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Abstract
We introduce ballot matrices, a signed combinatorial structure whose definition

naturally follows from the generating function for labeled interval orders. A sign
reversing involution on ballot matrices is defined. We show that matrices fixed under
this involution are in bijection with labeled interval orders and that they decompose
to a pair consisting of a permutation and an inversion table. To fully classify such
pairs, results pertaining to the enumeration of permutations having a given set of
ascent bottoms are given. This allows for a new formula for the number of labeled
interval orders.

Keywords: ballot matrix, composition matrix, sign reversing involution, interval
order, 2+2-free poset, Fishburn, ascent bottom

1 Introduction
Recent work has employed the use of sign reversing involutions in the study of unlabeled
interval orders. Successes include taking structures related to unlabeled interval orders
directly to their generating function [8, 10] and identifying statistical refinements [7].

In this paper we apply similar techniques to the labeled case. We introduce ballot
matrices, a combinatorial structure consisting of signed, upper triangular, non-row empty
matrices whose entries are ballots. The definition of such matrices follows naturally from
the generating function of labeled interval orders. A bijection of Dukes et al. [5] is adapted
to a surjection mapping ballot matrices to labeled interval orders and used to define an
equivalence relation on ballot matrices. A sign reversing involution is then used to identify
fixed points for which there is exactly one per equivalence class. The decomposition of
any single fixed point into a pair consisting of a permutation and an inversion table is



then provided. This allows for the main result of the paper, that the set of labeled interval
orders on [n] is in bijection with two separate sets. Firstly,

{(π, τ) ∈ Sn × Sn : A(τ) ⊆ D(π)},

where A(τ) is the set of ascent bottoms of τ , and D(π) is the set of descent positions of
π. Secondly,

{(π, τ) ∈ Sn × Sn : D(π) ⊆ A(τ)}.
As a consequence we derive a new formula for the number of labeled interval orders on
[n]:

∑
{s1,...,sk}⊆[n−1]

(
det

[(
n− si
sj+1 − si

)]
·
k+1∏
r=1

rsr−sr−1

)

where s0 = 0 and sk+1 = n.

1.1 Background
A poset P is said to be an interval order if each z ∈ P can be assigned a closed interval
[lz, rz] ∈ R such that x <P y if and only if rx < ly. Fishburn [6] demonstrates that interval
orders are equivalently characterized as posets with no induced subposet isomorphic to
the pair of disjoint two element chains, the so called (2 + 2)-free posets.

Bousquet-Mélou et al. [3] show that unlabeled interval orders are in bijection with
ascent sequences (a subset of inversion tables), permutations avoiding the mesh pattern

,

and a class of fixed point free involutions with no neighbor nestings. Such involutions had
previously been studied by Zagier [11] who determined their ordinary generating function
to be ∑

m>0

m∏
i=1

(1− (1− x)i).

Levande [8] and Yan [10] independently employ the use of sign-reversing involutions to
provide direct interpretations of structures related to unlabeled interval orders from Za-
gier’s function.

To study labeled interval orders, Claesson et al. [4] introduce composition matrices. A
composition matrix is an upper triangular matrix on some underlying set U whose entries
are sets partitioning U satisfying that there are no rows or columns which contain only
empty set partitions. They show that composition matrices have exponential generating
function ∑

m>0

m∏
i=1

(1− e−xi),
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again a function originally considered by Zagier [11]. They present a one-to-one corre-
spondence between labeled interval orders and composition matrices via the Cartesian
product of ascent sequences and set partitions.

Dukes et al. [5] give a direct bijection between composition matrices and interval
orders, where the downsets of elements within the interval order are determined by hooks
occurring below the diagonal of the matrix.

2 Terminology and preliminaries
Throughout this text, for non-negative integers a and b with a < b, let [b] denote the set
{1, . . . , b} and [a, b] the set {a, . . . , b}. This paper will feature three main combinatorial
structures: permutations, inversion tables and ballots. In this section a summary is
provided to remind the reader of relevant results pertaining to these structures and to set
the notational convention that shall be followed.

2.1 Permutations
A permutation is a bijection on a finite set. A descent in a permutation π = a1a2 . . . an ∈
Sn is a pair (ai, ai+1) where ai > ai+1. Following Stanley [9, Section 2.2] let D(π) = {i :
ai < ai+1} ⊆ [n− 1] denote the set of descent positions and define

αn(S) = {π ∈ Sn : D(π) ⊆ S}, αn(S) = |αn(S)|,
βn(S) = {π ∈ Sn : D(π) = S}, βn(S) = |βn(S)|.

Let S = {s1, s2, . . . , sk} and 1 6 s1 < s2 < · · · < sk < n. Also, let s0 = 0 and sk+1 = n.
Partitioning [n] into blocks of cardinalities

s1 − s0, s2 − s1, . . . , sk+1 − sk

a permutation is formed by listing elements within the blocks in increasing order and
concatenating the blocks. The only position in which a descent can occur is at the join
between two blocks. Thus,

αn(S) =
(

n

s1 − s0, s2 − s1, . . . , sk+1 − sk

)
. (1)

By the sieve principle we have that βn(S) = ∑
T⊆S(−1)|S\T |αn(T ). One can show [9,

Example 2.2.4] that this leads to the formula

βn(S) = det
[(

n− si
sj+1 − si

)]
,

where (i, j) ∈ [0, k]× [0, k].
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Figure 1: Inversion table 231100

2.2 Inversion tables
Given a permutation π = a1a2 . . . an, an inversion in π is a pair (ai, aj) where ai > aj
and i < j. An inversion table is an encoding of a permutation where the ith value is the
number of inversions in which i is involved as the smaller element. The set of inversion
tables of length n will be denoted InvTabn:

InvTabn = { b1b2 . . . bn : bi ∈ [0, n− i] }.

