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Abstract

We study sorting operators A on permutations that are obtained composing
Knuth’s stack sorting operator S and the reversal operator R, as many times as
desired. For any such operator A, we provide a size-preserving bijection between
the set of permutations sorted by S ◦ A and the set of those sorted by S ◦ R ◦
A, proving that these sets are enumerated by the same sequence, but also that
many classical permutation statistics are equidistributed across these two sets. The
description of this family of bijections is based on a bijection between the set of
permutations avoiding the pattern 231 and the set of those avoiding 132 which
preserves many permutation statistics. We also present other properties of this
bijection, in particular for finding pairs of Wilf-equivalent permutation classes.

Keywords: permutation, stack, sorting, enumeration, bijection, Wilf-equivalence

1 Introduction

Partial sorting algorithms were one of the early motivations for the study of permutation
patterns. In the late 1960s, Knuth [12] considered the problem of sorting a permutation
of [n] = {1, 2, . . . , n} using only a stack. This problem takes a permutation π in one line
notation as input, starts with an empty stack, and its goal is to sort π using only the
Push and Pop operations. Knuth showed that a permutation π = π(1)π(2) . . . π(n) may
be sorted by a stack if and only if the following procedure sorts π:
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For i from 1 to n
While the stack is nonempty and π(i) is larger than the top of the stack,

Pop to the output
Push π(i) on the stack

While the stack is nonempty,
Pop to the output

Not all permutations are stack sortable, and Figure 1 shows an example of a permu-
tation that fails to be sorted by a stack.

6 1 3 2 7 5 4

6

1

3
2

7 5 4

7

1 2 3 6 5 4 1 2 3 6 4 5 7

Figure 1: Some steps of the stack sorting procedure applied to π = 6 1 3 2 7 5 4.

Knuth [12] also characterized the permutations that may be sorted by a stack. A first
way to present this characterization is as follows: if a permutation π of [n] is written in
one line notation as αnβ, then π is sortable if and only if: each of α and β is sortable
(thought of as permutations of the values they contain); and each value in α is less than
any value in β (or simply α < β). The first condition is clearly necessary – the second
condition is also necessary as, when n is the first element remaining to be added to the
stack, the entire stack must be emptied to have any hope of success, otherwise n will
precede some other element in the output, and the output will not be sorted. That the
conditions are sufficient is also clear – the requisite operations are: sort and output α;
add n to the stack; sort and output β; remove n from the stack.

Another classical characterization of stack sortable permutations is simply derived
from the description above. Stack sortable permutations are those that may not contain
subwords (not necessarily consecutive) of the form bca where a < b < c. Such permuta-
tions are said to avoid the pattern 231, and the collection of all such is denoted Av(231).
This result opened the way to the study of pattern avoidance in permutations. A per-
mutation π = π(1)π(2) . . . π(k) is a pattern of a permutation σ = σ(1)σ(2) . . . σ(n) when
there exist 1 6 i1 < i2 < . . . < ik 6 n such that π is order isomorphic to σ(i1) . . . σ(ik). If
π is not a pattern of σ then we say that σ avoids π. We denote by Av(B) the set of all
permutations that avoid simultaneously all the patterns π ∈ B.

The simple behavior explained by Knuth prompted many other investigations of stack
sorting and its variations beginning with works by Pratt and Tarjan [15, 17]. In the
1990s, West [19] described by the avoidance of generalized patterns the permutations
that can be sorted using S ◦ S, and Zeilberger [20] subsequently confirmed a conjecture
of West’s on their enumeration. A characterization of permutation sorted by S ◦ S ◦ S
has recently been given by Claesson and Úlfarsson [18, 9]. It involves even more general
patterns, but does not allow the enumeration of permutations sorted by S3. Going further,
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the characterization and enumeration of permutations sorted by Sk for k > 4 are open
questions.

Instead of a procedure, stack sorting can equivalently be considered as an operator,
S, applied to permutations and defined recursively as: S(αnβ) = S(α)S(β)n. In this
work, we shall take this point of view. We also adopt the viewpoint throughout that any
sequence of distinct values can be interpreted as a permutation and “n” always denotes
the maximum element of such a sequence.

Bousquet-Mélou [6] considered the operator S and characterized, given π, the set
S−1(π). We shall be extending her results, and will discuss them in more detail later. As
explained in Section 2, central to her analysis is the observation that the operator S can
be described in the following terms: given a permutation π form the unique decreasing
binary tree Tin(π) whose in-order reading is π, then S(π) is the post-order reading of this
tree.

A second operator on permutations is the reversal operator, that reads permutations
from right to left – it can also be modeled by using a stack where we are obliged to input
the entire permutation to the stack before performing any output. The reversal operator,
R is one of eight natural symmetries on the collection of permutations. Bouvel and
Guibert [7] considered the enumeration of permutations sorted by S ◦R ◦S as well as the
sets defined similarly with other symmetries in place of R. In experimental investigations
aimed at providing extensions to their results they noticed an interesting phenomenon
that can be expressed as:

Conjecture 1. Take A to be any composition of the operators S and R; then the number
of permutations sorted by S◦A and by S◦R◦A is the same. Moreover, many permutation
statistics are equidistributed across these two sets.

It is the primary purpose of this article to prove that this is indeed the case. A more
precise statement of Conjecture 1 is given by Theorem 26, whose proof is provided in
Section 4.

With the characterization of stack sortable permutations as Av(231), proving Con-
jecture 1 is equivalent to showing that there is a size-preserving bijection between the
elements of Av(231) belonging to the image of A, and the elements of Av(231) belonging
to the image of R◦A, with the additional condition that the bijection preserves the cardi-
nality of the fiber above an element (i.e. the number of preimages under A, resp. R ◦A).
Equivalently, we can replace this latter set by the elements of Av(132) belonging to the
image of A, since the self-inverse operator R immediately provides a bijection between
Av(231) and Av(132).

