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Abstract

Let G be a cyclically 4-edge-connected cubic graph with girth at least 7 on n
vertices. We show that G has a 2-factor F such that at least a linear amount of
vertices is not in 7-circuits of F . More precisely, there are at least n/657 vertices of
G that are not in 7-circuits of F . If G is cyclically 6-edge-connected then the bound
can be improved to n/189. As a corollary we obtain bounds on the oddness and on
the length of the shortest travelling salesman tour in a cyclically 4-edge-connected
(6-edge-connected) cubic graph of girth at least 7.

1 Introduction

According to the theorem of Vizing [8], each cubic graph has chromatic index 3 or 4.
A snark is a cubic graph with chromatic index 4 that is “non-trivial”. Cubic graphs
with bridges are considered trivial since they always have chromatic index 4. However, in
various contexts the requirements for being “non-trivial” may differ. Two most common
measures of “non-triviality” are cyclic connectivity and girth. A graph is cyclically k-
edge-connected if there is no edge cut-set of size less than k separating two components
both containing a circuit. The girth of a graph is the length of its shortest circuit.

In 1980 Jaeger and Swart [6] proposed a conjecture that every cyclically 7-edge-
connected cubic graph is 3-edge-colourable. The positive answer to this conjecture would
significantly impact our knowledge on the structure of snarks. But since 1980 very little
progress on this conjecture has been made. Even if we replace the 3-edge-colourability
with the existence of a nowhere-zero 5-flow (cubic graph is 3-edge-colourable if and only if
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it has a nowhere-zero 4-flow [3, Proposition 6.4.5]) and replace 7 by any greater constant,
then the problem is still unsolved. Therefore, if the conjecture is true, then it seems to
be very difficult to prove.

If we colour edges of a cubic graph G by 3 colours, then the union of the edges coloured
by any two colours is a 2-factor containing only even circuits. On the other hand, if we
have such a 2-factor we easily find a 3-edge-colouring. Hence the conjecture of Jaeger and
Swart is equivalent to the statement “Every cyclically 7-edge-connected cubic graph G
has a 2-factor containing no odd circuits.”

A natural weakening of this statement is to avoid only circuits of certain odd length.
This leads to the following (much weaker) conjecture.

Conjecture 1. Each cyclically 7-edge-connected cubic graph has a 2-factor without 7-
circuits.

Nevertheless, this conjecture still seems to be very hard. To approach it we prove that
at least a significant amount of vertices of a cyclically 7-edge-connected cubic graph G is
outside 7-circuits in some 2-factor of G.

Another motivation for this research arises from previous work on oddness [7]. The
oddness of a bridgeless cubic graph G, denoted by ω(G), is the minimal number of odd
circuits in a 2-factor of G. Apparently, a graph G has oddness 0 if and only if it is 3-
edge-colourable. The following conjecture bounds how large the oddness of a snark might
be.

Conjecture 2. [7] If G is a bridgeless cubic graph, then |V (G)| > 7.5ω(G)− 5.

The paper [2] makes a significant progress in avoiding 5-circuits in 2-factors of cubic
graphs. However, to prove Conjecture 2 we also need to avoid some circuits of length 7.
The techniques from [7] and [2] cannot be applied to 7-circuits and cannot even guarantee
the existence of a single circuit of length different from 7 in some 2-factor. To prove
Conjecture 2 we need to develop new tools that allow us to avoid 7-circuits in a 2-factor
of a cubic graph.

Also, one of the reason why we decided to study circuits of length 7 is that avoiding
them seems to be significantly more difficult than e.g. avoiding circuits of length 6 (we
sketch one of the methods in the last section). Indeed, we were able to guarantee only
small (but linear) fraction of vertices not being in circuits of length 7. Moreover, we
require the graph to be cyclically 4-edge-connected and have girth at least 7. This is the
main result of the paper.

Theorem 3. Let G be a cubic graph of girth at least 7 on n vertices.

• If G is cyclically 4-edge-connected, then there is a 2-factor F of G such that at least
n/657 vertices of G are not in 7-circuits of F .

