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Abstract

Let k > 1 be an integer. A set A ⊂ Z is a k-fold Sidon set if A has only
trivial solutions to each equation of the form c1x1 + c2x2 + c3x3 + c4x4 = 0 where
0 6 |ci| 6 k, and c1 + c2 + c3 + c4 = 0. We prove that for any integer k > 1, a k-fold
Sidon set A ⊂ [N ] has at most (N/k)1/2 + O((Nk)1/4) elements. Indeed we prove
that given any k positive integers c1 < · · · < ck, any set A ⊂ [N ] that contains only
trivial solutions to ci(x1 − x2) = cj(x3 − x4) for each 1 6 i 6 j 6 k, has at most
(N/k)1/2+O((c2kN/k)1/4) elements. On the other hand, for any k > 2 we can exhibit
k positive integers c1, . . . , ck and a set A ⊂ [N ] with |A| > ( 1k +o(1))N1/2, such that
A has only trivial solutions to ci(x1 − x2) = cj(x3 − x4) for each 1 6 i 6 j 6 k.
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1 Introduction

Let Γ be an abelian group. A set A ⊂ Γ is a Sidon set if a + b = c + d and a, b, c, d ∈
A implies {a, b} = {c, d}. Sidon sets in Z and in the group ZN := Z/NZ have been
studied extensively. Erdős and Turán [5] proved that a Sidon set A ⊂ [N ] has at most
N1/2 + O(N1/4) elements. Constructions of Singer [10], Bose and Chowla [2], and Ruzsa
[9] show that this upper bound is asymptotically best possible. It is a prize problem of
Erdős [4] to determine whether or not the error term is bounded. For more on Sidon sets
we recommend O’Bryant’s survey [8].

Let
c1x1 + · · ·+ crxr = 0 (1)

be an integer equation where ci ∈ Z\{0}, and c1 + · · · + cr = 0. Call such an equation
an invariant equation. A solution (x1, . . . , xr) ∈ Zr to (1) is trivial if there is a partition
of {1, . . . , r} into nonempty sets T1, . . . , Tm such that for every 1 6 i 6 m, we have
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∑
j∈Ti

cj = 0, and xj1 = xj2 whenever j1, j2 ∈ Ti. A natural extremal problem is to
determine the maximum size of a set A ⊂ [N ] with only trivial solutions to (1). This
problem was investigated in detail by Ruzsa [9]. One of the important open problems from
[9] is the genus problem. Given an invariant equation E : c1x1 + · · ·+ crxr = 0, the genus
g(E) is the largest integer m such that there is a partition of {1, . . . , r} into nonempty sets
T1, . . . , Tm, such that

∑
j∈Ti

cj = 0 for 1 6 i 6 m. Ruzsa proved that if E is an invariant

equation and A ⊂ [N ] has only trivial solutions to E, then |A| 6 cEN
1/g(E). Here cE

is a positive constant depending only on the equation E. Determining if there are sets
A ⊂ [N ] with |A| = N1/g(E)−o(1) and having only trivial solutions to E is open for most
equations. In particular, the genus problem is open for the equation 2x1 +2x2 = 3x3 +x4.
This equation has genus 1 but the best known construction [9] gives a set A ⊂ [N ] with
|A| > cN1/2 where c > 0 is a positive constant. More generally, Ruzsa showed that for
any four variable equation E : c1x1 + c2x2 = c3x3 + c4x4 with c1 + c2 = c3 + c4 and ci ∈ N,
there is a set A ⊂ [N ] with only trivial solutions to E and |A| > cEN

1/2−o(1). In this
paper we consider special types of four variable invariant equations.

Let k > 1 be an integer. A set A ⊂ Z is a k-fold Sidon set if A has only trivial
solutions to each equation of the form

c1x1 + c2x2 + c3x3 + c4x4 = 0

where 0 6 |ci| 6 k, and c1 + c2 + c3 + c4 = 0. A 1-fold Sidon set is a Sidon set. A 2-fold
Sidon set has only trivial solutions to each of the equations

x1 + x2 − x3 − x4 = 0, 2x1 + x2 − 2x3 − x4 = 0, 2x1 − x2 − x3 = 0.

