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Abstract

A graph is closed when its vertices have a labeling by [n] such that the binomial
edge ideal JG has a quadratic Gröbner basis with respect to the lexicographic order
induced by x1 > · · · > xn > y1 > · · · > yn. In this paper, we generalize this notion
and study the so called m-closed graphs. We find equivalent condition to 3-closed
property of an arbitrary tree T . Using it, we classify a class of 3-closed trees. The
primary decomposition of this class of graphs is also studied.

Keywords: m-closed graph, binomial edge ideal, reduced Gröbner basis, admissible
path

1 Introduction and Preliminaries

Suppose G is a simple graph on the vertex set [n] and R = k[x1, . . . , xn, y1, . . . , yn] is the
polynomial ring over the field k. The binomial edge ideal of G is the ideal

JG = (fij : {i, j} ∈ E(G) and i < j) ⊂ R,

where fij = xiyj − xjyi. This notion was first introduced in [9] and independently in [13].

Note that any ideal generated by a set of 2-minors of a 2×n-matrixX of indeterminates
may be viewed as the binomial edge ideal of a graph. In [9], the authors compute the
reduced Gröbner basis of the binomial edge ideal with respect to the lexicographic order
induced by x1 > · · · > xn > y1 > · · · > yn (we show this order by ≺). In particular,
they find the necessary and sufficient conditions in which JG has a quadratic Gröbner
basis. Graphs whose binomial edge ideal has a quadratic Gröbner basis are called closed
graphs and the Cohen-Macaulay property of these graphs is studied in [6]. Recently,
many authors studied the algebraic properties of some classes of binomial edge ideals. In
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particular the regularity and the depth are studied in [1, 6, 7, 10, 12, 15]. But the reduced
Gröbner basis obtained in [9] has not been studied in more details.

In this paper, we study the Gröbner basis of JG where G is a simple graph. We call G
an m-closed graph when its vertices can be labeled by [n] such that the elements of the
reduced Gröbner basis of JG have degree at most m, and m is the least integer with this
property for G. Note that by this definition, a closed graph is a 2-closed graph.

In Section 2 we study some basic properties of m-closed graphs. In particular, we show

that a cycle Cn (n > 3) is m− closed where m =

{
n
2

+ 1 n is even;
n+1
2

+ 1 n is odd.
(see Theorem 8).

Using it we conclude that in each m-closed graph, any cycle with at least 2m− 1 vertices
has a chord.

The notion of weakly closed graphs has been introduced in [11] as a generalization
of closed graphs. The final result of section 2 shows that each weakly closed graph is
m-closed for some m 6 4 (see Theorem 12). In Section 3 we study 3-closed property
of trees and we show that a tree T with n vertices is 3-closed if and only if it is not a
path and there exists a labeling of its vertices such that d(i, i + 1) 6 2 for each i < n
(see Theorem 13). The class of 3-closed trees and the number of elements of the reduced
Gröbner basis of JT for a 3-closed labeling is also studied by means of the bipartite graph
G∗ attached to a simple graph G corresponding to the generators of JG (see Definition
16, Theorem 17 and Corollary 18).

In Section 4, we study a class of trees constructed from caterpillar trees. We charac-
terize the minimal primary decomposition of this class of trees (see Theorem 20). Also,
we show that they are 3-closed. For some other trees constructed by caterpillar trees we
show 3-closed property (see Theorem 21). To prove Theorem 21, we need an algorithm
to give a 3-closed labeling to the vertices of a caterpillar tree such that 1 is assigned to
an arbitrary vertex. This is provided in algorithm 22 presented in the Appendix section.

In the following, we review some definitions and results from [9] which we need in the
next sections.

Definition 1. Let G be a simple graph on [n], and let i and j be two vertices of G with
i < j. A path i = i0, i1, . . . , ir = j from i to j is called admissible, if
(i) ik 6= i` for k 6= `;
(ii) for each k = 1, . . . , r − 1 one has either ik < i or ik > j;
(iii) for any proper subset {j1, . . . , js} of {i1, . . . , ir−1}, the sequence {i, j1, . . . , js, j} is not
a path.

Given an admissible path π : i = i0, i1, . . . , ir = j from i to j, where i < j, we associate
the monomial

uπ = (
∏
ik>j

xik)(
∏
i`<i

yi`).

By [3, Chapter 2, Proposition 6], the reduced Gröbner basis of JG with respect to ≺ is
unique. We have:
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Theorem 2. [9, Theorem 2.1] Let G be a simple graph on [n]. Then the set of binomials

G =
⋃
i<j

{uπfij : π is an admissible path from i to j}

is the reduced Gröbner basis of JG.