• If G is cyclically 6-edge-connected, then there is a 2-factor F of G such that at least
n/189 vertices of G are not in 7-circuits of F .
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The result implies a first non-trivial bound on oddness ratio (|V (G)|/ω(G)) of cyclically
7-edge-connected snarks (see [7] for more information on oddness ratio). As another corol-
lary we bound the length of the shortest travelling salesman tour, which is a closed walk
containing all vertices of the graph, for cyclically 4-edge-connected (6-edge-connected)
graphs of girth at least 7. Although, the improvements are small, they present the first
non-trivial bounds for investigated classes of graphs. The proofs of the results in this
paper are constructive and yield polynomial time algorithms.

2 Avoiding 7-circuits in snarks of girth 7

Proof of Theorem 3. The proof of both statements follows the same arguments. We
present the proof of the statement assuming cyclic 4-edge-connectivity. The modifica-
tions required when the cyclic connectivity is increased to 6 will be given in brackets
(mostly, only the values are different).

We fix an arbitrary 2-factor F of G. This 2-factor will be fixed throughout the proof
of the theorem. The circuits of F will be referred to as F -circuits to distinguish them
from other circuits. Each vertex v of G is in exactly one F -circuit. We will denote this
circuit by F (v). We say that two F -circuits are neighbours if an edge connects them. The
set of F -circuits that are neighbours with a F -circuit C will be denoted by NF (C). The
set of vertices outside C that are neighbours to some vertex from C will be denoted by
NV (C). We say that two F -circuits are k-neighbours if exactly k edges connect them.

Let C8+ be the set of circuits from F of length more than 7. Let N8+ be the set of
circuits from F that are neighbours with some circuit from C8+. Let m be the number
of vertices in the circuits from C8+. If m > n/657 [or m > n/189 in case G is 6-edge-
connected], then the theorem is true. Therefore we can assume

m < n/657 [< n/189]. (1)

There are (n−m)/7 circuits of length 7 in F .
We create an auxiliary graph GB as follows: we contract each circuit of F , we delete

vertices created by contracting circuits from C8+ andN8+. Each vertex in GB has degree at
most 7. We square GB (that is we add an edge between each pair of vertices in distance 2)
and denote the new graph GA. Maximal degree in GA is at most 49. Because the number
of circuits in N8+ is at most m we know that graph GA has at least (n − m)/7 − m =
(n− 8m)/7 vertices.

Suppose first that GA is not isomorphic to K50. By Brooks’ theorem GA is 49-vertex-
colourable. Therefore GA has an independent set S of size at least (n−8m)/343. Suppose
on the other hand GA is isomorphic to K50. Then m = 0 and GA has an independent
set S of size n/350. In both cases |S| > min{n/350, (n− 8m)/343}. The F -circuits that
correspond to vertices from S will be called chosen circuits. The set of chosen circuits
will be denoted by C.

A chosen circuit C ∈ C is a neighbour of several other F -circuits. The following
observation describes some of the properties of the chosen circuits of G.
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Observation 4. The following statements hold:

A. Each chosen circuit C is a 7-circuit. All F -circuits that are neighbours with C are
7-circuits.

B. No two chosen circuits are neighbours. No F -circuit is neighbour with two chosen
circuits.

C. Chosen circuits have no chord.

D. If a chosen circuit C has a k-neighbour C ′, k > 2, then the edges connecting C and
C ′ are not incident to consecutive vertices in both C and C ′.

E. A circuit C ∈ C has no k-neighbour for k > 2.

Proof. We prove each statement separately.

A. While constructing GA we deleted vertices corresponding to circuits from C8+ and N8+.
This implies the statement.

B. The two chosen circuits that are neighbours to a single F -circuit correspond to vertices
in distance 2 in GB and thus they are neighbours in GA. This contradicts the choice of S
and thus the choice of C. Similarly, no two chosen circuits can be neighbours.

C. By statement A each chosen circuit C is a 7-circuit. If C had chord, then there would
be circuit of length less than 7, contradicting the girth 7 condition.

