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Abstract

Given a group G of automorphisms of a graph Γ, the orbital chromatic polyno-
mial OPΓ,G(x) is the polynomial whose value at a positive integer k is the number
of orbits of G on proper k-colorings of Γ. Cameron and Kayibi introduced this
polynomial as a means of understanding roots of chromatic polynomials. In this
light, they posed a problem asking whether the real roots of the orbital chromatic
polynomial of any graph are bounded above by the largest real root of its chro-
matic polynomial. We resolve this problem in a resounding negative by not only
constructing a counterexample, but by providing a process for generating families
of counterexamples. We additionally begin the program of finding classes of graphs
whose orbital chromatic polynomials have real roots bounded above by the largest
real root of their chromatic polynomials; in particular establishing this for many
outerplanar graphs.

1 Introduction

The chromatic polynomial of a graph Γ, denoted PΓ(x), is the function whose value at
any positive integer k is the number of proper k-colorings of Γ. That PΓ(x) is indeed a
polynomial comes directly from the classical fact that it satisfies a deletion-contraction
relation. Chromatic polynomials were introduced by Birkhoff [1] in 1912, with the partic-
ular intent of algebraically resolving what was then the 4-Color Conjecture; indeed this
amounts to establishing that any planar graph Γ satisfies PΓ(4) > 0. This perspective
motivated the algebraic study of the roots of chromatic polynomials in general.
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Though Birkhoff did not manage to prove the 4-Color Conjecture algebraically, Birkhoff
and Lewis [2] did prove that for planar graphs Γ, PΓ(x) > 0 for x ∈ [5,∞). They addition-
ally conjectured the still open problem that when Γ is planar, PΓ(x) > 0 for x ∈ [4,∞).
The interval in this conjecture can not be extended, as proven by Royle [6], where it is
shown that real chromatic roots can come arbitrarily close to 4. Outside of the context
of planarity, Sokal [7] proved that the complex roots of chromatic polynomials are dense
in the complex plane. However, in contrast to this, Jackson (see [5]) proved (1, 32

27
] is a

zero-free real interval for chromatic roots, and Thomassen (see [8]) surprisingly proved
that real chromatic roots are dense in [32

27
,∞).

Though investigating algebraic properties of chromatic polynomials has been fruitful,
they distinguish between colorings that can be obtained from one another through an
automorphism of a graph. This motivates the definition of the orbital chromatic polyno-
mial (as introduced in [3]), which does not distinguish between two such colorings. In
particular, given a graph Γ and a group of automorphisms G of Γ, the orbital chromatic
polynomial OPΓ,G(x) is the function whose value at a positive integer k is the number of
G-orbits of proper k-colorings of Γ.

That OPΓ,G(x) is indeed a polynomial in x can be seen as follows. For any g ∈ G, define
PΓ/g(k) to be the number of proper k-colorings of Γ fixed by g. By the Orbit-Stabilizer
Theorem,

OPΓ,G(k) =
1

|G|
∑
g∈G

PΓ/g(k). (1)

The values PΓ/g(k) are in fact evaluations of chromatic polynomials themselves. To see
this, construct the graph which we conveniently name Γ/g, whose vertices are the orbits
of the action of 〈g〉 on Γ, with two orbits O1, O2 adjacent if there are vertices v1 ∈ O1 and
v2 ∈ O2 such that v1 is adjacent to v2 in Γ. Since a coloring is fixed by g if and only if it is
constant on orbits of the action of g, any proper coloring of Γ fixed by g induces a proper
coloring on Γ/g and vice-versa. As a result, for any positive integer k, PΓ/g(k) is the
number of proper k-colorings of Γ/g. But this is a polynomial in k, so by Equation (1),
OPΓ,G(k) is a polynomial in k for any positive integer k. This then implies OPΓ,G(x) is a
polynomial in x, and indeed OPΓ,G(x) = 1

|G|
∑

g∈G PΓ/g(x). Note that this also provides

an algorithm for computing OPΓ,G(x).
Analogous to studying algebraic properties of chromatic polynomials, of particular

interest is understanding algebraic properties of orbital chromatic polynomials, and iden-
tifying how phenomena that hold for chromatic polynomials transfer to orbital chromatic
polynomials. This topic is the central focus of [3]. One of the main results there, in
contrast to Jackson’s and Thomassen’s results on zero-free intervals and the density of
real chromatic roots in [32

27
,∞), is that real orbital chromatic roots are dense in R. This

proof was constructive, and in all graphs constructed in the proof it was observed that
the real roots of OPΓ,G(x) were always bounded above by the largest real root of PΓ(x).
This led to the following natural problem originally posed in [3].

