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Abstract

We revisit and further explore the celebrated Combinatorial Nullstellensätze of
N. Alon in several different directions.

Notation and Terminology: Let N be the non-negative integers. For d = (d1, . . . , dn),
e = (e1, . . . , en) ∈ Nn, we write d 6 e if di 6 ei for all 1 6 i 6 n. We write d < e if
d 6 e and

∑n
i=1 di <

∑n
i=1 ei. Our rings are commutative with multiplicative identity.

A domain is a ring R in which a, b ∈ R \ {0} =⇒ ab 6= 0. A ring R is reduced if
for all x ∈ R, n ∈ Z+, we have xn = 0 =⇒ x = 0. We abbreviate the polynomial ring
R[t1, . . . , tn] by R[t].

1 Introduction

1.1 The Combinatorial Nullstellensätze

This note concerns the following celebrated results of N. Alon.

Theorem 1. Let F be a field, let X1, . . . , Xn ⊂ F be nonempty and finite, and X =∏n
i=1Xi. For 1 6 i 6 n, put

ϕi(ti) =
∏

xi∈Xi

(ti − xi) ∈ F [ti] ⊂ F [t]. (1)

Let f ∈ F [t] be a polynomial which vanishes on all the common zeros of ϕ1, . . . , ϕn: that
is, for all x ∈ F n, if ϕ1(x) = . . . = ϕn(x) = 0, then f(x) = 0. Then:

∗A non-final version of this paper was initially published in error. This is the correct final version as
at Oct 16, 2014. The editors apologise to our readers for any confusion this may cause.

the electronic journal of combinatorics 21(4) (2014), #P4.15 1



a) (Combinatorial Nullstellensatz I, or CNI) There are q1, . . . , qn ∈ F [t] such that

f(t) =
n∑

i=1

qi(t)ϕi(t). (2)

b) (Supplementary Relations) Let R be the subring of F generated by the coefficients of
f and ϕ1, . . . , ϕn. Then the q1, . . . , qn may be chosen to lie in R[t] and satisfy

∀1 6 i 6 n, deg qi 6 deg f − degϕi. (3)

Theorem 2 (Combinatorial Nullstellensatz II, or CNII). Let F be a field, n ∈ Z+,
d1, . . . , dn ∈ N, and let f ∈ F [t] = F [t1, . . . , tn]. We suppose:

(i) deg f 6 d1 + . . .+ dn.

(ii) The coefficient of td11 · · · tdnn in f is nonzero.

Then, for any subsets X1, . . . , Xn of F with #Xi = di + 1 for 1 6 i 6 n, there is
x = (x1, . . . , xn) ∈ X =

∏n
i=1Xi such that f(x) 6= 0.

Alon used his Combinatorial Nullstellensätze to derive various old and new results in
number theory and combinatorics, starting with Chevalley’s Theorem that a homogeneous
polynomial of degree d in at least d+ 1 variables over a finite field has a nontrivial zero.
The use of polynomial methods has burgeoned to a remarkable degree in recent years. We
recommend the recent survey [Ta14], which lucidly describes the main techniques but also
captures the sense of awe and excitement at the extent to which these very simple ideas
have cracked open the field of combinatorial number theory and whose range of future
applicability seems almost boundless.

One easily deduces CNII from CNI and the Supplementary Relations, but (apparently)
not conversely. For appplications in combinatorics and number theory, CNII seems more
useful: [Al99] organizes its applications into seven different sections, and only in the
last is CNI applied. Most later works simply refer to Theorem 2 as the Combinatorial
Nullstellensatz. We find this trend somewhat unfortunate. On the one hand, CNI is
stronger and does have some applications in its own right. On the other hand, it is
CNI which is really a Nullstellensatz in the sense of algebraic geometry, and we find this
geometric connection interesting and suggestive.

Recently attention has focused on the following sharpening of CNII due to Schauz,
Lason and Karasev-Petrov [Sc08, Thm. 3.2], [La10, Thm. 3], [KP12, Thm. 4].

Theorem 3 (Coefficient Formula). Let F be a field, and let f ∈ F [t]. Let d1, . . . , dn ∈ N
be such that deg f 6 d1 + . . . + dn. For each 1 6 i 6 n, let Xi ⊂ F with #Xi = di + 1,
and let X =

∏n
i=1Xi. Let d = (d1, . . . , dn), and let cd be the coefficient of td11 · · · tdnn in f .

Then

cd =
∑

x=(x1,...,xn)∈X

f(x)∏n
i=1 ϕ

′
i(xi)

. (4)
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In this note we revisit and further explore these theorems, in three different ways.

• In §2 we improve CNI to a full Nullstellensatz for polynomial functions on arbitrary
finite subsets X ⊂ F n over a field F (Theorem 7). When F = Fq and X = Fn

q , we
recover the Finite Field Nullstellensatz of G. Terjanian (Corollary 8).

