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Abstract

Let £ > 1 be an integer. A set A C Z is a k-fold Sidon set if A has only
trivial solutions to each equation of the form cixq1 4+ coxo + c3x3 + c4x4 = 0 where
0 < |¢| <k, and ¢; + co2 + 3+ ¢4 = 0. We prove that for any integer k > 1, a k-fold
Sidon set A C [N] has at most (N/k)/2 + O((Nk)'/*) elements. Indeed we prove
that given any k positive integers ¢; < -+ < ¢k, any set A C [N] that contains only
trivial solutions to ¢;(x1 — x2) = ¢j(x3 — x4) for each 1 <@ < j < k, has at most
(N/E)Y240((¢2N/k)*/*) elements. On the other hand, for any k > 2 we can exhibit
k positive integers cy, ..., c; and a set A C [N] with [4] > (% +0(1))N/2, such that
A has only trivial solutions to ¢;(z1 — 2) = ¢;j(x3 — z4) for each 1 < i < j < k.

Keywords: Sidon sets, k-fold Sidon sets

1 Introduction

Let I be an abelian group. A set A C I' is a Sidon set if a +b = ¢+ d and a,b,c,d €
A implies {a,b} = {c¢,d}. Sidon sets in Z and in the group Zy := Z/NZ have been
studied extensively. Erdds and Turdn [5] proved that a Sidon set A C [N] has at most
NY2 4 O(N'*) elements. Constructions of Singer [10], Bose and Chowla [2], and Ruzsa
[9] show that this upper bound is asymptotically best possible. It is a prize problem of
Erdés [4] to determine whether or not the error term is bounded. For more on Sidon sets
we recommend O’Bryant’s survey [8].

Let
Cll’l—f—""i‘crl'rr:() (1)
be an integer equation where ¢; € Z\{0}, and ¢; + --- + ¢, = 0. Call such an equation
an invariant equation. A solution (xy,...,z,) € Z" to (1) is trivial if there is a partition
of {1,...,r} into nonempty sets T1,...,T,, such that for every 1 < i < m, we have
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ZjeTi ¢; = 0, and z;, = zj, whenever ji,j, € T;. A natural extremal problem is to
determine the maximum size of a set A C [IN] with only trivial solutions to (1). This
problem was investigated in detail by Ruzsa [9]. One of the important open problems from
9] is the genus problem. Given an invariant equation E : ¢1x1 + - - - 4+ ¢,x, = 0, the genus
g(E) is the largest integer m such that there is a partition of {1, ..., 7} into nonempty sets
Ti,...,T,,, such that ZjeTi c; = 0 for 1 <4 < m. Ruzsa proved that if £ is an invariant
equation and A C [N] has only trivial solutions to E, then |A| < cpNY9¥). Here cp
is a positive constant depending only on the equation E. Determining if there are sets
A C [N] with |A| = NY9(E)=e(1) and having only trivial solutions to E is open for most
equations. In particular, the genus problem is open for the equation 2x1 4+ 2x5 = 3x3+ 4.
This equation has genus 1 but the best known construction [9] gives a set A C [N] with
|A] > ¢N'/? where ¢ > 0 is a positive constant. More generally, Ruzsa showed that for
any four variable equation F : c;x1 4 coxe = c3x3 + c4x4 With ¢ +c¢o = c3+ ¢4 and ¢; € N,
there is a set A C [N] with only trivial solutions to E and |A| > cpN'/?7°M)_ In this
paper we consider special types of four variable invariant equations.

Let £ > 1 be an integer. A set A C Z is a k-fold Sidon set if A has only trivial
solutions to each equation of the form

C1T1 + CoXo + C3T3 + C4xy = 0

where 0 < |¢;| < k, and ¢; + ¢o + ¢35 + ¢4 = 0. A 1-fold Sidon set is a Sidon set. A 2-fold
Sidon set has only trivial solutions to each of the equations

T1+ To — 13 — 214 = 0, 201 + 19 — 223 — x4 = 0, 21 — 19 — 13 = 0.