D. By statement A both C and C ′ are 7-circuits. Let C = vv1v2 . . . v6 and C ′ =
v′v′1v

′
2 . . . v

′
6. Suppose for the contrary, that there are two edges contradicting the state-

ment. Without loss of generality suppose that these edges are vv′ and v1v
′
i for some

i ∈ {1, 2, 3}. It can be easily verified that a circuit of length less than 7 exists, contra-
dicting the girth 7 condition.

E. For the contrary, let C ′ be a k-neighbour of C, where k > 2. By statement A both
C and C ′ are 7-circuits. Let C = vv1v2 . . . v6 and C ′ = v′v′1v

′
2 . . . v

′
6. We may without

loss of generality (using statement D) assume that the edges connecting C and C ′ have
endvertices v, v2, v5, v

′, v′2, and v′5. Moreover we may without loss of generality assume
that v5v

′
5 is one of the connecting edges. But then circuit containing the vertex-set

{v, v1, v2, v′, v′1, v′2} has length 6—a contradiction.

For each C ∈ C we construct a quadruple (v, e1, e2, C) as follows. By Observation 4A
circuit C is a 7-circuit and by Observation 4E circuit C must have a 1-neighbour C ′. We
pick an arbitrary circuit C ′ with this property and we set v to be the unique vertex from
C ∩ NV (C ′). We denote the other vertices of C as v1, v2, . . . , v6 in consecutive order (so
that v is neighbour of v1 and v6). Out of the two choices how to do this we choose an
arbitrary one. We denote the neighbours of v, v1, v2, . . . , v6 from NV (C) as w, w1, w2, . . . ,
w6, respectively. We set e1 = vv6 and e2 = v2w2. We create a quadruple for each C ∈ C
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and denote the resulting collection of quadruples as T . The number of such quadruples
is equal to |C|, that is

|T | > min{n/350, (n− 8m)/343}. (2)

Let (v, e1, e2, C) ∈ T . The position of e1 and e2 with respect to v is depicted in
Figure 1—the bold edges are e1 and e2. Let M1 be some 1-factor of G. If e1, e2 ∈M1, then
we say that M1 fulfils the quadruple (v, e1, e2, C). Let F1 be the 2-factor complementary
to M1.

Observation 5. If M1 fulfils (v, e1, e2, C), then circuit C∗ of F1 containing v has at least
8 vertices from C ∪NF (C).

Proof. As e1, e2 ∈ M1 the circuit C∗ contains edges wv, vv1, v1v2, v2v3. Because e1 =
vv6 ∈ M1 we have C 6= C∗. Therefore there is a vertex wi ∈ C∗, for some i ∈ {3, 4, 5, 6}.
Then C∗ contains at least w, v, v1, v2, v3, wi, at least one neighbour of w from F (w), and
at least one neighbour of wi from F (wi) (note that F (w) 6= F (wi), due to choice of v).
So the statement follows.

w

v

v2

v64/15

3/15

4/15
5/15

6/15

3/15

8/15

3/15

8/15

8/15

6/15
4/15

6/15

4/15

w

v

v2

v64/21

5/21

4/21
7/21

8/21

3/21

14/21

3/21

12/21

12/21

10/21
6/21

10/21

4/21

Figure 1: Modification of x0 on C and on the boundary of C.

Our aim is to find a perfect matching that fulfils as many quadruples from T as
possible. Let x be a weighting of edges with non-negative real numbers. A weighting of
the edges of G is sum-correct on a vertex if the sum of weights on edges incident with
that vertex is 1. A perfect matching can be viewed as a sum-correct weighting of edges
using only weights 0 and 1. The perfect matching polytope [4] of G, denoted by P(G), is
the convex hull of all perfect matchings on G. Suppose x is a point of P(G). The symbol
xe will denote the coordinate of x corresponding to edge e. We define a linear function

fT (x) =
∑

(v,e1,e2,C)∈T

(xe1 + xe2) . (3)
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We optimize the value of fT in P(G). Since fT is linear the maximum of fT is attained in a
vertex of P(G), thus some optimal fractional perfect matching is a perfect matching of G.
In the next few paragraphs we find a point x∗ within the perfect matching polytope, such
that fT (x∗) = (1 + 1/15)|T | [= (1 + 5/21)|T |]. This guarantees the existence of a perfect
matching (non-fractional) xOPT such that fT (xOPT) > (1 + 1/15)|T | [> (1 + 5/21)|T |].