By [9, Theorem 3.2], we can write JG as a finite intersection of prime ideals. In fact,
corresponding to each subset S ⊂ [n] we have the prime ideal

PS(G) = (
⋃
i∈S

{xi, yi}) + JG̃1
+ · · ·+ JG̃c(S)

,

where G1, . . . , Gc(S) are the connected components of the induced subgraph on the vertices

[n] \ S, and G̃` is the complete graph on the vertices of G` for all `. Then

JG =
⋂
S⊂[n]

PS(G). (1)

Moreover, dimR/JG = max{(n− |S|) + c(S) : S ⊂ [n]} and hence dimR/JG > n+ c(G),
where c(G) is the number of the connected components of G. Equation (1) also shows
that JG is a radical ideal. If G is a connected graph then P∅(G) = JKn is a minimal
prime ideal of JG. Note that if S is an arbitrary subset of [n] the prime ideal PS(G) is not
necessary a minimal prime ideal of JG. The next lemma detects the minimal prime ideals
of JG when G is a connected graph. Note that for S ⊂ [n], by c(S) we mean c(G[n]\S).

Lemma 3. [9, Corollary 3.9] Let G be a connected graph on the vertex set [n] and S ⊂ [n].
Then PS(G) is a minimal prime ideal of JG if and only if S = ∅, or S 6= ∅ and for each
i ∈ S one has c(S\{i}) < c(S).

2 m-closed graphs

In this section we study the reduced Gröbner basis of JG. As Theorem 2 shows the
reduced Gröbner basis depends on the labeling of the vertices of G. We recall that a
labeling of G is a bijection V (G) ' [n] = {1, . . . , n}, and given a labeling, we typically
assume V (G) = [n].

The graph G is called closed with respect to the given labeling if JG has a quadratic
Gröbner basis with respect to ≺. By [9, Theorem 1.1] we have:

Theorem 4. Let G be a simple graph on the vertex set [n]. G is closed if and only if the
following condition is satisfied:

For every two edges {i, j} and {k, `} in E(G) with i < j and k < `,
one has {j, `} ∈ E(G) if i = k, and {i, k} ∈ E(G) if j = `.
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Let G be a graph, we recall that the clique complex of G, denoted ∆(G), is the
simplicial complex on [n] whose faces are the cliques of G. The graph G is closed if and
only if there exists a labeling of G such that all facets of ∆(G) are intervals [a, b] ⊂ [n]
(see [6, Theorem 2.2]). Closed graphs are studied in more details in [2, 4].

Following the definition of closed graph we introduced m-closed graphs.

Definition 5. Let m be a positive integer. We say that a graph G with vertex set
V (G) = {v1, . . . , vn} is m-closed, if its vertices can be labeled by [n] such that for this
labeling all the elements of G are of degree 6 m, and m is the least integer with this
property for G.

Moreover, a labeling of the vertices of G is called an m-closed labeling if the reduced
Gröbner basis of JG is in degree m and less than m with respect to this labeling.

By the above definition a closed graph is a 2-closed graph. the cycle C4 (cycle with 4
vertices) is 3-closed and C5 is 4-closed.

By Theorem 2, a graph G is m-closed if and only if, there exists a labeling for its
vertices such that each admissible path in G has at most m vertices and in each labeling
of the vertices, there exists an admissible path of length ` where ` > m− 1.

We recall that a bridge is an edge whose removal from a graph increases the number
of components. If e is a bridge of a connected graph G, and H1 and H2 are the connected
components of G \ e, we write G \ e = H1 tH2.

In the following we find some information about m-closed graphs.

Proposition 6. (i) Let G be a graph and ` be the length of the longest induced path of
G. Then G is m-closed for some m 6 `+ 1.

(ii) Let G be a graph and H be an `-closed induced subgraph of G. Then G is m-closed
for some m > `.

(iii) Let e be a bridge of a connected graph G and G \ e = H1 tH2. If H1 is m-closed
and H2 is `-closed (` > m), then G is `-closed provided that there exists an m-closed
labeling of H1 in which 1 is the label of the end point of e in H1 and there exists an
`-closed labeling of H2 in which 1 is the label of the endpoint of e in H2.

Proof. Part (i) and (ii) follow from the definition of an admissible path and m-closed
property.

For part (iii), assume that H1 is an m-closed graph on [n1], H2 is an `-closed graph
on [n2] and 1 is the label of the end points of e in each Hi (i = 1, 2). We give a labeling
to G by assigning to each vertex i of H1 the new label n1 − i+ 1 and to each vertex i of
H2 the new label n1 + i. So, by this labeling e = {n1, n1 + 1}. It is easy to see that the
graph G = H1 ∪ {n1, n1 + 1} ∪H2 is an `-closed graph on [n1 + n2].

