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Abstract

For a k-uniform hypergraph H, we obtain some trace formulas for the Laplacian
tensor of H, which imply that

∑n
i=1 d

s
i (s = 1, . . . , k) is determined by the Laplacian

spectrum of H, where d1, . . . , dn is the degree sequence of H. Using trace formulas
for the Laplacian tensor, we obtain expressions for some coefficients of the Laplacian
polynomial of a regular hypergraph. We give some spectral characterizations of odd-
bipartite hypergraphs, and give a partial answer to a question posed by Shao et al
(2014). We also give some spectral properties of power hypergraphs, and show that
a conjecture posed by Hu et al (2013) holds under certain conditons.

Keywords: Hypergraph eigenvalue; Adjacency tensor; Laplacian tensor; Signless
Laplacian tensor; Power hypergraph

1 Introduction

Recently, the research on spectral theory of hypergraphs has attracted extensive attention
[1,5-8,11,13,14,16-18]. We first introduce some necessary concepts and notations. For a

∗Corresponding author.
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positive integer n, let [n] = {1, . . . , n}. An order k dimension n tensor A = (ai1···ik) ∈
Cn×···×n is a multidimensional array with nk entries, where ij ∈ [n], j = 1, . . . , k. We
sometimes write ai1···ik as ai1α, where α = i2 · · · ik. When k = 1, A is a column vector of
dimension n. When k = 2, A is an n × n matrix. The unit tensor of order k > 2 and
dimension n is a diagonal tensor In = (δi1i2···ik) such that δi1i2···ik = 1 if i1 = i2 = · · · = ik,
and δi1i2···ik = 0 otherwise. In [15], Shao defined the following product of tensors, which
is a generalization of the matrix multiplication.

Definition 1. [15] Let A and B be order m > 2 and order k > 1, dimension n tensors,
respectively. The product AB is the following tensor C of order (m − 1)(k − 1) + 1 and
dimension n with entries

ciα1...αm−1 =
∑

i2,...,im∈[n]

aii2...imbi2α1 · · · bimαm−1 (i ∈ [n], α1, . . . , αm−1 ∈ [n]k−1).

Let A be an order k > 2 dimension n tensor, and let x = (x1, . . . , xn)>. From
Definition 1, the product Ax is a vector in Cn whose i-th component is (see Example 1.1
in [15])

(Ax)i =
∑

i2,...,ik∈[n]

aii2···ikxi2 · · ·xik .

The concept of tensor eigenvalues was posed in [9, 12]. If there exists a nonzero vector
x ∈ Cn such that Ax = λx[k−1], then λ is called an eigenvalue of A, x is an eigenvector
of λ, where x[k−1] = (xk−11 , . . . , xk−1n )>. The determinant of A, denoted by det(A), is
the resultant of the system of polynomials fi(x1, . . . , xn) = (Ax)i (i = 1, . . . , n). The
characteristic polynomial of A is defined as φA(λ) = det(λIn −A), where In is the unit
tensor of order k and dimension n. It is known that eigenvalues of A are exactly roots of
φA(λ) [12]. The multiset of roots of φA(λ) (counting multiplicities) is the spectrum of A,
denoted by σ(A). The maximal modulus of eigenvalues of A is called the spectral radius
of A, denoted by ρ(A). More details on eigenvalues and characteristic polynomials of
tensors can be found in [4, 12].

A hypergraph H is called k-uniform if each edge of H contains exactly k distinct
vertices. Let V (H) and E(H) denote the vertex set and the edge set of H, respectively.
In [13], Qi defined the Laplacian and the signless Laplacian tensor of a uniform hypergraph
as follows.

Definition 2. [7, 13] The adjacency tensor of a k-uniform hypergraph H, denoted by
AH , is an order k dimension |V (H)| tensor with entries

ai1i2···ik =

{
1

(k−1)! if i1i2 · · · ik ∈ E(H),

0 otherwise.

Let DH be an order k dimension |V (H)| diagonal tensor whose diagonal entries are vertex
degrees of H. The tensors LH = DH − AH and QH = DH + AH are the Laplacian
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tensor and the signless Laplacian tensor of H, respectively. Eigenvalues of AH , LH and
QH are called eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of H,
respectively. Characteristic polynomials of LH and QH are called Laplacian polynomial
and signless Laplacian polynomial of H, respectively.