An inversion table may be viewed diagrammatically. To make clear the relationship
between inversion tables and n by n upper triangular matrices containing exactly one
entry per row we shall break convention and view an inversion table as right aligned,
decreasing rows where an entry in row i at column j corresponds to the inversion table
with ith entry n− j. An example is shown in Figure 1.

Define Dent to be the function taking an inversion table to the set of distinct entries
it contains. For example, Dent(430200) = {0, 2, 3, 4}. We further say that a ∈ [n − 1]
is missing from a length n inversion table if a is not in its set of distinct entries. For
instance, 1 and 5 are both missing from 430200.

2.3 Ballots
A ballot, alternatively known as an ordered set partition, is a collection of pairwise disjoint
non-empty sets (referred to as blocks) where the blocks are assigned some total ordering.
Adopting a symbolic (or species) approach, let L be the construction taking a set U to the
set of linear orders built upon U . Also, let E+ be the non-empty set construction. That
is, E+[U ] = {U} if U is non-empty, and E+[∅] = ∅. Then define Bal, the construction of
ballots, to be the composition L(E+):

Bal = L(E+) =
∑
k>0

(E+)k.

Consider signed ballots, as above but where each ballot is assigned to be either positive
or negative. A positive ballot contains an even number of blocks and a negative ballot
contains an odd number of blocks. For any species F , let −1 · F = −F be as F but
with the sign of each object negated. Using E−1 to refer to signed ballots—the notation
stemming from its role as the symbolic multiplicative inverse of set—we have

E−1 = L(−E+) =
∑
k>0

(−1)k(E+)k.
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It follows that signed ballots have exponential generating function

1
1 + (ex − 1) = e−x =

∑
n>0

(−1)nx
n

n! . (2)

See, for example, Bergeron et al. [1, Section 2.5].
We use the notation (E−1)+ to refer to the subset of signed ballots which are positive

and (E−1)− to refer to the subset which are negative.

3 Ballot matrices and interval orders
Equation (2) implies that the number of ballots constructed on some set U with an even
number of blocks differ from the number of ballots of U with an odd number of blocks by
1. To be precise

|(E−1)+[U ]| − |(E−1)−[U ]| = (−1)|U |.

An involution on ballots witnesses this fact. In the above equation the sign of a ballot with
k blocks is (−1)k. Note that we can change the sign of a ballot with |U | > 2 by splitting
a non-singleton block into two blocks or by merging two blocks. Let ω = B1 . . . Bk be a
ballot in Bal[U ]. That is, each Bi is non-empty and U is the disjoint union of the sets B1
through Bk.

Take any linear order on U . Let x = minU be smallest element of U . If x ∈ Bi and
Bi contains at least two elements, then delete x from Bi and create a new block {x} to
the immediate right of Bi. For example,

ω = {2, 5}{1, 4, 6}{3} 7→ {2, 5}{4, 6}{1}{3} = ξ.

If Bi = {x} and i > 1 then delete this block from ω and add x to Bi−1. With ω and ξ as
in the example above, we have ξ 7→ ω. If B1 = {x} then proceed with the next smallest
element of U and the ballot B2B3 . . . Bk. For example,

{1}{2}{5}{4, 6}{3} 7→ {1}{2}{5}{3, 4, 6}.

For U = {u1, u2, . . . , un} and u1 < u2 < · · · < un the single fixed point under this sign
reversing involution is {u1}{u2} . . . {un}.

3.1 Ballot Matrices
The exponential generating function for the number of labeled interval orders was shown
by Claesson et al. [5] to be a function originally studied by Zagier [11],

∑
m>0

m∏
i=1

(1− e−xi) =
∑
m>0

(−1)m
m∏
i=1

(e−xi − 1).

the electronic journal of combinatorics 21(4) (2014), #P4.16 5



It it thus natural to consider the signed combinatorial structure

∑
m>0

(−1)m
m∏
i=1

(
(E−1)i − 1

)
.

An ((E−1)i− 1)-structure is a non-empty sequence of i pairwise disjoint ballots. As such,
a (−1)m∏m

i=1

(
(E−1)i − 1

)
-structure is an upper triangular m × m matrix of pairwise

disjoint ballots such that each row is non-empty.
The sign of the matrix is the product of the signs of the ballot entries and the signs

of the rows. If A is such a matrix and the total number of blocks of all ballots in A is
`, then the sign of A is (−1)`+m. We shall call such matrices Ballot matrices and use
the notation BalMat for the construction with BalMat+ and BalMat− the positive and
negative parts respectively. As an example, for U = {1, 2} we have

BalMat+[U ] =
{[
{1, 2}

]
,

[
∅ {1}
{2}

]
,

[
∅ {2}
{1}

]
,

[
{2} ∅

{1}

]
,

[
{1} ∅

{2}

]}

and
BalMat−[U ] =

{[
{1}{2}

]
,
[
{2}{1}

]}
.