A natural question to ask is that if the reduced Gröbner basis of JG has an element
of degree m, can we conclude that it also has an element of degree ` for each 1 < ` < m.
This is not true in general, as the following example shows:
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Example 7. Let G be the path on [5] with E(G) = {{1, 4}, {3, 4}, {3, 5}, {2, 5}}. Then
G has an element of degree 5 while it doesn’t have any element of degree 4.

For a simple graph G on [n], and m > 3, if the reduced Gröbner basis of JG has an
element of degree m, then it has an element of degree 3. In fact, G is not closed and
by Theorem 4, there exist two edges {i, j} and {i, `} in E(G) with i < j, i < ` and
{j, `} /∈ E(G), or there exist two edges {i, j} and {k, j} in E(G) with i < j, k < j and
{i, k} /∈ E(G). So j, i, ` or i, j, k is an admissible path of length 2. So, G has an element
of degree 3.

Therefore, if G is an m-closed graph, in each labeling of its vertices, there exists an
admissible path of length 2. But as we have seen in the above example, we can not extend
Theorem 4 to check if a labeling is a 3-closed labeling or not.

We recall that if I is an ideal of R, the leading term ideal of I with respect to ≺ is
the monomial ideal of R which is generated by (LT≺(f) | 0 6= f ∈ I) where LT≺(f) is the
leading term of f with respect to ≺ . We write LT≺(I) for the leading term ideal of I.

If G is a graph, it is clear that for any arbitrary labeling of the vertices of G, |G| =
µ(LT≺(JG)) > µ(JG) (µ(I) is the minimal number of homogeneous generators of I).
Moreover, G is a closed graph if and only if there exists a labeling in which µ(LT (JG)) =
µ(JG). So If G is a non-closed graph on [n] and µ(LT≺(JG)) = µ(JG) + 1, then G is
3-closed.

It is well known by [9, Proposition 1.2], that a closed graph is chordal. In the following
we find a generalization of this necessary condition for m-closed property. For this we
need the following theorem about cycles:

Theorem 8. Let Cn be the cycle on n > 4 vertices. Then Cn is m-closed where

m =

{
n
2

+ 1 n is even;
n+1
2

+ 1 n is odd.

Proof. Let Cn be the cycle on n vertices and m be as defined in the theorem. To show the
result, we first prove that in any labeling of the vertices of Cn, one can find an admissible
path with at least m vertices.

In an arbitrary labeling of the vertices of Cn, one of the following situation happens:

Case 1: For all i ∈ {1, . . . , n − 1}, d(i, i + 1) = 1. This case happens if and only
if we give successive integers to the vertices. i. e., (E(Cn) = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}). So P : 1, n, n − 1, . . . , 3 is an admissible path with n − 1 vertices and
n− 1 > m.

Case 2: There exists i ∈ {1, . . . , n−1}, d(i, i+1) = ` > 2. So we have two admissible
paths

P1 : i, j1, . . . , j`−1, i+ 1 and P2 : i, j′1, . . . , j
′
n−`−1, i+ 1

where {i, i+ 1} t {j1, . . . , j`−1} t {j′1, . . . , j′n−`−1} = [n], P1 has `+ 1 vertices and P2 has
n− `+ 1 vertices.

In the case that n is even, if `+ 1 < n
2

+ 1 and n− `+ 1 < n
2

+ 1, then n+ 2 < n+ 2
which is a contradiction. So, one of the paths P1 and P2 has at least m vertices.
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Now assume that n is odd. Since d(i, i+1) = `, we have ` 6 n−`. Moreover, ` = n−`
if and only if n = 2` which is a contradiction. So, ` < n− `.

If n − ` + 1 < n+1
2

+ 1, then by 1 + ` < n − ` + 1 < n+1
2

+ 1 we have n + 2 < n + 2
which is a contradiction. So P2 has at least m vertices.

So in each labeling of the vertices of Cn, we have an admissible path with at least m
vertices.

Now, if we find a labeling of the vertices of Cn such that each admissible path has at
most m vertices, the conclusion follows.

Suppose that:

V (Cn) = {v1, v2, . . . , vn}, E(Cn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}

If n is even, we do as follows:

1. S = {v1, v2, . . . , vn},

2. label v1 as 1,

3. i = 1,

4. While i < n do

(a) Pick vj ∈ S such that d(i, vj) = m− 1 and label vj as i+ 1,

(b) If i+ 2 < n, label vj+1 as i+ 2,

(c) i := i+ 2.

