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Abstract

We study sequences of functions of the form Fnp → {0, 1} for varying n, and
define a notion of convergence based on the induced distributions from restricting
the functions to a random affine subspace. Using a decomposition theorem and
a recently proven equi-distribution theorem from higher-order Fourier analysis, we
prove that the limits of such convergent sequences can be represented by certain
measurable functions. We also show that every such limit object arises as the limit
of some sequence of functions. These results are in the spirit of similar results
which have been developed for limits of graph sequences. A more general, albeit
substantially more sophisticated, limit object was recently constructed by Balázs
Szegedy [Gowers norms, regularization and limits of functions on abelian groups,
2010. arXiv:1010.6211].

1 Introduction

In limit theories of discrete structures, one often studies a large object by studying its
“local statistics”. More precisely, given a sampling rule that allows one to sample a
random substructure, there is an induced probability measure on the set of possible small
substructures. For example, given a graph G and a positive integer k, one can select k
random vertices in G and look at the subgraph induced by G on these k vertices. This
induces a probability distribution on k-vertex graphs. Every such sampling rule leads to
a notion of convergence. Namely, a sequence of structures is called convergent if these
probability distributions converge. So, in the above example, a sequence of graphs is
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called convergent [LS06] if, for every k, the corresponding probability distributions on
k-vertex graphs converges.

Let p be a fixed prime, and denote F = Fp. In this article we are interested in functions
from vector spaces over the field F to the set {0, 1}, or equivalently the subsets of such
vector spaces. Given a subset of Fn, the local information we would like to work with is
the distribution of small linear structures, e.g. arithmetic progressions, contained within
the set. To this end, we use the sampling rule that considers the restriction of a given
function to a random affine subspace. We will describe a restriction of Fn to an affine
subspace of dimension k by an affine transformation A : Fk → Fn. Recall that an affine
transformation A is of the form L+ c where L is linear and c is a constant vector in Fn.
More precisely, given a function f : Fn → {0, 1} and a positive integer k, we select a
random affine transformation A : Fk → Fn uniformly, and consider the random variable
Af : Fk → {0, 1} defined as Af : x 7→ f(Ax). This induces a probability distribution
on the set of functions {Fk → {0, 1}}. A sequence of functions {fi : Fni → {0, 1}}i∈N is
called convergent if these probability distributions converge for every k.

It is worth mentioning that, in the context of this paper, it is simply more natural
to work with affine subspaces rather than linear ones. This is partly because most sub-
structures of interest (e.g., arithmetic progressions) are translation invariant and, more
generally, invariant under affine transformations. Consequently, it is desirable to require
that a function f : Fn → {0, 1} and its translations fa(x) := f(x + a) for a ∈ Fn have
the same local statistics. This would have not been the case had we defined convergence
by restricting to random linear subspaces. Additionally, since linear subspaces always
contain the origin, the corresponding notion of convergence is too sensitive to the values
of the function at 0. For these reasons, we define convergence via restricting to affine sub-
spaces. However, the techniques of this paper can be extended to other similar notions of
convergence.

Now, the purpose of this article is to describe a limit object for such convergent
sequences of functions. Before we can state our results we need to recall some results
from higher-order Fourier analysis.

2 Basic background

Most of the material in this section is directly quoted from the full version of [BFH+13].

Notation For d ∈ N ∪ {∞}, denote [d] := {1, . . . , d} if d < ∞, and [d] = N otherwise.
We shorthand F = Fp for a prime finite field. For f : Fn → C we denote ‖f‖1= E[|f(x)|],
‖f‖2

2= E[|f(x)|2] where x ∈ Fn is chosen uniformly and ‖f‖∞= max|f(x)|. Note that
‖f‖16 ‖f‖26 ‖f‖∞. The expression om(1) denotes quantities which approach zero as m
grows. We shorthand x± ε for any quantity in [x− ε, x+ ε].
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2.1 Uniformity norms and non-classical polynomials

Definition 2.1 (Multiplicative Derivative). Given a function f : Fn → C and an element
h ∈ Fn, define the multiplicative derivative in direction h of f to be the function ∆hf :
Fn → C satisfying ∆hf(x) = f(x+ h)f(x) for all x ∈ Fn.

The Gowers norm of order d for a function f is determined by the expected multi-
plicative derivative of f in d random directions at a random point.

Definition 2.2 (Gowers norm). Given a function f : Fn → C and an integer d > 1, the
Gowers norm of order d for f is given by

‖f‖Ud=

∣∣∣∣ E
h1,...,hd,x∈Fn

[(∆h1∆h2 · · ·∆hdf)(x)]

∣∣∣∣1/2d .
Note that as ‖f‖U1= |E [f ] | the Gowers norm of order 1 is only a semi-norm. However

for d > 1, it is not difficult to show that ‖·‖Ud is indeed a norm.
If f = e2πiP/p where P : Fn → F is a polynomial of degree < d, then ‖f‖Ud= 1. If d < p

and ‖f‖∞6 1, then in fact, the converse holds, meaning that any function f : Fn → C
satisfying ‖f‖∞6 1 and ‖f‖Ud= 1 is of this form. But when d > p, the converse is no
longer true. In order to characterize functions f : Fn → C with ‖f‖∞6 1 and ‖f‖Ud= 1,
we need to define the notion of non-classical polynomials.