We note the similarity between ballot matrices and the composition matrices of Claes-
son et al. [4]. The entries of composition matrices are sets, which may be viewed as either
as ballots with a single block or as ballots where each element is contained within its
own singleton block and the blocks are ordered according to the order on U . Therefore
composition matrices are a subset of ballot matrices. For our purposes we wish to define
an involution whose fixed points are either all positive or all negative for any given U .
However for both interpretations of composition matrices as ballot matrices the sign is
not consistent, there exist both positive and negative composition matrices when |U | > 2,
and hence they are not suitable candidates for the fixed points of our involution.

Dukes et al. [5] provide a direct bijection between composition matrices and labeled
interval orders. We adapt their mapping to define a surjection taking ballot matrices to
labeled interval orders as follows.

Definition 1. Let A ∈ BalMat[U ], and let x and y be elements of U . Further, let ω and
ξ be the ballot entries (i, j) and (i′, j′) of A such that x is contained in the underlying set
of ω and y is contained in the underlying set of ξ. Define the poset P (A) by declaring
that x < y in P if j < i′.

In other words, x < y in P if the “hook” from x to y passing through (i′, j) goes below
the diagonal: 


x

y

.
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
∅ {6} ∅ {4, 5}
∅ {3} ∅
{1} ∅

{2}


6

1

2

3 4 5

Figure 2: A ballot matrix and its corresponding poset

Equivalently, the strict downset of y is the union of columns 1 through i′−1. Figure 2
shows an example of a ballot matrix and its corresponding poset.

Given a poset P , the downset of x ∈ P is the set of elements smaller than x:

D(x) = {y ∈ P : y < x}.

It is a well known that a poset is an interval order if and only if there is a linear ordering by
inclusion on the downsets of each element {D(x) : x ∈ P} (see, for example, Bogart [2]).
As the mapping states that the strict downset of y is the union of columns 1 through
i′ − 1 there is a linear ordering on downsets and hence every poset which is mapped to
must be an interval order.

In addition, composition matrices are a subset of ballot matrices and as Dukes et al. [5]
show that for composition matrices the mapping is a bijection it follows that the adapted
mapping is a surjection.

If we declare that two ballot matrices in BalMat[U ] are equivalent if they determine
the same interval order, then, by definition, there are as many equivalence classes as there
are interval orders on U . In the next section we define as sign reversing involution that
respects this equivalence relation.

4 The involution
We now define the involution on ballot matrices. We begin by applying the ballot invo-
lution componentwise to entries of BalMat.

Choose a canonical linear order of the entries of the matrix; for instance, order the
entries (ballots) with respect to their minimum element, or order them lexicographically
with respect to their position (i, j) in the matrix. Then apply the ballot involution to
the first entry that is not fixed, if such an element exists, and denote this operation ψ. A
matrix is a fixed point under this sign reversing involution if and only if each entry of the
matrix is fixed, and thus of the form

{a1}{a2} . . . {aj} with a1 < a2 < · · · < aj.

Note that if A is a k × k matrix fixed under ψ, then the sign of A is (−1)n+k, where
n = |U |. We shall define a sign reversing involution ϕ on the fixed points of ψ.

Let A ∈ BalMat[U ] be a matrix fixed under ψ. Let x ∈ U and assume that that x
is on row i and column j of A. We say that x is a pivot element of A if row i contains
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at least two elements of U and x is the smallest element on row i, or the following three
conditions are met:

1. column i is empty;

2. {x} is the only non-empty ballot on its row;

3. x is smaller than the minimum element of row i+ 1 of A.

As an illustration, the pivot elements of the matrix
∅ {4} ∅ ∅ ∅
{6}{8} ∅ {3}{7} ∅

∅ {2} ∅
{9} {5}

{1}


are 2, 3 and 5.

If the set of pivot elements of A is empty, then let ϕ(A) = A. Otherwise, let x be the
smallest pivot element of A, and assume that x belongs to the (i, j) entry of A.

1. If there is more than one element on row i, then remove x from row i and make a
new row immediately above row i with the block {x} in column j and the rest of
the entries empty. Also insert a new empty column i, pushing the existing columns
one step to the right.

2. If column i is empty, {x} is the only non-empty ballot on its row, and x is smaller
than the minimum element of row i+1, then remove column i and merge row i with
row i + 1 by inserting the singleton block x at the front of the ballot in position
(i+ 1, j).

Applying ϕ to the example matrix above we get
∅ {4} ∅ ∅
{6}{8} {3}{7} ∅

{2}{9} {5}
{1}

 .
Note that the smallest pivot element of this matrix is still 2, and applying ϕ to it would
bring back the original matrix.

Our main involution η : BalMat[U ] → BalMat[U ] is then defined as the composition
of ψ and ϕ in the following sense:

η(A) =

ϕ(A) if ψ(A) = A,

ψ(A) if ψ(A) 6= A.