This paper is organized as follows. In Section 2, we give some trace formulas for the
Laplacian tensor of a uniform hypergraph, and obtain expressions for some coefficients
of the Laplacian polynomial of a regular hypergraph. In Section 3, we give some spec-
tral characterizations of odd-bipartite hypergraphs. In Section 4, we give some spectral
properties of power hypergraphs.

2 Laplacian spectra and degree sequence of hyper-

graphs

Traces of tensors are very useful in the study of spectral theory of tensors. The d-th order
trace of an order k > 2 dimension n tensor T = (ti1···ik) is defined as [1, 4, 10]

Trd(T ) = (k − 1)n−1
∑

d1+···+dn=d

n∏
i=1

1

(di(k − 1))!

 ∑
y∈[n]k−1

tiy
∂

∂aiy

di

tr(Ad(k−1)),

where A = (aij) is an n× n auxiliary matrix, and ∂
∂aiy

= ∂
∂aii2
· · · ∂

∂aiik
if y = i2 · · · ik. The

codegree d coefficient of the characteristic polynomial of T can be expressed in terms of
Tr1(T ), . . . , T rd(T ) (see [4, Theorem 6.3]). It is also known that Trt(T ) =

∑
λ∈σ(T ) λ

t for

any t ∈ [n(k − 1)n−1] (see [4, Theorem 6.10]). Hence Trd(T ) is an important invariant in
the spectral theory of tensors.

Shao et al [16] give a graph theoretical formula for Trd(T ). In order to describe this
formula, we introduce some notations in [16]. For an integer d > 0, we define

Fd = {(i1α1, . . . , idαd)|1 6 i1 6 · · · 6 id 6 n; α1, . . . , αd ∈ [n]k−1}.

For F = (i1α1, . . . , idαd) ∈ Fd and an order k > 2 dimension n tensor T = (ti1···ik),

we write πF (T ) =
∏d

j=1 tijαj
. Let pi(F ) be the total number of times that the index i

appears in F . If pi(F ) is a multiple of k for any i ∈ [n], then F is called k-valent.

Definition 3. [16] Let F = (i1α1, . . . , idαd) ∈ Fd, where ijαj ∈ [n]k, j = 1, . . . , d. Then

(1) Let E(F ) =
⋃d
j=1Ej(F ), where Ej(F ) is the arc multi-set

Ej(F ) = {(ij, v1), . . . , (ij, vk−1)}

if αj = v1 · · · vk−1.
(2) Let b(F ) be the product of the factorials of the multiplicities of all the arcs of E(F ).
(3) Let c(F ) be the product of the factorials of the outdegrees of all the vertices in the
arc multi-set E(F ).
(4) Let W (F ) be the set of all closed walks W with the arc multi-set E(F ).
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Shao et al give a graph theoretical formula for Trd(T ) as follows (see equation (3.5)
in [16]).

Lemma 4. [16] Let T = (Ti1···ik) be an order k > 2 dimension n tensor. Then

Trd(T ) = (k − 1)n−1
∑
F∈F ′d

b(F )

c(F )
πF (T )|W (F )|,

where F ′d = {F |F ∈ Fd, F is k-valent}.

For a k-uniform hypergraph H, Cooper and Dutle [1] proved that Trd(AH) = 0 for
d ∈ [k − 1]. We give some trace formulas for the Laplacian (signless Laplacian) tensor of
uniform hypergraphs as follows.

Theorem 5. Let H be a k-uniform hypergraph with degree sequence d1, . . . , dn. Then

Trt(LH) = Trt(QH) = (k − 1)n−1
n∑
i=1

dti, t = 1, . . . , k − 1,

T rk(LH) = (−1)kkk−1(k − 1)n−k|E(H)|+ (k − 1)n−1
n∑
i=1

dki ,

T rk(QH) = kk−1(k − 1)n−k|E(H)|+ (k − 1)n−1
n∑
i=1

dki .