• CNI and CNII hold with F replaced by any domain R. Schauz showed that Theo-
rem 3 holds over any ring R so long as X satisfies “Condition (D)”: no two distinct
elements of any Xi differ by a zero-divisor. Moreover, one can view Alon’s proof of
CNI and CNII as a restricted variable analogue of Chevalley’s proof of Chevalley’s
Theorem, and Schauz’s work shows that one can do this over any ring with Con-
dition (D) in hand. We do so in §3: following Chevalley, we establish versions of
Theorems 1, 2 and 3 over any ring. It turns out that Condition (D) is necessary
and sufficient for Theorem 1 to hold. On the other hand, if we clear denominators
in (4) we get a formula which is meaningful even in the absence of Condition (D).
This Integral Coefficient Formula (Theorem 18b)) follows by “the permanence of
algebraic identities”. We close up this circle of ideas by establishing a Restricted
Variable Chevalley-Warning Theorem (Theorem 19), a refinement of the Re-
stricted Variable Chevalley Theorem [Sc08], [Br11] which is complementary to the
restricted variable version of Warning’s Second Theorem [CFS14].

• In §4 we further analyze the evaluation map from polynomials to functions on an
arbitrary subset X ⊂ Rn for an arbitrary ring. We aim to show that the (per-
haps rather arid-looking) formalism of a restricted variable Nullstellensatz leads to
interesting open problems in polynomial interpolation over commutative rings.

2 A Nullstellensatz for Finitely Restricted Polyno-

mial Functions

2.1 Alon’s Nullstellensatz versus Hilbert’s Nullstellensatz

The prospect of improving Theorem 1 as a Nullstellensatz has not been explored, perhaps
because the notion of a Nullstellensatz, though seminal in algebra and geometry, is less
familiar to researchers in combinatorics. But it was certainly familiar to Alon, who began
[Al99] by recalling the following result.

Theorem 4 (Hilbert’s Nullstellensatz). Let F be an algebraically closed field, let
g1, . . . , gm ∈ F [t], and let f ∈ F [t] be a polynomial which vanishes on all the common
zeros of g1, . . . , gm. Then there is k ∈ Z+ and q1, . . . , qm ∈ F [t] such that

fk =
m∑
i=1

qigi.

Let us compare Theorems 1 and 4. They differ in the following points:
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• In Theorem 1, F can be any field. In Hilbert’s Nullstellensatz, F must be al-
gebraically closed. Really must: if not, there is a nonconstant polynomial g(t1)
without roots in F ; taking m = 1, g1 = g and f = 1, the conclusion fails.

• In CNI, the conclusion is that f itself is a linear combination of the ϕi’s with
polynomial coefficients, but in Hilbert’s Nullstellensatz we must allow taking a power
of f . Really must: e.g. take k ∈ Z+, m = 1, g1 = tk1 and f = t1.

• The Supplementary Relations give upper bounds on the degrees of the polynomials
qi: they make CNI effective. Hilbert’s Nullstellensatz is not effective. Effective
versions have been given by Brownawell [Br87], Kollár [Ko88] and others, but their
bounds are much more complicated than the ones in Theorem 1.

• In Theorem 1 the ϕi’s are extremely restricted. On the other hand, in Hilbert’s
Nullstellensatz the gi’s can be any set of polynomials. Thus Theorem 4 is a full
Nullstellensatz, whereas Theorem 1 is a partial Nullstellensatz.

We will promote Theorem 1 to a full Nullstellensatz for all finite subsets.

2.2 The Restricted Variable Formalism

For a set Z, let 2Z be its power set. For a ring R, let I(R) be the set of ideals of
R. For a subset J of a ring R, let 〈J〉 be the ideal of R generated by J and let
rad J = {f ∈ R | fk ∈ 〈J〉 for some k ∈ Z+}. An ideal J is radical if J = rad J .

Let R be a ring, and let X ⊂ Rn. For x ∈ X, f ∈ R[t], we put

I(x) = {f ∈ R[t] | f(x) = 0},

VX(f) = {x ∈ X | f(x) = 0}.

When R is an algebraically closed field and X ⊂ Rn is Zariski-closed (c.f. §4.2), this is
the usual connection between subsets of an affine variety and its coordinate ring. We will
see that the case of R any field and X finite is even better behaved. In §4 we return to
the general case and find some new phenomena.

Put V = VRn . We may extend I and VX to maps on power sets as follows:

I : 2X → 2R[t], A 7→ I(A) =
⋂
a∈A

I(a) = {f ∈ R[t] | ∀a ∈ A, f(a) = 0},

VA : 2R[t] → 2X , J 7→ VA(J) =
⋂
f∈J

VA(f) = {a ∈ A | ∀f ∈ J, f(a) = 0}.

In fact I(2X) ⊂ I(R[t]) and ∀J ⊂ R[t], V (J) = V (〈J〉). Moreover we have

A1 ⊂ A2 ⊂ X =⇒ I(A1) ⊃ I(A2),
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J1 ⊂ J2 ⊂ F [t] =⇒ VA(J1) ⊃ VA(J2),

hence also
A1 ⊂ A2 ⊂ X =⇒ VX(I(A1)) ⊂ VX(I(A2)),

J1 ⊂ J2 ⊂ R[t] =⇒ I(VX(J1)) ⊂ I(VX(J2)).