One can also define k-fold Sidon sets in Zy. We must add the condition that N is relatively
prime to all integers in the set {1,2,...,k}. The reason for this is that if a coefficient
¢; €{1,2,...,k} has a common factor with N, then in Zy one could have ¢;(a; —ay) =0
with a; # ag. In this case, if [A| > 3, we can choose az € A\{a,as}, and obtain the
nontrivial solution (z1, z9, x3, 24) = (a1, az, as, az) to the equation ¢;(x1 —x9)+x3—1x4 = 0.

Lazebnik and Verstraéte [6] were the first to define k-fold Sidon sets. They conjectured
the following.

Conjecture 1 (Lazebnik, Verstraéte [6]). For any integer k > 3, there is a positive
constant ¢, > 0 such that for all integers NV > 1, there is a k-fold Sidon set A C [N] with
’A‘ 2 CkN1/2.

This conjecture is still open. Lazebnik and Verstraéte proved that for infinitely many
N, there is a 2-fold Sidon set A C Zy with |A| > N2 — 3. Axenovich [1] and Ver-
straéte (unpublished) observed that one can adapt Ruzsa’s construction for four variable
equations (Theorem 7.3, [9]) to construct k-fold Sidon sets A C [N] or A C Zy with
|A| > ¢, N2~V N for any k > 3. An affirmative answer to Conjecture 1, even in the
case when k = 3, would have applications to hypergraph Turdn problems [6] and extremal
graph theory [11].
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Since any k-fold Sidon set is a Sidon set, the trivial upper bound |A| < /N — 3/4+1/2
for a Sidon set A C Zy, and the Erdés-Turan bound |A| < NY2 4 O(N'4) for any Sidon
set A C [N], also hold for k-fold Sidon sets. We will obtain better upper bounds for k-fold
Sidon sets. Instead of considering all the possible equations ¢yx1 + coxs + c3x3 + 424 = 0
with ¢; + ¢o + ¢3 + ¢4 = 0, we will take advantage only of the equations of the form

Cl(l'l — Z‘Q) = CQ(Z‘g — Z’4).

For any ¢p,...,¢, with (¢;, N) = 1, if A C Zy contains only trivial solutions to
¢i(r1 — x3) = cj(x3 — x4) for each 1 < ¢ < j <k, then

N -1
Al </

1
: 4o 2)

2

AN

To see this, consider all elements of the form ¢;(z — y) where 1 < i < k, and = # y are
elements of A. All of these elements are distinct and nonzero. Therefore, k|A|(|A| — 1) <
N — 1 which is equivalent to (2).

The short counting argument used to obtain (2) does not work in Z. Using a more
sophisticated argument, we can show that a bound similar to (2) does hold in Z.

Theorem 2. Let k > 1 be an integer and 1 < ¢; < ¢co < -+ < ¢ be a set of k distinct
integers. If A C [N] is a set with only trivial solutions to ¢;(x; — x3) = cj(x3 — x4) for

each 1 <1< j <k, then
N 2 2N\ VA
A< | = o[ 2%— .
e () o ()

Taking ¢; = j for 1 < j < k, we have the following corollary.

Corollary 3. If k > 1 is an integer and A C [N] is a k-fold Sidon set, then

1Al < (%)m + O((EN)Y4).

In Theorem 2 and Corollary 3, the Landau symbols are with respect to N. That is,
we view k, ¢q,..., ¢, as being fixed, and N tending to infinity.

It is natural to ask if we can improve Corollary 3 if we make full use of the assumption
that A is a k-fold Sidon set. For example, the bound |A| < (N/3)Y/2 + O(N'*) holds
under the assumption that A C [IN] has only trivial solutions to ¢;(z1 — x3) = co(x3 — 24)
for each 1 < ¢; < ¢ < 3. A 3-fold Sidon set additionally has only trivial solutions to
2x1 4 229 = 323 + x4. Our argument does not capture this property. It is not known if
this additional assumption would improve the upper bound |A| < (N/3)Y/2 + O(NY4).