One can also define k-fold Sidon sets in ZN . We must add the condition that N is relatively
prime to all integers in the set {1, 2, . . . , k}. The reason for this is that if a coefficient
ci ∈ {1, 2, . . . , k} has a common factor with N , then in ZN one could have ci(a1− a2) = 0
with a1 6= a2. In this case, if |A| > 3, we can choose a3 ∈ A\{a1, a2}, and obtain the
nontrivial solution (x1, x2, x3, x4) = (a1, a2, a3, a3) to the equation ci(x1−x2)+x3−x4 = 0.

Lazebnik and Verstraëte [6] were the first to define k-fold Sidon sets. They conjectured
the following.

Conjecture 1 (Lazebnik, Verstraëte [6]). For any integer k > 3, there is a positive
constant ck > 0 such that for all integers N > 1, there is a k-fold Sidon set A ⊂ [N ] with
|A| > ckN

1/2.

This conjecture is still open. Lazebnik and Verstraëte proved that for infinitely many
N , there is a 2-fold Sidon set A ⊂ ZN with |A| > 1

2
N1/2 − 3. Axenovich [1] and Ver-

straëte (unpublished) observed that one can adapt Ruzsa’s construction for four variable
equations (Theorem 7.3, [9]) to construct k-fold Sidon sets A ⊂ [N ] or A ⊂ ZN with
|A| > ckN

1/2e−ck
√
logN for any k > 3. An affirmative answer to Conjecture 1, even in the

case when k = 3, would have applications to hypergraph Turán problems [6] and extremal
graph theory [11].
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Since any k-fold Sidon set is a Sidon set, the trivial upper bound |A| 6
√
N − 3/4+1/2

for a Sidon set A ⊂ ZN , and the Erdős-Turán bound |A| 6 N1/2 +O(N1/4) for any Sidon
set A ⊂ [N ], also hold for k-fold Sidon sets. We will obtain better upper bounds for k-fold
Sidon sets. Instead of considering all the possible equations c1x1 + c2x2 + c3x3 + c4x4 = 0
with c1 + c2 + c3 + c4 = 0, we will take advantage only of the equations of the form

c1(x1 − x2) = c2(x3 − x4).

For any c1, . . . , ck with (ci, N) = 1, if A ⊂ ZN contains only trivial solutions to
ci(x1 − x2) = cj(x3 − x4) for each 1 6 i 6 j 6 k, then

|A| 6
√
N − 1

k
+

1

4
+

1

2
. (2)

To see this, consider all elements of the form ci(x − y) where 1 6 i 6 k, and x 6= y are
elements of A. All of these elements are distinct and nonzero. Therefore, k|A|(|A| − 1) 6
N − 1 which is equivalent to (2).

The short counting argument used to obtain (2) does not work in Z. Using a more
sophisticated argument, we can show that a bound similar to (2) does hold in Z.

Theorem 2. Let k > 1 be an integer and 1 6 c1 < c2 < · · · < ck be a set of k distinct
integers. If A ⊂ [N ] is a set with only trivial solutions to ci(x1 − x2) = cj(x3 − x4) for
each 1 6 i 6 j 6 k, then

|A| 6
(
N

k

)1/2

+O

((
c2kN

k

)1/4
)
.

Taking cj = j for 1 6 j 6 k, we have the following corollary.

Corollary 3. If k > 1 is an integer and A ⊂ [N ] is a k-fold Sidon set, then

|A| 6
(
N

k

)1/2

+O((kN)1/4).

In Theorem 2 and Corollary 3, the Landau symbols are with respect to N . That is,
we view k, c1, . . . , ck as being fixed, and N tending to infinity.

It is natural to ask if we can improve Corollary 3 if we make full use of the assumption
that A is a k-fold Sidon set. For example, the bound |A| 6 (N/3)1/2 + O(N1/4) holds
under the assumption that A ⊂ [N ] has only trivial solutions to c1(x1− x2) = c2(x3− x4)
for each 1 6 c1 6 c2 6 3. A 3-fold Sidon set additionally has only trivial solutions to
2x1 + 2x2 = 3x3 + x4. Our argument does not capture this property. It is not known if
this additional assumption would improve the upper bound |A| 6 (N/3)1/2 +O(N1/4).

The method used by Lazebnik and Verstraëte to construct 2-fold Sidon sets is rather
robust. Using this method, we prove the following theorem.
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Theorem 4. There exist k distinct integers c1, . . . , ck and infinitely many N , such that
there is a set A ⊂ ZN with

|A| > N1/2

k
(1− o(1))

and having only trivial solutions to ci(x1 − x2) = cj(x3 − x4) for each 1 6 i 6 j 6 k.