Problem 1 ([3], Problem 2). Is it true that the real roots of OPΓ,G(x) are bounded above
by the largest real root of PΓ(x) for any graph Γ and any subgroup G of Aut(Γ)?
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We show that the answer is a resounding no. Indeed, we not only find examples
where the property described in Problem 1 is false, but we additionally provide a means
for generating families of graphs for which the property is false, as encapsulated in the
following theorem:

Theorem 2. Let Γ be a graph and G be a group of automorphisms of Γ. Suppose the
following hold:

1. There is some g ∈ G for which Γ/g contains fewer vertices than any of the graphs
{Γ/h : h ∈ G, h 6= g}.

2. For the g in part (1), there is some x0 /∈ Z greater than the largest real root of PΓ(x)
such that PΓ/g(x0) < 0.

Then one can construct, from Γ, a graph Γ′ and a group of automorphisms of Γ′, say G′,
such that OPΓ′,G′(x) has a real root larger than any real root of PΓ′(x).

We refer the reader to Example 7 for an illustration of Theorem 2 and a subsequent
example establishing the first negative example to question posed in Problem 1.

It now remains to characterize the pairs (Γ, G) where Γ is a graph and G is a group
of automorphisms of Γ for which the property described in Problem 1 holds. We begin
this program by focusing on planar graphs, as these graphs served as the motivation for
studying chromatic and orbital chromatic polynomials in the first place. In this light, we
uncover a family of planar graphs for which the property indeed holds:

Theorem 3. If Γ is an outerplanar graph that contains at least one odd cycle, then the
real roots of OPΓ,G(x) are bounded above by the largest real root of PΓ(x) for any group G
of automorphisms of Γ.

Outline

The organization of the paper is as follows: In Section 2, we focus on proving Theorem 2
in order to supply the machinery for finding negative examples to Problem 1. In Section
3, we explore when the property described in Problem 1 holds, ultimately leading to the
proof of Theorem 3. We conclude with some conjectures in Section 4.

2 Failure: Bounding Orbital Chromatic Roots

This section is dedicated to proving Theorem 2 and subsequently constructing negative
examples to Problem 1. In order to do this, we need to define some auxiliary graphs.

Definition 4. Given positive integers n, s, define the graph Kn to be the complete graph
on n vertices, and Ns to be the graph consisting of s isolated vertices. Define the graph
Hn,s, the join of Kn and Ns, to be the graph obtained by taking the union of Kn and Ns,
and adding an edge between every vertex in Kn and every vertex in Ns.
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The graphs Hn,s are central to constructing negative examples to Problem 1. In
particular, the following construction will be crucial:

Definition 5. Let Γ be a graph with vertex set {v1, v2, . . . , vk}, and n, s be positive

integers. Let H
(1)
n,s, H

(2)
n,s, . . . , H

(k)
n,s be k copies of the graph Hn,s and choose vertices ui ∈

V (H
(i)
n,s) so that there is an isomorphism from H

(i)
n,s to H

(j)
n,s sending ui to uj. We construct

the graph Γ(n,s) by starting with Γ, and appending the k copies of Hn,s to Γ by identifying
the vertices ui and vi for i ∈ {1, 2, . . . , k}.

The following proposition is immediate.

Proposition 6. For any graph Γ, and positive integers n, s,

PΓ(n,s)(x) = ((x− 1) · · · (x− n + 1)(x− n)s)|V (Γ)| · PΓ(x) =

(
PHn,s(x)

x

)|V (Γ)|

· PΓ(x).

With these constructions, we can now prove Theorem 2.

Proof of Theorem 2. Let n, s be positive integers (arbitrary for now). Construct the graph
Γ(n,s) and let G(n,s) be the group induced by G that permutes vertices of the subgraph Γ
of Γ(n,s) just as G does, so that if g ∈ G sends vi to vj, then H

(i)
n,s gets sent to H

(j)
n,s via

the isomorphism sending ui to uj. There is a natural bijection between elements in G
and elements in G(n,s), so for any h in G, we denote by h(n,s) its corresponding element in
G(n,s).

