

Qd+1,p =



0 p 0 · · · · · · 0

q 0 p
. . . . . . 0

0 q 0
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . p
0 0 · · · 0 q 0


, (22)

and, analogously, the corresponding left and right shift matrices Q
(+1)
d+1,p and Q

(−1)
d+1,p.

Theorem 8. Let p ∈ (0, 1) and Xn = (X1, . . . , Xn), where Xi are independent and
identically distributed random variables with P (Xi = +1) = p and P (Xi = −1) = 1 − p.
Then,

P (‖Xn‖D 6 d) = 1TQn
d+1,p1− 1TQn

d,p1. (23)

Proof. Corollary 7 yields

1TQn
d+1,p1 =

n∑
k=0

∑
x ∈ {−1, 1}n,
N+(x) = k

pk(1− p)n−k 1T
n∏
i=1

Q
(xi)
d+1,p1

=
n∑
k=0

pk(1− p)n−k
∑

x ∈ {−1, 1}n,
N+(x) = k

(d− ‖x‖D)+. (24)
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Result (24) implies, for d > 1,

1TQn
d+1,p1− 1TQn

d,p1 =
n∑
k=0

pk(1− p)n−k

 ∑
‖x‖D < d,
N+(x) = k

d− ‖x‖D −
∑

‖x‖D < d− 1,
N+(x) = k

d− 1− ‖x‖D


=

n∑
k=0

pk(1− p)n−k#{x ∈ {−1, 1}n| ‖x‖D 6 d,N+(x) = k)}

= P (‖Xn‖D 6 d).

6 Factorization of Qd,p

From [16] we know that the matrix Qd,p of Equation (22) may be factorized by way of
Qd,p = VΛV−1, where Λ = diag(λ1, . . . , λd) is a diagonal matrix with diagonal elements
λi and V = (v1, . . . ,vd) is a matrix of corresponding eigenvectors given by

λk = 2
√
p(1− p) cos

(
kπ

d+ 1

)
, (25)

vk =

√
2√

d+ 1

(
ρ0 sin

(
1 · kπ

d+ 1

)
, . . . , ρd−1 sin

(
d · kπ

d+ 1

))T
,

where ρ =
√
q/p > 1, 0 < p 6 1/2, and q = 1−p. Because of V VT = diag(ρ0, ρ2, . . . , ρ2 d)

we get V−1 = VT diag(ρ0, ρ−2, . . . , ρ−2d). Consequently, we obtain

(V−11)T =

√
2√

d+ 1

(
d∑

k=1

(
1

ρ

)k−1
sin

(
j k π

d+ 1

))
j

1TV =

√
2√

d+ 1

(
d∑

k=1

ρk−1 sin

(
j k π

d+ 1

))
j

. (26)

Note that
d∑
j=1

aj sin

(
k j π

d+ 1

)
= a

(1− (−1)kad+1) sin
(
kπ
d+1

)
1− 2 a cos

(
kπ
d+1

)
+ a2

. (27)

Now, (25), (26) and (27), applied on Theorem 5, lead on the closed-form representation
of Proposition 9.

Proposition 9. Let p ∈ (0, 1), q = 1− p, n, d ∈ N, and Xn as in Theorem 5, then

P (‖Xn‖D 6 d) =
(4pq)

n
2
+1

2

{
1

d+ 2

d+1∑
k=1

κd+1,k,p cosn(θd+2,k)χp(θd+2,k)

− 1

d+ 1

d∑
k=1

κd,k,p cosn(θd+1,k)χp(θd+1,k)

}
, (28)
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where θd,k = kπ
d

, κd,k,p = 2− (−1)kγd,p,

χp(θ) =
1− cos2(θ)

(1− 2
√
p(1− p) cos(θ))2

, and γd,p =

(
p

q

) d+1
2

+

(
q

p

) d+1
2

.

In the special case p = q = 1/2 we obtain κd+1,k,p = 4 for k odd and 0 else, hence

P (‖Xn‖D 6 d) =
2

d+ 2

d+1∑
k=1,odd

cosn(θd+2,k)
1 + cos(θd+2,k)

1− cos(θd+2,k)

− 2

d+ 1

d∑
k=1,odd

cosn(θd+1,k)
1 + cos(θd+1,k)

1− cos(θd+1,k)
. (29)

The trigonometric sums (28) and (29) are equivalent to the formulae presented in Propo-
sition 14 and 15 of [14]. Compared to [14] the representations of (28) and (29) are more
compact and show directly the symmetry with respect to p and q. The computational
complexity of (29) is four times less than that of the formula provided in Proposition 15
of [14].

7 Conclusion

The main contributions of this paper are two novel approaches to tackle the combinatorial
problem of counting the number of binary walks on Z of a certain range. This problem
was pointed out by Feller [5] to be difficult. Both approaches rely on Hermann Weyl’s
discrepancy norm. The first exploits the geometric representation of its unit ball as a
zonotope and reduces the original problem on Z to a known path-enumeration problem
on a bounded lattice. The second approach exploits a Chebychev alternation property of
this norm in order to prove the instructive Lost Walker Lemma, which allows an intuitive
understanding of the problem. Compared to the martingale approach of [14], the outlined
approaches surprise because of their simplicity and conciseness. The resulting formula for
the distribution as a trigonometric sum is, after applying the eigenvalue decomposition of
the adjacency matrix, more concise and less computationally complex than that of [14].
A combinatorial treatment of the moments and the mode of the resulting distribution is
left for future research.
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