We assign all edges of G the initial weights x0 = (1/3, 1/3, . . . , 1/3). A weighting of the
edges of G is central if for each edge e we have 1/5 6 xe 6 3/5 [or 1/7 6 xe 6 5/7]. Clearly
x0 is central and sum-correct on all vertices of G. For each quadruple (v, e1, e2, C) ∈ T
we modify x0 on C, on the boundary of C, which is the set of edges with exactly one
end in C, and on circuits from NF (C). By Observation 4B the modifications for distinct
quadruples will not interfere.

For each quadruple (v, e1, e2, C) ∈ T we do the following modifications. By Observa-
tion 4A and Observation 4C the circuit C is a 7-circuit and has no chord. First, we modify
the values of x0 on C and on the boundary of C as depicted on Figure 1 left [right]. The
resulting weighting central is sum-correct on all vertices except for vertices from NV (C).
Let CN ∈ NF (C). By Observation 4A circuit CN is an 7-circuit. By Observation 4E it is
either 1-neighbour of C or a 2-neighbour of C. Denote the vertices of CN as vN , vN1, vN2,
. . . , vN6 in consecutive order so that vN ∈ NV (C), and if CN is a 2-neighbour of C, either
vN4 ∈ NV (C) or vN5 ∈ NV (C) (this is guaranteed by Observation 4D). Let a and b (if CN

is a 2-neighbour of C) denote the weights of edges connecting C and CN (as in Figure
2). We replace the current weights with weights from Figure 2. The resulting weighting
is sum-correct on vertices from CN . Moreover, we can easily check that the weighting
is central provided 3/15 6 a, b 6 9/15 , |a − b| 6 4/15, and a + b 6 14/15 [provided
3/21 6 a, b 6 15/21, |a− b| 6 8/21, and a + b 6 22/21]. As F (w) is a 1-neighbour of C
by choice of v and using Observation 4D, these condition are always satisfied (see Figure
1). After we perform the modifications for each CN ∈ NF (C) we get a weighting that is
central and sum-correct on all vertices from C ∪NF (C).

We do the weighting modifications for each quadruple from T . We denote the resulting
weighting by x∗. From the construction of x∗ we have fT (x∗) = 16/15 · |T | [= 26/21 · |T |].
We show that x∗ ∈ P(G). Due to characterisation by Edmonds [4] the perfect matching
polytope can be described by three sets of equations:

1. Edges have non-negative weights.

2. For each vertex the sum of weights on incident edges is 1.

3. For each edge-cut separating a subgraph U with an odd number of vertices the sum
of the weights on the boundary of U is at least 1.

First two properties are guaranteed by the fact that x∗ uses non-negative weights and
is sum-correct on all vertices. We need only to check the third property. Due to parity
constraints the edge cuts separating subgraph with odd number of vertices must be odd.
As G is cyclically 4-edge-connected each 3-edge-cut in G separates only one vertex, we
denote it vU1. As x∗ is sum-correct on vU1 the property 3 is satisfied for such a cut. Larger
cuts satisfy the property 3 because x∗ is central.
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vN

1/2− a/2

1/6 + a/2

1/2− a/2

1/6 + a/2

1/2− a/2

1/6 + a/2

1/2− a/2

a

1/3

1/3

1/3 1/3

1/3

1/3

vN

vN5

2/3− (a+ b)/2

(a+ b)/2

2/3− (a+ b)/2

(a+ b)/2

2/3− (a+ b)/2

1/3 + (a− b)/2

1/3− (a− b)/2

a

1/3

1/3

1/3 1/3

b

1/3

vN

vN4

1/3− (a− b)/2

1/3 + (a− b)/2

1/3− (a− b)/2

1/3 + (a− b)/2

2/3− (a+ b)/2

(a+ b)/2

2/3− (a+ b)/2

a

1/3

1/3

1/3 b

1/3

1/3

Figure 2: Weights of CN .