Non-classical polynomials might not necessarily be F-valued. We need to introduce
some notation. Let T denote the circle group R/Z. This is an Abelian group with group
operation denoted +. For an integer k > 0, let Uk denote the subgroup 1

pk
Z/Z ⊆ T. Let

e : T→ C denote the character e (x) = e2πix.

Definition 2.3 (Additive Derivative). Given a function1 P : Fn → T and an element
h ∈ Fn, define the additive derivative in direction h of f to be the function DhP : Fn → T
satisfying DhP (x) = P (x+ h)− P (x) for all x ∈ Fn.

Definition 2.4 (Non-classical polynomials). For an integer d > 0, a function P : Fn → T
is said to be a non-classical polynomial of degree 6 d (or simply a polynomial of degree
6 d) if for all h1, . . . , hd+1, x ∈ Fn, it holds that

(Dh1 · · ·Dhd+1
P )(x) = 0. (1)

The degree of P is the smallest d for which the above holds. A function P : Fn → T is
said to be a classical polynomial of degree 6 d if it is a non-classical polynomial of degree
6 d whose image is contained in U1.

It is a direct consequence of Definition 2.4 that a function f : Fn → C with ‖f‖∞6 1
satisfies ‖f‖Ud+1= 1 if and only if f = e (P ) for a (non-classical) polynomial P : Fn → T
of degree 6 d.

1We try to adhere to the following convention: upper-case letters (e.g. F and P ) to denote functions
mapping from Fn to T or to F, lower-case letters (e.g. f and g) to denote functions mapping from Fn to
C, and upper-case Greek letters (e.g. Γ and Σ) to denote functions mapping TC to T.
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The following lemma of Tao and Ziegler shows that a classical polynomial P of degree
d must always be of the form 1

p
|Q(x)|, where Q : Fn → F is a polynomial (in the usual

sense) of degree d, and | · | is the standard map from F to {0, 1, . . . , p− 1}. This lemma
also characterizes the structure of non-classical polynomials.

Lemma 2.5 (Lemma 1.7 in [TZ12]). Let d > 1 be an integer. A function P : Fn → T is
a polynomial of degree 6 d if and only if P can be represented as

P (x1, . . . , xn) = α +
∑

06d1,...,dn<p;k>0:
0<

∑
i di6d−k(p−1)

cd1,...,dn,k|x1|d1 · · · |xn|dn
pk+1

mod 1,

for a unique choice of cd1,...,dn,k ∈ {0, 1, . . . , p− 1} and α ∈ T. The element α is called the
shift of P , and the largest integer k such that there exist d1, . . . , dn for which cd1,...,dn,k 6= 0
is called the depth of P . A depth k polynomial P takes values in a coset of the subgroup
Uk+1. Classical polynomials correspond to polynomials with shift 0 and depth 0.

Note that Lemma 2.5 immediately implies the following important observation:

Remark 2.6. If Q : Fn → T is a polynomial of degree d and depth k, then pQ is a
polynomial of degree max(d− p+ 1, 0) and depth k − 1. In other words, if Q is classical,
then pQ vanishes, and otherwise, its degree decreases by p− 1 and its depth by 1. Also, if
λ ∈ [1, p− 1] is an integer, then deg(λQ) = d and depth(λQ) = k.

For convenience of exposition, we will assume throughout this paper that the shifts
of all polynomials are zero. This can be done without affecting any of the results in this
work. Hence, all polynomials of depth k take values in Uk+1. By a (d, k)-polynomial we
mean a polynomial of degree d and depth k.

2.2 Rank

We will often need to study Gowers norms of exponentials of polynomials. As we describe
below, if this analytic quantity is non-negligible, then there is an algebraic explanation
for this: it is possible to decompose the polynomial as a function of a constant number
of low-degree polynomials. To state this rigorously, let us define the notion of rank of a
polynomial.

Definition 2.7 (Rank of a polynomial). Given a polynomial P : Fn → T and an integer
d > 1, the d-rank of P , denoted rankd(P ), is defined to be the smallest integer r such that
there exist polynomials Q1, . . . , Qr : Fn → T of degree 6 d− 1 and a function Γ : Tr → T
satisfying P (x) = Γ(Q1(x), . . . , Qr(x)). If d = 1, then 1-rank is defined to be ∞ if P is
non-constant and 0 otherwise.

The rank of a polynomial P : Fn → T is its deg(P )-rank. We say P is r-regular if
rank(P ) > r.

Note that for integer λ ∈ [1, p − 1], rank(P ) = rank(λP ). We will also define the
following, weaker, analytic notion of uniformity for a polynomial.
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Definition 2.8 (Uniformity). Let ε > 0 be a real. A degree d polynomial P : Fn → T is
said to be ε-uniform if

‖e (P )‖Ud < ε

The following theorem of Tao and Ziegler relates rank to uniformity by showing that
high rank polynomials have small Gowers norms.