In establishing this result we make use of a very natural bijection – denoted P –
between Av(231) and Av(132), which however rarely appears in the literature. As noticed
in [10], this bijection preserves many permutation statistics, and we add more statistics
to the list in Section 3.

Finally, in Section 5, we show how this bijection P can be used to derive Wilf-
equivalences between some pairs of permutation classes of the form Av(231, τ), for τ
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avoiding 231. Namely, for every n, we describe dn/2e pairs of patterns τ and τ ′ such that
R ◦ P is a bijection between Av(231, τ) and Av(231, τ ′).

2 Preimages of permutations in the image of S

As noted earlier, the description of the elements of S−1(π) for π in the image of S was
carried out in [6]. This description is central to our work, so we review it here.

2.1 Some basics about binary trees and permutations

A binary tree (whose internal vertices are labeled by integers) is decreasing when a < b
for any child labeled by a of a vertex labeled by b.

The post-order reading Post is recursively defined by associating the empty word ε
to the empty tree Tε, and the word Post(T`) ·Post(Tr) · n to any non empty binary tree

n
T` Tr

.

Similarly, the in-order reading In is recursively defined by associating the empty word
ε to the empty tree Tε, and the word In(T`) · n · In(Tr) to any non empty binary tree

n
T` Tr

.

Observation 2. For any permutation π, there is a unique decreasing binary tree whose
in-order reading is π. We denote it Tin(π).

Namely, Tin(π) is recursively described by Tin(ε) = Tε and

Tin(αnβ) =

n

Tin(α) Tin(β)
where n = max(αnβ).

2.2 Trees and preimages of permutations in the image of S

As observed in [6, Proposition 2.1], it may be deduced from the recursive definitions of
Tin, Post and S given above (recall that S(αnβ) = S(α)S(β)n) that S converts in-order
reading of decreasing binary trees to post-order reading:

Observation 3. For any permutation π, the post-order reading of the in-order tree of π
is the result of applying the stack sorting operator to π, i.e. Post(Tin(π)) = S(π).

Notice furthermore for future use that, because every decreasing binary tree is the
in-order tree of some permutation, Observation 3 implies that:

Corollary 4. The post-order reading of any decreasing binary tree is in the image of S.

From Observation 3, for any permutation τ in the image of S, describing S−1(τ) is
equivalent to describing the decreasing binary trees, T , with post-order reading τ . As [6]
shows, this set of trees may be characterized by a single tree associated with τ .
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Definition 5. A decreasing binary tree is canonical if it has the following property: any
vertex, z, that has a left child, x, also has a right child, and the leftmost value y in the
subtree of the right child of z is less than x.

Proposition 6 ([6], Proposition 2.6). For any τ in the image of S, there is a unique
canonical tree, denoted Tτ , with Post(Tτ ) = τ .

In fact, [6] also shows that the permutation π obtained from the in-order reading of

Tτ is the element of S−1(τ) having the greatest number of inversions. Moreover, [6] shows
that all permutations in S−1(τ) (or equivalently, their in-order trees) may be recovered
from Tτ :

Proposition 7. Any decreasing binary tree whose post-order reading is τ (and only such
trees) can be obtained from Tτ by a sequence of operations of the following type: take a
vertex z with no left child, and one of its descendants y on the leftmost branch of its right
subtree; remove the subtree rooted at y and make it the left subtree of z.

As shown in [6, Proposition 2.7], it follows in particular that |S−1(τ)| depends only on
the structure of the tree Tτ and not on its labeling.

Example 8. The canonical tree associated with τ = 5 1 8 2 3 6 4 7 9 is

Tτ =
9

8
5 1

7
6

3
2

4.

Its in-order reading, π = 5 8 1 9 6 3 2 7 4 gives the permutation with the largest number
of inversions subject to S(π) = τ . The four other decreasing binary trees with the same
post-order reading are shown in Figure 2. Thus |S−1(τ)| = 5. If the labels 8 and 7, and
5 and 4, were exchanged in the original tree, corresponding to τ ′ = 4 1 7 2 3 6 5 8 9 then,
because the tree is still canonical, the method for constructing permutations in S−1(τ ′) is
still the same, and in particular |S−1(τ ′)| = |S−1(τ)|.

9
8

5 1
7

6
2 3

4
9

8
5 1

7
6

3
2

4

9
8

5 1
7

6
3

2

4

9
8

5 1
7

6
3

2

4

Figure 2: The four non canonical decreasing trees whose post-order reading is τ =
5 1 8 2 3 6 4 7 9.

3 A recursive bijection between Av(231) and Av(132)

In this section we introduce a bijection, that we denote P , between permutations in
Av(231) and those in Av(132). Even though it is very naturally defined, this bijection
seems to appear rather rarely in the literature – only in [10] to our knowledge.

the electronic journal of combinatorics 21(4) (2014), #P4.11 5



It is very easy to describe P recursively using the sum, ⊕, and skew sum, 	, operations
on permutations. These operations are easily understood on the diagrams corresponding
to permutations. The diagram of any permutation σ of [n] is the set of n points in the
plane at coordinates (i, σ(i)) – see Figure 3 for some examples. If α is a permutation of
[a] and β of [b] we define:

α⊕ β = α (β + a) whose diagram is α
β

α	 β = (α + b) β whose diagram is
α
β .

Here for example β+a is just that sequence obtained by adding a to every element of the
sequence β and α represents the diagram of permutation α.

Example 9. Let α = 2 3 1 and β = 3 1 4 2. Then α ⊕ β = 2 3 1 6 4 7 5, while α 	 β =
6 7 5 3 1 4 2, as shown in Figure 3.

Figure 3: From left to right, the diagrams of the permutations α = 2 3 1, β = 3 1 4 2, α⊕β
and α	 β.

