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Abstract

The main purpose of this paper is to show that the multiplication of a Schubert
polynomial of finite type A by a Schur function, which we refer to as Schubert
vs. Schur problem, can be understood combinatorially from the multiplication in
the space of dual k-Schur functions. Using earlier work by the second author, we
encode both problems by means of quasisymmetric functions. On the Schubert vs.
Schur side, we study the poset given by the Bergeron-Sottile’s r-Bruhat order, along
with certain operators associated to this order. Then, we connect this poset with a
graph on dual k-Schur functions given by studying the affine grassmannian order of
Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph
on dual k-Schur functions which are analogous to the ones given for the Schubert
vs. Schur problem. This is the first step of our more general program of showing
combinatorially the positivity of the multiplication of a dual k-Schur function by a
Schur function.

Keywords: Bruhat order, Schubert polynomials, k-Schur functions, Hopf algebras.

1 Introduction

A fundamental problem in algebraic combinatorics is to find combinatorial rules for certain
properties of a given combinatorial Hopf algebra. The problem of providing a combina-
torial rule for the structure constants of a particular basis is an instance of this situation.
The classical example is the Littlewood-Richardson rule which describes the multiplica-
tion and comultiplication of Schur functions within the space of symmetric functions.
These constants are known to be positive from geometry since they describe intersections
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of grassmannian varieties, or from representation theory where they count the multiplic-
ity of irreducible characters in certain induced representations. Although this shows that,
in theory, these constants are non-negative integers, the theory is not enough to specify
whether they are non-zero, or how big they are. However, theLittlewood-Richarson rule
does [26, 17] and it describes each constant as the cardinality of a constructed set of
objects or points.

Providing a rule for this kind of problems is in general very hard and many such prob-
lems are still unsolved. In particular, this paper will consider two of these problems which
are closely related: the multiplication of Schubert polynomials, and the multiplication of
k-Schur functions and their duals. The product structure of both, Schubert and k-Schur,
contain as a particular case the so-called Gromov-Witten invariants. Let us give some
background about each one of these problems.

Schubert polynomials are known to multiply positively since their structure constants
enumerate flags in suitable triple intersections of Schubert varieties. However, there is no
positive combinatorial rule to construct these constants in general. Nevertheless, since
Schur polynomials correspond to grassmannian varieties which are a special class of flag
varieties, we have that the Littlewood-Richardson rule is a special case of this particular
problem. Even if we consider a slightly larger class of Schubert polynomials, namely,
multiplication of a Schubert polynomial by a Schur function, we find that for several years
there was no solution for finding a positive rule for these structure constants. Fortunately,
in [9] new identities were deduced, more tools were developed and the use of techniques
along the way of [11, 10, 12, 8, 2] gave as a result a combinatorial rule for this problem [3],
which we will refer later as Schubert vs. Schur. Also in [3], using the work of [15], we
deduce, independently of [14], a combinatorial proof that the Gromov-Witten invariants
are positive.

Let us turn our attention now to k-Schur functions and their duals. These functions
were first defined in citeLLM03 in order to study Macdonald polynomials but they soon
turned out to be much more interesting due to their connection to different mathematical
constructions. There are at least six different definitions of k-Schur functions and it is
conjectural that they are equivalent. In [18], one definition is shown to be related to the
homology of the affine grassmannian of the affine Coxeter group Ãk+1. More precisely, the
k-Schur functions are shown to be the Schubert polynomials for the affine grassmannian
and, as such, the structure constants of their multiplication must be positive integers. The
space of k-Schur functions spans a graded Hopf algebra, and its graded dual describes the
cohomology of the affine grassmannian. Thus, the comultiplication structure is also given
by positive integer constants. Also, the structure constants of k-Schur functions include,
as a special case, the structure of the small quantum cohomology and in particular, as
mentioned above, the Gromov-Witten invariants [23].

In a series of two papers we plan to give a positive rule (along the lines of [3]) for the
multiplication of dual k-Schur with a Schur function and relate this to the Schubert vs
Schur problem. This is done by an in-depth study of the affine strong Bruhat graph. In
order to achieve this we need to adapt the tools we have in [11, 10, 12, 8, 3] and create
new ones. To give an outline of how this will be done, we set up some notation. Partitions
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will be denoted by λ, µ, ν and u, v, w will denote affine grassmannian permutations. The
general plan is as follows.