Observe that for any h ∈ G, Γ(n,s)/h(n,s) = (Γ/h)(n,s), and so by Proposition 6

PΓ(n,s)/h(n,s)(x) = P(Γ/h)(n,s)(x) =

(
PHn,s(x)

x

)|V (Γ/h)|

· PΓ/h(x),

and hence OPΓ(n,s),G(n,s)(x) is

1

|G|

(
PHn,s(x)

x

)|V (Γ/g)|
(
PΓ/g(x) +

∑
h∈G,h 6=g

(
PHn,s(x)

x

)|V (Γ/h)|−|V (Γ/g)|

PΓ/h(x)

)
.

We can now choose appropriate values of n and s to control the roots of OPΓ(n,s),G(n,s)(x).
First, recall our assumption that there is some x0 /∈ Z for which PΓ/g(x0) < 0, and that
this x0 is larger than any real root of PΓ(x). Choose n = bx0c. Since x0 ∈ (n, n + 1),

as we increase s the quantity
PHn,s (x0)

x0
will be positive and approach 0. Together with

the fact that PΓ/g(x0) < 0, and that |V (Γ/h)| − |V (Γ/g)| > 0 for all h 6= g, this im-
plies we can choose a sufficiently large value of s for which OPΓ(n,s),G(n,s)(x0) < 0. But
limx→∞OPΓ(n,s),G(n,s)(x) =∞ so by the Intermediate Value Theorem OPΓ(n,s),G(n,s)(x) has
a root larger than x0.

We now construct Γ′ and G′, letting Γ′ = Γ(n,s) and G′ = G(n,s) for our particular
choices of n and s above. Then OPΓ′,G′(x) has a real root larger than x0, whereas

PΓ′(x) = PΓ(x) ·
(
PHn,s(x)

x

)|V (Γ)|

,

whose maximum real root does not exceed x0.
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Figure 1: Γ(1,1) (on the left) where Γ is a 6-cycle. Γ(1,1)/g(1,1) (on the right) where g is
the 180-degree rotational symmetry of Γ. Γ(1,1) is the first of many negative examples to
Problem 1.

Example 7. Let Γ be a 6-cycle with vertices labeled {1, 2, 3, 4, 5, 6}, where the neighbors
of i are i − 1 and i + 1 (taken mod 6) for each i ∈ V (Γ). Let g be the automorphism
that sends i to i + 3 (taken mod 6), and G be the two-element group consisting of g and
the identity e. First, note that Γ/e = Γ and Γ/g is a 3-cycle, so |V (Γ/g)| < |V (Γ/e)|.
Moreover, observe that

PΓ(x) = (x− 1)6 + (x− 1), PΓ/g(x) = x(x− 1)(x− 2),

so x0 = 3
2

is greater than any real root of PΓ(x) and PΓ/g(x0) < 0. According to the proof
of Theorem 2, this means we should choose n = bx0c = 1. In this case, we have that for
any s,

OPΓ(1,s),G(1,s)(x) =
1

2
(x− 1)3s

(
x(x− 1)(x− 2) + (x− 1)3s

(
(x− 1)6 + (x− 1)

))
,

and hence

OPΓ(1,s),G(1,s)

(
3

2

)
=

(
1

2

)3s+1

·

(
−3

8
+

33

64

(
1

2

)3s
)
.

Letting s = 1 we see OPΓ(1,1),G(1,1)

(
3
2

)
< 0 and hence OPΓ(1,1),G(1,1)(x) has a real root

greater than 3
2
, which is greater than the real roots of PΓ(1,1)(x). See Figure 1 for an

illustration of the pertinent graphs in question.

Remark 8. Note that for any s > 1, OPΓ(1,s),G(1,s)

(
3
2

)
< 0, so we get a family of counterex-

amples arising from the graphs Γ(1,s) and their group of automorphisms G(1,s) for every
positive integer s.

Remark 9. Notice that our choice of appending copies of Hn,s to each vertex of Γ was

employed to ensure lims→∞
PHn,s (x0)

x0
= 0, as this was the crux of the argument for finding

a graph Γ′ with a group of automorphisms G′ giving rise to a negative example to the
property described in Problem 1. We could have easily replaced Hn,s with any family of

graphs {H ′n,s} parameterized by natural numbers n, s for which lims→∞
PH′n,s

(x0)

x0
= 0 with

n = bx0c. Any such graph family would generate entirely new classes of counterexamples.
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3 Success: Bounding Orbital Chromatic Roots for

Graph Families

In this section, we start the program of determining which graphs have the property
described in Problem 1. We begin by showing this property holds for paths and cycles.
This sets the stage for working our way up to proving Theorem 3, showing that the
property described in Problem 1 holds for outerplanar graphs that have at least one odd
cycle.