Proof. By Lemma 4, we have

Trt(LH) = (k − 1)n−1
∑
F∈F ′t

b(F )

c(F )
πF (LH)|W (F )|, (1)

where F ′t = {F |F ∈ Ft, F is k-valent}. For F = (i1α1, . . . , itαt) ∈ Ft, if πF (LH) =∏t
j=1(LH)ijαj

6= 0, then ijαj = ijij · · · ij ∈ [n]k or ijαj ∈ E(H) for any 1 6 j 6 t.
Let F ∈ Ft satisfies πF (LH) 6= 0. If t < k, then F is k-valent if and only if F =

(i1i1 · · · i1, . . . , itit · · · it). In this case, |W (F )| 6= 0 if and only if i1 = · · · = it. Let
Fi = (ii · · · i, . . . , ii · · · i) ∈ F ′t (t < k). From Eq. (1) and Definition 3, we have

Trt(LH) = (k − 1)n−1
n∑
i=1

b(Fi)

c(Fi)
πFi

(LH)|W (Fi)|

= (k − 1)n−1
n∑
i=1

(t(k − 1))!

(t(k − 1))!
dti = (k − 1)n−1

n∑
i=1

dti.

Similar with the above procedure, we can also get Trt(QH) = (k − 1)n−1
∑n

i=1 d
t
i, t =

1, . . . , k − 1.
Let F ∈ Fk satisfies πF (LH) 6= 0. Then F is k-valent and |W (F )| 6= 0 if and only if

F = (ii · · · i, . . . , ii · · · i) or F = (i1α1, . . . , ikαk), where i1α1, . . . , ikαk correspond to the
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same edge i1i2 · · · ik ∈ E(H). Let Fi = (ii · · · i, . . . , ii · · · i) ∈ F ′k. From Eq. (1) and
Definition 3, we have

Trk(LH) = (−1)kTrk(AH) + (k − 1)n−1
n∑
i=1

b(Fi)

c(Fi)
πFi

(LH)|W (Fi)|

= (−1)kTrk(AH) + (k − 1)n−1
n∑
i=1

(k(k − 1))!

(k(k − 1))!
dki

= (−1)kTrk(AH) + (k − 1)n−1
n∑
i=1

dki .

From the proof of [1, Theorem 3.15], we have Trk(AH) = kk−1(k − 1)n−k|E(H)|. Hence

Trk(LH) = (−1)kkk−1(k − 1)n−k|E(H)|+ (k − 1)n−1
n∑
i=1

dki .

Similar with the above procedure, we can also get

Trk(QH) = kk−1(k − 1)n−k|E(H)|+ (k − 1)n−1
n∑
i=1

dki .

Remark. Note that traces of a tensor are determined by its spectrum [3, Theorem 6.3].
For a k-uniform hypergraph H, by Theorem 5, we know that

∑n
i=1 d

s
i (s = 1, . . . , k) is

determined by the Laplacian (signless Laplacian) spectrum of H, where d1, . . . , dn is the
degree sequence of H.

Let pt(M) denote the codegree t coefficient of the characteristic polynomial of a tensor
M.

Lemma 6. LetM be an order k > 2 dimension n tensor. Then

t!pt(M) = det


−Trt Tr1 Tr2 · · · Trt−1
−Trt−1 t− 1 Tr1 · · · Trt−2

−Trt−2 0 t− 2
. . .

...
...

...
. . . . . . Tr1

−Tr1 0 · · · 0 1

 ,

where Trt = Trt(M), t ∈ [n(k − 1)n−1].

Proof. From [4, Theorem 6.10], we have
t T r1 Tr2 · · · Trt−1
0 t− 1 Tr1 · · · Trt−2

0 0 t− 2
. . .

...
...

...
. . . . . . Tr1

0 0 · · · 0 1




pt(M)
pt−1(M)

...
p2(M)
p1(M)

 =


−Trt
−Trt−1

...
−Tr2
−Tr1

 .
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We can obtain the expression of t!pt(M) from Cramer’s rule.

A uniform hypergraph H is called d-regular if each vertex of H has degree d. The
following are some coefficients of the Laplacian (signless Laplacian) polynomial of regular
hypergraphs.

Theorem 7. Let H be a d-regular k-uniform hypergraph with n vertices. Then

pt(LH) = pt(QH) = (−1)tdt
(
n(k − 1)n−1

t

)
, t = 1, . . . , k − 1,

pk(LH) = (−1)k+1kk−3(k − 1)n−knd+ (−1)kdk
(
n(k − 1)n−1

k

)
,

pk(QH) = −kk−3(k − 1)n−knd+ (−1)kdk
(
n(k − 1)n−1

k

)
.