Theorem 2.9 (Theorem 1.20 of [TZ12]). For any ε > 0 and integer d > 0, there exists
an integer r = r2.9(d, ε) such that the following is true. For any polynomial P : Fn → T
of degree 6 d, if ‖e (P )‖Ud> ε, then rankd(P ) 6 r.

This immediately implies that a sufficiently regular polynomial will be uniform.

Corollary 2.10. Let ε, d, and r = r2.9(d, ε) be as in Theorem 2.9. Every r-regular
polynomial of degree d is also ε-uniform.

Finally, we need to extend our definitions of rank and uniformity to a collection of poly-
nomials. In particular, we will need these when the collection comes from a polynomial
factor.

Definition 2.11 (Rank and Regularity). A polynomial factor B defined by a sequence
of polynomials P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to have
rank r if r is the least integer for which there exist weights (λ1, . . . , λC) ∈ ZC, with

(λ1 mod pk1+1, . . . , λC mod pkC+1) 6= 0C, such that rankd
(∑C

i=1 λiPi

)
6 r, where d =

maxi deg(λiPi).
Given a polynomial factor B and a function r : Z>0 → Z>0, we say that B is r-regular

if B is of rank larger than r(|B|).

Definition 2.12 (Uniform Factor). Let ε > 0 be a real. A polynomial factor B defined by
a sequence of polynomials P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to
be ε-uniform if for every collection (λ1, . . . , λC) ∈ ZC, with at least one λi mod pki+1 not
0, we have ∥∥∥∥∥e

(
C∑
i=1

λiPi

)∥∥∥∥∥
Ud

< ε,

where d = maxi deg(λiPi).

Remark 2.13. Let ε : N → R+ be an arbitrary non-increasing function. Similar to
Corollary 2.10, it also follows from Theorem 2.9 that an r-regular, degree d factor B is
also ε(|B|)-uniform when r = r2.9(d, ε(·)).

The following decomposition theorem is one of the main tools in higher-order Fourier
analysis.
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Theorem 2.14 (Strong Decomposition Theorem; Theorem 4.4 of [BFL13]). Suppose
δ > 0 and d > 1 are integers. Let η : N→ R+ and r : N→ N be arbitrary non-decreasing
functions. Then there exists C = C2.14(δ, η, r, d) such that the following holds.

Given f : Fn → [0, 1], there exist three functions f1, f2, f3 : Fn → R and a polynomial
factor B of degree at most d and complexity at most C such that the following conditions
hold:

(i) f = f1 + f2 + f3.
(ii) f1 = E[f |B].

(iii) ‖f2‖Ud+16 1/η(|B|).
(iv) ‖f3‖26 δ.
(v) f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

(vi) B is r-regular.

Remark 2.15. As in Remark 2.13, taking r = r2.9(d, ε(·)), we obtain a decomposition
where now condition (vi) reads that the factor B is ε(|B|)-uniform, where ε : N → R+ is
an arbitrary non-increasing function.

2.3 Complexity of systems of linear forms

In this article, a linear form in k variables is a vector L = (λ1, . . . , λk) ∈ Fk regarded as
a linear function from V k to V for any vector space V over F: If x = (x1, . . . , xk) ∈ V k,
then L(x) := λ1x1 + . . . + λkxk. A linear form L = (λ1, λ2, . . . , λk) is said to be affine
if λ1 = 1. Affine linear forms are important in this work for the following reason. If
{L1, . . . , Lm} ⊆ Fk and A : Fk → Fn is a uniform random affine transformation, then
(AL1, . . . , ALm) has the same distribution as (x0+L1(x1, . . . , xk), . . . , x0+Lm(x1, . . . , xk))
where x0, . . . , xk are uniform and independent random vectors in Fn. The vectors (x0 +
L1(x1, . . . , xk), . . . , x0 + Lm(x1, . . . , xk)) can be considered as the application of affine
linear forms to the variables x0, . . . , xk. On the other hand if {L1, . . . , Lm} ⊆ Fk are all
affine linear forms, and A : Fk → Fn is a uniform random affine transformation, then
(AL1, . . . , ALm) has the same distribution as (L1(x1, . . . , xk), . . . , Lm(x1, . . . , xk)) where
x1, . . . , xk are uniform and independent random vectors in Fn.

A system of linear forms in k variables is a finite set L ⊆ Fk of linear forms in k
variables. A system of linear forms is called affine if it consists only of affine linear forms.
For the reasons described in the previous paragraph we will mainly be interested in affine
systems of linear forms.