(I) We study the strong Bruhat graph restricted to affine grassmannian permutations
(see [19]). Given two such permutations u, v let K[u,v] be the quasisymmetric function
associated to them, which is constructed following techniques in [8]. The coefficient dvu,λ
of a Schur function Sλ in K[u,v] is the same as the coefficient of the dual k-Schur S

∗(k)
v in the

product SλS
∗(k)
u . In this way we recover certain structure constants of the multiplication

of dual k-Schur functions since when λ ⊆ (cr) and c+ r = k + 1 we have that Sλ = S
(k)∗
w

for some w affine grassmannian.

(II) We prove combinatorially that the expansion of K[u,v] in terms of Schur functions is
positive. This is done in analogy with [11, 2, 3].

In this paper we will cover part (I) together with some related work and a combi-
natorial explicit embedding of the Schubert vs. Schur problem into the dual k-Schur
problem. This is done by inclusion of the chains of the grassmannian-Bruhat order into
the affine strong Bruhat graph. Then a connected component from the first graph is
sent to a connected component in the second graph. This implies that the dual k-Schur
problem is at least as complex as the Schubert vs. Schur problem. From our point of
view, this is a very surprising fact. On the dual k-Schur function side, we are multiplying
affine grassmannians. In the non-affine case, this should correspond to multiplying Schur
functions. Here we show that an arbitrary Schubert multiplied by a Schur embeds in the
affine case. We remark that in [16], Knutson, Lam and Speyer show that the Schubert
vs. Schur problem reduces geometrically to the dual k-Schur problem. Here we focus on
the positive combinatorial aspect of the problems.

Part (II) will appear in [6] after [2, 3] are published. This also depends on a study
of billions of cases currently running on computers. This is expected to take a few years.
Some more details about the method can be found in [5].

One final remark before we get started. The approach in [8] cannot be used directly
on the affine weak Bruhat order to understand the multiplication of k-Schur functions.
It was erroneously suggested in example 6.9 of [8] that K[u,v]w defined on an interval
[u,w]w of the affine weak order expands positively in terms of fundamental quasisymmetric
functions using descent. The problem here is that the descent of a chain is not well
defined. Equation (6.1) of [8] is valid only if the descent set of a chain is a unique
coarsening of its possible decomposition into increasing components. This is not the
case in example 6.9 and going back to the original definition of K[u,v]w is necessary. The
(symmetric) quasisymmetric function K[u,v]w obtained this way has been rediscovered
by Postnikov in [27]. They are not Schur positive in general, but when restricted to
the coefficient of a Schur function Sλ where λ is contained in a fixed rectangle R, then
the constant is positive and equals to the Gromov-Witten invariants. Also, K[u,v]w is
not positive when expanded in terms of fundamental quasisymmetric functions and the
techniques of [2, 3] cannot be adapted. Nevertheless, here we show that the affine strong
Bruhat graph behaves well.

The paper is organized as follows. In Sections 2 and 3 we recall some background
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about Schubert polynomials and k-Schur functions, respectively. In Section 4 we study the
affine strong Bruhat graph and introduce the main relations satisfied by saturated chains
in this order. Also,we introduce the quasi-symmetric function K[u,v]. Finally, Section 5 is
dedicated to the inclusion of the chains of the grassmannian-Bruhat order.

2 Schubert Polynomials

One of our main goals is to show that the Schubert vs. Schur problem is combinatorially
embedded in the problem of multiplying dual k-Schur functions, as explained in the
introduction. We thus recall a few results from [11, 10, 12, 8].

Let u ∈ S∞ :=
⋃
n>0 Sn be an infinite permutation where all but a finite number

of positive integers are fixed. Non-affine Schubert polynomials Su are indexed by such
permutations [24, 25]. These polynomials form a homogeneous basis of the polynomial
ring Z[x1, x2, . . .] in countably many variables. The coefficients cwu,v in

SuSv =
∑
v

cwu,vSw, (1)

are known to be positive.