[If G is cyclically 6-edge-connected, then only trivial (separating an acyclic subgraph)
5-cuts exist. Such a cut separates a 2-path. Let us denote the vertices of such a path
as vU1, vU2, vU3. The weights of cut-edges incident to vU1 will be denoted by u1 and
u2. The weight of an cut-edge incident to vU2 will be denoted by u3. The weights of
cut-edges incident to vU3 will be denoted by u4 and u5. As x∗ is sum-correct we have
u1+u2+xvU1vU2

= 1, xvU1vU2
+u3+xvU2vU3

= 1, and xvU2vU3
+u4+u5 = 1. We can combine

these equations into u1 + u2 − u3 + u4 + u5 = 1. Therefore u1 + u2 + u3 + u4 + u5 > 1.
Larger cuts satisfy the property 3 because x∗ is central.]

We have found x∗ ∈ P(G) such that fT (x∗) > (1 + 1/15)|T | [or > (1 + 5/21)|T |].
Therefore there exist a 1-factor xOPT such that fT (xOPT) > (1 + 1/15)|T | [or > (1 +
5/21)|T |]. Since xOPT is a perfect matching each quadruple in T adds 0, 1, or 2 to the
sum (3). Therefore at least 1/15|T | [or 5/21|T |] of the quadruples from T add 2 to the
sum (3). Perfect matching xOPT fulfils all these quadruples. Thus xOPT fulfils at least
1/15|T | [at least 5/21|T |] quadruples from T .

Moreover, by Observation 5 each quadruple (v, e1, e2, C) that is fulfilled by xOPT yields
at least 8 vertices in C andNF (C) that are outside 7-circuits of the 2-factor complementary
to xOPT. By Observation 4B the set of 8 vertices is disjoint for different quadruples.
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Therefore the number of vertices of G that are not in 7-circuit of 2-factor complementary
to xOPT is at least 8 · 1

15
|T | [or 8 · 5

21
|T |]. This number can be bounded using (1) and (2):

8 · 1

15
|T | > 8

15
·min

{
n

350
,
n− 8m

343

}
>

8

5250
n >

n

657
.

[
8 · 5

21
|T | > 40

21
·min

{
n

350
,
n− 8m

343

}
>

40− 320
189

7203
n >

n

189
.

]

We proceed with two corollaries of Theorem 3. We can bound the oddness as well as
the length of the shortest travelling salesman tour of cubic graph of girth at least 7 and
cyclic connectivity at least 4.

Corollary 6. Let G be a snark of girth at least 7 on n vertices.

• If G is cyclically 4-edge-connected, then ω(G) <
n

7.0024
.

• If G is cyclically 6-edge-connected, then ω(G) <
n

7.0082
.

Proof. We choose a 2-factor according to Theorem 3. If G is cyclically 4-edge-connected,
then we have at most c7 6 656n/(7 · 657) circuits of length 7. The remaining vertices can
form at most (n− 7c7)/9 odd circuits. Total number of odd circuits is therefore at most

c7 +
n− 7c7

9
=
n+ 2 · c7

9
6

[
1 + 1312

7·657
9

]
n <

n

7.0024
.

For G cyclically 6-edge-connected the maximal number of odd circuits is

c7 +
n− 7c7

9
=
n+ 2 · c7

9
6

[
1 + 376

7·189
9

]
n <

n

7.0082
.

Corollary 7. Let G be a cubic graph of girth at least 7 on n vertices.

• If G is cyclically 4-edge-connected, then G has a travelling salesman tour of length
less than 1.28566 · n− 2.

• If G is cyclically 6-edge-connected, then G has a travelling salesman tour of length
less than 1.28553 · n− 2.