Proof. By Lemma 6, we have

t!pt(LH) = det


−Trt Tr1 Tr2 · · · Trt−1
−Trt−1 t− 1 Tr1 · · · Trt−2

−Trt−2 0 t− 2
. . .

...
...

...
. . . . . . Tr1

−Tr1 0 · · · 0 1

 , (2)

where Trt = Trt(LH). Since H is d-regular, by Theorem 5, we have Tri = dTri−1 =
n(k − 1)n−1di, i = 2, . . . , k − 1. If t < k, then by Eq. (2), we have

t!pt(LH) = det


0 Tr1 Tr2 · · · Trt−1
0 t− 1 Tr1 · · · Trt−2
... 0 t− 2

. . .
...

0
...

. . . . . . Tr1
d− Tr1 0 · · · 0 1



= det


0 Tr1 − (t− 1)d 0 · · · 0

0 t− 1
. . . . . .

...
... 0

. . . Tr1 − 2d 0

0
...

. . . 2 Tr1
d− Tr1 0 · · · 0 1


= (−1)t

t−1∏
i=0

(Tr1 − id).

Since Tr1 = n(k − 1)n−1d, we have

pt(LH) = (−1)t
∏t−1

i=0(n(k − 1)n−1d− id)

t!
= (−1)tdt

∏t−1
i=0(n(k − 1)n−1 − i)

t!

= (−1)tdt
(
n(k − 1)n−1

t

)
.
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Similar with the above procedure, we can also get

pt(QH) = (−1)tdt
(
n(k − 1)n−1

t

)
, t = 1, . . . , k − 1.

Since H is d-regular, by Theorem 5, we have Trk = (−1)kkk−2(k − 1)n−knd+ dTrk−1
and Tri = dTri−1 = n(k − 1)n−1di, i = 2, . . . , k − 1. From Eq. (2), we have

k!pk(LH) = det


(−1)k+1kk−2(k − 1)n−knd Tr1 Tr2 · · · Trk−1

0 k − 1 Tr1 · · · Trk−2
... 0 k − 2

. . .
...

0
...

. . . . . . Tr1
d− Tr1 0 · · · 0 1



= det


(−1)k+1kk−2(k − 1)n−knd Tr1 − (k − 1)d 0 · · · 0

0 k − 1
. . . . . .

...
... 0

. . . Tr1 − 2d 0

0
...

. . . 2 Tr1
d− Tr1 0 · · · 0 1


= (−1)k+1kk−2(k − 1)n−k(k − 1)!nd+ (−1)kdk

k−1∏
i=0

(n(k − 1)n−1 − i).

pk(LH) = (−1)k+1kk−3(k − 1)n−knd+ (−1)kdk
(
n(k − 1)n−1

k

)
.

Similar with the above procedure, we can also get

pk(QH) = −kk−3(k − 1)n−knd+ (−1)kdk
(
n(k − 1)n−1

k

)
.

3 Eigenvalues and odd-bipartite hypergraphs

A k-uniform hypergraph H is called odd-bipartite, if there exists a proper subset V1 of
V (H) such that each edge of H contains exactly odd number of vertices in V1 [6, 17].
Spectral characterizations of odd-bipartite hypergraphs will be investigated in this section.
We first give some auxiliary lemmas. The following lemma can be obtained from equation
(2.1) in [15].

Lemma 8. Let A = (ai1···ik) be an order k > 2 dimension n tensor, and let P = (pij), Q =
(qij) be n× n matrices. Then

(PAQ)i1···ik =
∑

j1,...,jk∈[n]

aj1···jkpi1j1qj2i2 · · · qjkik .
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Lemma 9. [6] Let H be a connected k-uniform hypergraph. A nonzero vector x is an
eigenvector of QH corresponds to the zero eigenvalue if and only if there exist nonzero
γ ∈ C and integers αi such that xi = γ exp(2αiπ

k

√
−1) for each i ∈ V (H), and∑

j∈e

αj = σek +
k

2

for some integer σe associated with each e ∈ E(H).

Weakly irreducible tensors are defined in [3]. It is known that a k-uniform hypergraph
H is connected if and only if AH is weakly irreducible [11].