The next section contains the proof of Theorem 2. Section 3 contains the proof of
Theorem 4.

2 Proof of Theorem 2

For finite sets B,C ⊂ Z, define

rB+C(x) = |{(b, c) : b+ c = x, b ∈ B, c ∈ C}|

and
rB−C(x) = |{(b, c) : b− c = x, b ∈ B, c ∈ C}|.

The following useful lemma has appeared in the literature (see [3] or [9]).

Lemma 5. For any finite sets B,C ⊂ Z,

(|B||C|)2

|B + C|
6 |B||C|+

∑
x 6=0

rB−B(x)rC−C(x). (3)

Proof. Observe
∑

x∈B+C rB+C(x) counts every ordered pair (b, c) ∈ B × C exactly once
so that |B||C| =

∑
x∈B+C rB+C(x). By the Cauchy-Schwarz inequality,

(|B||C|)2

|B + C|
=

(∑
x∈B+C rB+C(x)

)2
|B + C|

6
∑
x

r2B+C(x). (4)

The sum
∑

x r
2
B+C(x) counts 4-tuples (b, b′, c, c′) with b, b′ ∈ B, c, c′ ∈ C, and b+c = b′+c′.

The equation b+ c = b′ + c′ is equivalent to b− b′ = c′ − c and so∑
x

r2B+C(x) =
∑
x

rB−B(x)rC−C(x). (5)

Combining (4) and (5), we have

(|B||C|)2

|B + C|
6
∑
x

rB−B(x)rC−C(x) = |B||C|+
∑
x 6=0

rB−B(x)rC−C(x)

which proves (3).
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Before giving the proof of Theorem 2 we take a moment to describe some of ideas
of the proof. Suppose A ⊂ [N ] is a set satisfying the hypothesis of Theorem 2. If
crA := {cra : a ∈ A}, then the k-fold Sidon property implies that

k∑
r=1

rcrA−crA(y) 6 1 (6)

for any y 6= 0. One may then apply Lemma 5 to crA and the interval C = {0, 1, . . . ,m−1}
for each 1 6 r 6 k. An obstacle in this approach is the expression |crA+C| that appears
in the denominator on the left hand side of (3). Since crA+C ⊂ {1, 2, . . . , crN +m− 1},
we have |crA + C| 6 crN + m but this upper bound that is too large for our approach.
Instead of crA, we will consider the sets Br,i := {x : crx+ i ∈ A}, 0 6 i 6 cr − 1. We will
show that an analogue of (6) holds for the Br,i’s which, although not difficult, is one of
the most important parts of the proof. Additionally, we have that |Br,i +C| 6 N/cr +m
and this is what leads to a more effective application of Lemma 5.

Proof of Theorem 2. Let 1 6 c1 < c2 < · · · < ck be k distinct integers. Let A ⊂ [N ] be a
set with only trivial solutions to ci(x1 − x2) = cj(x3 − x4) for each 1 6 i 6 j 6 k. Let

Br,i = {x : crx+ i ∈ A}

for 1 6 r 6 k and 0 6 i 6 cr − 1. Therefore,

|A| =
cr−1∑
i=0

|{a ∈ A : a ≡ i (mod cr)}| =
cr−1∑
i=0

|Br,i|

so by the Cauchy-Schwarz inequality,

|A|2 =

(
cr−1∑
i=0

|Br,i|

)2

6 cr

cr−1∑
i=0

|Br,i|2. (7)

For any y 6= 0,
k∑

r=1

cr−1∑
i=0

rBr,i−Br,i
(y) 6 1. (8)

To see this, suppose
y = x1 − x2 = x3 − x4 (9)

where x1, x2 ∈ Br,i and x3, x4 ∈ Br′,i′ for some 1 6 r, r′ 6 k, 1 6 i 6 cr − 1, and
1 6 i′ 6 cr′ − 1. There are elements a1, a2, a3, a4 ∈ A such that

crx1 + i = a1, crx2 + i = a2, cr′x3 + i′ = a3, and cr′x4 + i′ = a4.

Then (9) implies

1

cr
(a1 − i)−

1

cr
(a2 − i) =

1

cr′
(a3 − i′)−

1

cr′
(a4 − i′),
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thus cr′(a1 − a2) = cr(a3 − a4). Since y 6= 0, we have a1 6= a2 and a3 6= a4 and then we
would have a non trivial solution to the equation cr′(x1 − x2) = cr(x3 − x4).