Proof. Let n denote the number of vertices of G. We choose a 2-factor F according to
Theorem 3. If G is cyclically 4-edge-connected, then we have at most c7 6 656n/(7 · 657)
circuits of length 7. The remaining vertices can form at most (n − 7c7)/8 circuits. We
contract the circuits of F and chose a spanning tree T in the resulting graph. This
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spanning tree contains at most c7 + (n − 7c7)/8 − 1 edges. We use edges from T twice
and edges from F once. Altogether the length of the tour is at most

n+ 2

(
c7 +

n− 7c7
8

− 1

)
=

5

4
n+

1

4
c7 − 2 6 5/4n+

656

28 · 657
n− 2 < 1.28566n− 2.

For G cyclically 6-edge-connected the bound improves to 1.28553n− 2.

This is a slight improvement compared to trivial bound of 9n/7− 2 ≈ 1.28572n− 2.

3 Remarks

The proof of Theorem 3 can be slightly modified in such a way that instead of optimisation
argument we use a probabilistic one. Indeed, in a key part of the proof of Theorem 3
we construct a point x∗ within the perfect matching polytope such that fT (x∗) is high
enough. The fact that x∗ ∈ P(G) implies it is a convex combination of some perfect
matchings x1, x2, . . .xl.

x∗ = α1x1 + α2x2 + · · ·+ αlxl.

We choose a random perfect matching xR as follows: perfect matching xi is chosen
with probability αi, for i ∈ {1, 2, . . . , l}. For the linear function fT the expected value
E (fT (xR)) = fT (x∗). This implies that for some perfect matching xj, j ∈ {1, 2, . . . , l}, we
have fT (xj) > fT (x∗). If one could find non-trivial bounds on correlation, e.g. between
events (v, e1, e2, C) is fulfilled and (v′, e′1, e

′
2, C

′) is fulfilled when C and C ′ are distant
(in some conveniently chosen probability space), results from the paper might improve
significantly.

One of the drawbacks of our results is that we strongly rely on the fact that graph has
girth at least 7. Similar result without the girth 7 requirement would be appreciated. If
girth 7 is substituted with girth 6, then we would get a new bound on the oddness ratio of
cyclically 6-edge-connected snarks (see [7] for details). To use the technique to approach
Conjecture 2 the girth requirement needs to be decreased even more.

The approach taken in [7] and [2] for 5-circuits is not viable for 7-circuits. Similarly,
our approach does not work for other circuit lengths. A natural goal is to generalize our
results to graphs of higher girth of course with longer circuits to avoid. Although, the
cyclic connectivity assumption might be omitted from the problem, we state the problem
with this assumption as we believe it makes the problem more tractable.

Problem 8. Is it true that every cyclically 4-edge-connected cubic graph (could be re-
placed with higher cyclic connectivity requirement) of girth k > 4 has a 2-factor such that
a linear amount of vertices is not in circuits of length k?

If we exclude Petersen graph, then the problem has affirmative answer for all k ∈
{4, 5, 6, 7}. For k = 4 the proof is relatively straightforward.

Theorem 9. Let G be a bridgeless simple cubic graph on n vertices, where n > 4. Let
CI4 denote the set of circuits of G of length 4 that do not intersect with other circuits of
length 4. Then G has a 2-factor containing at most |CI4 |/3 circuits of length 4.
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Proof. For each circuit C ∈ CI4 we pick an arbitrary edge from the boundary of C and
denote it eC . We find a perfect matching M such that the sum of the weights (a perfect
matching can be viewed as a sum-correct weighting of the edges using only weights 0
and 1) of the edges eC over all circuits in CI4 is minimal. As the point (1/3, 1/3, . . . , 1/3)
is in P(G), for the optimal perfect matching the sum is at most |CI4 |/3. Therefore, the
optimal perfect matching has at most |CI4 |/3 circuits of length 4 from CI4 in the in the
complementary 2-factor F .

Suppose that F contains a circuit C of length 4 not in CI4 . Then C is intersecting a
circuit C ′ of length 4. As C is a 2-factor circuit, C and C ′ intersect in exactly 2-vertices.
Then we can swap which edges of C ′ are in F to merge C with some other circuit of F . If
we do this for all circuits of F of length 4 not in CI4 , then we get the desired 2-factor.