It is clear that η is sign reversing. That any fixed point of η has positive sign will be seen
in Section 5.
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Proposition 2. The involution η preserves the interval order in the following sense.
Let A ∈ BalMat[U ]. Let P and Q be the interval orders corresponding to A and η(A),
respectively. Then P = Q.

Proof. If A is a fixed point of η, equality is immediate. Further, the block structure of
the elements of A is immaterial to the definition of the poset. Thus, if ψ(A) 6= A and
η(A) = ψ(A), then equality is immediate. For the remainder of the proof assume that
η(A) = ϕ(A) 6= A.

The proof that the involution preserves the interval order is equivalent to saying that
the strict downset of each element is preserved. This follows from a case analysis. Recall
that the strict downset of x at position (i, j) in the matrix is the union of columns 1
through i− 1.

Let B = η(A). The involution has two possibilities. If the minimal pivot element x
at position (i, j) in A is not the only element on its row, then B is formed by initially
inserting a new empty row above row i and a new empty column before column i. The
pivot element x is moved to the new row maintaining its column and hence its strict
downset is unchanged.

We now demonstrate that the insertion of the new empty row at position i and new
empty column at position i preserves hooks below the diagonal. For y 6= x at position
(i′, j′) in A there are three possibilities.

1. The element y is above the newly inserted row and to the left of the new column,
i.e. y remains at position (i′, j′) in B with i′ < i and j′ < i. Then the new column
is inserted to the right of the columns which form the strict downset of y and hence
the downset is unchanged.

2. The element y is to the right of the newly inserted column and above the inserted
row, i.e. y is at position (i′, j′ + 1) in B with i′ < i < j′. Again as i′ < i the new
column is inserted to the right of the columns which form the strict downset of y
and the downset is unchanged.

3. The element y is below the newly inserted row and to the right but of the new
column, i.e. y is at position (i′ + 1, j′ + 1) in B with i < i′ and i < j′. As i < i′,
the number of columns which form the downset of y is increased by 1. The newly
inserted column i is empty and therefore contributes no new entries. As i < i′ the
previous rightmost column i′− 1 is shifted one place to the right to column i′+ 1 in
the new matrix. The downset of y in B is therefore the union of elements 1 through
i′ and hence the downset is unchanged.

Note that x remains the pivot element in the newly constructed matrix B, the only
non-empty ballot on its row, and with column i empty. Therefore showing that the second
possibility of the involution preserves posets follows from taking the reverse of the above
cases.

As the strict downsets are equal the posets are equal.
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5 Fixed points
A fixed point under the sign reversing involution η on BalMat is an n×n matrix with no
pivot elements, equivalently a matrix such that

1. there is exactly one element per row;

2. if a < b, with a on row i, and b on row i+ 1, then column i is non-empty.

Note that the total number of blocks in such a matrix is n—each element is in its own
block—and thus it has sign (−1)2n = 1, positive.

Further, matrices which satisfy these conditions can be decomposed to a pair consisting
of a permutation and an inversion table: As there is exactly one element per row, a
permutation π = a1 . . . an can be read setting each ai the value held in row i. As the
matrix is also upper triangular, the position of the element in a row specifies an inversion
table b1b2 . . . bn where each bi is n minus the column in which the entry in row i occurs.

As an example, consider the matrix below. It decomposes into the permutation 4132
together with the inversion table 2010:

∅ {4} ∅ ∅
∅ ∅ {1}
{3} ∅

{2}

 '
(

4132,
)
' ( 4132, 2010 ) .

Take the equivalence class on ballot matrices where two matrices are equivalent if they
correspond to the same interval order. We wish to show that there is exactly one fixed
point under η per equivalence class. For this purpose and to make explicit the link to
previous work we provide a bijection between composition matrices and ballot matrices.

For the following, take the structure of the entries of a composition matrix to be
ballots where each element is contained within a singleton block and the blocks are ordered
according to the order on the underlying set.

Given an m×m ballot matrix A ∈ BalMat[U ], let ui be the smallest element on the
ith row of A, and define G(A) = U \ {u1, u2, . . . , um}.

Assuming that G(A) is non-empty, define ρ to be the following operation. Take x =
minG(A) at position (i, j) in A. Insert a new row containing only empty ballots above row
i and a new column containing only empty ballots to the left of column i. Move x to create
a singleton ballot in the new row preserving its column. Note that |G(ρ(A))| = |G(A)|−1.
An example with G(A) = {4, 6} is given below:


{2, 6} ∅ ∅ ∅

{3} ∅ {4}
∅ {1}
{5}

 ρ7−→


{2, 6} ∅ ∅ ∅ ∅

∅ ∅ ∅ {4}
{3} ∅ ∅

∅ {1}
{5}

 .

The inverse operation will be denoted ρ−1. To state it explicitly, let A ∈ BalMat[U ]
be a m × m ballot matrix, and let ui be the smallest element on the ith row of A, as
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before. Then take H(A) to be the subset of {u1, u2, . . . , um−1} consisting of those ui such
that the following three conditions hold: column i is empty; ui is the sole element on row
i; and ui > ui+1.