Let C = {0, 1, . . . ,m − 1}. For any 1 6 r 6 k and 0 6 i 6 cr − 1, the set Br,i + C
is contained in the interval {0, 1, . . . , bN/crc + m − 1}. This gives the trivial estimate
|Br,i + C| 6 N/cr +m. By Lemma 5 applied to Br,i and C,

|Br,i|2m2

N/cr +m
6 |Br,i|m+

∑
y 6=0

rBr,i−Br,i
(y)rC−C(y).

We sum this inequality over all 1 6 r 6 k and 0 6 i 6 cr − 1 to get

m2

k∑
r=1

1

N/cr +m

cr−1∑
i=0

|Br,i|2 6
k∑

r=1

cr−1∑
i=0

|Br,i|m

+
∑
y 6=0

k∑
r=1

cr−1∑
i=0

rBr,i−Br,i
(y)rC−C(y)

6 k|A|m+
∑
y 6=0

rC−C(y)

6 m(k|A|+m).

From (7) and the previous inequality, we deduce that

m2|A|2
k∑

r=1

1

N + crm
6 m(k|A|+m). (10)

The left hand side of (10) is at least |A|
2km2

N+ckm
. Therefore, |A|

2km
N+ckm

6 k|A|+m, and so

|A|2km 6 (N + ckm)(m+ k|A|).

We complete the square and use the inequality (x+ y)2 6 2x2 + 2y2 to obtain(
|A| −

(
N

2m
+
ck
2

))2

6
N

k
+
ckm

k
+

(
N

2m
+
ck
2

)2

6
N

k
+
ckm

k
+

N2

2m2
+
c2k
2

=
N

k

(
1 +

ckm

N
+
Nk

2m2
+
kc2k
2N

)
.

Taking square roots and using the inequality
√

1 + x 6 1 + x for x > 0, we solve for |A|
to get

|A| 6

(
N

k

)1/2(
1 +

ckm

N
+
Nk

2m2
+
kc2k
2N

)
+

N

2m
+
ck
2

=

(
N

k

)1/2

+
ckm

k1/2N1/2
+
N3/2k1/2

2m2
+
k1/2c2k
2N1/2

+
N

2m
+
ck
2
.
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Take m = d(N3/4k1/4)/c
1/2
k e to get |A| 6

(
N
k

)1/2
+ O((c2kN/k)1/4). This completes the

proof of Theorem 2.

3 Proof of Theorem 4

Let k > 2 be an integer. Let p be a prime, and let M > 1 be a large integer. Let r be
any prime with r > Mk. Let i > 1 be an integer, and set t = ri and q = pt.

We will prove that for cj = pj−1 for j = 1, . . . k there exists a set A ⊂ Zq2−1 with
|A| > q

k

(
1− 1

M

)
− (p4 − 1)(M − 1) and having only trivial solutions to

x1 − x2 = pj−1(x3 − x4)

for 1 6 j 6 k. This proves Theorem 4 because as i tends to infinity, the term q
k

(
1− 1

M

)
is

the dominant term. M can be taken as large as we want, and (p4− 1)(M − 1) is constant
with respect to i.

Let θ be a generator of the cyclic group F∗q2 . Bose and Chowla [2] proved that the set

C(q, θ) = {a ∈ Zq2−1 : θa − θ ∈ Fq}

is a Sidon set in Zq2−1. Lindström [7] proved

B(q, θ) = {b ∈ Zq2−1 : θb + θqb = 1}

is a translate of C(q, θ) and is therefore a Sidon set.

Lemma 6. The map x 7→ px is an injection from Zq2−1 to Zq2−1 that maps B(q, θ) to
B(q, θ).

Proof. The map x 7→ px is 1-to-1 since p is relatively prime to q2− 1. If b ∈ B(q, θ), then

1 = (θb + θqb)p = θpb + θq(pb)

so pb ∈ B(q, θ).

Let π : B(q, θ) → B(q, θ) be the permutation π(b) = pb. As in [6], we use the cycles
of π to define A. Let σ = (b1, . . . , bm) be a cycle of π. If m < k, then remove all elements
of σ from B(q, θ). If m > k, then remove all bj in σ for which j is not divisible by k. Do
this for each cycle of π. Let A be the resulting subset of B(q, θ).

