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Abstract

Let £ > 1 be an integer. A set A C Z is a k-fold Sidon set if A has only
trivial solutions to each equation of the form cixq1 4+ coxo + c3x3 + c4x4 = 0 where
0 < |¢| <k, and ¢; + co2 + 3+ c4 = 0. We prove that for any integer k > 1, a k-fold
Sidon set A C [N] has at most (N/k)/2 + O((Nk)'/*) elements. Indeed we prove
that given any k positive integers ¢; < -+ < ¢k, any set A C [N] that contains only
trivial solutions to ¢;(x1 — x2) = ¢j(x3 — x4) for each 1 <@ < j < k, has at most
(N/E)Y240((¢2N/k)*/*) elements. On the other hand, for any k > 2 we can exhibit
k positive integers ci,...,c; and a set A C [N] with [4] > (3 + o(1))N'/2| such
that A has only trivial solutions to ¢;(z1 —x2) = ¢j(23 —x4) for each 1 <i < j < k.
Keywords: Sidon sets, k-fold Sidon sets

1 Introduction

Let I' be an abelian group. A set A C I' is a Sidon set if a +b = ¢+ d and a,b,c,d €
A implies {a,b} = {c,d}. Sidon sets in Z and in the group Zy := Z/NZ have been
studied extensively. Erdds and Turdn [5] proved that a Sidon set A C [N] has at most
NY2 4 O(N'*) elements. Constructions of Singer [10], Bose and Chowla [2], and Ruzsa
[9] show that this upper bound is asymptotically best possible. It is a prize problem of
Erdés [4] to determine whether or not the error term is bounded. For more on Sidon sets
we recommend O’Bryant’s survey [8].

Let
ClCL’l—f—""i‘CrfL'T:O (1)
be an integer equation where ¢; € Z\{0}, and ¢; + --- + ¢, = 0. Call such an equation
an invariant equation. A solution (xy,...,z,) € Z" to (1) is trivial if there is a partition
of {1,...,r} into nonempty sets T1,...,T,, such that for every 1 < i < m, we have
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ZjeTi ¢; = 0, and z;, = zj, whenever ji,j, € T;. A natural extremal problem is to
determine the maximum size of a set A C [IN] with only trivial solutions to (1). This
problem was investigated in detail by Ruzsa [9]. One of the important open problems from
9] is the genus problem. Given an invariant equation E : ¢1x1 + - - - 4+ ¢,x, = 0, the genus
g(E) is the largest integer m such that there is a partition of {1, ..., 7} into nonempty sets
Ti,...,T,,, such that ZjeTi c; = 0 for 1 <4 < m. Ruzsa proved that if £ is an invariant
equation and A C [N] has only trivial solutions to E, then |A| < cpNY9¥). Here cp
is a positive constant depending only on the equation E. Determining if there are sets
A C [N] with |A| = NY9(E)=e(1) and having only trivial solutions to E is open for most
equations. In particular, the genus problem is open for the equation 2x1 4+ 2x5 = 3x3+ 4.
This equation has genus 1 but the best known construction [9] gives a set A C [N] with
|A] > ¢N'/? where ¢ > 0 is a positive constant. More generally, Ruzsa showed that for
any four variable equation F : c1x1 4 coxe = ¢33 + c4x4 With ¢ +c¢o = c3+c¢4 and ¢; € N,
there is a set A C [N] with only trivial solutions to E and |A| > cpN'/?7°M)_ In this
paper we consider special types of four variable invariant equations.

Let £ > 1 be an integer. A set A C Z is a k-fold Sidon set if A has only trivial
solutions to each equation of the form

C1T1 + CoXo + C3T3 + C4xy = 0

where 0 < |¢;| < k, and ¢; + ¢o + ¢35 + ¢4 = 0. A 1-fold Sidon set is a Sidon set. A 2-fold
Sidon set has only trivial solutions to each of the equations

T1+ To — 13 — 214 = 0, 201 + 19 — 223 — x4 = 0, 21 — a9 — 13 = 0.

One can also define k-fold Sidon sets in Zy. We must add the condition that N is relatively
prime to all integers in the set {1,2,...,k}. The reason for this is that if a coefficient
¢; €{1,2,...,k} has a common factor with N, then in Zy one could have ¢;(a; —ay) =0
with a; # ao. In this case, if [A| > 3, we can choose az € A\{a,as}, and obtain the
nontrivial solution (z1, z9, x3, 24) = (a1, az, as, az) to the equation ¢;(x1 —x9)+x3—1x4 = 0.