Any π ∈ Av(231) is either the empty permutation ε or has a unique decomposition in
the form α⊕ (1	 β) where α, β ∈ Av(231) (and are possibly empty), and conversely any
permutation of this latter form lies in Av(231). This is simply because the elements pre-
ceding the maximum in a 231-avoiding permutation must all be less than those following
the maximum, and the prefix before and suffix after the maximum must also avoid 231.
Conversely, if a permutation has this structure it cannot involve 231. This decomposition
makes it easy to define the bijection P recursively: P (ε) = ε and

If π = α⊕ (1	 β) then P (π) = (P (α)⊕ 1)	 P (β).

Alternatively, with diagrams:

α

β
P−→

P (α)

P (β)

.

As the 132-avoiding permutations have a generic decomposition of the form shown on
the right above, and since P (1) = 1 maps the unique 231-avoiding permutation of size
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1 to the unique 132-avoiding permutation of size 1, induction immediately implies that
P : Av(231)→ Av(132) is a bijection.

Let us introduce a notational convention that we shall use throughout. For any π ∈
Av(231), we can think of the sequence P (π) as describing a relabeling of the values that
occur in π according to a certain permutation, denoted λπ. Specifically, this means that
λπ is defined by P (π) = λπ ◦ π.

Example 10. For π = 1 5 3 2 4 9 8 6 7 ∈ Av(231), we have P (π) = 7 8 5 4 6 9 3 1 2. The
corresponding relabeling λπ is λπ = 7 4 5 6 8 1 2 3 9.

Recall from Section 2 that Tin(π) is the decreasing binary tree whose in-order reading
is π. It follows immediately by induction from the recursive description of P that:

Observation 11. For any π ∈ Av(231), both Tin(π) and Tin(P (π)) have the same un-
derlying unlabeled tree, or briefly “P preserves the shape of in-order trees”.

Tin(π) =

9
5

1 4
3

2

8
7

6
Tin(P (π)) =

9
8

7 6
5

4

3
2

1

Figure 4: Tin(π) and Tin(P (π)) for the permutation π = 1 5 3 2 4 9 8 6 7 of Example 10.

Figure 4 shows an example. The acute reader will notice that in Figure 4, not only
Tin(π) and Tin(P (π)) have the same shape, but we also have λπ(Tin(π)) = Tin(P (π)).
This is actually true in general, but the proof requires a bit more work (see the proof of
Observation 20 at the end of Subsection 4.2).

However, some nice properties of P in terms of permutation statistics follow from the
simple fact that P preserves the shape of in-order trees.

Recall that, for π a permutation of [n], a left-to-right (resp. right-to-left) maximum
of π is an element π(i) such that for all j < i (resp. j > i), π(j) < π(i), and that
the up-down word of π is wπ ∈ {u, d}n−1 with wπ(i) = u (resp. d) if π(i) < π(i + 1)
(resp. π(i) > π(i+ 1)).

Observation 12. For any permutation, the shape of its in-order tree determines the
number and positions of its right-to-left maxima, the number and positions of its left-to-
right maxima and its up-down word.

Proof. Let π by any permutation. That wπ is determined by the shape of Tin(π) follows
immediately by induction, from the recursive definition of the in-order reading In. And
the right-to-left (resp. left-to-right) maxima of π correspond to the vertices lying on the
right (resp. left) branch from the root of Tin(π), yielding the conclusion.

Observations 11 and 12 then give that:
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Corollary 13. The bijection P preserves the following statistics: the number and posi-
tions of the right-to-left maxima, the number and positions of the left-to-right maxima and
the up-down word.

As noted earlier, P has already been used in the study of permutation statistics.
Namely, [10, proof of Theorem 2.6] shows that P preserves the descent set, and hence the
major index. However, many other classical permutation statistics are also preserved by
P , namely all those that depend only on the up-down word, for instance the descent set,
the major index, the number of peaks. Among all the statistics reported in [8, Section
2], the only ones that are preserved by P are the ones that depend only on the shape of
in-order trees.

4 Proof of Conjecture 1

4.1 Preparation

In addition to the results of Section 2, the principal ingredients in the proof to follow are
a pair of observations concerning P and operators A which are compositions of S and R.

Observation 14. Let τ be any permutation, and A be any composition of the operators
S and R. Suppose that x, y ∈ [n] and that in τ there are no values larger than max(x, y)
occurring between x and y. Then the same holds in A(τ).

Proof. It suffices to prove the result for S and R individually. For R it is trivial since the
elements between x and y in τ and R(τ) are the same. But for S it follows immediately
from the recursive description: S(τ) = S(αnβ) = S(α)S(β)n. If one of x or y is n then
there is nothing to prove, while if not then they must both occur in α or in β and the
result follows by induction.

For the second observation, recall that, for any π ∈ Av(231), we denote λπ the per-
mutation such that P (π) = λπ ◦ π, and that we view it as a relabeling of the elements of
π.

Observation 15. Let π ∈ Av(231) be given and suppose that x, y ∈ [n], x < y, and in π
there are no values larger than y occurring between x and y. Then λπ(x) < λπ(y).

In other words, Observation 15 simply says that λπ preserves the ordering among
elements of π which do not contain a larger element between them.

Proof. The key argument is that, from the construction of P , the only way that one
element can be moved above another one is to (at some point in the recursion) have
a larger element in between. This can be expressed formally by induction, using the
recursive definition of P .

Let π = αnβ = α ⊕ (1 	 β) and let a = |α| and b = |β| (so a + b = n − 1). If y = n
the result is trivial as λπ fixes n. Otherwise x, y ∈ α or x, y ∈ β, as by assumption they
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have no larger element between them in π. In the first case we have x = π(i) = α(i) and
y = π(j) = α(j) for i, j ∈ [a], and in the second case we have x = π(i+ a+ 1) = β(i) + a
and y = π(j + a+ 1) = β(j) + a for i, j ∈ [b]. It follows by induction that (depending on
which case applies) λα(x) < λα(y) or λβ(x− a) < λβ(y − a).