The method used by Lazebnik and Verstraéte to construct 2-fold Sidon sets is rather
robust. Using this method, we prove the following theorem.
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Theorem 4. There exist k distinct integers cq, ..., c, and infinitely many N, such that
there is a set A C Zy with
N1/2
A 5= = o))

and having only trivial solutions to c¢;(xq1 — x9) = ¢;(x3 — x4) for each 1 < i < j < k.

The next section contains the proof of Theorem 2. Section 3 contains the proof of
Theorem 4.

2 Proof of Theorem 2
For finite sets B, C' C Z, define
rp+c(z) = |{(b,c) :b+c=xz,be B,ce C}|

and

rg_c(z) = [{(b,c):b—c=x,b€ B,ce C}|.

The following useful lemma has appeared in the literature (see [3] or [9]).
Lemma 5. For any finite sets B,C C Z,

(1Bllc))?

|B+C| < |B||C| +ZTB—B(ZE)TC_0($). (3)

z#0

Proof. Observe ) _p. ~7pic(r) counts every ordered pair (b,c) € B x C exactly once
so that |B||C| =) cp.cTB+c(x). By the Cauchy-Schwarz inequality,

<|B||C|)2 _ (erB+C rpro(T
B+C| B+ C] = an (4)

Thesum Y, 7%, (2) counts 4-tuples (b, ¥, ¢, ') with b, b’ € B, ¢,¢ € C, and b+c = b'+.
The equation b+ ¢ = b + ¢’ is equivalent to b — b’ = ¢ — ¢ and so

ZTB-i-C ZTB B(z)re—c(z). (5)

Combining (4) and (5), we have

(Blcp? Z
<Y rp_p(@)ro—c(x) = |B||C|+ > rp_p(z)re_c(x)
|B+C| prs

which proves (3). O
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Before giving the proof of Theorem 2 we take a moment to describe some of ideas
of the proof. Suppose A C [N] is a set satisfying the hypothesis of Theorem 2. If
A:={cya:a € A}, then the k-fold Sidon property implies that

k
ZTCTAchA(y) g 1 (6)
r=1

for any y # 0. One may then apply Lemma 5 to ¢, A and the interval C' = {0,1,...,m—1}
for each 1 < r < k. An obstacle in this approach is the expression |c, A + C| that appears
in the denominator on the left hand side of (3). Since ¢, A+C C {1,2,...,¢,N +m —1},
we have |c, A + C| < ¢.N + m but this upper bound that is too large for our approach.
Instead of ¢, A, we will consider the sets B,; :=={z: ¢,z +i € A}, 0< i< ¢, — 1. We will
show that an analogue of (6) holds for the B, ;’s which, although not difficult, is one of
the most important parts of the proof. Additionally, we have that |B,; +C| < N/¢, +m
and this is what leads to a more effective application of Lemma 5.

Proof of Theorem 2. Let 1 < ¢; < ¢y < --+ < ¢ be k distinct integers. Let A C [N] be a
set with only trivial solutions to ¢;(x; — xg) =cj(xg —xy) for each 1 <i < j < k. Let

B,,={r:cx+ic A}

for 1 <r <kandO0<1i<c¢ — 1. Therefore,

cr—1 cr—1

|A|:Z|{a€A: a=1i (modc,)} = Z|Br1
=0

so by the Cauchy-Schwarz inequality,

cr—1 2 cr—1
AP = (z \Bmw) <o S B )
1=0 1=0

For any y # 0,
k cr—1
>0 e ) <L 5)
r=1 =0
To see this, suppose
Y=2=T1 — Ty =2T3 — T4 (9)

where x1,29 € B,; and x3,24 € By for some 1 < r;7/ < k, 1 < i < ¢ — 1, and
1 <4 < ¢ — 1. There are elements ay, as, az, ay € A such that