We have X = VX(0), so

∀J ⊂ R[t], I(VX(J)) ⊃ I(VX(0)) = I(X).

2.3 The Finitesatz

Lemma 5. a) Suppose R is a domain. For all ideals J1, . . . , Jm of R[t], we have

VX(J1 · · · Jm) =
m⋃
i=1

VX(Ji).

b) Suppose R is reduced. Then for all A ⊂ Rn, I(A) is a radical ideal.
c) If R is reduced, then for all J ⊂ R[t],

I(VX(J)) ⊃ rad(J + I(X)) ⊃ rad J + I(X) ⊃ J + I(X). (5)

Proof. a) We immediately reduce to the case m = 2. Since J1J2 ⊂ Ji for i = 1, 2,
VX(J1J2) ⊃ VX(Ji) for i = 1, 2, thus VX(J1J2) ⊃ VX(J1) ∪ VX(J2). Now let x ∈ X \
(VX(J1) ∪ VX(J2)). For i = 1, 2 there is fi ∈ Ji with fi(x) 6= 0. Since R is a domain,
f1(x)f2(x) 6= 0, so x /∈ VX(J1J2).

b) If f ∈ R[t] and fk ∈ I(A) for some k ∈ Z+, then for all x ∈ A we have f(x)k = 0.
Since R is reduced, this implies f(x) = 0 for all x ∈ A and thus f ∈ I(A).

c) I(VX(J)) = I(X ∩ V (J)) is a radical ideal containing both I(X) and I(V (J)) ⊃ J ,
so it contains rad(J + I(X)). The other inclusions are immediate.

It is well known (see Theorem 12) that when F is infinite we have I(F n) = {0}. This
serves to motivate the following restatement of Hilbert’s Nullstellensatz.

Theorem 6. Let F be an algebraically closed field. For all J ⊂ F [t],

I(V (J)) = rad J.

In comparison, CNI says I(V (〈ϕ1, . . . , ϕn〉)) = 〈ϕ1, . . . , ϕn〉.

Theorem 7 (Finitesatz). Let F be a field, and let X ⊂ F n be a finite subset.

a) For all ideals J of F [t], we have

I(VX(J)) = J + I(X). (6)

In particular, if J ⊃ I(X) then I(VX(J)) = J .
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b) (CNI) Suppose X =
∏n

i=1Xi for finite nonempty subsets Xi of F . Define ϕi(ti) ∈ F [ti]
as in (1) above. Then

I(X) = 〈ϕ1, . . . , ϕn〉. (7)

Proof. a) Let F be a field, and let X ⊂ F n be finite. Let x = (x1, . . . , xn) ∈ X. Let
mx = 〈t1 − x1, . . . , tn − xn〉. Then F [t]/mx

∼= F , so mx is maximal. On the other hand
mx ⊂ I(x) ( F [t], so mx = I(x). Moreover VX(mx) = {x}, hence

I(VX(mx)) = I(x) = mx.

Now let A = {ai}ki=1 ⊂ X with ai 6= aj for i 6= j. Then

I(A) = I(
⋃
i

{ai}) =
⋂
i

I(ai) =
⋂
i

mai ,

so by the Chinese Remainder Theorem [L, Cor. 2.2],

F [t]/I(A) = F [t]/
⋂
i

mai
∼=
∏
i

F [t]/mai
∼= F#A.

Let FA be the set of all maps f : A→ F , so FA is an F -algebra under pointwise addition
and multiplication and FA ∼=

∏#A
i=1 F . The evaluation map

EA := F [t]→ FA, f ∈ F [t] 7→ (x ∈ A 7→ f(x))

is a homomorphism of F -algebras. Moreover KerEA = I(A), so EA induces a map

ι : F [t]/I(A) ↪→ FA.

Thus ι is an injective F -linear map between F -vector spaces of equal finite dimension,
hence it an is an isomorphism of rings. It follows that

#I(F [t]/I(X)) = #I(FX) = 2#X .

Identifying I(F [t]/I(X)) with {J ∈ I(F [t]) | J ⊃ I(X)} and restricting VX to ideals
containing I(X), we get maps

VX : I(F [t]/I(X))→ 2X , J 7→ VX(J)

I : 2X → I(F [t]/I(X)), A 7→ I(A).

For all A ⊂ X,

VX(I(A)) = VX(
k∏

i=1

mai) =
k⋃

i=1

VX(mai) =
k⋃

i=1

{ai} = A.

Since I(F [t]/I(X)) and 2X have the same finite cardinality, it follows that VX and I are
mutually inverse bijections. Thus for any ideal J of F [t], using (5) we get

J + I(X) ⊂ I(VX(J)) ⊂ I(VX(J + I(X))) = J + I(X).
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b) Let di = degϕi and put Φ = 〈ϕ1, . . . , ϕn〉. Since ϕi|X ≡ 0 for all i, we get Φ ⊂ KerEX ,
and thus there is an induced surjective F -algebra homomorphism

ẼX : F [t]/Φ→ F [t]/KerEX → FX .