Note that λπ sends every ` ∈ [a] to b+λα(`) and every a+` for ` ∈ [b] to λβ(`). Hence,
when x and y are in α (resp. β) we deduce from λα(x) < λα(y) (resp. λβ(x−a) < λβ(y−a))
that λπ(x) < λπ(y), concluding the proof.

4.2 The main argument

In this section we prove the main result. Recall that A is an operator formed by some
composition of S and R. For any such operator, we shall write π ∈ A to denote that π is
in the image of A.

As above, for any π ∈ Av(231), we consider λπ as a relabeling of the elements of [n].
We extend its effect to permutations, trees etc. that carry labels from [n]: applying λπ to
such an object will simply mean to apply λπ to each of its labels.

Definition 16. We define a function ΦA from the set of permutations sorted by S ◦A
to the set of all permutations as follows. For θ a permutation sorted by S ◦ A, since
A(θ) ∈ Av(231), we have λA(θ) defined by P (A(θ)) = λA(θ) ◦ A(θ) and we then set
ΦA(θ) = λA(θ) ◦ θ.

In other words ΦA relabels a permutation θ sorted by S◦A in the same way that A(θ)
is relabeled to produce P (A(θ)). We will prove (see Corollary 22) that ΦA is a bijection
from the set of permutations sorted by S ◦A to the set of those sorted by S ◦R ◦A. The
key to this argument of course is to establish that A(ΦA(θ)) = P (A(θ)).

Definition 17. An operator A which is a composition of S and R respects P if it has
the following property (illustrated in Figure 5):

For each π ∈ Av(231) ∩A,

• For each θ such that A(θ) = π, we have A(ΦA(θ)) = P (π) = λπ ◦ π and
Tin(ΦA(θ)) = λπ(Tin(θ)), and

• the correspondence ΦA : θ 7→ ΦA(θ) is a bijection between A−1(π) and A−1(P (π)).

In the above, notice that because A(θ) = π we actually have ΦA(θ) = λπ ◦ θ.

Proposition 18. If A respects P then so does A ◦R.

Proof. Let π ∈ Av(231) ∩ (A ◦ R) and θ be such that (A ◦ R)(θ) = π. Let τ = R(θ).
Then A(τ) = π and since A respects P , A(ΦA(τ)) = P (π) and Tin(ΦA(τ)) = λπ(Tin(τ)).

Because R is an involution on permutations that acts only on positions whereas λπ
acts on values only, we prove that R

(
ΦA◦R(θ)

)
= ΦA(τ). Indeed, for any i ∈ [n], we have:

R
(
ΦA◦R(θ)

)
(i) = ΦA◦R(θ)(n+ 1− i) = λA◦R(θ)

(
θ(n+ 1− i)

)
= λA(τ)

(
τ(i)

)
= ΦA(τ)(i).
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{12 . . . n} ←−−−−−
S

Av(231) ∩A

π←−−−−−−
A

θ

A−1(π)

{12 . . . n}←−−
S
←−−
R

Av(132) ∩A

P (π)=λπ◦π ΦA(θ) = λπ ◦ θ←−−−−−−
A

A−1(P (π))

ΦA is a
bijection

Figure 5: Overview of an operator A that respects P .

It follows that (A ◦R) (ΦA◦R(θ)) = A(ΦA(τ)) = P (π).
Moreover, applying R to a permutation is equivalent to recursively exchanging left and

right subtrees in its in-order tree. Because we have R (ΦA(τ)) = ΦA◦R(θ) and R(τ) = θ,
we deduce from Tin(ΦA(τ)) = λπ(Tin(τ)) that Tin(ΦA◦R(θ)) = λπ(Tin(θ)).

Finally, the correspondence ΦA◦R : θ 7→ ΦA◦R(θ) is a composition of three bijections:
first R from (A◦R)−1(π) to A−1(π), then ΦA from A−1(π) to A−1(P (π)) since A respects
P , and last R−1 = R again from A−1(P (π)) to (A ◦R)−1(P (π)). This proves that ΦA◦R
is a bijection between (A ◦R)−1(π) and (A ◦R)−1(P (π)) and concludes the proof that
A ◦R respects P .

Proposition 19. If A respects P then so does A ◦ S.

Proof. In this case, the argument is a little more involved.
Let π ∈ Av(231) ∩ (A ◦ S). Throughout the proof, let us denote the relabeling

accomplished by λπ by a primed symbol, i.e. w′ represents the effect of relabeling w by
λπ for any object w. For instance, P (π) = λπ ◦ π = π′.

Consider θ ∈ (A ◦ S)−1(π), and define τ = S(θ). Then, we have τ ∈ S and A(τ) = π.
Because A respects P , we have A(τ ′) = π′ and Tin(τ ′) = Tin(τ)′. We prove in the
following that τ ′ ∈ S, S(θ′) = τ ′ and Tin(θ′) = Tin(θ)′ (see Claims 1, 4 and 3 below).

Because τ ∈ S, we may consider the canonical tree T = Tτ associated with τ . Consider
also its relabeling by λπ, denoted T ′. Of course, because Post(T ) = τ , we have Post(T ′) =
τ ′. This will prove the first condition of A ◦ S respecting P .

Claim 1: T ′ is decreasing.

It then follows from Post(T ′) = τ ′ and Corollary 4 that τ ′ ∈ S.

Proof of Claim 1: Consider any edge from a parent b to a child a in T , and the
corresponding edge from b′ to a′ in T ′. Because T is decreasing, a < b and all the
elements that occur between a and b in τ = Post(T ) are less than b. By Observation 14
all the elements between a and b in π = A(τ) are less than b. Hence by Observation 15,
b′ > a′, proving that T ′ is decreasing.