Given a function f : Fn → C and a system of linear forms L = {L1, . . . , Lm} ⊆ F`,
define

tL(f) = E
x1,...,x`

[∏
L∈L

f(L(x1, . . . , x`))

]
. (2)

Definition 2.16. A system of linear forms L = {L1, . . . , Lm} ⊆ F` is said to be of true
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complexity at most d if there exists a function δ : R+ → R+ such that limε→0 δ(ε) = 0 and∣∣∣∣∣ E
x1,...,x`∈Fn

[
m∏
i=1

fi(Li(x1, . . . , x`))

]∣∣∣∣∣ 6 min
i
δ(‖fi‖Ud+1),

for all f1, . . . , fm : Fn → [−1, 1].

Remark 2.17. It is known [GW10] that the true complexity of an affine system linear
forms L = {L1, . . . , Lm} is at most m.

The following lemma shows that for a proper decomposition f = f1 + f2 + f3, the
average tL(f) is a good approximation of tL(f1).

Lemma 2.18. Let L = {L1, . . . , Lm} be a system of linear forms of true complexity at
most d and ε > 0 be a constant. Let f : Fn → {0, 1} be decomposed to f = f1 + f2 + f3

according to Theorem 2.14. Then

|tL(f)− tL(f1)|6 ε,

provided that δ is sufficiently small and η and r grow sufficiently fast.

Proof. We can expand tL(f) = tL(f1 + f2 + f3) as

∑
(ij)j∈[m]∈[3]m

E

[
m∏
j=1

fij(Lj(x1, . . . , x`))

]
.

Most of the terms in this sum are negligible: If any ij = 2, then from the decomposi-
tion theorem and the definition of true complexity we get that the summand is at most
δ′(1/η(|B|)), where δ′ is from Definition 2.16. Additionally, if some ij = 3, then an appli-
cation of Cauchy-Schwarz bounds the summand by δ. The only other term is precisely
tL(f1), so we get

|tL(f)− tL(f1)|6 3m max{δ′(1/η(|B|)), δ} = oη,r,δ(1).

�

3 Main results

We study the following notions of convergence. Given a function f : Fn → {0, 1} and
an affine system of linear forms L ⊆ Fk, we can select a random affine transformation
A : Fk → Fn uniformly, and then consider the restriction of Af to the set L. This induces
a probability distribution µf (L) over the set of functions {L → {0, 1}}.

Definition 3.1. A sequence of functions {fi : Fni → {0, 1}}i∈N is called d-convergent if
for every k and every L ⊆ Fk of true complexity at most d, the probability distributions
µfi(L) converge.
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It follows from Remark 2.17 that {fi : Fni → {0, 1}}i∈N is convergent if it is d-
convergent for every d. Thus in the sequel, the term ∞-convergence means convergence.
Our first goal is to find a representation for the limit of a d-convergent sequence.

Definition 3.2. For every d ∈ N ∪ {∞}, denote Gd =
∏d

j=1

∏b j−1
p−1
c

k=0 UN
k+1. So every

element in this group is of the form a = (aj,k,i : j ∈ [d], k ∈ [0, b j−1
p−1
c], i ∈ N), with each

aj,k,i ∈ Uk+1.
A d-limit object is a measurable function Γ : Gd → [0, 1].

To be precise, Gd is a compact Abelian group with the topology generated by the
open (clopen, even) sets which are the subsets of Gd obtained by fixing finitely many
coordinates. The unique Haar probability measure on Gd can be obtained by specifying
it on these sets (in the obvious way) and extending it to Gd via Carathéodory’s extension
theorem.

In order to prove that d-limit objects correspond to the limits of d-convergent se-
quences, we need to define the probability distribution that a d-limit object induces on
{L → {0, 1}}. First we need another definition.

Definition 3.3 (Consistency). Let L = {L1, . . . , Lm} be a system of linear forms. A
sequence of elements b1, . . . , bm ∈ T is said to be (d, k)-consistent with L if there exists a
(d, k)-polynomial P and a point x such that P (Li(x)) = bi for every i ∈ [m].

Given vectors d = (d1, . . . , dC) ∈ ZC>0 and k = (k1, . . . , kC) ∈ ZC>0, a sequence of
vectors b1, . . . ,bm ∈ TC is said to be (d,k)-consistent with L if for every i ∈ [C], the
elements b1(i), . . . ,bm(i) are (di, ki)-consistent with L.

If B is a polynomial factor, the term B-consistent with L is a synonym for (d,k)-
consistent with L where d = (d1, . . . , dC) and k = (k1, . . . , kC) are respectively the degree
and depth sequences of polynomials defining B.

A sequence of elements b1, . . . ,bm ∈ Gd is consistent with L if for every j ∈ [d],
k ∈ [0, b j−1

p−1
c], and i ∈ N, the elements b1(j, k, i), . . . ,bm(j, k, i) are (j, k)-consistent with

L.
Consider a highly uniform polynomial factor B of degree d > 0, defined by the collec-

tion of polynomials P1, . . . , PC : Fn → T, with respective degrees d1, . . . , dC and depths
k1, . . . , kC . Let L = {L1, . . . , Lm} be an affine system of linear forms on ` variables. We
are interested in the distribution of the random matrix

P1(L1(X)) P2(L1(X)) · · · PC(L1(X))
P1(L2(X)) P2(L2(X)) · · · PC(L2(X))

...
...