2.1 r-Bruhat order and Pieri operators

As shown in example 6.2 of [8] (see also [12]), we can encode some of the coefficients in
(1) with a quasisymmetric function as follows. Let `(w) be the length of a permutation
w ∈ S∞. We define the r-Bruhat order <r by its covers. Given permutations u,w ∈ S∞,
we say that u lr w if `(u) + 1 = `(w) and u−1w = (i, j), where (i, j) is a reflection with
i 6 r < j. When ulr w we get `(w)− `(u) = 1, hence we write wu−1 = (a, b) with a < b
and label the cover ulr w in the r-Bruhat order with the integer b.

We enumerate chains in the r-Bruhat order according to the descents in their sequence
of labels of the edges. More precisely, we use the descent Pieri operator

x.Hk :=
∑
ω

end(ω), (2)

where the sum is over all chains ω of length k in the r-Bruhat order starting at x ∈ S∞,

ω : x
b1−→ x1

b2−→ · · · bk−→ xk =: end(ω) ,

with no descents, that is b1 6 b2 6 · · · 6 bk. Let 〈·, ·〉 be the bilinear form on ZS∞ induced
by the Kronecker delta function on the elements of S∞. Given u 6r w, let n = `(w)−`(u)
be the rank of the interval [u,w]r and let

K[u,w]r =
∑
α|=n

〈u.Hα1 . . .Hαk
, w〉Mα (3)
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summing over all compositions α = (α1, . . . , αk) of n, where

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαk

ik

is the monomial quasisymmetric function indexed by α (see [1, 8]).
Now, given a saturated chain ω in the interval [u,w]r with labels b1, b2, . . . , bn, we let
D(ω) = (d1, d2, . . . , ds) denote the unique composition of n such that bi > bi+1 exactly
in position i ∈ {d1, d1 + d2, . . . , d1 + d2 + · · · + ds−1}. The chain ω contributes to the
coefficient of Mα if and only if α 6 D(ω) under refinement. We thus have that if Fα
denotes the fundamental quasisymmetric function for a composition α where

Fα =
∑
α>β

Mβ

and α > β if α is coarser than β, then

K[u,w]r =
∑

ω∈[u,w]r

FD(ω). (4)

The descent Pieri operators on this labelled poset are symmetric as Hm models the
action of the Schur polynomial hm(x1, . . . , xr) on the basis of Schubert classes (indexed
by S∞) in the cohomology of the flag manifold SL(n,C)/B. The quasisymetric function
K[u,w]r is then a symmetric function and we can expand it in terms of Schur functions Sλ.

Proposition 1. [8, Examples 5.2, 6.2]

K[u,w]r =
∑
λ

cwu,(λ,r) Sλ (5)

where cwu,(λ,r) is the coefficient of the Schubert polynomial Sw in the product

Su · Sλ(x1, . . . , xr).

Geometry shows that these coefficients cwu,(λ,k) are non-negative. To our knowledge,

the work in [3] is the first combinatorial proof of this fact.
Let us recall the combinatorial analysis in [11] to study chains in the r-Bruhat order. By
definition, a saturated chain in [u,w]r of the form

ω : u = u0
b1−→ u1

b2−→ · · · bn−→ un = w ,

is completely characterized by the sequence of transpositions (a1, b1), (a2, b2), . . . (an, bn)
where (ai, bi)ui−1 = ui. Let uab denote the operator on ZS∞ defined by

uab : ZS∞ −→ ZS∞,

u 7−→

{
(a b)u if ulr (a, b)u,

0 otherwise.

(6)
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We have shown in [11] that these operators satisfy the following relations:

(1) ubcucduac ≡ ubduabubc, if a < b < c < d,
(2) uacucdubc ≡ ubcuabubd, if a < b < c < d,
(3) uabucd ≡ ucduab, if b < c or a < c < d < b,
(4) uacubd ≡ ubduac ≡ 0, if a 6 b < c 6 d,
(5) ubcuabubc ≡ uabubcuab ≡ 0, if a < b < c.

(7)

Notice that, by symmetry, this list of relations is complete. The 0 in relations (4) and (5)
means that no chain in any r-Bruhat order can contain such a sequence of transpositions.
On the other hand, relations (1), (2) and (3) are complete and transitively connect any
two chains in a given interval [u,w]r. It is also important to notice that the relations
are independent of r. This is a fact noticed in [9]: a nonempty interval [u,w]r in the
r-Bruhat order is isomorphic to a nonempty interval [x, y]r′ in an r′-Bruhat order as long
as wu−1 = yx−1. This implies several identities among the structure constants.