Claim 2: T ′ is canonical.

It then follows from Post(T ′) = τ ′ and Proposition 6 that T ′ = Tτ ′ (the unique
canonical tree associated with τ ′).
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Proof of Claim 2: Let x be the left child of some vertex z in T and let y be the leftmost
element of the right subtree of z. Then x > y since T is canonical. Let x′ and y′ occupy
the corresponding positions in T ′. Since x occurs immediately before y in τ = Post(T ),
x′ > y′ (by Observations 14 and 15, as in the proof of Claim 1).

Claim 3: Tin(θ′) = Tin(θ)′.

Proof of Claim 3: Recall that S(θ) = τ . By Proposition 7, Tin(θ) is obtained from T
by applying some sequence of operations of the form:

(?)

{
Take a vertex z with no left child, and one of its descendants y on the leftmost
branch of its right subtree. Remove the subtree rooted at y and make it the left
subtree of z.

Applying the same sequence of operations to T ′ creates a tree with the same underlying
structure as Tin(θ), but with the labels arising from T ′: this is the tree Tin(θ)′ and its
in-order reading is In(Tin(θ)′) = θ′. Because T ′ is decreasing and since the operations (?)
cannot create an increasing pair, Tin(θ)′ is a decreasing tree. Observation 2 then ensures
that Tin(θ′) = Tin(θ)′.

Claim 4: S(θ′) = τ ′.

Proof of Claim 4: From Claim 3, we know that Tin(θ′) is obtained from T ′ by a se-
quence of operations (?). Moreover, from Claim 2, T ′ is the canonical tree of τ ′. Therefore,
Proposition 7 ensures that Post(Tin(θ′)) = τ ′. Hence with Observation 3, we deduce that
S(θ′) = Post(Tin(θ′)) = τ ′.

To conclude the proof that A ◦S respects P , it remains to show that ΦA◦S : θ 7→ θ′ is
a bijection between (A ◦ S)−1(π) and (A ◦ S)−1(P (π)) = (A ◦ S)−1(π′).

First, we claim that, for every τ ∈ A−1(π), the correspondence θ 7→ θ′ is a bijective
map between S−1(τ) and S−1(τ ′). This follows from Proposition 7 (together with Obser-
vations 2 and 3), as in the proofs of Claims 3 and 4 above. Details may also be found in
the proof of Proposition 2.7 of [6].

Second, the set (A◦S)−1(π) (resp. (A◦S)−1(π′)) may be partitioned into the disjoint
union of the sets S−1(τ) for τ ∈ A−1(π) (resp. S−1(τ ′) for τ ′ ∈ A−1(π′)). Because A
respects P , the correspondence ΦA : τ 7→ τ ′ is a bijection between A−1(π) and A−1(π′).

Hence the complete correspondence ΦA◦S : θ 7→ θ′ from (A ◦ S)−1(π) to (A ◦ S)−1(π′)
is a bijection, and P respects A ◦ S.

Finally, let us observe that:

Observation 20. The identity operator respects P .

Proof. When A is the identity, we have ΦA = P . So to show that the identity fulfills
the definition of respecting P , the only thing to prove is that Tin(P (π)) = λπ(Tin(π))
for any π ∈ Av(231). Because Tin(π) is decreasing, we deduce from Observation 15 that
λπ(Tin(π)) is also decreasing. Moreover, the in-order reading of λπ(Tin(π)) is λπ ◦ π =
P (π), since the one of Tin(π) is π. Observation 2 then gives λπ(Tin(π)) = Tin(P (π)).

Propositions 18 and 19 and Observation 20 together imply our main theorem:
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Theorem 21. Every operator that is formed by composition from {S,R} respects P .

Corollary 22. For any composition A of operators from {S,R}, ΦA is a size-preserving
bijection between the set of permutations sorted by S ◦A and those sorted by S ◦R ◦A.

Proof. A permutation θ is sorted by S◦A if and only if there exists π ∈ Av(231) such that
θ ∈ A−1(π). From π = A(θ), we have ΦA(θ) = λπ ◦ θ. Because A respects P , θ ∈ A−1(π)
is equivalent to ΦA(θ) ∈ A−1(P (π)). Finally, because P is a bijection between Av(231)
and Av(132), the existence of π ∈ Av(231) such that ΦA(θ) ∈ A−1(P (π)) is equivalent
to the existence of τ ∈ Av(132) such that ΦA(θ) ∈ A−1(τ), i.e. to ΦA(θ) being sorted to
S ◦R ◦A.

Corollary 22 proves the first part of Conjecture 1, namely that the number of permu-
tations of each size sorted by S ◦A and by S ◦R ◦A is the same.

We now study the properties of bijections ΦA in somewhat greater detail. This will
prove the second part of Conjecture 1, that deals with permutation statistics equidis-
tributed over the set of permutations sorted by S ◦ A and the set of those sorted by
S ◦R ◦A.

4.3 Statistics preserved by the bijections ΦA

As before, A denotes any composition of operators from {S,R}.

Theorem 23. The bijection ΦA preserves the shape of the in-order tree.

Proof. From Theorem 21, A respects P . Hence for all permutations θ sorted by S ◦A,
and denoting π = A(θ), we have Tin(ΦA(θ)) = λπ(Tin(θ)), so that Tin(ΦA(θ)) and Tin(θ)
have the same shape.

Because the shape of the in-order tree determines many permutation statistics (see
Observation 12 at the end of Section 3), we have:

Corollary 24. The bijection ΦA preserves the following statistics: the number and posi-
tions of the right-to-left maxima, the number and positions of the left-to-right maxima and
the up-down word (and hence also the many classical permutation statistics determined
by the up-down word).