Lemma 10. [17, 19] Let A be an order k dimension n nonnegative weakly irreducible
tensor. If ρ(A) exp(θ

√
−1) is an eigenvalue of A, then there exists a diagonal matrix U

with unit diagonal entries such that

A = exp(−θ
√
−1)U−(k−1)AU.

For a tensor T , let Hσ(T ) = {λ|λ ∈ σ(T ), λ has a real eigenvector}. For a connected
k-uniform hypergraph G, Shao et al [17] proved that

Hσ(LG) = Hσ(QG) =⇒ σ(LG) = σ(QG).

Shao et al wish to know whether the reverse implication is true. We show that the reverse
is true when k is not divisible by 4.

Theorem 11. Let G be a connected k-uniform hypergraph, and k is not divisible by 4.
Then the following are equivalent:
(1) k is even and H is odd-bipartite.
(2) Hσ(LG) = Hσ(QG).
(3) σ(LG) = σ(QG).
(4) 0 is a signless Laplacian eigenvalue of G.

Proof. From [17, Theorem 2.2], we have (1)⇒ (2)⇒ (3). Since 0 is always an eigenvalue
of LG (see [13]), we have (3)⇒ (4). Next we prove that (4)⇒ (1).

If 0 is an eigenvalue ofQG, then by Lemma 9, there exists a vertex labeling f : V (G)→
[k] such that ∑

i∈e

f(i) ≡ k

2
(mod k)

for each e ∈ E(G). Hence k is even. Since k is not divisible by 4, we know that k
2

is odd.
So
∑

i∈e f(i) is odd for each e ∈ E(G). Let V1 = {u|u ∈ V (G), f(u) is odd}. For any
e ∈ E(G), since

∑
i∈e f(i) is odd, e contains exactly odd number of vertices in V1. Hence

G is odd-bipartite.
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When k = 2, Theorem 11 becomes a classic result in spectral graph theory, i.e., a
connected graph G is bipartite if and only if 0 is a signless Laplacian eigenvalue of G.
It is also well known that a connected graph G is bipartite if and only if −ρ(AG) is an
eigenvalue of G. We generalize this result as follows.

Theorem 12. Let H be a connected k-uniform hypergraph, and k is not divisible by 4.
Then the following are equivalent:
(1) k is even and H is odd-bipartite.
(2) −ρ(AH) is an eigenvalue of H.

Proof. From [17, Theorem 2.3], we have (1)⇒ (2). If (2) holds, then by Lemma 10, there
exists a diagonal matrix U with unit diagonal entries such that AH = −U−(k−1)AHU . By
Lemma 8, we have

ai1i2···ik = −ai1i2···iku
−(k−1)
i1

ui2 · · ·uik ,

where uij is the diagonal entry of U corresponds to vertex ij (j = 1, . . . , k). For any edge
e = i1i2 · · · ik ∈ E(H), we get

u
−(k−1)
i1

ui2 · · ·uik = −1, ui1ui2 · · ·uik = −uki1 .

Similarly, we have ui1ui2 · · ·uik = −uki1 = · · · = −ukik . Since ui1 , . . . , uik are unit complex

number, there exist θ and integers αi1 , . . . , αik such that uij = exp(
2παij

+θ

k

√
−1), j =

1, . . . , k. Then

ui1ui2 · · ·uik = exp(
kθ + 2π

∑k
j=1 αij

k

√
−1) = −uki1 = − exp(θ

√
−1),

exp(
2π
∑k

j=1 αij
k

√
−1) = −1.

Hence
∑k

j=1 αij ≡
k
2

(mod k), k is even. Since k is not divisible by 4,
∑k

j=1 αij is odd
for any edge e = i1i2 · · · ik ∈ E(H). Let V1 = {u|u ∈ V (H), αu is odd}. For any
e = i1i2 · · · ik ∈ E(H), since

∑k
j=1 αij is odd, e contains exactly odd number of vertices

in V1. Hence H is odd-bipartite.

Let H be a connected k-uniform hypergraph. If 0 is an eigenvalue of QH , then by the
proof of Theorem 11, we know that there exists a vertex labeling f : V (H) → [k] such
that

∑
i∈e f(i) ≡ k

2
(mod k) for each e ∈ E(H). We pose the following conjecture.