By this labeling of the vertices, for each i, d(i, i+ 1) = m− 1 if i is odd and d(i, i+ 1) = 1
if i is even. So we have some admissible path with m vertices.

If n is odd, we do as follows:
For each 1 6 i < m, label vi as 2i− 1 and for each m 6 i 6 n, label vi as 2(i−m+ 1).

By this labeling, for each i, d(i, i+ 1) = m− 2 and for each i there is a unique admissible
path with m vertices between i and i+ 1 .

Now assume that P : j1, . . . , jt (t > m) is an admissible path in Cn. So, jt > j1 + 1.
If n is odd, by the fact that d(i, i+ 1) = m− 2 for each i, we conclude j1 + 1 ∈ V (P )

which is a contradiction.
Assume that n is even. If j1 is odd, as above we conclude that j1 + 1 ∈ V (P ) which

is the desired contradiction. If j1 is even and j1 + 1 /∈ V (P ), then P ′ = j1 + 1, j1, . . . , jt−1
is a path with t vertices. Since d(j1 + 1, j1 + 2) = m− 1, j1 + 2 ∈ V (P ′). So jt > j1 + 2
and j1 + 2 ∈ V (P ) again a contradiction.

The next corollaries are the generalization of the fact that a closed graph is chordal.
These results are immediate consequences of Proposition 6 and Theorem 8.

Corollary 9. If G is an m-closed graph, then each cycle of G with 2m−1 or more vertices
has a chord.
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Corollary 10. Let G be an m-closed graph and

` = max{t | ∃ an induced cycle with t vertices in G}.

If ` > 4, then m >

{
`
2

+ 1 ` is even;
`+1
2

+ 1 ` is odd.

A generalization of the notion of closed graph is weakly closed graph which has been
introduced in [11]. Let G be a graph. G is said to be weakly closed if there exists a
labeling which satisfies the following condition: for all i, j such that {i, j} ∈ E(G), i
is adjacentable with j (for the definition of adjacentable see [11, Definition 1.2]. The
following theorem is a characterization of weakly closed graphs.

Theorem 11. [11, Theorem 1.9] Let G be a graph. Then the following conditions are
equivalent:

1. G is weakly closed.

2. There exists a labeling which satisfies the following condition: for all i, j such that
{i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) or {k, j} ∈ E(G).

In the following we relate the m-closed graphs to weakly closed graphs.

Theorem 12. Let G be a weakly closed graph. Then G is m-closed for some m 6 4.

Proof. Suppose that G is a weakly closed graph on [n]. Then by Theorem 11, for all i, j
such that {i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) or {k, j} ∈ E(G).

We prove that each admissible path of G has at most 4 vertices. Assume to the
contrary that there exists an admissible path P : i = i1, i2, . . . , im−1, im = j with m > 5
vertices. Note that i < j. If i2 > j, then i < j < i2 and {i, i2} ∈ E(G). So {i, j} ∈ E(G)
or {i2, j} ∈ E(G) which is a contradiction. If im−1 < i, then im−1 < i < j and {im−1, j} ∈
E(G). So {im−1, i} ∈ E(G) or {i, j} ∈ E(G). Again, it is a contradiction. Therefore
i2 < j and im−1 > i. Since P is an admissible path, we have i2 < i and im−1 > j.

Let
t = min{r |2 < r 6 m− 1, ir > j}.

So it−1 < i < j < it and {it−1, it} ∈ E(G). If t = 3, then {i2, j} ∈ E(G) or {j, i3} ∈ E(G)
which is impossible because m > 5 and P is an admissible path. If t > 3, then {it−1, i} ∈
E(G) or {i, it} ∈ E(G). This case also is impossible since P is an admissible path.

So, in any case we get a contradiction. Thus m 6 4 and the result follows.

Note that the converse of Theorem 12 is not true since C5 is 4-closed and not weakly
closed.
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3 3-closed trees

In the following we characterize 3-closed trees. Let G be a simple graph on the vertex set
[n] and G has no element of degree more than 3, then d(i, i + 1) 6 2 for each i. But the
converse is not true in general. For example, let C be the cycle on the vertex set [n] and
with the edge set {{1, 3}, {3, 4}, {2, 4}, {2, 5}, {1, 5}}. Then for each i, d(i, i+ 1) 6 2 but
C is 4-closed.

We recall that by [9, Corollary 1.3], a tree is a closed graph if and only if it is a path.
Next result shows that a 3-closed labeling for a tree T is a labeling in which d(i, i+1) 6 2
for each i.