Assuming that H(A) is non-empty, define ρ−1 to be the following operation. Take
x = maxH(A) at position (i, j) in A. Append x in a singleton block at the end of the
ballot in position (i+ 1, j), then remove row and column i.

Proposition 3. There is a bijection between composition matrices and ballot matrices
fixed under η. As a result there is a unique ballot matrix fixed under η per equivalence
class.

Proof. We first show that successive application of the mapping ρ gives an injection from
composition matrices into ballot matrices fixed under η.

The same argument as in Proposition 2 shows that ρ preserves the interval order.
Take a composition matrix. Let A be the matrix returned after repeated application

of ρ until the set of elements G(A) is empty. We claim A is a ballot matrix fixed under η.
From definition we know that G(A) is empty. Therefore there is exactly one element

per row. The other requirement to be a fixed point under η is that if a < b with a on row
i and b on row i+ 1 then column i must be non-empty. As composition matrices have the
property that all columns are non-empty and ρ only introduces an empty column i when
a > b with a on row i, this requirement is met.

Repeated application of ρ is therefore a mapping between composition matrices and
ballot matrices fixed under η with injectivity following from the preservation of interval
order.

As ρ preserves the interval order, the reverse operation ρ−1 also preserves the interval
order.

Take a fixed point matrix. Let A be the matrix returned after repeated application of
ρ−1 until the set of elements H(A) is empty. We claim A is a composition matrix.

Composition matrices are neither row nor column empty. Non-row empty is a property
of fixed point ballot matrices and ρ−1 does not introduce any empty columns. If a fixed
point matrix contains an empty column i then from definition there is an a > b with a
and b on rows i and i+1 respectively. However as G(A) is empty it follows that all empty
columns are removed.

Hence all fixed point matrices can be mapped to a composition matrices with the
interval order preserved by repeated application of ρ−1, giving surjectivity.

Let BalMatη[U ] denote the set of fixed points under η. Writing simply x for the ballot
{x}, the complete list of matrices in BalMatη[3] is given in Figure 3.

6 Permutations from ascent bottoms
In order to examine the fixed points under η we shall consider how to characterize the
pairs resulting from their decomposition to a permutation and an inversion table. For
this purpose, this section is concerned with counting the number of permutations whose
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 3 ∅ ∅
2 ∅

1


 3 ∅ ∅

∅ 2
1


 ∅ 3 ∅

2 ∅
1


 ∅ 3 ∅

∅ 2
1


 ∅ ∅ 3

2 ∅
1


 ∅ ∅ 3

∅ 2
1


 3 ∅ ∅

1 ∅
2


 ∅ 3 ∅

1 ∅
2


 ∅ 3 ∅

∅ 1
2


 ∅ ∅ 3

1 ∅
2


 2 ∅ ∅

3 ∅
1


 2 ∅ ∅

∅ 3
1


 2 ∅ ∅

1 ∅
3


 ∅ 2 ∅

1 ∅
3


 ∅ 2 ∅

∅ 1
3


 ∅ ∅ 2

1 ∅
3


 1 ∅ ∅

3 ∅
2


 1 ∅ ∅

∅ 3
2


 1 ∅ ∅

2 ∅
3



Figure 3: Complete list of matrices in BalMatη[3]

set of ascent bottoms is equal to some given set. Bijections between such permutations
and two different sets of inversion tables are provided. We make repeated use of the sieve
principle and our presentation follows that of Stanley [9, Section 2.2].

Recall the definitions of αn(S) and βn(S):

αn(S) = {τ ∈ Sn : D(τ) ⊆ S}, αn(S) = |αn(S)|,
βn(S) = {τ ∈ Sn : D(τ) = S}, βn(S) = |βn(S)|.

In an analogous fashion, for π = a1a2 . . . an ∈ Sn, let

A(π) = {ai : i ∈ [n− 1], ai < ai+1}

be the set of ascent bottoms of π. Let

κn(S) = {π ∈ Sn : A(π) ⊆ S}, κn(S) = |κn(S)|,
λn(S) = {π ∈ Sn : A(π) = S}, λn(S) = |λn(S)|.

Note that by definition κn(S) = ∑
T⊆S λn(T ), and by the sieve principle, λn(S) =∑

T⊆S(−1)|S\T |κn(T ).
The following set of sequences will be convenient as an intermediate structure for later

proofs.

Definition 4. For fixed n, let S = {s1, . . . , sk} with 1 6 s1 < · · · < sk < n be given.
Also, set s0 = 0 and sk+1 = n. Define the Cartesian product

Cn(S) = [0, k]sk+1−sk × · · · × [0, 1]s2−s1 × [0, 0]s1−s0 .

We shall call an element of Cn(S) a construction choice.
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As example, for n = 8 and S = {3, 5, 6, 7} we have s1 − s0 = 3, s2 − s1 = 2, and
s3 − s2 = s4 − s3 = s5 − s4 = 1. Thus

Cn(S) = [0, 4]× [0, 3]× [0, 2]× [0, 1]× [0, 1]× [0, 0]× [0, 0]× [0, 0].

An example of a construction choice in Cn(S) is 42001000, we shall use this as a running
example throughout the remainder of this section.

Proposition 5. For fixed n, let S = {s1, . . . , sk} and 1 6 s1 < · · · < sk < n be given.
Then κn(S) is in bijection with Cn(S).