Theorem 25. If A = A0◦S for some arbitrary composition A0 of operators from {S,R},
then ΦA preserves the Zeilberger statistic, defined as: zeil(π) = max{k | n(n−1) . . . (n−k+
1) is a subword of π}. In addition, if there is at least an operator S◦R in the composition
that defines A0, then ΦA also preserves the reversal of the above statistics: Rzeil(π) =
max{k | (n− k + 1) . . . (n− 1)n is a subword of π}.

Proof. Consider θ a permutation sorted by S ◦ A, and set π = A(θ). Notice that π ∈
Av(231). Writing P (π) = λπ◦π = π′, and using the primed notation throughout as before,
we have ΦA(θ) = θ′. Let c 6 n be the smallest value such that for all d > c, d′ = d. In
what follows, we assume that c 6= 1, or the results follow trivially from ΦA(θ) = θ.
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Set k = zeil(θ). This means that the right branch from the root of Tin(θ) is labeled
by n, n− 1, . . . , n− k+ 1, and that the right child of the vertex labeled by n− k+ 1 (if it
exists) is not labeled by n− k. Because Tin(θ′) = Tin(θ)′, to show that zeil(θ′) = zeil(θ),
it is enough to prove that the relabeling z 7→ z′ does not affect the elements larger than
or equal to n− k, i.e. that c 6 n− k.

Assume to the contrary c > n− k holds. Then the post-order reading of Tin(θ) gives
S(θ) = σc(c+1) . . . (n−1)n, where σ contains all values from 1 to (c−1). By assumption
σ contains at least two distinct elements y = c − 1 and x such that x′ = c − 1. We
have x < y but y′ < x′. Since x < y = c − 1, and all elements greater than or equal to
c occur as a suffix of S(θ), Observation 14 implies that there is no element larger than
c − 1 occurring between x and y in A0 ◦ S(θ) = A(θ) = π. But then Observation 15
gives x′ < y′, providing a contradiction and concluding the proof of the first statement of
Theorem 25.

Let us assume now that A0 contains at least one operator S ◦ R, and let us write
A = B0 ◦ S ◦ R ◦ Sk, with k > 1. We also set Sk(θ) = τ and R(τ) = ρ. We have
ΦB0◦S(ρ) = ρ′. The first statement of Theorem 25 applied to B0 ◦S ensures that zeil(ρ) =
zeil(ρ′). Most importantly, the proof of this statement also ensures that zeil(ρ) 6 n − c.
Hence, applying operator R gives Rzeil(τ) 6 n − c. It is simple to notice that for
any permutation σ, we have Rzeil(S(σ)) > Rzeil(σ). In particular, we obtain n − c >
Rzeil(τ) = Rzeil(Sk(θ)) > Rzeil(θ). Writing k = Rzeil(θ), we then have c 6 n − k, so
that no element of {n − k, n − k + 1, . . . , n} is affected by the relabeling z 7→ z′. From
this fact, we easily deduce that Rzeil(θ′) = Rzeil(θ).

4.4 Stating the main result

Putting everything together, we have proved Conjecture 1, namely:

Theorem 26. For any operator A which is a composition of the operators S and R, the
number of permutations of each size sorted by S ◦A and by S ◦R ◦A is the same.

Moreover, the following permutation statistics are equidistributed across these two sets:
number and positions of the right-to-left maxima, number and positions of the left-to-
right maxima and up-down word (and hence also the many classical permutation statistics
determined by the up-down word). To this list we may add the statistic zeil when A =
A0 ◦ S, and Rzeil when A = B0 ◦ S ◦R ◦ Sk for some k > 1.

More precisely, ΦA defines a size-preserving bijection between the set of permutations
sorted by S ◦A and the set of those sorted by S ◦R ◦A that preserves these statistics.

The statement of Theorem 26 may in particular be considered for the operator A = S.
This gives a size-preserving bijection ΦS between permutations sorted by S ◦S and those
sorted by S ◦ R ◦ S. By means of generating trees, [7] implicitly defines another size-
preserving bijection between these two sets. Both bijections preserves many permutation
statistics, but we don’t know whether they are actually two descriptions of the same
bijection.
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5 Wilf-equivalences derived from the bijection P

Recall a notation from the introduction: Av(B) is the set of all permutations that avoid
simultaneously all the patterns in the set B. Such a set Av(B) is called a permutation
class (or class for short), and B is called its basis.

Two bases B and B′ (or two classes Av(B) and Av(B′)) are said to be Wilf-equivalent
if Av(B) and Av(B′) contain the same number of permutations of [n] for every n. Co-
incidence of the enumeration sequences of two permutation classes (i.e. Wilf-equivalence)
is a frequently observed phenomenon. The first interesting example is that of Av(123)
and Av(231), both enumerated by the Catalan numbers – see [16] for a bijective proof
of this Wilf-equivalence. More examples of Wilf-equivalences may be found in [11] and
references therein. One common form of Wilf-equivalence arises from symmetries of the
avoidance relationship. For example, the reversal symmetry R provides a bijection be-
tween Av(231) and Av(132), proving that they are Wilf-equivalent. More generally, for
any symmetry Z obtained composing reversal, complement and inverse, Av(π, π′, · · · , π′′)
and Av(Z(π),Z(π′), · · · ,Z(π′′)) are Wilf-equivalent, and we say that they are trivially
Wilf-equivalent. However, non trivial Wilf-equivalences are also somewhat common, and
more interesting.

In this section, we present some results showing how the bijection P from Section 3
furnishes a supply of non trivial Wilf-equivalences.