Theorem 13. Let T be a tree with n vertices and assume that T is not a path. Then T
is 3-closed if and only if there exists a labeling for V (T ) such that d(i, i+ 1) 6 2 for each
i.

Proof. Assume to the contrary that there exists a tree T on the vertex set [n] such that
d(i, i+ 1) 6 2 for each i, and T has an admissible path of length at least 3. Let

m− 1 = max{`(P ) | P is an admissible path}

and

i1 = max{t | there exists an admissible path of length m− 1 starting from t}.

Then m > 3 and we can consider an admissible path like P : i1, i2, . . . , im. Since T is a
tree, d(i1, im) > 3. So, i1 + 1 6= im which shows that i1 < i1 + 1 6 im− 1 < im. Therefore
i1 + 1 /∈ {i2, i3, . . . , im−1}. Moreover, by d(i1, i1 + 1) 6 2, one of the following situations
happens:

Case a: {i1, i1 + 1} ∈ E(T ). In this case, i1 + 1, i1, . . . , im is an admissible path of
length m which is a contradiction by our choice of m.

Case b: {i1 + 1, i2} ∈ E(T ). In this case, i1 + 1, i2, i3, . . . , im is an admissible path of
length m− 1 which is a contradiction by our choice of i1.

Case c: There exists j ∈ [n]\{i2, . . . , im} such that i1 + 1, j, i1 is a path. In this case,
consider the path P ′ : i1 +1, j, i1, i2, . . . , im. Since `(P ′) = m+1, by our choice of m, P ′ is
not an admissible path. So, i1 < i1 + 1 < j < im. It is easy to see that P ′′ : j, i1, i2, . . . , im
is an admissible path of length m which is again a contradiction by our choice of m.

Remark 14. By Theorem 13, a labeling of a tree T is a 3-closed labeling if and only if
d(i, i + 1) 6 2 for each 1 6 i < n. This is not true for an arbitrary 3-closed graph. For
example, Let G be a graph with

V (G) = {v1, . . . , v5} and E(G) = {{v1, v2}, {v2, v4}, {v1, v3}, {v3, v4}, {v2, v5}}.

Then G is a bipartite 3-closed graph. If we assign i to each vertex vi, then d(i, i+ 1) 6 2
for each 1 6 i < 5 but this is not a 3-closed labeling of G.
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i13
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Figure 1:

Next we give an example of a tree which is not 3-closed.

Example 15. Consider the above tree on 16 vertices (Figure 1). We prove that T is
not 3-closed. By contradiction assume that there exists a labeling of V (T ) such that

d(k, k + 1) 6 2 for all k ∈ {1, . . . , 15}. (2)

Without loss of generality, we can assume that {1, 16} ∩ {i7, i8, . . . , i15} = ∅. So,

{ij − 1, ij + 1} ⊂ {1, 2, . . . , 16} for all j ∈ {7, 8, . . . , 15}. (3)

If i7 < i8 and they are not two successive integers, then by (2) {i7− 1, i7 + 1, i8 + 1} ⊆
{i9, i16} which is a contradiction. So, we can assume that i8 = i7 + 1. By a similar
argument, we should also have, i11 = i10 + 1 and i14 = i13 + 1.

Again, by (2) and (3) we can easily see that

i16 = i7 − 1 or i16 = i7 + 2,

and
i16 = i10 − 1 or i16 = i10 + 2,

and
i16 = i13 − 1 or i16 = i13 + 2.

So, i7 = i10 or i7 = i13 or i10 = i13 which is a contradiction.

Definition 16. Let G be a graph on the vertex set [n], we associate to G a bipartite
graph G∗ where

V (G∗) = {x1, . . . , xn} t {y1, . . . , yn}, E(G∗) = {xiyj | {i, j} ∈ E(G) and i < j}.

Note that if G is a closed graph, for a closed labeling of G, LT≺(JG) = I(G∗) where
I(G∗) is the edge ideal of the graph G∗.

Conversely, if H is a bipartite graph on the vertex set {x1, . . . , xn}t {y1, . . . , yn} such
that for each {xi, yj} ∈ E(H) we have i < j, then we can associate to H a simple graph
H∗ on the vertex set [n] in a natural way ((H∗)

∗ = H).
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Note that if T is a tree, then T ∗ is also a tree. In the following, we give a characteri-
zation of 3-closed trees by means of Definition 16.

Theorem 17. Let Tn be the set of all bipartite graphs H on the vertex set {x1, . . . , xn} t
{y1, . . . , yn} with the following properties:

1. {xi, yj} ∈ E(H) =⇒ i < j.