When we write a sequence of operators [uanbn , . . . ,ua2b2 ,ua1b1 ] (or shortly
uanbn · · ·ua2b2ua1b1), if nonzero, it corresponds to a unique chain in some nonempty in-
terval [u,w]r for some r and w−1u = (an, bn) · · · (a1, b1). To compute the quasisymmetric
function K[u,w]r as in equation (4), it suffices to generate one chain in [u,w]r and we can
obtain the other ones using relations (1), (2) and (3) above.

Given any ζ ∈ S∞ we produce a chain in a nonempty interval [u,w]r as follows.
Let up(ζ) = {a : ζ−1(a) < a}. This is a finite set and we can set r = |up(ζ)|. To
construct w, we sort the elements in up(ζ) = {i1 < i2 < · · · < ir} and its complement
upc(ζ) = Z>0 \ up(ζ) = {j1 < j2 < . . .}. Next, we put w = [i1, i2, . . . , ir, j1, j2, . . .] ∈ S∞
and then we let u = ζ−1w. Notice that u,w and r constructed this way depend on ζ.
From [9, 11], we have that [u,w]r is non-empty and now we want to construct a chain in
[u,w]r. This is done recursively as follows: let

a1 = u(i1) where i1 = max{i 6 r : u(i) < w(i)} and

b1 = u(j1) where j1 = min{j > r : u(j) > u(i1) > w(j)}

then uanbn · · ·ua2b2ua1b1 is a chain in [u,w]r for any chain uanbn · · ·ua2b2 in [(a1, b1)u,w]r.

Remark 2. Notice that the construction described above produces a minimal r such that
ζ = wu−1 where [u,w]r is nonempty. However, as noticed in [9], by adding fixed points
to up(ζ) we obtain a nonempty interval [x, y]r′ isomorphic to [u,w]r such that ζ = yx−1

and r 6 r′.

Example 3. Consider ζ = [3, 6, 2, 5, 4, 1, . . .] where all other values are fixed. We have
that up(ζ) = {3, 5, 6} and upc(ζ) = {1, 2, 4, . . .}. In this case, r = 3, w = [3, 5, 6, 1, 2, 4, . . .]
and u = [1, 4, 2, 6, 3, 5, . . .]. The recursive procedure above produces the chain u23u12u45u26

in [u, v]3. We get all other chains by using the relations (7):

u23u12u45u26, u23u12u26u45, u23u45u12u26, u45u23u12u26,
u45u13u36u23, u13u45u36u23, u13u36u45u23, u13u36u23u45.

(8)
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The interval obtained in this case is

142635

152634 143625 146235

153624 146325 246135 156234

156324 346125 256134

356124

��
��

HH
HHu45 u23 u26

�
�

@
@
u12

u45

@
@
PP

PP
PP u36u45

@
@

((((
((((

(((u23
u26

�
�

@
@ u23 u45

�
�

@
@ u45 u13�

�
u36 @

@ u12

��
��

HH
HH

u13 u45 u23

Using the chains in (8) and equation (4) we can compute the quasisymmetric function
associated to this interval and we get

K[142635,356124]3 = F13 + F121 + F22 + F112 + F121 + F31 + F211 + F22

= S31 + S22 + S211.

Notice that the functions K[u,w]r encode the nonzero connected components of the
given interval under the relations (7).

The combinatorial proof of the positivity of the cwu,(λ,r) coefficients exposed in [3] uses

the techniques given in [2] in the sense that the construction of a weak dual graph on the
chains of [u, v]k is done by means of a refinement of the relations (7). In other words,
to go from equation (4) to equation (5) one needs to understand fully the combinatorics
of the chains in [u,w]r, as we briefly reviewed here, and then define natural dual Knuth
operations on the chains, along the lines of [3].

In Section 5 we will show that the connected components of the chains for the r-Bruhat
order where r is arbitrary, embed as a connected component of the corresponding theory
for the 0-grassmannian in the affine strong Bruhat graph governing the multiplication of
dual k-Schur functions.