Since F [t]/Φ and FX are F -vector spaces of dimension d1 · · · dn, ẼX is an isomorphism.
Hence F [t]/Φ→ F [t]/KerEX is injective, i.e., Φ = KerEX = I(X).

Corollary 8 (Finite Field Nullstellensatz [Te66]). Let Fq be a finite field. Then for all
ideals J of Fq[t], we have I(VFn

q
(J)) = J + 〈tq1 − t1, . . . , tqn − tn〉.

Proof. Apply Theorem 7 with F = X1 = . . . = Xn = Fq.

3 Cartesian Reduction, the Atomic Formula, and the

Nullstellensätze

3.1 Cartesian Reduction

Lemma 9 (Polynomial Division). Let R be a ring, and let a(t1), b(t1) ∈ R[t1] with b
monic of degree d.

a) There are unique polynomials q and r with a = qb+ r and deg r < d.

b) Suppose R = A[t2, . . . , tn] is itself a polynomial ring over a ring A, so R[t1] =
A[t1, . . . , tn] = A[t] and that b ∈ A[t1]. Then:

• If q has a monomial term of multidegree (d1, . . . , dn), then a has a monomial term
of multidegree (d1 + d, d2, . . . , dn). It follows that

deg a > deg q + d.

• If r has a monomial term of multidegree (d1, . . . , dn), then a has a monomial term
of multidegree (e1, . . . , en) with di 6 ei for all 1 6 i 6 n. It follows that

deg r 6 deg a.

Proof. a) Uniqueness: if a = q1b + r1 = q2b + r2, then since b is monic and g1 6= g2 then
we have d 6 deg((g1 − g2)b) = deg(r2 − r1) < d, a contradiction. Existence: when b is
monic, the standard division algorithm involves no division of coefficients so works in any
ring. Part b) follows by contemplating the division algorithm.

Proposition 10 (Cartesian Reduction). Let R be a ring. For 1 6 i 6 n, let ϕi(ti) ∈ F [ti]
be monic of degree ci. Put Φ = 〈ϕ1, . . . , ϕn〉 and c = (c1, . . . , cn). We say f ∈ R[t] is
c-reduced if for all 1 6 i 6 n, degti

f < ci. Then:

a) The set Rc of all c-reduced polynomials is a free R-module of rank c1 · · · cn.
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b) For all f ∈ R[t], there are q1, . . . , qn ∈ R[t] such that deg qi 6 deg f − degϕi for all
1 6 i 6 n and f −

∑n
i=1 qiϕi is c-reduced.

c) The composite map Ψ : Rc ↪→ R[t]→ R[t]/Φ is an R-module isomorphism.

d) For all f ∈ R[t], there is a unique rc(f) ∈ Rc such that f − rc(f) ∈ Φ.

Proof. a) Indeed {ta11 · · · tann | 0 6 ai < di} is a basis for Rc.
b) Divide f by ϕ1, then divide the remainder r1 by ϕ2, then divide the remainder r2

by ϕn, and so forth, getting f =
∑n

i=1 qiϕi + rn. Apply Lemma 9b).
c) Part b) implies that Ψ is surjective. For the injectivity: let q1, . . . , qn ∈ R[t] be such

that f =
∑n

i=1 qiϕi ∈ Rc. We must show that f = 0. For each i, by dividing qi by ϕj for
i < j 6 n and absorbing the quotient into the coefficient qj of ϕj, we may assume that
degtj

qi < dj for all j > i. It follows inductively that for all 1 6 m 6 n,
∑m

i=1 qiϕi is either
0 or has ti-degree at least di for some 1 6 i 6 m. Applying this with m = n shows f = 0.

d) This follows from part c).

Let R be a ring and X1, . . . , Xn ⊂ R be finite, nonempty subsets. Put ϕi =
∏

xi∈Xi
(ti−

xi), Φ = 〈ϕ1, . . . , ϕn〉, di = #Xi−1, d = (d1, . . . , dn) and X =
∏n

i=1Xi. A polynomial f ∈
R[t] is X-reduced if it is (#X1, . . . ,#Xn)-reduced. We write RX for Rd, so dimRX =∏n

i=1 (di + 1) = #X. The X-reduced representative of f is the unique polynomial
rX(f) such that f − rX(f) ∈ Φ.

Definition 11. Let R be a ring and n ∈ Z+. A subset S ⊂ R satisfies Condition (F)
(resp. Condition (D)) if for all x 6= y ∈ S, x−y ∈ R× (resp. x−y is not a zero-divisor in
R: i.e., (x− y)z = 0 implies that z = 0). We say X =

∏n
i=1Xi ⊂ Rn satisfies Condition

(F) (resp. Condition (D)) if every Xi does.

Condition (F) implies Condition (D). Conversely, Condition (D) implies Condition (F)
with R replaced by its total fraction ring. A ring is a field (resp. a domain) iff every
subset satisfies Condition (F) (resp. Condition (D)).