2. for all i ∈ {1, . . . , n− 1} one of the following conditions holds:

• {xi, yi+1} ∈ E(H).

• There exists j > i+ 1, {xi, yj}, {xi+1, yj} ∈ E(H).

• There exists j < i, {xj, yi}, {xj, yi+1} ∈ E(H).

3. |E(H)| = n− 1

Then a tree with n vertices is 3-closed if and only if T is not a path and there exists
H ∈ Tn such that T ∼= H∗.

Proof. If T is a 3-closed graph on [n], then, by Theorem 13, d(i, i + 1) 6 2,∀1 6 i < n.
So T ∗ satisfies condition 2. Since |E(T )| = |E(T ∗)| = n− 1, the conclusion follows from
the fact that T = (T ∗)∗.

Conversely, if H satisfies condition 1 then H∗ is defined and is a graph on [n]. By
condition 2, in H∗, d(i, i + 1) 6 2 for each i and moreover H∗ is connected. Now since
|E(H∗)| = n−1 = |V (H∗)|−1, H∗ is a tree. So, by Theorem 13, H∗ is a 3-closed tree.

In the next corollary, we find the number of elements of the reduced Gröbner basis of
a 3-closed tree.

Corollary 18. Let T be a tree on the vertex set [n] and d(i, i + 1) 6 2 for all i ∈
{1, . . . , n− 1}. Then |G| = n− 1 + β13(I(T ∗)).

Proof. Let G be a simple graph on [n] and K3(G) =the number of triangles of G. Then
by [15, Theorem 2.2], β13(JG) = 2K3(G). So, for an arbitrary tree T , β13(JT ) = 0.

Now, if d(i, i+ 1) 6 2, then by Theorem 13, LT≺(JT ) is generated in degrees 2 and 3.
So, β23(LT≺(JT )) = 0 and

β13(LT≺(JT )) = β13(〈xiyj | i < j, {i, j} ∈ E(T )〉) = β13(I(T ∗)).

Moreover, by [14] the graded Betti numbers of JT is obtained from the graded Betti
numbers of LT≺(JT ) by a sequence of consecutive cancelations. So

β03(LT≺(JT )) = β13(LT≺(JT )) = β13(I(T ∗))

and the conclusion follows.

We remark that if G is an arbitrary 3-closed graph, for a 3-closed labeling, the same
argument as the proof of Corollary 18 shows that |G| = |E(G)|+ β13(I(G∗))− 2K3(G).
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4 Binomial Edge Ideals of Caterpillar Trees

In this section, we study the binomial edge ideals of caterpillar trees and some trees
constructed from this kind of trees. First we recall its definition.

Definition 19. A caterpillar tree is a tree T with the property that it contains a path P
such that any vertex of T is either a vertex of P or it is adjacent to a vertex of P .

v1 v2 v3 v4 v5 v6 v7

Figure 2:

Note that the path P in the definition of a caterpillar tree is a longest induced path
of T and we call it the central path of T . Figure 2 is an example of a caterpillar tree with
the central path P : v1, v2, . . . , v7.

Caterpillar trees were first studied by Harary and Schwenk [8]. These graphs have
some applications in chemistry and physics [5].

Let T be a caterpillar tree and ` be the length of its longest induced path. By [6,
Theorem 1.1] depth(R/JT ) = |V (T )| + 1 and by [1, Theorem 4.1] reg(R/JT ) = `. In
the following we describe the minimal primary decomposition of JT . We recall that since
JT is a radical ideal, to know the minimal primary decomposition of JT , it is enough to
characterize its minimal prime ideals.

Theorem 20. Let T be a caterpillar tree, P : v1, . . . , vl be the central path of T and
S ⊂ V (T ). Then PS(T ) is a minimal prime ideal of JT if and only if S = ∅ or S =
{vi1 , . . . , vik} ⊆ {v1, . . . , vl} where 1 < i1 < · · · < ik < l satisfy the following conditions:

• If deg(vij) = 2, then d(vij , vij+1
) > 2 and d(vij , vij−1

) > 2

• If deg(vij) = 3, then d(vij , vij+1
) > 2 or d(vij , vij−1

) > 2.

Proof. We prove that each prime ideal corresponding to a set S, where S is satisfying in
the mentioned conditions, is a minimal prime ideal by induction on the number of vertices
in the set S.

For k = 1 the statement is obvious. Now assume theorem is true for each S with
|S| = m and S

′
= {vi1 , . . . , vim+1} has the mentioned conditions. If S = {vi1 , . . . , vim},

by induction hypothesis, PS(T ) is a minimal prime ideal of JT . Let d = deg(vim+1) and
d′ = deg(vim).