3.1 Preliminaries

We begin by introducing technical preliminaries. The first of these is the Reduction
Lemma, which allows us to conclude that the real roots of OPΓ,G(x) are bounded above
by the largest real root of PΓ(x) if we have certain bounds on the real roots of the chromatic
polynomials {PΓ/g(x) : g ∈ G}. Though Lemma 10 states the Reduction Lemma in fully
generality, we will use Corollary 11 more often in practice.

Lemma 10 (Reduction Lemma). Let Γ be a graph without loops, and let G be a group
of automorphisms of Γ. Let G be a partition of G, and define G̃ to consist of those sets
X in the partition G for which

∑
g∈X PΓ/g(x) 6= 0. If the real roots of the polynomials

{
∑

g∈X PΓ/g(x) : X ∈ G̃} are bounded above by the largest real root of PΓ(x), then the real
roots of OPΓ,G(x) are bounded above by the largest real root of PΓ(x).

Corollary 11. Let Γ be a graph without loops, and G be any group of automorphisms of
Γ. Suppose that for all g for which Γ/g has no loops, the real roots of PΓ/g(x) are bounded
above by the largest real root of PΓ(x). Then the real roots of OPΓ,G(x) are bounded above
by the largest real root of PΓ(x).

Proof. Apply Lemma 10 where G is partitioned into its individual elements. The elements
g ∈ G for which PΓ/g(x) is non-zero are precisely the ones for which Γ/g has no loops.

Proof of Lemma 10. For simplicity, define PX(x) :=
∑

g∈X PΓ/g(x), and let r be the
largest real root of PΓ(x). Suppose there is some r′ > r that is a root of OPΓ,G(x).
Then

0 = OPΓ,G(r′) =
1

|G|
∑
X∈G̃

PX(r′).

This implies PX(r′) < 0 for some X ∈ G̃. Since limx→∞ PX(x) = ∞ and PX(x) is
continuous, the Intermediate Value Theorem implies PX(x) has a real root larger than r′.
This contradicts that the largest real root of PX(x) is at most r.

Another construction that we use throughout the paper is adding path ears to graphs.
In particular, given a graph Γ, a pair of adjacent vertices u, v ∈ V (Γ), and a positive
integer n, we denote by Γu,v(n) the graph obtained from Γ by adding a path from u to v
with n interior vertices, none of which are in Γ. Using deletion and contraction, one can
inductively prove
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Lemma 12.

PΓu,v(n)(x) =

(
n∑

i=0

(−1)n−i(x− 1)i

)
· PΓ(x) = (−1)n

(
1− (1− x)n+1

x

)
· PΓ(x).

3.2 Elementary Graphs: Paths and Cycles

We begin the program of determining when the property described in Problem 1 is true
by starting with the simplest graphs: paths and cycles. We should note that though
Theorem 3 takes care of odd cycles, the techniques and observations used to prove the
property described in Problem 1 holds for paths and cycles will play a key role in proving
Theorem 3.

Proposition 13. If Γ is a cycle or a path and G is any group of automorphisms of Γ,
then the real roots of OPΓ,G(x) are bounded above by the largest real root of PΓ(x).

Proof. Throughout, we use the notation Cn for a cycle on n vertices, and Pn for a path on
n vertices. We begin our investigation with Pn. The automorphism group of Pn is Z/2Z,
so G is either the trivial group or Z/2Z. If G is the trivial group, then OPPn,G(x) = PPn(x)
so we only need to consider when G = Z/2Z. We write G = {e, g} where e is the identity
element and g is the element of order 2. We know Pn/e = Pn, and

Pn/g =

{
Pn

2
with a loop at one end if n is even

Pn−1
2

if n is odd

When n is even, Pn/g has a loop so OPPn,G(x) = PPn(x) and we are done. If n is odd, the
real roots of PPn−1

2

(x) are {0, 1}, and since the same is true of PPn(x), the result follows

by Corollary 11. This successfully establishes the veracity of the property described in
Problem 1 for paths.

We move on to cycles Cn where we can assume n > 3. Now PCn(x) = (x − 1)n +
(−1)n(x − 1) so the roots of PCn(x) are {0, 1} if n is even, and {0, 1, 2} otherwise. We
exploit this throughout our investigations with the graphs Cn.