Theorem 12 (CATS Lemma [Ch35] [AT92], [Sc08]). Let R be a ring. For 1 6 i 6 n,
let Xi ⊂ R be nonempty and finite. Put X =

∏n
i=1Xi.

a) (Schauz) The following are equivalent:

(i) X satisfies condition (D).

(ii) If f ∈ RX and f(x) = 0 for all x ∈ X, then f = 0.

(iii) Φ = I(X).

b) (Chevalley-Alon-Tarsi) The above conditions hold when R is a domain.

Proof. a) (i) =⇒ (ii): By induction on n: suppose n = 1. Write X = {x1, . . . , xa1}, and
let f ∈ R[t1] have degree less than a1 − 1 such that f(xi) = 0 for all 1 6 i 6 a1. By
Polynomial Division, we can write f = (t1 − x1)f2 for f2 ∈ R[t1]. Since x2 − x1 is not a
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zero-divisor, f2(x2) = 0, so f2(t1) = (t1 − x2). Proceeding in this manner we eventually
get f(t1) = (t1 − x1) · · · (t1 − xa1)fa1+1(t1), and comparing degrees shows f = 0. Suppose
n > 2 and that the result holds in n− 1 variables. Write

f =
an−1∑
i=0

fi(t1, . . . , tn−1)t
i
n

with fi ∈ R[t1, . . . , tn−1]. If (x1, . . . , xn−1) ∈
∏n−1

i=1 Xi, then f(x1, . . . , xn−1, tn) ∈ R[tn] has
degree less than an and vanishes for all an elements xn ∈ Xn, so it is the zero polynomial:
fi(x1, . . . , xn−1) = 0 for all 0 6 i 6 an. By induction, each fi(t1, . . . , tn−1) is the zero
polynomial and thus f is the zero polynomial.

(ii) =⇒ (iii): We have Φ ⊂ I(X). Let f ∈ I(X). Since f − rX(f) ∈ Φ ⊂ I(X), for
all x ∈ X we have rX(f)(x) = f(x) = 0. Then (ii) gives rX(f) = 0, so f ∈ Φ.

(iii) =⇒ (i): We argue by contraposition: suppose X does not satisfy Condition
(D). Then for some 1 6 i 6 n, we may write Xi = {x1, x2, . . . , xai} such that there is
0 6= z ∈ R with (x1 − x2)z = 0. Then f = z(ti − x2)(ti − x3) · · · (ti − xai) is a nonzero
element of I(X) ∩RX , hence f ∈ I(X) \ Φ.

b) If R is a domain then Condition (D) holds for every X.

3.2 The Atomic Formula

Lemma 13. Suppose Condition (F). Let x = (x1, . . . , xn) ∈ X, and put

δX,x =
n∏

i=1

∏
yi∈Xi\{xi}

ti − yi
xi − yi

=
n∏

i=1

ϕi(ti)

(ti − xi)ϕ′i(xi)
∈ F [t].

Then

a) δX,x(x) = 1.

b) If y ∈ X \ {x}, then δX,x(y) = 0.

c) For all 1 6 i 6 n, degti
δX,x = ai − 1. In particular, δX,x is X-reduced.

Proof. Left to the reader.

The following is a result of U. Schauz [Sc08, Thm. 2.5].

Theorem 14 (Atomic Formula). Suppose Condition (F). Then for all f ∈ R[t], we have

rX(f) =
∑
x∈X

f(x)δX,x. (8)

Proof. Apply Theorem 12a) to rX(f)−
∑

x∈X f(x)δX,x.

Let c = (c1, . . . , cn) ∈ Nn. We say a polynomial f ∈ F [t] is c-topped if for every
e = (e1, . . . , en) with c < e, the coefficient of te = te11 · · · tenn in f is 0.
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Remark 15. Let c = (c1, . . . , cn) ∈ Nn. If deg f 6 c1 + . . .+ cn, then f is c-topped.

Lemma 16. Let f ∈ R[t] be d-topped. Then the coefficient of td = td11 · · · tdnn in f is equal
to the coefficient of td in rX(f).

Proof. Write ϕi(ti) = tdi+1
i − ψi(ti), deg(ψi) 6 di. An elementary reduction of f

consists of identifying a monomial which is divisible by tdi+1
i and replacing tdi+1

i by ψi(ti).
Elementary reduction on a d-topped polynomial yields a d-topped polynomial with the
same coefficient of td. We obtain rX(f) from f by finitely many elementary reductions.

3.3 Combinatorial Nullstellensätze Over Rings

The following result sharpens [KMR12, Thm. 3].

Theorem 17. Let R be a ring, let X1, . . . , Xn ⊂ R be finite nonempty subsets, and define
d, X, ϕ1, . . . , ϕn,Φ as above. Suppose f ∈ I(X): i.e., f(x) = 0 for all x ∈ X. Then:

a) (Combinatorial Nullstellensatz I) The following are equivalent:

(i) X satisfies Condition (D).