Proof. Take a construction choice c1c2 . . . cn ∈ Cn(S). We will use this to construct a
permutation by insertion of entries at active sites. Start with the empty permutation.
This has a single active site, labeled zero. Reading the construction choice in reverse
order, insert elements into the permutation beginning with the minimal element. That
is, ci is the choice of active site for the insertion of n+ 1− i into the permutation.

A new active site is created when an element of S is introduced into the permutation.
The active sites are labeled according to the order in which they are inserted. That is,
assuming entries of S are numerically ordered then the active site to the right of si in the
permutation is labeled i. Note that a consequence of this is that si is an ascent bottom if
and only if i is contained within the construction choice. As a larger element is inserted
at each step this ensures that the only place where an ascent can take place is after an
entry of in the permutation which is contained within S. Therefore only elements of S
can be ascent bottoms.

It is easy to see how to reverse this procedure and thus it provides the claimed bijection.

Example 6. For n = 8 and S = {3, 5, 6, 7} the construction process for the permutation
with construction choice 42001000 is as follows. Note the new active site created when
an element of S is inserted.

0

01 Insert 1 at site 0
021 Insert 2 at site 0
03121 Insert 3 at site 0, contained in S

031421 Insert 4 at site 1
05231421 Insert 5 at site 0, contained in S

0635231421 Insert 6 at site 0, contained in S

063527431421 Insert 7 at site 2, contained in S

0635274831421 Insert 8 at site 4

So the resulting permutation is π = 65783421, with A(π) = {3, 5, 7}.
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Corollary 7. For fixed n, let S = {s1, . . . , sk} with 1 6 s1 < · · · < sk < n be given. Then

κn(S) =
k+1∏
r=1

rsr−sr−1 ,

where s0 = 0 and sk+1 = n.

Proof. By Proposition 5 we have that κn(S) is the cardinality of Cn(S), from which the
formula immediately follows.

We shall now show that construction choices in Cn(S), and thus permutations in κn(S),
are in bijection with two different sets of inversion tables. Namely{

υ ∈ InvTabn : Dent(υ) ⊆ {0, s1, s2, . . . , sk}
}

and {
υ ∈ InvTabn : [n− 1] \Dent(υ) ⊆ {n− s1, . . . , n− sk}

}
.

Proposition 8. For fixed n, let S = {s1, . . . , sk} with 1 6 s1 < · · · < sk < n be given.
Then there is a bijection between κn(S) and inversion tables whose entries are a subset
of {0} ∪ S, {

υ ∈ InvTabn : Dent(υ) ⊆ {0, s1, s2, . . . , sk}
}
.

Proof. Again we shall use the construction choice. Entries contained within the inversion
table are a subset of S. Therefore elements which are in [n − 1] but not in S, that is,
elements of [n − 1] \ S, cannot be contained in the inversion table. These entries are
therefore forbidden. Label the remaining possible entries right to left from [0, k]. In this
context it is convenient to use our diagrammatic representation of an inversion table. As
an example, let n = 8 and S = {3, 5, 6, 7}. As [n− 1] \ S = {1, 2, 4}, the columns 8− 1,
8 − 2, and 8 − 4 are forbidden (dark, below). Labeling those which remain right-to-left
with [0, 4] yields

01234
1
2
3
4
5
6
7
8 .

Given a construction choice c1c2 . . . cn ∈ Cn(S), assign the entry on row i to be in the
column labeled ci. Note that as a consequence si is contained in the inversion table if and
only if i is contained within the construction choice. To consider the range of construction
choices which are valid, we also note that there are k + 1 allowed columns for the first
sk − sk−1 rows, k choices for the next sk−1 − sk−2 rows, and so on. This agrees with
the definition of Cn(n). Taking our example construction choice of 42001000 yields the
inversion table υ = 75003000 where Dent(υ) = {0, 3, 5, 7}:
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.

Applying the sieve principle to the set of inversion tables from Proposition 8 we arrive
at the following result.

Corollary 9. There is a bijection between λn(S) and inversion tables whose entries are
exactly those in {0} ∪ S,{

υ ∈ InvTabn : Dent(υ) = {0, s1, . . . , sk}
}
.

To prove the bijection between κn(S) and the second set of inversion tables, consid-
eration of a set of ballots is useful. The proof of Proposition 10 below shows one way to
make a ballot in Bal[n] (short for Bal[[n]]) from a given construction choice.

Proposition 10. For fixed n, let S = {s1, . . . , sk} and 1 6 s1 < · · · < sk < n be given.
Then Cn(S) is in bijection with the set of ballots{

B1 . . . Bk+1 ∈ Bal[n] : {minB1, . . . ,minBk+1} = {1, s1 + 1, . . . , sk + 1}
}
.

Proof. We will show how to construct a ballot from a given construction choice c1c2 . . . cn.
Take k + 1 empty blocks. At any point in the following construction each block will be
considered either open or closed, and the open blocks will be numbered 0, 1, . . . , k, from
left to right. Initially all blocks are open. For i equal to 1, 2, . . . , n, in that order, let
a = n + 1 − i and insert a into the cith open block. If a ∈ {1, s1 + 1, . . . , sk + 1} then
also close the block a is inserted into. This way a is guaranteed end up as the minimal
element of its block. It is easy to see how to reverse this procedure and thus it provides
the claimed bijection.