Conjecture. Let H be a connected k-uniform hypergraph. Then the following are
equivalent:
(1) k is even and H is odd-bipartite.
(2) 0 is a signless Laplacian eigenvalue of H.
(3) −ρ(AH) is an eigenvalue of H.
(4) There exists a vertex labeling f : V (H) → [k] such that

∑
i∈e f(i) ≡ k

2
(mod k) for

each e ∈ E(H).
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4 Eigenvalues of power hypergraphs

A vertex with degree one is called a core vertex [7]. For a k-uniform hypergraph H, if
e ∈ E(H) contains core vertices, then we use H−e to denote a k-uniform sub-hypergraph
of H obtained by deleting the edge e and all core vertices in e.

Theorem 13. Let H be a k-uniform hypergraph, and let e ∈ E(H) be an edge contains
at least two core vertices. If λ is an eigenvalue of H − e, then λ is an eigenvalue of H.

Proof. Suppose that x is an eigenvector of the eigenvalue λ of H − e. Let y be a column
vector of dimension |V (H)| such that yu = xu if u ∈ V (H − e), and yu = 0 if u ∈ V (H) is
a core vertex in e. Since AH−ex = λx[k−1], we have AHy = λy[k−1]. So λ is an eigenvalue
of H.

In [7], Hu et al defined power hypergraphs as follows.

Definition 14. [7] Let G be an ordinary graph (i.e. 2-uniform hypergraph). For any
k > 3, the kth power of G, denoted by Gk, is a k-uniform hypergraph with edge set
E(Gk) = {e ∪ {ie,1, . . . , ie,k−2}|e ∈ E(G)}, and vertex set V (Gk) = V (G) ∪ {ie,j|e ∈
E(G), j ∈ [k − 2]}.

Some examples of power hypergraphs are given in [7, Fig.1]. From Definition 14, we
know that each edge of a power hypergraph Gk contains two adjacent vertices in V (G)
and k − 2 core vertices not in V (G).

If H is a connected k-uniform hypergraph, then AH and QH are both weakly irre-
ducible [13]. So we obtain the following lemma from [13, Theorem 2.2].

Lemma 15. Let H be a connected k-uniform hypergraph. If λ is an eigenvalue of AH
(QH) with a positive eigenvector, then λ = ρ(AH) (λ = ρ(QH)).

Theorem 16. If λ 6= 0 is an eigenvalue of a graph G, then λ
2
k is an eigenvalue of Gk.

Moreover, ρ(AGk) = ρ(AG)
2
k .

Proof. Suppose that x is an eigenvector of the eigenvalue λ 6= 0 of graph G. Then∑
j∈NG(i) xj = λxi for any i ∈ V (G), where NG(i) is the set of all neighbors of i in G.

Let y be a column vector of dimension |V (Gk)| such that yu = (xu)
2
k if u ∈ V (G), and

yu = (λ−1xixj)
1
k if u ∈ V (Gk) \ V (G) is a core vertex in the edge contains two adjacent

vertices i, j ∈ V (G). For any i ∈ V (G), by
∑

j∈NG(i) xj = λxi, we have

(AGky)i =
∑

j∈NG(i)

(λ−1xixj)
k−2
k (xj)

2
k = λ

2
k (xi)

2(k−1)
k = λ

2
k (yi)

k−1.

For any u ∈ V (Gk) \ V (G), we have

(AGky)u = (λ−1xixj)
k−3
k (xi)

2
k (xj)

2
k = λ

2
k (λ−1xixj)

k−1
k = λ

2
k (yu)

k−1.

Hence λ
2
k is an eigenvalue of Gk with an eigenvector y.
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If G is connected and λ = ρ(AG), then we can choose x as a positive eigenvector of

ρ(AG). In this case, y is a positive eigenvector of the eigenvalue ρ(AG)
2
k of Gk. Lemma

15 implies that ρ(AGk) = ρ(AG)
2
k when G is connected.

If G has r > 2 components G1, . . . , Gr, then

ρ(AGk) = max{ρ(AGk
1
), . . . , ρ(AGk

r
)} = max{ρ(AG1)

2
k , . . . , ρ(AGr)

2
k } = ρ(AG)

2
k .

We can obtain the following result from Theorem 16.

Corollary 17. For any nontrivial graph G, we have limk→∞ ρ(AGk) = 1. Moreover,
{ρ(AGk)} is a strictly decreasing sequence if ρ(AG) > 1.