Lazebnik and Verstraéte [6] were the first to define k-fold Sidon sets. They conjectured
the following.

Conjecture 1 (Lazebnik, Verstraéte [6]). For any integer k > 3, there is a positive
constant ¢, > 0 such that for all integers NV > 1, there is a k-fold Sidon set A C [N] with
’A‘ 2 CkN1/2.

This conjecture is still open. Lazebnik and Verstraéte proved that for infinitely many
N, there is a 2-fold Sidon set A C Zy with |A| > N2 — 3. Axenovich [1] and Ver-
straéte (unpublished) observed that one can adapt Ruzsa’s construction for four variable
equations (Theorem 7.3, [9]) to construct k-fold Sidon sets A C [N] or A C Zy with
|A| > ¢, NY2e=VI8N for any k > 3. An affirmative answer to Conjecture 1, even in the
case when k = 3, would have applications to hypergraph Turdn problems [6] and extremal
graph theory [11].
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Since any k-fold Sidon set is a Sidon set, the trivial upper bound |A| < /N — 3/4+1/2
for a Sidon set A C Zy, and the Erdés-Turan bound |A| < NY2 4 O(N'4) for any Sidon
set A C [N], also hold for k-fold Sidon sets. We will obtain better upper bounds for k-fold
Sidon sets. Instead of considering all the possible equations ¢yx1 + coxs + c3x3 + 424 = 0
with ¢; + ¢o + ¢3 + ¢4 = 0, we will take advantage only of the equations of the form

cl(xl — ZL’Q) = CQ(ZL‘g — ZL’4).

For any c¢,...,¢, with (¢;, N) = 1, if A C Zy contains only trivial solutions to
¢i(r1 — x3) = ¢j(x3 — x4) for each 1 < i < j <k, then
N—-1 1 1

A<y ==+ +5 2)

To see this, consider all elements of the form ¢;(z — y) where 1 < i < k, and = # y are
elements of A. All of these elements are distinct and nonzero. Therefore, k|A|(|A] —1) <
N — 1 which is equivalent to (2).

The short counting argument used to obtain (2) does not work in Z. Using a more
sophisticated argument, we can show that a bound similar to (2) does hold in Z.

Theorem 2. Let k > 1 be an integer and 1 < ¢; < ¢ < -+ < ¢ be a set of k distinct
integers. If A C Zy is a set with only trivial solutions to c¢;(xq1 — x2) = c¢j(xg — x4) for
each 1 <1< j <k, then

N1/2 2N 1/4
Al < | = ke .
< (5) o ()

Taking ¢; = j for 1 < j < k, we have the following corollary.
Corollary 3. If k > 1 is an integer and A C [N] is a k-fold Sidon set, then

A] < (%)m + O((kN)'4).

It is natural to ask if we can improve Corollary 3 if we make full use of the assumption
that A is a k-fold Sidon set. For example, the bound |A| < (N/3)1/2 + O(N'*) holds
under the assumption that A C [N] has only trivial solutions to ¢;(z1 — x2) = ca(x5 — x4)
for each 1 < ¢ < ¢ < 3. A 3-fold Sidon set additionally has only trivial solutions to
2xq1 + 2x9 = 3x3 + x4. Our argument does not capture this property. It is not known if
this additional assumption would improve the upper bound |A| < (N/3)Y/2 + O(NY/4).

The method used by Lazebnik and Verstraéte to construct 2-fold Sidon sets is rather
robust. Using this method, we prove the following theorem.

Theorem 4. There exist k distinct integers cy, ..., c, and infinitely many N, such that

there is a set A C Zy with
1/2

4> Y0 o)

and having only trivial solutions to c¢;(xq1 — x9) = ¢;(x3 — x4) for each 1 < i < j < k.

The next section contains the proof of Theorem 2. Section 3 contains the proof of
Theorem 4.
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2 Proof of Theorem 2

For finite sets B, C' C 7Z, define
rg_c(x) =[{(b,c) :b—c=uz,b€ B,ce C}|.
The following useful lemma has appeared in the literature (see [3] or [9]).