T +i=ai, CTy+i=ay, cpr3+i =as, and cyxy+i = ay.
Then (9) implies

1 _ 1 , 1 _ 1 ,
;ml — i) — C—T(a2 —i) = C—r,(a:s — 1) — C—TI(CM — 1),
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thus ¢ (a1 — as) = ¢.(az — aq). Since y # 0, we have a; # as and az # a4 and then we
would have a non trivial solution to the equation ¢,/ (z1 — x2) = ¢, (x3 — x4).

Let C ={0,1,...,m —1}. Forany 1 <r < kand 0 <i < ¢, — 1, the set B,; + C
is contained in the interval {0,1,...,|N/¢,| + m — 1}. This gives the trivial estimate
|B,; + C| < N/¢, + m. By Lemma 5 applied to B,.; and C,

|Bm-‘2m2

~ - < |By B _ .
N/c, +m | 7|m+ZTBr,Z B.,(y)rc—c(y)

y7#0
We sum this inequality over all 1 <r < kand 0 <7< ¢, — 1 to get

: 1 o1 k cr—1
mz;m;|3”’2 S ;;‘Br,ihﬂ,
k' cr—1
+ Z Z Z "'Byi~Br; (?J)TC—c(y)
y#0 r=1 i=0
< k|A|m+Zrc_C(y)

y#0
< m(k|A| +m).

From (7) and the previous inequality, we deduce that

k
1
2|A? — < k| A . 1
m>| Al T;N—i-crm m(k|A| +m) (10)

The left hand side of (10) is at least %. Therefore, ]‘\?fciﬁ < k|A| +m, and so

|APkm < (N + cpm)(m + k| Al).

We complete the square and use the inequality (z + y)? < 222 + 2y? to obtain

N )\ \? N cm N )\’
Al— | —+—= < —+ — — 4+ =
(’ | (2m+2>> * +(2m+2

/
>
e

Taking square roots and using the inequality /1 + x

to get
N\ V2 cem Nk kc? N ¢
Al < (M) T (ppam  NE kG) NG
4 < ) <+ N +2m2+2]\7>+ m+
+

N\ 2 cEm N3/2|1/2 k:l/zcz N ¢
- ( ) TEENE T o TaNz Ton T
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Take m = [(N3/4/€1/4)/C;1f/21 to get |A| < (%)1/2

proof of Theorem 2.

+ O((c2N/k)**). This completes the

]

3 Proof of Theorem 4

Let £ > 2 be an integer. Let p be a prime, and let M > 1 be a large integer. Let r be

any prime with r > ME. Let 4 > 1 be an integer, and set t = 7 and ¢ = p’.

We will prove that for ¢; = p/~! for j = 1,...k there exists a set A C Z,_; with
Al > 2 (1- ) — (p* — 1)(M — 1) and having only trivial solutions to

Ty — T2 = Pj_l(f?, - x4)

for 1 < j < k. This proves Theorem 4 because as i tends to infinity, the term { (1 — %) is
the dominant term. M can be taken as large as we want, and (p* — 1)(M — 1) is constant
with respect to 7.

Let 0 be a generator of the cyclic group Fy,. Bose and Chowla [2] proved that the set

Clq,0)={a€Zp,:0"—0cF,}
is a Sidon set in Z,2_;. Lindstrém [7] proved

B(q,0) ={b€Zp_,:60"+0" =1}
is a translate of C(q, #) and is therefore a Sidon set.

Lemma 6. The map x — px is an injection from Zyp_y to Zgp_y that maps B(q,0) to
B(q.0).