Example 11. For n = 8 and S = {3, 5, 6, 7} consider the construction of a ballot whose
minimal block elements are {1, 4, 6, 7, 8} with construction choice 42001000. Initially we
have 5 empty blocks labeled from [0, 4]. Note that when a minimal block element is
inserted, that block is no longer open and the remaining blocks are relabeled.

{}0{}1{}2{}3{}4

{}0{}1{}2{}3{8}4 8 inserted in block 4, is minimal entry
{}0{}1{7}2{}3{8} 7 inserted in block 2, is minimal entry
{6}0{}1{7}{}2{8} 6 inserted in block 0, is minimal entry
{6}{5}0{7}{}1{8} 5 inserted in block 0
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{6}{5}0{7}{4}{8} 4 inserted in block 1, is minimal entry
{6}{3, 5}0{7}{4}{8} 3 inserted in block 0
{6}{2, 3, 5}0{7}{4}{8} 2 inserted in block 0
{6}{1, 2, 3, 5}0{7}{4}{8} 1 inserted in block 0, is minimal entry

Therefore the final ballot is {6}{1, 2, 3, 5}{7}{4}{8}.
Proposition 12. There is a bijection between κn(S) and inversion tables whose missing
elements are a subset of n− s1, n− s2, . . . , n− sk,{

υ ∈ InvTabn : [n− 1] \Dent(υ) ⊆ {n− s1, . . . , n− sk}
}
.

Or, equivalently,{
υ ∈ InvTabn : [0, n− 1] \ {n− s1, . . . , n− sk} ⊆ Dent(υ)

}
.

Proof. As seen in the proof of Equation (1) from Section 2, a ballot can be taken to a
permutation by writing the entries within a block in decreasing order and concatenating
the blocks. By this method only the minimal element in a block may be an ascent bottom
in the permutation, with the exception of the final block whose minimal element is the
last element in the permutation.

Hence, for a fixed n and S, the ballot construction gives a bijection between permuta-
tions whose set of ascent bottoms is a subset of S and permutations whose set of ascent
bottoms plus the last element is a subset of {1}∪{s1 +1, . . . , sk +1}. Let π = a1 . . . an be
any such permutation. We shall denote the set of ascent bottoms plus the final element
of π as T = {t1, t2, . . . , tj}:

A(π) ∪ {an} = T ⊆ {1} ∪ {s1 + 1, . . . , sk + 1}.

An element in a permutation can either be an ascent bottom, a descent top, or the final
element. Taking the complement of a permutation takes an ascent bottom ti to a descent
top n + 1 − ti. Letting πc denote the complement of π, it follows that for πc the set of
descent tops and final element is

{n+ 1− t1, n+ 1− t2, . . . , n+ 1− tj} ⊆ {n} ∪ {n− s1, . . . , n− sk},

which contains at least the element n. The set of ascent bottoms in πc contains everything
which is not a descent top or the final element.

A(πc) = [n] \ {n+ 1− t1, . . . , n+ 1− tj}.

As T ⊆ {1} ∪ {s1 + 1, . . . , sk + 1}, it follows that

[n− 1] \ {n− s1, . . . , n− sk} ⊆ A(πc).

From Corollary 9 we have that πc corresponds to an inversion table whose entries are
exactly those in {0} ∪ A(πc), thus giving a unique inversion table satisfying

[0, n− 1] \ {n− s1, . . . , n− sk} ⊆ Dent(υ).

This concludes the proof.
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Example 13. As in previous examples, let n = 8, S = {3, 5, 6, 7} and consider the
construction choice 42001000. From Example 6 the permutation in κn(S) that is given
by the construction choice is π = 65783421. We wish to find the inversion table υ
corresponding to π satisfying

[0, 7] \ {8− 3, 8− 5, 8− 6, 8− 7} = {0, 4, 6, 7} ⊆ Dent(υ).

From Example 11 the ballot given by the construction choice is {6}{1, 2, 3, 5}{7}{4}{8}.
Writing the elements within a block in decreasing order and concatenating the blocks
gives the permutation τ = 65321748 with set of ascent bottoms {1, 4} and final element
{8} where

{1, 4, 8} ⊂ {1, s1 + 1, . . . , sk + 1} = {1, 3 + 1, 5 + 1, 6 + 1, 7 + 1}.

The complement of τ is τ c = 34678251 and has set of descent tops {9− 4, 9− 1} = {5, 8}
and final element 9− 8 = 1. Every other entry in τ c is an ascent bottom:

A(τ c) = {2, 3, 4, 6, 7}.

Taking S ′ = A(τ c), it follows from Proposition 5 that the construction choice uniquely
specifying τ c ∈ κn(S ′) is 54312000. Applying Proposition 8 and Corollary 9, we can show
that τ c corresponds to the inversion table 76423000, which, by construction, has set of
distinct entries

Dent(76423000) = {0, 2, 3, 4, 6, 7} = {0} ∪ A(τ c).

Thus we have constructed υ satisfying {0, 4, 6, 7} ⊆ {0, 2, 3, 4, 6, 7} = Dent(υ).