Lemma 5. For any finite sets B,C C Z,

(Bllc)?

|B+C|\WWH+Z}BB z)re-o(@), (3)

#£0

Proof. By Cauchy-Schwarz,

(1BlIC)*  (Ciepscrrrc(z)
X Z Tpro(@

1B+ C] B+ C
= S rps(@)re_cle) = LBHCH—+j£:rB B(x)re—c(x).

x x#0

]

Proof of Theorem 2. Let 1 < ¢ < ¢y < -+ < ¢, be k distinct integers. Let A C [N] be a
set with only trivial solutions to ¢;(x; — xg) = cj(xg —xy) for each 1 <i < j < k. Let

B,,={r:cx+ic A}
for 1 <r<kandO0<17<c¢ — 1. Therefore,

cr—1 cr—1

|A[=Z|{a€A: a=1i (modec)} = Z|B”
=0

so by Cauchy-Schwarz,

cr—1 2 cr—1
AP = (z \Bm-\) <o S B N
1=0 1=0

For any y # 0,
kocr—1
Z Z T’Bm. i 1 (5)
r=1 i=0
To see this, suppose
Y =11 — Ty =Tz — Ty (6)

where 21,20 € B,; and x3,24 € By for some 1 < r;7/ <k, 1 < i < ¢ — 1, and
1 < < ¢ — 1. There are elements aq, as, as, as € A such that

T +i=ay, CTy+1i=ay cvrz3+i =as, and cuxy+1i =ay.
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Then (6) implies
1 1 1 .1 ,
o (a1 — ) - (az — i) = o (as — ') > (ag — '),
thus ¢/ (ay — as) = ¢,(a3 — aq). Since y # 0, we have a; # ay and ag # a4 and the we
would have a non trivial solution of the equation.
Let C ={0,1,...,m —1}. Forany 1 <r < kand 0 <i < ¢, — 1, theset B,; + C

is contained in the interval {0,1,...,N/¢, + m — 1}. This gives the trivial estimate
|B,; + C| < N/¢, +m. By Lemma 5,
|Bm-|2m2
~—— < |B; B, —c(y)-
N/CT» + m ‘ ) |m + ZTBT,Z Br,z<y)rc C<y)
y7#0
We sum this inequality over all 1 <r < kand 0 <7< ¢, — 1 to get
k 1 cr—1 k cr—1
2 2
~ B,i|” < B,
"2 N 2 P 2 2 i
k cr—1
+ >3 rpsLWre-cy)
y#0 r=1 =0
< kAm+) roo(y)
y7#0
< m(k|A| +m).
From (4) we deduce
k
1
21A7 —— <m(k|A ) 7
AR D s < mblA ) @
|A|2km

The left hand side of (7) is at least %. Therefore, 7=~

|APkm < (N + cm)(m + k| Al).

< k|A| + m, and

From this inequality, we obtain

N )\’ N cm N )\’
S B S s < 45 4k
(|A| (2m+2)) S EN +(2m+2

Upon solving for |A|, we get
N\ Y2 cem Nk ke N ¢
A< (M) (eam (NE RGN o
4 <k3> <+N+2m2+2]\7>+m+
o <N) 1/2 cLm N32pU2 k22 N g,

%) TweANZET o Tonie Ton, T o
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Take m = [(N3/4/€1/4)/C;1f/21 to get |A| < (%)1/2

proof of Theorem 2.

+ O((c2N/k)Y*). This completes the

]

3 Proof of Theorem 4

Let £ > 2 be an integer. Let p be a prime, and let M > 1 be a large integer. Let r be

any prime with r > ME. Let 4 > 1 be an integer, and set t = 7 and ¢ = p’.

We will prove that for ¢; = p/~! for j = 1,...k there exists a set A C Z,_; with
Al > 2 (1- %) — (p* — 1)(M — 1) and having only trivial solutions to

Ty — T2 = Pj_l(f?, - x4)

for 1 < j < k. This proves Theorem 4 because as i tends to infinity, the term { (1 — %) is
the dominant term. M can be taken as large as we want, and (p* — 1)(M — 1) is constant
with respect to 7.

Let 0 be a generator of the cyclic group Fy,. Bose and Chowla [2] proved that the set

Clq,0)={a€Zp,:0"—0cF,}
is a Sidon set in Z,2_;. Lindstrém [7] proved

B(q,0) ={b€Zp_,:60"+0" =1}
is a translate of C(q, #) and is therefore a Sidon set.