(ii) We have f ∈ Φ: there are q1, . . . , qn ∈ R[t] such that f(t) =
∑n

i=1 qi(t)ϕi(t).

b) (Supplementary Relations) Suppose the equivalent conditions of part a) hold. Let r
be the subring of R generated by the coefficients of f and ϕ1, . . . , ϕn. We can take
q1, . . . , qn ∈ r[t] satisfying deg qi 6 deg f − degϕi for all 1 6 i 6 n.

Proof. If X satisfies Condition (D), replace R by r and apply Proposition 10b) and The-
orem 12. We get q1, . . . , qn ∈ r[t] such that f =

∑n
i=1 qiϕi and deg qi 6 deg f − degϕi

for all 1 6 i 6 r. If X does not satisfy Condition (D), then by Theorem 12, there is a
nonzero element f ∈ RX ∩ I(X), and then f /∈ Φ by Proposition 10c).

We put

M(X) =
n∏

i=1

∏
xi∈Xi

∏
yi∈Xi\{xi}

(xi − yi) =
n∏

i=1

∏
xi∈Xi

ϕ′i(xi).

Thus M(X) is not a zero-divisor in R iff X satisfies Condition (D). For all x ∈ X,∏n
i=1 ϕ

′
i(xi) is a “subproduct” of M(X), and we denote by M(X)∏n

i=1 ϕ
′
i(xi)

the product M(X)

with the corresponding factors removed.

For a polynomial g ∈ R[t], let cd(g) be the coefficient of td = td11 · · · tdnn in g.

Theorem 18. Let R be a ring, let X1, . . . , Xn ⊂ R be finite nonempty subsets, and define
d, X, ϕ1, . . . , ϕn,Φ as above. Let f ∈ R[t1, . . . , tn].
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a) ([Sc08, Thm. 2.9]) Suppose X satisfies Condition (D). Then in the total fraction ring
of R we have

cd(rX(f)) =
∑

x=(x1,...,xn)∈X

f(x)∏n
i=1 ϕ

′
i(xi)

. (9)

The right hand side of (9) lies in R if X satisfies Condition (F).

b) (Integral Coefficient Formula) In general, we have

M(X)cd(rX(f)) =
∑

x=(x1,...,xn)∈X

(
M(X)∏n
i=1 ϕ

′
i(xi)

)
f(x). (10)

c) (CNII) Suppose X satisfies Condition (D). If f ∈ I(X), then cd(rX(f)) = 0.

d) If f is d-topped – e.g. if deg f 6
∑n

i=1 di – then cd(f) = cd(rX(f)).

Proof. a) Replace R by its total fraction ring and apply (8).
b) There is a domain R̃ and a surjective ring homomorphism q : R̃→ R. For instance,

let R̃ be a polynomial ring over Z in a set of indeterminates {Tr}r∈R indexed by the
elements of R and let q be the unique homomorphism with q(Tr) = r. There is a unique
extension of q to a ring homomorphism q : R̃[t1, . . . , tn]→ R[t1, . . . , tn] with q̃(ti) = ti for
all 1 6 i 6 n. For 1 6 i 6 n, choose X̃i ⊂ R̃ such that q|X̃i

: X̃i → Xi is a bijection, and

put X̃ =
∏n

i=1 X̃i. Choose f̃ ∈ R̃[t1, . . . , tn] such that q(f̃) = f . Applying part a) and
multiplying through by M(X̃) gives

M(X̃)cd(rX̃(f̃)) =
∑
x̃∈X̃

(
M(X̃)∏n
i=1 ϕ

′
i(x̃i)

)
f(x̃). (11)

Applying q to both sides of (11) gives

M(X)cd(q(rX̃(f̃))) =
∑
x∈X

(
M(X)∏n
i=1 ϕ

′
i(xi)

)
f(x).

Applying q to f̃ − rX̃(f̃) ∈ Φ̃ gives f − q(rX̃(f̃)) ∈ Φ. Since q(rX̃(f̃)) is X-reduced,
Proposition 10d) implies

q(rX̃(f̃)) = rX(f).

c) This follows from part a).
d) This is Lemma 16.

3.4 The Restricted Variable Chevalley-Warning Theorem

For a ring R and x = (x1, . . . , xn) ∈ Rn, we put w(x) = #{1 6 i 6 n | xi 6= 0}.
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Theorem 19 (Restricted Variable Chevalley-Warning Theorem). Let P1, . . . , Pr ∈ Fq[t] =
Fq[t1, . . . , tn] be polynomials of degrees d1, . . . , dr. For 1 6 i 6 n, let ∅ 6= Xi ⊆ Fq be
subsets, put X =

∏n
i=1Xi and also

VX = {x = (x1, . . . , xn) ∈ X | P1(x) = . . . = Pr(x) = 0}.