...
P1(Lm(X)) P2(Lm(X)) · · · PC(Lm(X))

 , (3)

where X is a uniform random variable taking values in (Fn)`. Note that by the definition
of consistency, for every i ∈ [C], the i-th column of this matrix is always (di, ki)-consistent
with L. To prove our main result we will use the following equi-distribution theorem from
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[BFH+13], which shows that if the factor B is sufficiently uniform, then the distribution of
Eq. (3) can be made arbitrarily close to uniform over matrices satisfying the consistency
condition above.

Theorem 3.4 (See Theorem 3.10 of [BFH+13]). Given ε > 0, let B be an ε-uniform poly-
nomial factor of degree d > 0 and complexity C, that is defined by a tuple of polynomials
P1, . . . , PC : Fn → T having respective degrees d1, . . . , dC and respective depths k1, . . . , kC.
Let L = {L1, . . . , Lm} be an affine system of linear forms on ` variables.

Suppose b1, . . . ,bm ∈ TC are atoms of B that are B-consistent with L. Then

Pr
x1,...,x`

[B(Lj(x1, . . . , x`)) = bj ∀j ∈ [m]] =
1

K
± ε,

where K is the number of tuples (b1, . . . ,bm) that are B-consistent with L.

Consider a d-limit object Γ : Gd → [0, 1]. For an affine system of linear forms L =
{L1, . . . , Lm}, select b1, . . . ,bm ∈ Gd at random (according to the Haar measure on Gd,
defined following Definition 3.2), conditioned on being consistent with L. Then define the
random function g : L → {0, 1} by setting g(Li) = 1 with probability Γ(bi) and g(Li) = 0
with probability 1− Γ(bi) independently for every i ∈ [m]. This introduces a probability
measure µΓ(L) on the set of functions {L → {0, 1}}.

We say that a sequence of functions {fi : Fni → {0, 1}}i∈N d-converges to Γ if for every
affine system of linear forms L of true complexity at most d, the probability measures
µfi(L) converge to µΓ(L).

Theorem 3.5 (Main Theorem). For every d ∈ N ∪ {∞}, every d-convergent sequence
d-converges to a d-limit object. On the other hand every d-limit object is the limit of a
d-convergent sequence.

4 Proof of the Main Theorem

For a measurable Γ : Gd → C, similar to (2), we can define

tL(Γ) := E

∏
i∈[m]

Γ(bi)

 ,
where b1, . . . ,bm ∈ Gd are selected at random, conditioned on being consistent with L.

We start with a simple and standard observation that allows us to work with the
averages tL(·) rather than the the distributions µL.

Observation 4.1. For every d ∈ N∪{∞}, a sequence {fi : Fni → {0, 1}}i∈N d-converges
to a d-limit object Γ if and only if for every affine system of linear forms L of true
complexity at most d we have limi→∞ tL(fi) = tL(Γ).
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Proof. The forward direction here is clear: The value of tL(fi) is determined by the
distribution µfi(L).

For the other direction, write µ := µfi(L) for some i and some affine L of true com-
plexity at most d. We can identify µ with a function µ : {0, 1}L → [0, 1]. Then, applying
the Fourier transform (for the group FL2 ), we can write

µ(x) =
∑
S⊆L

µ̂(S)χS(x),

so that µ is determined by the µ̂(S). However, we have

µ̂(S) = E
y∈{0,1}L

[µ(y)χS(y)] = E
y

[
µ(y)(−1)

∑
i∈S yi

]
= E

y

[
µ(y)

∏
i∈S

(1− 2yi)

]
.

Expanding this product, we see that µ̂(S) is a linear combination of terms of the form

E
y

[
µ(y)

∏
i∈S′

yi

]
= tS′(fi),

where S ′ ⊆ S ⊆ L. Thus the distribution µ is determined by the values tL′(fi), where
L′ ⊆ L (and hence L′ has true complexity 6 d). �

Theorem 3.5 follows from Lemma 4.2 and Lemma 4.4.

Lemma 4.2. Let {fi : Fni → {0, 1}}i∈N be a d-convergent sequence. There exists a d-limit
object Γ such that limi→∞ tL(fi) = tL(Γ) for every affine system of linear forms L of true
complexity at most d.

Proof. Consider a decreasing sequence {εi}i∈N of positive reals tending to 0. Let the
parameters δi, ηi, and ri be chosen as required by Lemma 2.18 so that for every affine
system of linear forms L = {L1, . . . , Lm} of true complexity at most d, if i is sufficiently
large, then the following holds:

(i) |tL(fi)−tL(f 1
i )|6 εi where fi = f 1

i +f 2
i +f 3

i is decomposed according to Theorem 2.14
with the parameters δi, ηi, and ri, and degree di, where di = d if d <∞, and di = i
if d =∞.

(ii) The assertion of Theorem 3.4 is true with ε = εip
−idiC when applied to the factor

B in the decomposition fi = f 1
i + f 2

i + f 3
i . Here C is the complexity of B.