Let us define two families of permutations (λn) and (ρn) recursively by λ1 = ρ1 = 1
and for all n > 1, λn+1 = 1 	 ρn and ρn+1 = λn ⊕ 1 – see Figure 6 for the diagrams
of these permutations, and Section 3 for the definitions of ⊕ and 	. We also take the
convention that λ0 and ρ0 denote the empty permutation ε. Of course, for every n,
R(λn) = ρn. Notice that for any n, λn and ρn are fixed by P . Notice also that for any
n, λn is ⊕-indecomposable, i.e. there are no non empty permutations α and β such that
λn = ⊕[α, β]. Similarly, for any n, ρn is 	-indecomposable.

λn = ρn−1 and ρn = λn−1 ; λ6 = and ρ6 =

Figure 6: Diagrams of λn and ρn, for general n and for n = 6.

Proposition 27. For every n > 0, and every 0 6 k 6 n−1, letting π = λk⊕(1	ρn−k−1),
P is a size-preserving bijection between Av(231, π) and Av(132, P (π)).

In the above statement and in what follows, our convention is that for n = 0 and any
k, λk ⊕ (1	 ρn−k−1) denotes the empty permutation ε.

Proof. For any n > 0, let us denote by P(n) the following property: for every pattern π
of the form λk⊕ (1	 ρn−k−1) with 0 6 k 6 n− 1, for every σ ∈ Av(231), if P (σ) contains
P (π) then σ contains π. We prove by induction that P(n) holds for all n.
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For n = 0, i.e. π = ε, the statement P(0) is clear. So assume that n > 1 and that P(`)
holds for every ` 6 n− 1. To prove P(n), let us fix some pattern π = λk ⊕ (1	 ρn−k−1)
with 0 6 k 6 n− 1. Notice that P (π) = (λk ⊕ 1)	 ρn−k−1.

We now prove by induction on |σ| that for every σ ∈ Av(231), P (σ) contains P (π)
implies that σ contains π. If |σ| = 1, the above holds immediately. So consider σ ∈
Av(231) with |σ| > 2, assume that P (σ) contains P (π), and fix an occurrence of P (π) in
P (σ). Recall that we can write σ = α⊕ (1	 β), which yields P (σ) = (P (α)⊕ 1)	P (β).
We distinguish several cases according to how the occurrence of P (π) in P (σ) spreads
over (P (α)⊕ 1)	 P (β).

• If P (π) occurs in P (α) ⊕ 1 with k 6= n − 1, then P (π) occurs in P (α). By the
induction hypothesis, α contains π, and so does σ.

• If P (π) occurs in P (α)⊕ 1 with k = n− 1, then λn−1 occurs in P (α). By P(n− 1),
we obtain that α contains λn−1 so that σ contains π.

• If P (π) occurs in P (β), then by the induction hypothesis π occurs in β, hence in σ.

• Otherwise, we can decompose P (π) as π1 	 π2 with both π1 and π2 non empty, π1
occuring in P (α)⊕ 1 and π2 occuring in P (β). But P (π) = (λk ⊕ 1)	 ρn−k−1, and
because λk⊕1 and ρn−k−1 are	-indecomposable, we necessarily have π1 = λk⊕1 and
π2 = ρn−k−1. Therefore, we deduce that P (α) contains λk and that P (β) contains
ρn−k−1. From P(k) and P(n − k − 1), we obtain that α contains λk and that β
contains ρn−k−1, implying that σ contains π.

This concludes the proof that P(n) holds for every n > 0. Following the same steps, it
may be proved that: for every pattern π of the form λk⊕ (1	ρn−k−1) with 0 6 k 6 n−1,
for every σ ∈ Av(231), if σ contains π then P (σ) contains P (π). Details are left to
the reader. We conclude that for every pattern π of the form λk ⊕ (1 	 ρn−k−1) with
0 6 k 6 n− 1, for every σ ∈ Av(231), σ contains π if and only if P (σ) contains P (π). In
other words σ ∈ Av(231, π) if and only if P (σ) ∈ Av(132, P (π)), proving the announced
statement.

Although this is not our main point here, it is worth noticing that there is a converse
statement to Proposition 27. Namely:

Proposition 28. Let π be a 231-avoiding permutation of size n. P is a size-preserving
bijection between Av(231, π) and Av(132, P (π)) if and only if π = λk ⊕ (1	 ρn−k−1), for
some 0 6 k 6 n− 1.

The proof of Proposition 28 makes use of the three observations that follow.

Observation 29. Let π = α ⊕ (1 	 β) ∈ Av(231) be a permutation such that P is
a bijection between Av(231, π) and Av(132, P (π)). Then the same holds for α and β
instead of π.
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Proof. Let us assume that P is not a bijection between Av(231, α) and Av(132, P (α))
(resp. Av(231, β) and Av(132, P (β))). Then one of the following holds: either there
exists σ ∈ Av(231, α) (resp. σ ∈ Av(231, β)) such that P (σ) contains P (α) (resp. P (β)),
or there exists σ ∈ Av(231) such that σ contains α (resp. β) but P (σ) avoids P (α)
(resp. P (β)). Consider the permutation τ = σ ⊕ (1 	 β) (resp. τ = α ⊕ (1 	 σ)) and
its image by P : P (τ) = (P (σ) ⊕ 1) 	 P (β) (resp. P (τ) = (P (α) ⊕ 1) 	 P (σ)). In the
first case, τ avoids π but P (τ) contains P (π), and in the second case, τ contains π but
P (τ) avoids P (π). This is a contradiction to P being a bijection between Av(231, π) and
Av(132, P (π)), and concludes the proof.

Observation 30. Let π = α ⊕ (1 	 β) ∈ Av(231) be a permutation such that P is a
bijection between Av(231, π) and Av(132, P (π)). Then α begins with its maximum.