Suppose that (d1 + . . .+ dr)(q − 1) <
∑n

i=1 (#Xi − 1). Then:

a) As elements of Fq, we have ∑
x∈VX

1∏n
i=1 ϕ

′
i(xi)

= 0 (12)

and thus [Sc08] [Br11]
#VX 6= 1. (13)

b) (Chevalley-Warning [Ch35], [Wa35]) If
∑r

i=1 di < n, then p | #VFn
q
.

c) (Wilson [Wi06]) If (d1 + . . .+ dr)(q − 1) < n, then

#{x ∈ V{0,1}n | w(x) ≡ 0 (mod 2)} ≡ #{x ∈ V{0,1}n | w(x) ≡ 1 (mod 2)} (mod p).

d) If (d1 + . . .+ dr)(q − 1) < (q − 2)n, then∑
x∈VFnq

x1 · · ·xn = 0.

Proof. a) We define

P (t) = χP1,...,Pr(t) =
r∏

i=1

(
1− Pi(t)

q−1) ,
so

degP = (q − 1)(d1 + . . .+ dr) <
n∑

i=1

(#Xi − 1)

and thus the coefficient of t#X1−1
1 · · · t#Xn−1

n in P is 0. Applying the Coefficient Formula
(Theorem 3), we get

0 =
∑
x∈X

P (x)∏n
i=1 ϕ

′
i(xi)

=
∑
x∈VX

1∏n
i=1 ϕ

′
i(xi)

∈ Fq.

Parts b) through d) follow from part a) by taking X to be, respectively, Fn
q , {0, 1}n and

(F×q )n, and computing the ϕ′i(ti)
′s. The details are left to the reader.
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4 Further Analysis of the Evaluation Map

4.1 The Finitesatz holds only over a field

If a ring R is not a field and X 6= ∅, the assertion of Theorem 7a) remains meaningful
with R in place of F , but it is false. Let x ∈ X. Since R[t]/mx

∼= R is not a field,
mx is not maximal. Let J be an ideal with mx ( J ( R[t], and let f ∈ J \ mx. Then
VX(J) ⊂ VX(mx) = {x}, and since f /∈ mx, f(x) 6= 0. Thus

I(VX(J)) = I(∅) = R[t] ) J = J + I(X).

4.2 Towards an Infinitesatz

We revisit the formalism of § 2.2: let R be a ring and let X ⊂ Rn.
For a subset A ⊂ Rn we define the Zariski closure A = V (I(A)). Thus A is the set

of points at which any polynomial which vanishes at every point of A must also vanish.
A subset A is algebraic if A = A and Zariski-dense if A = Rn. When R is a domain
the algebraic subsets are the closed sets of a topology, the Zariski topology. Over an
arbitrary ring this need not hold and some strange things can happen: for instance if
R = Z/6Z and n = 1 then {2, 3} = {0, 2, 3, 5}. In fact for any composite positive integer
m 6= 4, there is a subset A ⊂ Z/mZ which is not algebraic [Si54], [Ch56]. Some partial
results towards an explicit description of the operator A 7→ A for subsets of Z/mZ have
recently been obtained by B. Bonsignore.

If F is an algebraically closed field and X ⊂ F n is algebraic, then using Hilbert’s
Nullstellensatz, for all ideals J of F [t],

I(VX(J)) = I(V (J) ∩X) = I(V (J) ∩ V (I(X)))

= I(V (J ∪ I(X))) = I(V (J + I(X))) = rad(J + I(X)).

When X is infinite, we claim the “rad” cannot be removed in general.
proof of claim: Suppose rad(J + I(X)) = J + I(X) for all J . Equivalently, every ideal
J ⊃ I(X) is a radical ideal. Then for any element x in the quotient ring F [t]/I(X), since
(x2) is radical we must have (x) = (x2) = (x)2. It follows (e.g. [AM, p. 35, p. 44, p.
90]) that F [t]/I(X) is Noetherian and absolutely flat, hence is Artinian, hence has only
finitely many maximal ideals. Since x 7→ mx is an injection from X to the set of maximal
ideals of F [t]/I(X), X is finite.

The case of an arbitrary subset over an arbitrary ring R is much more challenging.
In fact, even determining whether the evaluation map EX : R[t] → RX is surjective –
existence of interpolation polynomials – or injective – uniqueness of interpolation
polynomials – becomes nontrivial. In the next section we address these questions, but
we are not able to resolve them completely.
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4.3 Injectivity and Surjectivity of the Evaluation Map

Lemma 20. Let R be a ring. Let M1 and M2 be free R-modules, with bases B1 and B2.
If ι : M1 →M2 is an injective R-module homomorphism, then #B1 6 #B2.

Proof. Combine [LMR, Cor. 1.38] and [EMR, Ex. 1.24].

Lemma 21. Let R be a ring, and let X be an infinite set. Then RX is not a countably
generated R-module.

Proof. Step 1: For x ∈ R, let Ax = {y ∈ Q | y < x}, and let CQ = {Ax}x∈R. Then
CQ ⊂ 2Q is an uncountable linearly ordered family of nonempty subsets of Q. Since X is
infinite, there is an injection ι : Q ↪→ X; then C = {ι(Ax)}x∈R is an uncountable linearly
ordered family of nonempty subsets of X.