Decompose each fi as fi = f 1
i + f 2

i + f 3
i according to Theorem 2.14 with the above

mentioned parameters. We have f 1
i (x) = Γ̃i(P

i
1(x), . . . , P i

C(x)) for some function Γ̃i and
polynomials P i

1, . . . , P
i
C . Considering the degrees and the depths of the polynomials, the

function Γ̃i corresponds naturally to a d-limit object Γi: Indeed let φ : [C]→ N× N× N
be any injective map that satisfies φ(t) = (deg(P i

t ), depth(P i
t ), t) for every t ∈ [C]. Define
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π : Gd → TC as π : b → (b(φ(1)), . . . ,b(φ(C))), and let Γi(b) := Γ̃i(π(b)) for every
b ∈ Gd.

Let L = {L1, . . . , Lm} be an affine system of linear forms of true complexity at most
d, and let i be sufficiently large. We will show that |tL(f 1

i ) − tL(Γi)|6 εi. Choose
b1, . . . ,bm ∈ Gd randomly, conditioned on being consistent with L. Since consistency
is defined coordinate-wise, it follows that (π(b1), . . . , π(bm)) is distributed uniformly con-
ditioned on being B-consistent with L, and hence that tL(Γ̃i) = tL(Γi).

Now we can write

tL(f 1
i ) = E

x

∏
Lj∈L

Γ̃i(P
i
1(Lj(x)), . . . , P i

C(Lj(x)))

 = E

∏
Lj∈L

Γ̃i(yj)

 ,
where the yj are distributed as (P1(Lj(x)), . . . , PC(Lj(x))). The condition (ii) above
shows that the distribution of (b1, . . . ,bm), where the bj ∈ TC are chosen uniformly and
conditioned on being B-consistent with L, is ε-close in total variation distance to that of
(P1(Lj(x)), . . . , PC(Lj(x)))j∈[m] when x is chosen uniformly at random. This gives

E

∏
Lj∈L

Γ̃i(yj)

 6 tL(Γ̃i) + pidiCε

since each P i
t , t ∈ [C], has degree at most di, hence there are at most pidiC choices for the

yj when i > m. So we have the desired approximation.
So far we have established that for every system of affine linear forms L, if i is suffi-

ciently large, then
|tL(fi)− tL(Γi)|6 2εi. (4)

Next we construct the limit object Γ. For every t ∈ N denote Gt
d =

∏d
j=1

∏b j−1
p−1
c

k=0 Ut
k+1.

Note that Gt
d corresponds to a partition of Gd. For every measurable Γ : Gd → [0, 1]

and t ∈ N, define Et(Γ) = E [Γ | Gt
d]. Note that the set {G1

d → [0, 1]} is a compact
space, and thus one can find a subsequence of {Γi}i∈N such that E1(Γi) for i in this
subsequence converges to a function µ1 : G1

d → [0, 1]. Now we restrict ourselves to this
subsequence and consider E2. Again by compactness we can find a subsequence for which
E2(Γi) converges to a function µ2 : G2

d → [0, 1]. Continuing in the same manner we define
µt : Gt

d → [0, 1] for every t. Note that since we restricted to a subsequence at every step,
we have E[µt|Gr

d] = µr for every r < t. Furthermore, by picking the first element from
the first subsequence, the second element from the second subsequence, and so on, we
obtain a subsequence Γ′1,Γ

′
2, . . . of the original sequence that satisfies lim E [Γ′i | Gt

d] = µt
for every t ∈ N.

The measure µt is a σ-finite measure over the atoms Gt
d, and thus by Carathéodory’s

extension theorem, there is a unique measure (also σ-finite) µ on Gd such that E[µ|Gt
d] =

µt for every t. Now let ν denote the Haar probability measure on Gd (described after
Definition 3.2), and note that for any t and any particular Γi we have E[Γi |Gt

d] 6 1.
Since µt is a limit (over a subsequence) of these averages, we have µt(A) 6 ν(A) for every
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A ⊆ Gt
d. It follows that µ(A) 6 ν(A) for any µ-measurable A ⊆ Gd. In particular, µ

is absolutely continuous with respect to ν. Let Γ : Gd → [0, 1] be the Radon-Nikodym
derivative of µ.

Note that as lim E [Γ′i | Gt
d] = µt, the sequence of Γ′i converge to Γ in L1, and conse-

quently lim tL(Γ′i) = tL(Γ). We showed in (Eq. (4)) that lim tL(fi) = lim tL(Γi), and since
the former limit exists by assumption, it follows that tL(Γ) = lim tL(fi). �

Before we can prove the second part of Theorem 3.5, we need a simple lemma which
shows the existence of collections of high rank polynomials of arbitrary degree and depth
sequence.

Lemma 4.3. Let d = (d1, . . . , dC) ∈ ZC>0 and k = (k1, . . . , kC) ∈ ZC>0 satisfy 0 6 ki 6
bdi−1
p−1
c for every i, and let r be a positive integer. There exists a set of polynomials

P1, . . . , PC of rank at least r such that Pi is of degree di and depth ki for every i ∈ [C].