3 k-Schur Functions and affine Grassmannians

The k-Schur functions were originally defined combinatorially in terms of k-atoms, and
conjecturally provide a positive decomposition of the Macdonald polynomials [20]. These
functions have several definitions and it is conjectural that they are equivalent (see [19]).
In this paper we will adopt the definition given by the k-Pieri rule and k-tableaux (see
[22, 19]) since this gives us a relation with the homology and cohomology of the affine
grassmannians and therefore, we get positivity in their structure constants.

Different objects index k-Schur functions: 0-grassmannian permutations, k+1-cores, k-
bounded partitions. Originally (as in [20]), k-Schur functions were indexed by k-bounded
partitions λ = (λ1, λ2, . . . , λ`) where λ1 6 k. These partitions are in bijection with k+ 1-
cores (see [21]). By definition, k + 1-cores are integer partitions µ = (µ1, µ2, . . . , µm)
with no hook of length k + 1. Closing the loop, in [13] it is shown that k + 1-cores are
in bijection with 0−grassmannian permutations in the affine symmetric group (see also
[7, 19]).
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3.1 Affine Grassmannians and the affine weak order

The affine symmetric group W is generated by reflections si for i ∈ {0, 1, . . . , k}, subject
to the relations:

s2
i = 1; sisi+1si = si+1sisi+1; sisj = sjsi if i− j 6= ±1,

where i− j and i + 1 are understood to be taken modulo k + 1. Let w ∈ W and denote
its length by `(w), given by the minimal number of generators needed to write a reduced
expression for w. We let W0 denote the parabolic subgroup obtained from W by removing
the generator s0. This is naturally isomorphic to the symmetric group Sk+1. For more
details on affine symmetric group see [13].

Let u ∈ W be an affine permutation. This permutation can be represented using
window notation. That is, u can be seen as a bijection from Z to Z, so that if ui is the
image of the integer i under u, then it can be seen as a sequence:

u = · · · |u−k · · · u−1 u0 |u1 u2 · · · uk+1|︸ ︷︷ ︸
main window

uk+2 uk+3 · · · u2k+2| · · ·

Moreover, u satisfies the property that ui+k+1 = ui + k + 1 for all i, and the sum of the
entries in the main window u1 + u2 + · · ·+ uk+1 =

(
k+2

2

)
. Notice that in view of the first

property, u is completely determined by the entries in the main window. In this notation,
the generator u = si is the permutation such that ui+m(k+1) = i + 1 + m(k + 1) and
ui+1+m(k+1) = i + m(k + 1) for all m, and uj = j for all other values. The multiplication
uw of permutations u,w in W is the usual composition given by (uw)i = uwi

. In view
of this, the parabolic subgroup W0 corresponds to the u ∈ W such that the numbers
{1, 2, . . . , k + 1} appear in the main window.

Now, let W 0 denote the set of minimal length coset representatives of W/W0. In this
paper we take right coset representatives, although left coset representatives could be
taken also. The set of permutations in W 0 are the affine grassmannian permutations of
W , or 0-grassmannians for short.

Definition 4. The affine 0-grassmannian W 0 are the permutations u ∈ W such that the
numbers 1, 2, . . . , k + 1 appear from left to right in the sequence u.

Example 5. Let k = 4 and

u = · · ·|3̄ 2̄ 1 5̄ 1̄ |2 3 6 0̄ 4|︸ ︷︷ ︸
main window

7 8 11 5 9| · ··

where ī stands for −i. By convention we say that 0 is negative. This permutation u
is 0-grassmannian and it corresponds to the 5-core µ = (4, 1, 1). The correspondence is
easy to see from the window notation. We just need to read the sequence of entries of
u, drawing a vertical step down for each negative entry, and an horizontal step right for

the electronic journal of combinatorics 21(4) (2014), #P4.27 8



each positive entry. The result is the diagram of µ:

...

. . .

2̄ 1

5̄

1̄ 2 3 6

0̄ 4

3.2 k-Schur functions

As previously mentioned, 0-grassmannian permutations index k-Schur functions, which
we will denote by S

(k)
u for some u ∈ W 0.