Step 2: For each A ∈ C, let 1A be the characteristic function of A. Then {1A}A∈C
is an R-linearly independent set: let A1, . . . , An ∈ C and α1, . . . , αn ∈ R be such that
α11A1 + . . .+ αn1An ≡ 0. We may order the Ai’s such that A1 ⊂ . . . ⊂ An and thus there
is x ∈ An \

⋃n−1
i=1 Ai. Evaluating at x gives αn = 0. In a similar manner we find that

αn−1 = . . . = α1 = 0.
Step 3: Suppose RX is countably generated: thus there is a surjective R-module

homomorphism Φ :
⊕∞

i=1R → RX . For each A ∈ C, choose eA ∈ Φ−1(1A) and put
S = {eA | A ∈ C}. By Step 2, S is uncountable and R-linearly independent, so it
spans a free R-module with an uncountable basis which is an R-submodule of

⊕∞
i=1R,

contradicting Lemma 20.

Theorem 22. If X ⊂ Rn is infinite, then EX : R[t]→ RX is not surjective.

Proof. If EX : R[t] → RX were surjective, then RX would be a countably generated
R-module, contradicting Lemma 21.

If Y ⊂ X ⊂ Rn, restricting functions from X to Y is a surjective R-algebra homomor-
phism rY : RX → RY . We have EY = rY ◦ EX , so if EX is surjective, so is EY .

Let πi : Rn → R be the ith projection map: πi : (x1, . . . , xn) 7→ xi. For a subset
X ⊂ Rn, we define the Cartesian hull C(X) as

∏n
i=1 πi(X): it is the unique minimal

Cartesian subset containing X, and it is finite iff X is.

Proposition 23. Let X ⊂ Rn be finite.

a) If C(X) satisfies Condition (F), then EX is surjective.

b) If there is a nonempty Cartesian subset Y =
∏n

i=1 Yi ⊂ X which does not satisfy
Condition (F), then EX is not surjective.

Proof. a) Since X ⊂ C(X), it suffices to show that EC(X) is surjective, and we have essen-
tially already done this: under Condition (F) we may define rX(f) =

∑
x∈X f(x)δX,x(t),

and as in § 3.3 we see that E(rX(f)) = f .
b) There is 1 6 i 6 n and yi 6= y′i ∈ Yi such that y1 − y2 /∈ R×, hence a maximal ideal

m of R with y1 − y2 ∈ m. For all j 6= i, choose yj ∈ Yj; let y = (y1, . . . , yn); and let y′
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be obtained from y by changing the ith coordinate to y′i. For any f ∈ F [t], f(y) ≡ f(y′)
(mod m), so f(y) − f(y′) ∈ m. Hence the function δY,y : Y → R which maps y to 1 and
every other element of Y to 0 does not lie in the image of the evaluation map. Thus EY

is not surjective, so EX cannot be surjective.

Thus if X is itself Cartesian, the evaluation map is surjective iff X satisfies Condition
(F): this result is due to Schauz. Proposition 23 is the mileage one gets from this in the
general case. When every Cartesian subset of X satisfies condition (F) but C(X) does
not, the question of the existence of interpolation polynomials is left open, to the best of
my knowledge even e.g. over Z.

We say that a ring R is (F)-rich (resp. (D)-rich) if for every d ∈ Z+ there is a
d-element subset of R satisfying Condition (F) (resp. Condition (D)). If ι : R ↪→ S is a
ring embedding and R is (F)-rich, then S is (F)-rich, hence also (D)-rich.

Proposition 24. Let R be a ring and X ⊂ Rn. Consider the following assertions:

(i) EX is injective.

(ii) X is infinite and Zariski-dense.

Then

a) We always have (i) =⇒ (ii).

b) If R is (D)-rich – e.g. if it contains an (F)-rich subring – then (ii) =⇒ (i).

c) If R is finite, a domain, or an algebra over an infinite field, then (ii) =⇒ (i).

d) If R is an infinite Boolean ring – e.g. R =
∏∞

i=1 Z/2Z – and X = Rn, then (ii) holds
and (i) does not.

Proof. a) By contraposition: suppose first that X is finite. Then FX is a free F -module
of finite rank #X and F [t] is a free F -module of infinite rank, so E cannot be injective.
Now suppose X is not Zariski-dense: then there is y ∈ F n \ X and f ∈ F [t] such that
E(f)|X ≡ 0 and EX(f)(y) 6= 0, hence 0 6= f ∈ KerE.

b) Let f ∈ KerEX = I(X), and let d = deg f . Since X is Zariski-dense in F n,
f(x) = 0 for all x ∈ F n. Since R is (D)-rich, there is a S ⊂ R of cardinality d + 1
satisfying Condition (D). Put X =

∏n
i=1 S. Then f ∈ RX and f(x) = 0 for all x ∈ X, so

f = 0 by Theorem 12.
c) This is immediate from part b).
d) Since R is infinite, Rn is infinite and Zariski-dense. Since R is Boolean, the poly-

nomial t21 − t1 evaluates to zero on every x ∈ Rn.
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