Proof. Let us assume that α does not begin with its maximum. As α avoids 231 we can
write α = γ ⊕ (1	 δ) with γ non empty. From π = γ ⊕ (1	 δ)⊕ (1	 β) we deduce that
P (π) = (((P (γ)⊕ 1)	 P (δ))⊕ 1) 	 P (β). Consider now the permutation σ = γ ⊕

(
1 	

((1	 δ)⊕ (1	 β))
)

and its image under P : P (σ) = (P (γ)⊕1)	
((

(1	P (δ))⊕1
)
	P (β)

)
.

Then σ contains π but P (σ) avoids P (π) (see Figure 7). This contradicts that P is a
bijection between Av(231, π) and Av(132, P (π)), and ensures that α must begin with its
maximum.

π =

γ

δ

β

is contained in σ =

γ

δ

β

P (π) =

P (γ)

P (δ)

P (β)

is not contained in P (σ) =

P (γ)

P (δ)

P (β)

Figure 7: Permutations π, P (π), σ and P (σ) in the proof of Observation 30.

Observation 31. Let π = α ⊕ (1 	 β) ∈ Av(231) be a permutation such that P is a
size-preserving bijection between Av(231, π) and Av(132, P (π)). Then β ends with its
maximum.

Proof. The proof is similar of that of Observation 30, assuming that β = γ⊕ (1	 δ) does
not end with its maximum, and considering the permutation σ shown in Figure 8.
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π =

α

γ

δ

is not contained in σ =

α

γ

δ

P (π) =

P (α)

P (γ)

P (δ)

is contained in P (σ) =

P (α)

P (γ)

P (δ)

Figure 8: Permutations π, P (π), σ and P (σ) in the proof of Observation 31.

Proof of Proposition 28. With Proposition 27, we are left to prove that for any π ∈
Av(231), if P is a size-preserving bijection between Av(231, π) and Av(132, P (π)), then
π = λk ⊕ (1	 ρn−k−1), for some 0 6 k 6 n− 1.

Consider such a permutation π, write π = α⊕(1	β), and set k = |α|. Observations 30
and 31 ensure that α begins with its maximum and that β ends with its maximum.
Observation 29 also ensures that P is a bijection between Av(231, α) and Av(132, P (α))
(resp. Av(231, β) and Av(132, P (β))). Hence, to conclude the proof of Proposition 28,
it is enough to prove that for every permutation σ such that P is a bijection between
Av(231, σ) and Av(132, P (σ)), if σ starts (resp. ends) with its maximum, then σ = λ`
(resp. ρ`) for some `. This is obtained proving by induction the following statement: for
every ` > 1, for every σ ∈ Av(231) of size `, if P is a bijection between Av(231, σ) and
Av(132, P (σ)) then σ(`) = ` implies σ = ρ` and σ(1) = ` implies σ = λ`. This is clear for
` = 1, so take ` > 2 and assume the above statement holds for `−1. Consider σ ∈ Av(231)
of size ` such that P is a bijection between Av(231, σ) and Av(132, P (σ)). If σ(`) = `
(resp. σ(1) = `), then σ = τ ⊕ 1 (resp. σ = 1	 τ). By Observations 29 and 30 (resp. 31),
P is a bijection between Av(231, τ) and Av(132, P (τ)) and τ starts (resp. ends) with its
maximum. By the inductive hypothesis, τ = λ`−1 (resp. τ = ρ`−1), so we deduce that
σ = ρ` (resp. σ = λ`).

A consequence of Proposition 27 is that for all n and 0 6 k 6 n−1, Av(231, λk⊕ (1	
ρn−k−1)) and Av(231, λn−k−1⊕ (1	ρk)) are Wilf-equivalent. Indeed, letting π = λk⊕ (1	
ρn−k−1), R ◦P provides a size-preserving bijection from Av(231, π) to Av(231,R(P (π))),
and R(P (π)) = λn−k−1 ⊕ (1 	 ρk). For every n > 1, Proposition 27 therefore produces
n Wilf-equivalences (although, with some redundancies) between pairs of permutation
classes, both of the form Av(231, τ) with τ avoiding 231.

Moreover, as we explain in [3], it is possible to compute the generating function of
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Av(231, π), for any π = λk ⊕ (1	 ρn−k−1). Regardless of k, this generating function is Fn
defined recursively by F1(t) = 1, and for n > 1, Fn+1(t) = 1

1−tFn(t)
for n > 1. Therefore,

for any fixed n, all classes Av(231, λk ⊕ (1 	 ρn−k−1)) are Wilf-equivalent. The proof
of this result is analytic, and does not provide bijections between any two such classes.
In [13, 14], the authors are also interested in the enumeration of permutation classes of
the form Av(231, τ) – or rather their reversal Av(132,R(τ)). They show in particular
that the generating function of a class Av(231, τ) is also Fn, when τ is (the reversal of)
a layered permutation of size n with two layers, or a wedge permutation of size n. The
proof is also analytic, and the authors indicate that it would be very interesting to find a
bijective proof of these results.

In the forthcoming paper [4], we provide a unified proof and a generalization of both
these results. More precisely, we describe a familyM of permutations such that for any τ
and τ ′ of the same size n inM, Av(231, τ) and Av(231, τ ′) are Wilf-equivalent, and their
generating function is Fn. In addition, we can prove thatM is maximal, i.e. that for each
n, it contains all permutations τ of size n such that the generating function of Av(231, τ) is
Fn. Of course, the familyM contains (reversals of) layered permutations with two layers,
(reversals of) wedge permutations, and permutations of the form λk ⊕ (1 	 ρn−k−1), but
also much more: it actually contains Mn permutations of any size n, where Mn is the n-th
Motzkin number. Unlike previous analytical proofs, our proof has a very combinatorial
flavor, and allows the derivation of bijections between Av(231, τ) and Av(231, τ ′) for any
τ and τ ′ of the same size in M.
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[18] Henning Úlfarsson. Describing West-3-stack-sortable permutations with permutation
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