Let Cn have vertex set {1, 2, 3, . . . , n}. The automorphism group of Cn is the 2n-element
dihedral group, which we will denote by D2n, whose elements are

1, r, r2, . . . , rn−1, f, fr, fr2, . . . , frn−1

where r is the group element that maps v → v + 1 (taken mod n) for every v ∈ V (Cn),
and f is any element of order 2 that fixes at least one vertex. A quick computation shows

Cn/g =



a loop or loops on a single vertex if g = ri with gcd(i, n) = 1

Cgcd(i,n) if g = ri with gcd(i, n) 6= 1

Pn
2

+1 if g = fri with n even and i even

Pn
2

with loops at both ends if g = fri with n even and i odd

Pn+1
2

with a loop at one end if g = fri with n odd

the electronic journal of combinatorics 21(4) (2014), #P4.17 7



If n is odd, the real roots of PCn(g) are {0, 1, 2}, and since the real chromatic roots of
Cn/g are bounded above by 2, the result follows by Corollary 11. For the remainder of
our proof, suppose n is even.

We consider all potential subgroups G of D2n. The case when G is the trivial group
is immediate. Suppose G is generated by some rotation ri, and without loss of generality
that i divides n. Any non-identity element g ∈ G will be of the form rij for some positive
integer j. If i is even, then 2| gcd(ij, n) for any positive integer j, so each graph Cn/g
will be an even cycle, and hence have real chromatic roots {0, 1}. Applying Corollary 11,
the result follows. Now if i is odd, we partition the group generated by ri into sets
Hk = {r(2k+1)i, r2ki} (exponents taken mod n). If gcd((2k + 1)i, n) = 1, then Cn/r(2k+1)i

is either a loop or a single vertex so its only real chromatic root is 0. The graph C/r2ki

is an even cycle so its real chromatic roots are {0, 1}. By a similar argument as in the
proof of Lemma 10,

∑
g∈Hk

PCn/g(x) can not have real chromatic roots exceeding 1. It
remains to consider when gcd((2k + 1)i, n) 6= 1. For simplicity let tk = gcd((2k + 1)i, n)
and rk = gcd(2ki, n). Observing that Cn/r(2k+1)i = Ctk , Cn/r2ki = Crk and tk and rk are
odd and even respectively, we have

PCn/r(2k+1)i(x) = (x− 1)tk − (x− 1), PCn/r2ki(x) = (x− 1)rk + (x− 1),

and so ∑
g∈Hk

PCn/g(x) = (x− 1)tk + (x− 1)rk .

We then see that
∑

g∈Hk
PCn/g(x) > 0 for x > 1, and so

∑
g∈Hk

PCn/g(x) does not have a
real root exceeding one. We conclude that for every k, the real roots of

∑
g∈Hk

PCn/g(x)
cannot exceed 1, and hence by Lemma 10, the result follows.

The subgroups that remain are 〈f〉 and 〈f, ri〉 (again without loss of generality, i
divides n). Let S = {g ∈ G : g = fri for some i} and consider the partition G of
G consisting of the set G\S together with one-element sets, each containing a unique
element from S. For any g ∈ S, Cn/g is a path or has a loop, so the real roots of PCn/g(x)
are 0 or 1. The sum ∑

g∈G\S

PCn/g(x)

has roots bounded by 1 as well, as we proved earlier. The result then follows again by
Lemma 10.

3.3 Outerplanar Graphs

In order to establish Theorem 3, we need to know the real chromatic roots of outerplanar
graphs. This is the content of the next proposition.

Proposition 14. Let Γ be an outerplanar graph. Then the real chromatic roots of Γ are
{0, 1, 2} if Γ contains an odd cycle, and {0, 1} otherwise.
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Proof. We can assume Γ is connected, because the chromatic polynomial of a union of
graphs is their product. If Γ is a tree, then its chromatic roots are {0, 1}, so assume Γ has
a cycle. Every such outerplanar graph Γ can be constructed from a sequence of subgraphs

Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γn = Γ

where Γ1 is a cycle, and Γi+1 is obtained from the subgraph Γi by either:

1. adding an ear from u ∈ V (Γi) to v ∈ V (Γi) where u, v are adjacent in Γi, or

2. adding a tree to Γi with one vertex in common with Γi.