Proof. Let r′ be an integer. For each i, let mi satisfy di = mi + (p − 1)ki. Allot
variables xi1, . . . , x

i
mir′

for exclusive use by Pi, and let Pi = (1/pki+1)(xi1 · · ·ximi
+ · · · +

ximi(r′−1)+1 · · ·ximir′
). It is clear that P1, . . . , PC has the desired degree and depth sequence.

For sufficiently large n we have enough variables to do this, and it is standard that for
sufficiently large r′, these polynomials will have rank at least r. �

With this in hand, we can now complete the proof of Theorem 3.5.

Lemma 4.4. Let d ∈ N∪{∞}, and let Γ be a d-limit object. There exists a d-convergent
sequence of functions {fi : Fni → {0, 1}}i∈N whose limit is Γ.

Proof. For every t ∈ N, define the function Γt : Gd → [0, 1] to be the function obtained
from E [Γ | Gt

d] (a map from Gt
d to [0, 1]) by extending it to a function on Gd. The Γt

converge to Γ in L1 norm, and each Γt depends on only a finite number of coordinates
of Gd. Let dt = (dt1, . . . , d

t
C) and kt = (kt1, . . . , k

t
C) be the degree and depth sequences

corresponding to the coordinates of Gd used by Γt.
For every r ∈ N, we can apply Lemma 4.3 to get a collection of polynomials P1, . . . , PC

of rank> r such that Pi has degree dti and depth kti for every i. Now define the function f rt :
Fnr → [0, 1] by letting f rt (x) = Γ(P1(x), . . . , PC(x)), where we treat (P1(x), . . . , PC(x)) as
an element of Gd. It follows from Theorem 3.4 by the same argument used in the proof of
Lemma 4.2 that we have tL(f rt ) →r tL(Γt) for every affine L of true complexity at most
d. Taking a suitable diagonal subsequence of the f rt , we obtain a sequence of functions
fi : Fni → [0, 1] with tL(fi)→i tL(Γ) for every affine L of true complexity at most d.

To complete the proof, consider the random functions f ′i : Fni → {0, 1} where f ′i(x)
takes value 1 with probability fi(x). It is well known that these d-converge to Γ with
probability 1, and hence the existence of a d-convergent sequence converging to Γ is
evinced. �

The use of Theorem 3.5 at this point is mainly one of convenience. Tools like Theo-
rem 2.14 and Theorem 3.4 afford one the luxury to make simplifying assumptions about
a function while incurring an arbitrarily small error. Working with d-limit objects here
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is effectively allowing us to replace ‘arbitrarily small’ with 0. Similarly, we can substitute
‘arbitrarily high rank’ polynomials for ‘infinite rank’ ones. These kinds of assumptions
can eliminate a significant amount of bookkeeping in proofs. Then, with a result regarding
d-limit objects, the finite results are usually obtained for free (through Theorem 3.5). The
state of affairs in the graph limit theory is mostly the same, although many conjecture
that there should be some non-cosmetic benefit to the limit approach.

5 Necessary depths

The following inverse theorem characterizes functions with large Ud+1 norm by showing
that they must correlate highly with a degree 6 d (non-classical) polynomial.

Theorem 5.1 (Theorem 1.11 of [TZ12]). Suppose δ > 0 and d > 1 is an integer. There
exists an ε = ε5.1(δ, d) such that the following holds. For every function f : Fn → D with
‖f‖Ud+1> δ, there exists a polynomial P : Fn → T of degree 6 d that is ε-correlated with
f , meaning ∣∣∣∣ E

x∈Fn
f(x)e (−P (x))

∣∣∣∣ > ε.

Note that every polynomial that is not classical must have degree at least p. It is
known that polynomials of degree d = p that are not classical are unnecessary in higher-
order Fourier analysis. More precisely in Theorem 5.1, for the case d = p, one can assume
that the polynomial P : Fn → T in the statement of the theorem is a classical polynomial
of degree at most p. This can be carried further through Theorem 2.14 and then to the
definition of the d-limit object. We will elaborate on this below, but first let us prove a
generalization of this fact, which says that the polynomials of maximum possible depth
are unnecessary in higher-order Fourier analysis.

Lemma 5.2. Every (1 + k(p − 1), k)-polynomial P : Fn → T can be expressed as a
function of a (1 + k(p − 1), k − 1)-polynomial, a (1 + (k − 1)(p − 1), k − 1)-polynomial,
and a (k(p− 1), k − 1)-polynomial.