7 Decomposition of fixed points
Recall that matrices fixed under the involution η satisfy the properties

1. there is exactly one element per row;

2. if a < b, with a on row i, and b on row i+ 1, then column i is non-empty.

Also recall that a fixed point matrix can be viewed as a pair consisting of a permutation
and an inversion table.

For A ∈ BalMatη[U ] where n = |U |, let π(A) = a1 . . . an be the permutation defined by
setting ai the value held in the unique nonzero element of row i of A. Let an equivalence
relation ∼ on BalMatη[U ] be defined by A ∼ B if π(A) = π(B).

Proposition 14. For π ∈ Sn, the equivalence class [π]∼ is determined by the descent
set S = {s1, s2, . . . , sn} = D(π) of π alone. In fact, fixed point matrices in [π]∼ can
be viewed as pairs consisting of the permutation π and an inversion table whose set of
missing entries is a subset of {n− s1, n− s2, . . . , n− sk}.
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Proof. It is a defining property of a fixed point matrix that if a < b, with a on row i, and
b on row i + 1, then column i is required to be non-empty. This is equivalent to saying
that when the matrix is decomposed into a permutation and inversion table, that n− i is
an entry contained within the inversion table.

So, if a > b then we have a descent in the associated permutation and therefore column
i may or may not be empty. It follows that n − i may or may not be contained in the
inversion table.

Therefore, for π ∈ Sn, if the set of descent positions is D(π) = S = {s1, s2, . . . , sk},
then the set of inversion tables with which π can be paired are exactly those where the
set of missing entries is a subset of {n− s1, n− s2, . . . , n− sk}.

Theorem 15. Labeled interval orders on [n] are in bijection with the set∑
S⊆[n−1]

βn(S)× κn(S).

This set may be alternatively written as

{(π, τ) ∈ Sn × Sn : A(τ) ⊆ D(π)}.

Proof. The adapted surjection of Dukes et al. is a bijection between labeled interval orders
and fixed point ballot matrices. This is given by the equivalence class on ballot matrices
according to interval order and Proposition 3 which shows that there is a unique fixed
point per equivalence class.

A fixed point matrix can be decomposed into a permutation π and an inversion table.
If D(π) = {s1, s2, . . . sk} Proposition 14 gives that the set of inversion tables with which
π can be paired are those whose set of missing elements is a subset of {n − s1, n −
s2, . . . , n− sk}. We know from Proposition 12 that such inversion tables are in bijection
with permutations in κn(D(π)).

Corollary 16. The number of labeled interval orders on [n] is given by the formula

∑
{s1,...,sk}⊆[n−1]

(
det

[(
n− si
sj+1 − si

)]
·
k+1∏
r=1

rsr−sr−1

)
,

in which s0 = 0 and sk+1 = n.

Proof. This follows from the formula for βn, see Stanley [9, Example 2.2.4], and the
formula for κn given by Corollary 7.

In the above we have taken the permutation to be fixed and considered the set of
inversion tables in the equivalence class under ∼. It is equally natural to instead take the
inversion table as fixed.

As before, for A ∈ BalMatη[U ], let υ(A) = b1b2 . . . bn be the inversion table from the
decomposition of a ballot matrix fixed under η defined by setting bi to n − j where j is
the column of the only non-empty ballot entry on row i of A.

Let the equivalence relation ≈ on BalMatη[U ] be defined by A ≈ B if υ(A) = υ(B).
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Proposition 17. For υ ∈ InvTabn, the equivalence class [υ]≈ is determined by Dent(υ)
alone. In fact, fixed point matrices in [υ]≈ can be viewed as pairs consisting of the inversion
table υ and a permutation whose descent set is a subset of Dent(υ) \ {0}.

Proof. This proof is similar to that of Proposition 14. Define S = {s1, s2, . . . , sk} to be
the set of distinct entries in υ with the exception of 0.

S = Dent(υ) \ {0}.

From the definition of the decomposition, matrices in [υ]≈ satisfy that columns n − s1,
n− s2, . . . , n− sk are non-empty.

Recall that, for a ballot matrix fixed under η, if there is an ascent at position i,
ai < ai+1, then column i must be non-empty. If there is a descent, then it may or may not
be non-empty. Therefore the set of ascent positions in the associated permutation must
be a subset of n− s1, n− s2, . . . , n− sk. Trivially, reversing such a permutation yields a
permutation whose descent set is a subset of s1, s2, . . . , sk.

Therefore, for any given inversion table where the distinct entries is {0} ∪ S, the set
of permutations which can be associated are trivially in bijection with those where the
descent set is a subset of S.

Theorem 18. Labeled interval orders on [n] are in bijection with the set∑
S⊆[n−1]

αn(S)× λn(S).

This set may be alternatively written as

{(π, τ) ∈ Sn × Sn : D(π) ⊆ A(τ)}.

Proof. Corollary 9 gives that permutations in λn(S) are in bijection with inversion tables
with set of distinct elements {0} ∪ S. Proposition 17 states that the permutations with
which an inversion table υ can be paired are those with their descent set a subset of
Dent(υ) \ {0}. From definition, such permutations are those contained within αn(S).
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