Proof. The map x + px is 1-to-1 since p is relatively prime to ¢ — 1. If b € B(q, ), then
1 = (917 + gqb)p — grb 4 gapb)
so pb € B(q,0). m

Let 7 : B(q,0) — B(q,0) be the permutation m(b) = pb. As in [6], we use the cycles
of 7 to define A. Let ¢ = (by,...,b,) be a cycle of w. If m < k, then remove all elements
of o from B(q,#). If m > k, then remove all b; in ¢ for which j is not divisible by k. Do
this for each cycle of 7. Let A be the resulting subset of B(q,#).

Lemma 7. For each c € {1,p,p%, ..., p"" 1}, A has only trivial solutions to

r1 — Tg = c(x3 — 14).
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Proof. Suppose ay,as,as3,a4 € A and a; — ay = p’(az — a4) for some 0 < j < k— 1. By
Lemma 6, there are elements bs, by € B(q,0) such that p’az = b3 and p’ay = by. This
gives a3 — ag = by — by. Since B(q, ) is a Sidon set, either a; = ag, by = by or a; = bs,
Qa9 = b4.

If a; = ap and by = by, then a3 = a4 and the solution (ay, as, ag, ay) is trivial. Suppose
a; = by and ay = bs. This implies bs € A, so both p’as and az are in A. This contradicts
the way in which A was constructed. O

Lemma 8. |A] > 2 (1— ) — (" — 1)(M —1).

Proof. In order to obtain a lower bound on |A|, we need to estimate the number of cycles
of m that are short. For instance, if all cycles of m have length less than &, then |A| = 0.
For a cycle o of m with length mk > Mk, we delete at most m(k — 1) elements from
B(q,0) and keep at least m — 1 elements.

We estimate the number of cycles of length at most Mk —1. Let 0 = (b, pb, ..., p° D)
be a cycle of 7 of length e where e < Mk — 1. The integer e is the smallest positive

integer such that p°» = b(mod ¢* — 1). This is the same as saying that the order of p in
-1

m . Slnce

the multiplicative group of units Z; is e where n =

pr—1=0p"-1Dp*+1) =(-1)p" +1)

we have p* = 1(mod ¢*> — 1), so e must divide 4¢ = 4r'. Since r is prime and r > Mk, e
cannot divide r, so e must divide 4. To count the number of cycles of m with length at most
Mk —1, it is enough to count the elements x € Z,2_;\{0} such that p*z = z(mod ¢* —1).
This follows from the fact that if e € {1,2} and p°c = x(mod ¢*> — 1), then plz =
x(mod ¢ —1). The number of solutions to this congruence is ged(p* —1,¢* — 1) < p* — 1.
Therefore, there are at most p* — 1 cycles of 7 of length at most Mk — 1. For a cycle of
length at least Mk, the proportion of elements of the cycle that are put into A is at least

AL (the function f(z) = £ is increasing provided k > 0). Since |B(q, )| = ¢,

A1 (- 6t -0k () = 2 (1= 4 ) - 6 - Do -,

Theorem 4 follows from Lemmas 7 and 8.

4 Concluding Remarks

The most important open problem concerning k-fold Sidon sets is an answer to Conjec-
ture 1. The case k = 3 is particularly interesting. A 3-fold Sidon set A C [N] with
|A| > c¢N'/? is known to imply the existence of a graph with ¢; N vertices, co N*/? edges,
and every edge is in exactly one cycle of length four [11].

Another problem is to determine the maximum size of a 2-fold Sidon set in Zy or
[N]. Let Si(N) be the maximum size of a k-fold Sidon set in Zy. For any integer t > 1,
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there are 2-fold Sidon sets A C Zy, N = 227" 4 2% 4+ 1, with |A| > INYZ — 3 (see [6]).
Theorem 2 gives an upper bound of (N/2)/2 + O(N'4) so

L, S(N) _ 1
o SV TN S g

It would be interesting to determine the above limit. In the case of Sidon sets, we have

lim supy_,o0 5;\1,&]/\;) =1 by [5] and [10].
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