Proof. By Lemma 2.5, we have P (x1, . . . , xn) =
∑
ci|xi|
pk+1 +R(x1, . . . , xn) mod 1 for integers

0 6 ci 6 p − 1, where R is a (1 + k(p − 1), k − 1)-polynomial. Let M :=
∑
ci|xi|, and

let 0 6 a < pk and b ∈ [p− 1] be the unique integers satisfying M ≡ a + bpk mod pk+1.
The value of P is fixed by the three values a, b and R. The value of a is determined by
the value of the (1 + (k − 1)(p− 1), k − 1)-polynomial M

pk
mod 1. Furthermore knowing

a, the value of b is determined by the value of the Mp−M
pk+1 mod 1. Indeed

bpk ≡ (a+ bpk)p − (a+ bpk)− (ap − a) mod pk+1. (5)

It remains to show that Mp−M
pk+1 mod 1 is a (1 + k(p− 1), k− 1)-polynomial. Since degree

and depth are invariant under affine transformations, it suffices to show that Q := |x1|p−|x1|
pk+1

mod 1 is a (k(p− 1), k− 1)-polynomial. By Fermat’s little theorem pkQ = 0, and thus Q
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is of depth k − 1. Furthermore, the identity |x1|(|x1|−1) . . . (|x1|−p+ 1) = 0 allows us to
replace |x1|p with a polynomial of degree p − 1. This shows that Q is of degree at most
(p− 1) + (p− 1)(k − 1) = k(p− 1). �

It follows from Lemma 5.2 that in Theorem 2.14, (1 + k(p − 1), k)-polynomials can
be avoided in the polynomials defining the factor B. Consequently, every d-convergent
sequence converges to a d-limit object φ : Gd → [0, 1] such that φ does not depend on
the coordinates that correspond to (1 + k(p− 1), k)-polynomials. Next we will show that
there are no other values of (d, k) that behave similarly. That is, for which every (d, k)-
polynomial can be expressed as a function of a constant number of polynomials of either
degree d and depth < k, or degree < d. We need the following theorem of [TZ12].

Theorem 5.3 (See Theorem 4.1 of [TZ12]). Let d > p be an integer, and ε > 0. There
exists a ρ = ρ5.3(ε, d) such that the following holds for sufficiently large n. If P : Fn → T
is a polynomial of degree d with ‖e (P )‖Ud > ε, then pP : Fn → T is a polynomial of
degree 6 d− p+ 1 that satisfies

‖e (pP )‖Ud−p+1 > ρ.

The following lemma implies that unless d and k are as in Lemma 5.2, for every
constant C, there exists a (d, k)-polynomial that cannot be expressed as a function of C
polynomials, each of either degree d and depth < k, or of degree < d. The polynomial that
we use in the proof of the lemma is reminiscent of the so called generalized inner product
polynomial that was used by Babai, Nisan, and Szegedy [BNS92] for similar purposes (see
also [VW08]).

Lemma 5.4. Let 2 6 m 6 p−1 be an integer, and ε > 0. Then for every k > 0, defining
d = m+ k(p− 1), there exists a degree (d, k)-polynomial Q such that

|〈e (Q), e (R1 +R2)〉|< ε, (6)

for any polynomial R1 of degree at most d and depth less than k, and any polynomial R2

of degree at most d− 1.

Proof. Let

P =

bn/mc−1∑
i=0

|xim+1|. . . |xim+m|.

Set εk = ε, and for every 0 6 i 6 k, let εi ∈ (0, ε) be constants satisfying

εi < ε5.1(ρ5.3(εi+1, d), d).

We show by induction on i that if n is sufficiently large, then the (m+i(p−1), i)-polynomial
Q = P

pi+1 mod 1 satisfies the desired property with parameter εi in (6) instead of ε.
We first look at the classical case i = 0. Notice that in this case by taking n to be

sufficiently large, we can guarantee that ‖e (Q)‖Ud is sufficiently small, and this implies
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that the correlation of Q with any polynomial of degree lower than m + i(p − 1) = m is
smaller than ε0.

Now let us consider the case i > 0. Assume for the sake of contradiction that
|〈e
(

P
pi+1

)
, e (R1 +R2)〉|> εi for a polynomial R1 of degree at most di = m + i(p − 1)

and depth < k, and a polynomial R2 of degree 6 di − 1. This in particular implies

‖e
(

P
pi+1 −R1 −R2

)
‖Udi > εi. Note that P

pi+1 − R1 − R2 mod 1 has degree di > p, and

thus we can apply Theorem 5.3 to conclude that

‖e
(
p(P/pi+1 −R1 −R2)

)
‖Udi−p+1 > ρ

(
‖e
(
P/pi+1 −R1 −R2

)
‖Udi

)
> ρ5.3(εi, di).

Therefore by Theorem 5.1 there exists a polynomial R′ of degree at most di− p such that∣∣〈e (p(P/pi+1 −R1 −R2)
)
, e (R′)

〉∣∣ > ε5.1(ρ5.3(εi, di), di − p) > ε5.1(ρ5.3(εi, di), di) > εi−1.

It follows that |〈e (P/pi), e (pR1 + pR2 +R′)〉| > εi−1, which contradicts our induction
hypothesis. �

Concluding remarks. We conclude with an open question regarding the uniqueness
of the limit object. Suppose that two limit objects Γ1,Γ2 satisfy tL(Γ1) = tL(Γ2) for every
affine system of linear forms L. Then how do Γ1 and Γ2 relate to each other?
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