Lemma 7. For each c ∈ {1, p, p2, . . . , pk−1}, A has only trivial solutions to

x1 − x2 = c(x3 − x4).
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Proof. Suppose a1, a2, a3, a4 ∈ A and a1 − a2 = pj(a3 − a4) for some 0 6 j 6 k − 1. By
Lemma 6, there are elements b3, b4 ∈ B(q, θ) such that pja3 = b3 and pja4 = b4. This
gives a1 − a2 = b3 − b4. Since B(q, θ) is a Sidon set, either a1 = a2, b3 = b4 or a1 = b3,
a2 = b4.

If a1 = a2 and b3 = b4, then a3 = a4 and the solution (a1, a2, a3, a4) is trivial. Suppose
a1 = b3 and a2 = b4. This implies b3 ∈ A, so both pja3 and a3 are in A. This contradicts
the way in which A was constructed.

Lemma 8. |A| > q
k

(
1− 1

M

)
− (p4 − 1)(M − 1).

Proof. In order to obtain a lower bound on |A|, we need to estimate the number of cycles
of π that are short. For instance, if all cycles of π have length less than k, then |A| = 0.
For a cycle σ of π with length mk > Mk, we delete at most m(k − 1) elements from
B(q, θ) and keep at least m− 1 elements.

We estimate the number of cycles of length at most Mk−1. Let σ = (b, pb, . . . , pe−1b)
be a cycle of π of length e where e 6 Mk − 1. The integer e is the smallest positive
integer such that peb ≡ b(mod q2 − 1). This is the same as saying that the order of p in

the multiplicative group of units Z∗n is e where n = q2−1
gcd(b,q2−1) . Since

p4t − 1 = (p2t − 1)(p2t + 1) = (q2 − 1)(p2t + 1)

we have p4t ≡ 1(mod q2 − 1), so e must divide 4t = 4ri. Since r is prime and r > Mk, e
cannot divide r, so e must divide 4. To count the number of cycles of π with length at most
Mk−1, it is enough to count the elements x ∈ Zq2−1\{0} such that p4x ≡ x(mod q2−1).
This follows from the fact that if e ∈ {1, 2} and pex ≡ x(mod q2 − 1), then p4x ≡
x(mod q2− 1). The number of solutions to this congruence is gcd(p4− 1, q2− 1) 6 p4− 1.
Therefore, there are at most p4 − 1 cycles of π of length at most Mk − 1. For a cycle of
length at least Mk, the proportion of elements of the cycle that are put into A is at least
M−1
Mk

(the function f(x) = x−1
xk

is increasing provided k > 0). Since |B(q, θ)| = q,

|A| >
(
q − (p4 − 1)Mk

)(M − 1

Mk

)
=
q

k

(
1− 1

M

)
− (p4 − 1)(M − 1).

Theorem 4 follows from Lemmas 7 and 8.

4 Concluding Remarks

The most important open problem concerning k-fold Sidon sets is an answer to Conjec-
ture 1. The case k = 3 is particularly interesting. A 3-fold Sidon set A ⊂ [N ] with
|A| > cN1/2 is known to imply the existence of a graph with c1N vertices, c2N

3/2 edges,
and every edge is in exactly one cycle of length four [11].

Another problem is to determine the maximum size of a 2-fold Sidon set in ZN or
[N ]. Let Sk(N) be the maximum size of a k-fold Sidon set in ZN . For any integer t > 1,
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there are 2-fold Sidon sets A ⊂ ZN , N = 22t+1
+ 22t + 1, with |A| > 1

2
N1/2 − 3 (see [6]).

Theorem 2 gives an upper bound of (N/2)1/2 +O(N1/4) so

1

2
6 lim sup

N→∞

S2(N)

N1/2
6

1

21/2
.

It would be interesting to determine the above limit. In the case of Sidon sets, we have
lim supN→∞

S1(N)

N1/2 = 1 by [5] and [10].
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[5] P. Erdős, P. Turán, On a problem of Sidon in additive number theory, and on some
related results, Journal of the London Mathematical Society, 16 (1941).
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[11] C. Timmons, J. Verstraëte, A counterexample to sparse removal, submitted.
arXiv:1312.2994.

the electronic journal of combinatorics 21(4) (2014), #P4.12 9

http://arxiv.org/abs/1312.2994

	Introduction
	Proof of Theorem 2
	Proof of Theorem 4
	Concluding Remarks