The following corollary follows from Theorem 13 and 16.

Corollary 18. If λ 6= 0 is an eigenvalue of any subgraph of a graph G, then λ
2
k is an

eigenvalue of Gk for k > 4.

Let Pn and Sn be the path and the star of order n, respectively. The following result
was proved by Li et al [8]. Here we give a different proof.

Corollary 19. Let T be a tree with n vertices. Then

ρ(APk
n
) 6 ρ(ATk) 6 ρ(ASk

n
),

where the left equality holds if and only if T = Pn, and the right equality holds if and only
if T = Sn.

Proof. Among all trees with n vertices, Pn is the unique tree with the smallest adjacency
spectral radius, and Sn is the unique tree with the largest adjacency spectral radius [2].
By Theorem 16, we have

ρ(APk
n
) 6 ρ(ATk) 6 ρ(ASk

n
),

where the left equality holds if and only if T = Pn, and the right equality holds if and
only if T = Sn.

Theorem 20. If α 6= 0 is an eigenvalue of a d-regular graph G, then the roots of (x −
d)(x − 1)

k−2
2 − α = 0 are signless Laplacian eigenvalues of Gk. Moreover, ρ(QGk) is the

largest real root of (x− d)(x− 1)
k−2
2 − d = 0.

Proof. Suppose that x is an eigenvector of the eigenvalue α 6= 0 of graph G. Then∑
j∈NG(i) xj = αxi for any i ∈ V (G), where NG(i) is the set of all neighbors of i in G. Let

λ ∈ C be any number such that (λ − d)(λ − 1)
k−2
2 = α, then λ 6= 1. Let y be a column

vector of dimension |V (Gk)| such that yu = (xu)
2
k if u ∈ V (G), and yu = (λ−1)−

1
2 (xixj)

1
k
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if u ∈ V (Gk)\V (G) is a core vertex in the edge contains two adjacent vertices i, j ∈ V (G).

For any i ∈ V (G), by
∑

j∈NG(i) xj = αxi and (λ− d)(λ− 1)
k−2
2 = α, we have

(QGky)i = d(xi)
2(k−1)

k +
∑

j∈NG(i)

(λ− 1)−
k−2
2 (xixj)

k−2
k (xj)

2
k = λ(xi)

2(k−1)
k = λ(yi)

k−1.

For any u ∈ V (Gk) \ V (G), we have

(QGky)u = (λ− 1)−
k−1
2 (xixj)

k−1
k + (λ− 1)−

k−3
2 (xixj)

k−3
k (xi)

2
k (xj)

2
k

= λ(λ− 1)−
k−1
2 (xixj)

k−1
k = λ(yu)

k−1.

Hence λ is a signless Laplacian eigenvalue of Gk with an eigenvector y.
If G is connected and α = d = ρ(AG), then we can choose x as a positive eigenvector

of ρ(AG). In this case, y is a positive eigenvector of the signless Laplacian eigenvalue λ

of Gk. Lemma 15 implies that ρ(QGk) is the largest real root of (x− d)(x− 1)
k−2
2 − d = 0

when G is connected.
If G has r > 2 components G1, . . . , Gr, then

ρ(QGk) = max{ρ(QGk
1
), . . . , ρ(QGk

r
)}.

Since G1, . . . , Gr are connected d-regular graphs, we know that ρ(QGk) = ρ(QGk
1
) = · · · =

ρ(QGk
r
) is equal to the largest real root of (x− d)(x− 1)

k−2
2 − d = 0.

The following corollary follows from Theorem 20.

Corollary 21. For any d-regular graph G, we have limk→∞ ρ(QGk) = d. Moreover,
ρ(QGk) is a strictly decreasing sequence if d > 1.

Remark. In [7, Conjecture 4.1], Hu et al conjectured that ρ(QGk) is a strictly decreasing
sequence for any graph G and even k. By Corollary 21, this conjecture holds when G is
regular of degree d > 1.

The proof of the following theorem is similar with that of Theorem 20. So we omit it.

Theorem 22. If α 6= 0 is an eigenvalue of a d-regular graph G, then the roots of (d −
x)(1− x)

k−2
2 − α = 0 are Laplacian eigenvalues of Gk.
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