Depending on d(vim , vim+1), we distinguish the following cases:

Case 1: d(vim , vim+1) > 2. In this case it is easy to see that c(S
′
) = c(S) + d− 1 and for

all j ∈ {1, · · · ,m}, c(S
′ \ {vij}) = c(S \ {vij}) + d− 1.
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Case 2: d(vim , vim+1) = 1. In this case, d > 3 and d′ > 3. A straightforward observation
shows that c(S

′
) = c(S) + d − 2 and for all j ∈ {1, . . . ,m − 1}, c(S

′ \ {vij}) =
c(S \ {vij}) + d − 2. Moreover for deleting the vertex vim , one of the following
situations happens:

(a) m = 1 or d(vim−1 , vim) = 2. One can see c(S
′ \ {vim}) = c(S ′)− (d′ − 2).

(b) d′ > 4. In this case, c(S ′) > c(S ′ \ {vim}) + (d′ − 3).

It is obvious that in all of the above situations, c(S
′ \ {vij}) < c(S

′
) for all j ∈

{1, · · · ,m+ 1}. So, Lemma 3 implies PS′(T ) is a minimal prime ideal of JT .

Now assume that S ⊂ V (T ) is not as described in the theorem. So, one of the following
situation happens:

1) There exists a vertex v of degree 1 in S. In this case, c(S \ {v}) > c(S). So, by
Lemma 3, PS(T ) is not a minimal prime ideal of JT .

2) For some j, deg(vij) = 2, and (d(vij , vij+1
) = 1 or d(vij , vij−1

) = 1). Without loss of
generality assume that d(vij−1

, vij) = 1. Since vij−1
and vij are connected through

just one edge, removing the vertex vij doesn’t change the number of connected
components of TV (T )\S, meaning that c(S \ {vij}) = c(S). Again, by Lemma 3,
PS(T ) is not a minimal prime ideal of JT .

3) For some j, deg(vij) = 3, d(vij , vij+1
) = 1 and d(vij , vij−1

) = 1. In this situation
also straightforward observation shows that c(S \ {vij}) = c(S). So, PS(T ) is not a
minimal prime ideal of JT .

So the conclusion follows.

For example, if T is the caterpillar tree described in Figure 2, then by Theorem 20, it
is easy to find all minimal prime ideals of JT and see that dim(R/JT ) = 19.

Finally, we prove that caterpillar trees and some trees constructed by caterpillar trees
are 3-closed.

Theorem 21. (a) Let T be a caterpillar tree. Then T is 3-closed.
(b) Let T = T1 ∪ B ∪ T2 where T1 and T2 are two caterpillar trees and B is a bridge

between T1 and T2, and the endpoints of B are chosen from the vertices of the central
paths of T1 and T2 respectively. Then T is 3-closed.

More generally,
(c) Let T be a tree and T = T1∪B∪T2 where T1, T2 and B are caterpillar trees, and the

endpoints of the central path of B are chosen from the vertices of T1 and T2 respectively.
Then T is 3-closed.

Proof. (a) Let n = |T |, it is enough to find a labeling of V (T ) such that d(i, i + 1) 6 2
for each 1 6 i < n.
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Let P : v1, . . . , v` be the central path of T , and for each 1 6 j 6 `, N ′T (vj) =
NT (vj) \ V (P ) is determined the leaf neighbors of the vertex vj.

We do as follows:

label v1 as 1; t = 2; j = 2;
While j 6 ` do

label vj as t; t = t+ 1;
S := N ′T (vj);
While S 6= ∅ do;

v:= pick v ∈ S such that v is the rightmost leaf of vj;
label v as t;
t = t+ 1; S = S \ {v};

end;
j = j + 1;

end

It is easy to see that by this labeling of V (T ), d(i, i+ 1) 6 2 for all 1 6 i < n.
(b) By proposition 6, it is enough to show that for each caterpillar tree T and each

vertex v of its central path, there exists a 3-closed labeling in which 1 is assigned to v.
This fact follows from Algorithm 22.

(c) Without loss of generality, we can assume that the endpoints of the central path
of B are chosen from the vertices of the central paths of T1 and T2 respectively. Because
if this is not the case and for example {v} = V (T1) ∩ V (B) where v is not a vertex of
the central path of T1, then there exists a vertex w of the central path of T1 such that
e = {v, w} ∈ E(T1). So we can replace T1 with T1 \ e and B with B ∪ e. We can also
assume that E(T1), E(T2) and E(B) are pairwise disjoint sets.