In Case (1), Lemma 12 shows that the real chromatic roots of Γi+1 are those of Γi with
the potential addition of the real root 2 if and only if the new cycle formed by adding the
ear is an odd cycle. In Case (2), PΓi+1

(x) = (x− 1)tPΓi
(x) where t is one fewer than the

number of vertices in the tree being added, so the real chromatic roots of Γi+1 are those
of Γi with the potential addition of the root 1. The result then follows inductively.

We can now establish Theorem 3.

Proof of Theorem 3. We claim it suffices to show that if Γ is outerplanar, then for any
group of automorphisms G of Γ and any g ∈ G, the graph Γ/g is either outerplanar or
has a loop. To see why, note that because Γ contains an odd cycle, Proposition 14 shows
that its maximum real chromatic root is 2. However, if for any g ∈ G we have that Γ/g is
outerplanar, then its real chromatic roots are bounded above by 2 as well. For all other
g ∈ G, Γ/g has a loop, so by Corollary 11, it follows that the real roots of OPΓ,G(x) are
bounded above by the largest real root of PΓ(x).

It therefore remains to show that for any g ∈ G, Γ/g is outerplanar or has a loop,
provided Γ is outerplanar itself. We first prove this when Γ is 2-connected. In this case,
Γ has a Hamiltonian cycle that forms the unique outer face of Γ (see [4]). Suppose this
cycle has vertices {1, 2, 3, . . . , n} in that order (and hence V (G) = {1, 2, . . . , n}). Since
the Hamiltonian cycle is unique, it must map to itself, so the group G must be a subgroup
of D2n, so g = ri or g = fri where i ∈ {0, 1, 2, . . . , n− 1} (see Section 3.2 for definitions).

If g = fri for some i, then Γ/g does not contain a loop only if n is even and g is the
flip across the axis through some vertex j and n

2
+ j (taken mod n). Consider the subsets

V1 = {j, j + 1, . . . , j + n
2
}, V2 = {j + n

2
, j + n

2
+ 1, . . . , j} (taken mod n). There can not

be an edge v1v2 in Γ with vi ∈ Vi (except possibly an edge whose endpoints are j and
j + n

2
), for otherwise, the edge g(v1)g(v2) (which is necessarily in Γ) would cross v1v2,

contradicting the planarity of Γ. Thus, Γ/g is the induced subgraph of Γ on V1, with the
addition of an edge from j to j + n

2
. This is outerplanar since Γ is.

Now suppose g = ri. The orbits of ri are the same as that of rgcd(n,i), so Γ/ri =
Γ/rgcd(n,i), and so we work with Γ/rgcd(n,i). For simplicity let k = gcd(n, i). Among
all longest chords in Γ, pick the one j1j2, where j1 < j2 and j1 is minimal. Observe
j2− j1 6 k, for otherwise, taking the full orbit of this chord under the group generated by
rk will result in two intersecting chords in Γ, contradicting the planarity of Γ. We then
have that Γ/rk is the induced graph of Γ on the vertices {j1, j1 + 1, . . . , j1 + k}, with the
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potential addition of the edge from j1 to j1 + k, and the potential addition of loops. This
is outerplanar if it doesn’t have loops, and negligible if it has loops.

Finally, if Γ is not 2-connected, its biconnected components must map to each other
under the action of g, and bridges must map to bridges, so Γ/g identifies isomorphic
biconnected components (or bridges), and remains outerplanar or has a loop.

4 Open Problems

It still remains to determine when the property described in Problem 1 holds in general.
From Example 7 we see that this it does not hold for all planar graphs, however Theorem 3
establishes a large class of planar graphs for which the property does hold. This leaves us
with the following problem.

Problem 15. Characterize the planar graphs Γ and groups G for which the real roots of
OPΓ,G(x) are bounded above by the largest real root of PΓ(x).

Another point of interest is comparing the spread between orbital chromatic and chro-
matic roots. Though we know that the real roots of OPΓ,G(x) can be larger than those of
PΓ(x), how far apart can these roots be? Based on limited experimentation in this light,
we conjecture the following:

Conjecture 16. For any N > 0, there exists a graph Γ and automorphism group G of Γ
for which OPΓ,G(x) has a root at least N larger than the largest real root of PΓ(x).

The proof of Theorem 2 suggests a potentially viable approach to proving Conjec-
ture 16: it is sufficient to find a graphs Γ with automorphism groups G for which
|V (Γ/g)| < |V (Γ/h)| for any h ∈ G, h 6= g, and where the largest real root of PΓ/g(x) is
arbitrarily larger than that of PΓ(x).
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