Lemma 6. The map x — px is an injection from Zp_y to Zgp_y that maps B(q,0) to
B(q.0).

Proof. The map x + px is 1-to-1 since p is relatively prime to ¢ — 1. If b € B(q, ), then
1 = (917 + gqb)p — grb 4 gapb)
so pb € B(q,0). m

Let 7 : B(q,0) — B(q,0) be the permutation m(b) = pb. As in [6], we use the cycles
of 7 to define A. Let ¢ = (by,...,b,) be a cycle of w. If m < k, then remove all elements
of o from B(q,#). If m > k, then remove all b; in ¢ for which j is not divisible by k. Do
this for each cycle of 7. Let A be the resulting subset of B(g, 6).

Lemma 7. For each c € {1,p,p?, ..., p" 1}, A has only trivial solutions to

r1 — Ty = c(x3 — 14).
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Proof. Suppose ay,as,as3,a4 € A and a; — ay = p’(az — a4) for some 0 < j < k— 1. By
Lemma 6, there are elements bs, by € B(q,0) such that p’az = b3 and p’ay = by. This
gives a3 — ag = by — by. Since B(q, ) is a Sidon set, either a; = ag, by = by or a; = bs,
Qa9 = b4.

If a; = ap and by = by, then a3 = a4 and the solution (ay, as, ag, ay) is trivial. Suppose
a; = by and ag = bs. This implies bs € A, so both p’as and az are in A. This contradicts
the way in which A was constructed. O

Lemma 8. |A] > 2 (1— ) — (' — 1)(M — 1).

Proof. In order to obtain a lower bound on |A|, we need to estimate the number of cycles
of m that are short. For instance, if all cycles of m have length less than &, then |A| = 0.
For a cycle o of m with length mk > Mk, we delete at most m(k — 1) elements from
B(q, 0) and keep at least m — 1 elements.

We estimate the number of cycles of length at most Mk — 1. Let o = (b, pb, ..., p*"'b)
be a cycle of 7 of length e where e < Mk — 1. The integer e is the smallest positive

integer such that p°h = b(mod ¢* — 1). This is the same as saying that the order of p in
¢°—1

m . SIIICG

the multiplicative group of units Z; is e where n =

pr—1=0p"-1Dp*+1) =(-1)p" +1)

we have p* = 1(mod ¢* — 1), so e must divide 4¢ = 4r*. Since r is prime and r > Mk,
e cannot divide r, so e must divide 4. To count the number the number of cycles of
7 with length at most Mk — 1, it is enough to count the elements x € Z,z_1\{0} such
that p'r = z(mod ¢*> — 1). This follows from the fact that if e € {1,2} and p°x =
z(mod ¢* — 1), then p*r = z(mod ¢*> — 1). The number of solutions to this congruence
is ged(p? — 1,¢%> — 1) < p* — 1. Therefore, there are at most p* — 1 cycles of 7 of length
at most Mk — 1. For a cycle of length at least Mk, the proportion of elements of the

cycle that are put into A is at least 2—1 (the function f(z) = £ is increasing provided
k > 0). Since |B(q,0)| = q,

A1 = 0t - 0o (S0 ) =4 (1= 57 ) - 0 - e -,

Theorem 4 follows from Lemmas 7 and 8.

4 Concluding Remarks

The most important open problem concerning k-fold Sidon sets is an answer to Conjec-
ture 1. The case k = 3 is particularly interesting. A 3-fold Sidon set A C [N] with
|A| > ¢N'/? is known to imply the existence of a graph with ¢; N vertices, co N*/? edges,
and every edge is in exactly one cycle of length four [11].
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Another problem is to determine the maximum size of a 2-fold Sidon set in Zy or
[N]. Let Si(N) be the maximum size of a k-fold Sidon set in Zy. For any integer t > 1,
there are 2-fold Sidon sets A C Zy, N = 22" 4+ 22 + 1, with |A| > IN'/2 — 3 (see [6]).
Theorem 2 gives an upper bound of (N/2)/2 + O(N'/*) so

SHiN) _ 1

r ..
92 < h]r\?_)solip N1/2 9172

It would be interesting to determine the above limit. In the case of Sidon sets, we have

lim supy_,o 5;\1[(1]/\;) =1 by [5] and [10].
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