Let v ∈ V (B)∩V (T1) and w ∈ V (B)∩V (T2). By Algorithm 22, there exists a 3-closed
labeling of V (T1) that assigns n1 = |V (T1)| to v. By part (a) of the proof there exists
a 3-closed labeling of V (B) with integers n1, . . . , n2 = n1 + |V (B)| − 1 that assigns n1

to v and n2 to w. Again by Algorithm 22 there exists a 3-closed labeling of V (T2) with
integers n2, . . . , n3 = n2 + |V (T2)| − 1 that assigns n2 to w. All together we get a 3-closed
labeling of T and the conclusion follows.

By [11, Proposition 3.2], a tree T is weakly closed if and only if T is a caterpillar tree.
So, by Theorem 21, If T is a weakly closed graph, then T is m-closed for some m 6 3.

5 Appendix

In the following we introduce an algorithm to label the vertices of a caterpillar tree T
with integers 1, . . . , n such that d(i, i+ 1) 6 2 for all 1 6 i < n. Suppose that the central
path of T is P : v1, . . . , v` and for each 1 6 j 6 `, N ′T (vj) = NT (vj) \ V (P ) is determined
the leaf neighbors of the vertex vj.
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The algorithm works as follows. First a candidate for 1 is found by choosing an
arbitrary vertex of the central path which is called vi0 . We then go through the vertices
in the central path. If vi0+1 has some leaf neighbors, we label them 2, . . . , t from right to
left, and then we label vi0+2 as t+1. Otherwise we label vi0+2 as 2. Then we set j = i0 +2
and this process is repeated for the next vertices of the vj until we reach the endpoint of
P . In the return path from vl to v1 and then from v1 to vi0 the similar process is repeated
until every vertex is labeled.

Algorithm 22. Labeling algorithm of caterpillars trees:
Input: A caterpillar tree T with the central path P : v1, . . . , v`.
Output: A 3-closed labeling of T
vi0 := one of the vertices on the central path;
j := i0; label vi0 as 1; t := 2;
While j < `− 1 do

S := N ′T (vj+1);
While S 6= ∅ do;

v:= pick v ∈ S such that v is the rightmost leaf of vj+1; label v as t;
t = t+ 1; S = S \ {v};

end;
label vj+2 as t;
j = j + 2; t = t+ 1;

end
If j == `− 1

label v` as t;
j = l; t = t+ 1;

Otherwise
label v`−1 as t;
j = `− 1; t = t+ 1;

end
While j > 2 do

S := N ′T (vj−1);
While S 6= ∅ do;

v:= pick v ∈ S such that v is the rightmost leaf of vj−1; label v as t;
t = t+ 1; S = S \ {v};

end;
label vj−2 as t;
j = j − 2; t = t+ 1;

end
If j == 2 and i0 > 1

label v1 as t;
j = 1; t = t+ 1;

Otherwise
If i0 > 2

label v2 as t;
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j = 2; t = t+ 1;
end;

end ;
While j < i0 − 2 do

S := N ′T (vj+1);
While S 6= ∅ do;

v:= pick v ∈ S such that v is the rightmost leaf of vj+1; label v as t;
t = t+ 1; S = S \ {v};

end;
label vj+2 as t;
j = j + 2; t = t+ 1;

end
If j == i0 − 2

S := N ′T (vi0−1);
While S 6= ∅ do

v:= pick v ∈ S such that v is the rightmost leaf of vi0−1; label v as t;
t = t+ 1; S = S \ {v};

end;
end;

Remark 23. If one wants to give a 3-closed labeling to a caterpillar tree T in such a way
that 1 is assigned to v ∈ N ′T (vi0) for some 1 < i0 < `, it is enough to label v as 1, vi0 as
2, set N ′T (vi0) = N ′T (vi0) \ {v} and start with t := 3 instead of t := 2.

Moreover, if one wants to give a 3-closed labeling to a caterpillar tree T in such a way
that n = |V (T )| is assigned to an arbitrary vertex v, it is enough to apply Algorithm 22,
by labeling v as 1 and at the end changing the label i of each vertex to n− i+ 1.

Example 24. Here, we give an example of a labeled caterpillar tree using Algorithm 22.
Note that 12 is the label of v1, 11 is the label of v2, 1 is the label of v3 and so on .

12 11 1 7 3 6 5

10 9 8 2 4

Figure 3:

Finally, we give an example of a 3-closed tree described in Theorem 21(part b). Note
that the labeling is given by Algorithm 22, and Proposition 6.
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1 2 12 6 10 7 8

3 4 5 11 9

21 20 13 17 15 16

23 22 19 18 14

Figure 4:
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