For k = 5 the problem is settled in [7] and the constant is improved in [2]. We
answered the problem for k = 7 in the previous section. The following theorem answers
the problem for k = 6. As the aim of this theorem is to show that there is a 2-factor
such that a linear amount of vertices is not in circuits of length 6 we did not focus on
improving the constant. The proof is partially inspired by the proof of Theorem 1 in [1].

Theorem 10. A bridgeless cubic graph graph G on n vertices of girth at least 6 has a
2-factor containing at most 11n/70 circuits of length 6.

Proof. Let C6 be the set of all circuits of length 6 in G. As x0 = (1/3, 1/3, . . . , 1/3) is
in P(G) we can find a perfect matching M2 and the corresponding weighting of edges x′

such that ∑
e1e2e3e4e5e6∈C6

x′e1 + x′e2 + x′e3 + x′e4 + x′e5 + x′e6 > 2|C6| (4)

Let F2 be the 2-factor complementary to M2. If F2 contains less than 11n/70 circuits of
length 6, then the theorem is proved. If F2 contains at least 11n/70 circuits of length 6
then by (4) there exist at least 22n/70 circuits of length 6 such that exactly three edges
belong to M2. We denote the set of these circuits CM . If two circuits from CM intersect,
then they must intersect also in an edge from M2. Moreover, each edge can be in at
most 8 circuits of length 6: suppose the circuit contains given edge, there are at most 8
possibilities how to add next three edges to the circuit, by the girth constraint there is
at most one possibility for the remaining two edges. Therefore, each circuit from CM can
intersect with at most 21 other circuits from CM . By Brooks’ theorem there is a set of at
least n/70 mutually disjoint circuits from CM . Let CI be one such set of mutually disjoint
circuits.

We modify M2 as follows. Let C = v1v2v3v4v5v6 be a circuit from CI . Without loss of
generality suppose that the edges v1v2, v3v4, and v5v6 are in M2 and the edges v2v3, v4v5,
and v6v1 are in F2. If at least two edges, say v2v3 and v4v5, are in 6-circuits of F2, then by
the girth condition the edges v2v3, v4v5, and v6v1 belong to three different circuits C1, C2,
and C3 of F2. If this is the case, then we exchange the edges v1v2, v3v4, and v5v6 by v2v3,
v4v5, and v6v1 in M2. This merges C1, C2, and C3 into a single circuit C∗. We continue
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modifications until no C ∈ CI contains two edges that are in a circuit of length 6 in F2.
This process is finite because the number of 6-circuits decreases. We denote the resulting
matching by M3 and the resulting 2-factor by F3

Now each C ∈ CI contains at least 4 vertices that are not in 6-circuits of F3. Altogether,
there are at least 4n/70 vertices are outside 6-circuits in F3. That 2-factor contains at
most 11n/70 circuits of length 6.

So Problem 8 has affirmative answer for k 6 7. For other values of k the problem is
open. We find it very likely that the problem has affirmative answer for all other values
of k.

The highest known value of the cyclic connectivity of a non-hamiltonian cubic graph is
7. A natural question is whether there is an cyclically 8-edge-connected non-hamiltonian
cubic graph. Hamiltonian circuit itself is a 2-factor of G. It would be interesting to know
what is the biggest length of a circuit (as a the function of the number of vertices) we
can guarantee in a 2-factor of a graph with given cyclic connectivity. It seems to be hard
to guarantee even the existence of circuits of length more than 8 in the 2-factor—only
recenly Küngden and Richter [5] showed that a circuit of length at least 7 is guaran-
teed provided the graph is not isomorphic to Petersen graph. Therefore we propose the
following problem:

Problem 11. For which k > 1 there is an unbounded non-decreasing function f such
that each cyclically k-edge-connected cubic graph on n vertices has a 2-factor containing
a circuit of length at least f(n)?

For k 6 3 the answer to the problem is negative [5]. For other values of k the problem
is open. If there is no 8-edge-connected non-hamiltonian cubic graph, then for k > 8 we
have even f(n) = n.
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