Given u ∈ W , we say that ulw usi is a cover for the weak order if `(usi) = `(u) + 1
and we label this cover by i. The weak order on W is the transitive closure of these
covers. The Pieri rule for k-Schur functions is described by certain chains in the weak
order of W restricted to W 0. This result is given in [22, 18, 19]. On the other hand, this
same rule is satisfied by representatives for the Schubert classes of the homology of affine
grassmannian [18].
Here, we describe the Pieri rule as follows. A saturated chain ω of length m in the weak
order with end point end(ω), gives us a sequence of labels (i1, i2, . . . , im). We say that
the sequence (i1, i2, . . . , im) is cyclically increasing if i1, i2, . . . , im lies clockwise on a clock
with hours 0, 1, . . . , k and min

{
j : 0 6 j 6 k; j /∈ {i1, i2, . . . , im}

}
lies between im and

i1. In particular we must have 1 6 m 6 k. Now, to express the Pieri rule, we first
remark that for 1 6 m 6 k, the homogeneous symmetric function hm corresponds to the
k-Schur function S

(k)
v(m) where v(m) is a 0-grassmannian whose main window is given by

|2 · · · m 0̄ m + 1 · · · k k + 2|. Then, the multiplication of a k-Schur function S
(k)
u by a

homogeneous symmetric function hm is given by

S(k)
u hm :=

∑
ω cyclically increasing

S
(k)
end(ω), (9)

where ω has length exactly m.
Iterating equation (9) one can easily see that

hλ =
∑
u

Kλ,uS
(k)
u (10)

is a triangular relation [22]. One way to define k-Schur functions is to start with equa-
tion (9) as a rule, and define them as follows.

Definition 6. The k-Schur functions are the unique symmetric funtions S
(k)
u obtained by

inverting the matrix [Kλ,u] obtained from (10) above.
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It is clear that we can define a Pieri operator like equation (2) using the notion of a
cyclically increasing chain. Using equation (3), this allows us to define a function K[u,w]w

for any interval in the weak order of W .

Example 7. Let k = 2 and u = |0̄ 2 4|. We consider the interval [u,w]w in the weak
order where w = |3̄ 4 5|. This interval is a single chain

u = |0̄ 2 4| 1−→ |2 0̄ 4| 2−→ |2 4 0̄| 0−→ |3̄ 4 5| = w .

In this case, we remark that 〈u.H1H1H1, w〉 = 〈u.H2H1, w〉 = 〈u.H1H2, w〉 = 1 are the
only nonzero entries in (3) and we get

K[u,w]w = M111 +M21 +M12

= F12 + F21 − F111

= S21 − S111.

This small example shows some of the behavior of the (quasi)symmetric function K[u,w]w

for the weak order of W . In general, it is not F -positive nor Schur positive. Although,
these functions contain some information about the structure constants, it is not enough
to fully understand them combinatorially. In particular, these functions lack some of the
properties needed to use the theory developed in [2]. These functions were first defined
in [8] in terms of the M -basis, but the definition given there in terms of the F -basis is
wrong. Later on, Postnikov rediscovered them in [27] with more combinatorics involved,
even though their combinatorial expansion in terms of Schur functions is still open.

3.3 Dual k-Schur functions

Let Λ = Z[h1, h2, . . .] be the Hopf algebra of symmetric functions (see [26] for more details
on symmetric functions). The space of k-Schur functions Λ(k) can be seen as a subalgebra
of Λ spanned by Z[h1, h2, . . . , hk]. In fact, it is a Hopf subalgebra whose comultiplication
defined in the homogeneous basis is given by

∆(hm) =
m∑
i=0

hi ⊗ hm−i

and extended algebraically. The degree map is given by deg(hm) = m. The space Λ is
a self dual Hopf algebra where the Schur functions Sλ form a self dual basis under the
pairing 〈hλ,mµ〉 = δλ,µ where the mλ denote the monomial symmetric functions.
Now, by the previous paragraph we have the inclusion Λ(k) ↪→ Λ, which turns into a
projection Λ→→ Λ(k) using duality, where Λ(k) = Λ∗(k) is the graded dual of Λ(k). It can be

checked that the kernel of this projection is the linear span of {mλ : λ1 > k}, hence

Λ(k) ∼= Λ
/
〈mλ : λ1 > k〉 .

The graded dual basis to S
(k)
u will be denoted here by S

(k)
u = S

(k)∗
u which are also known

as the affine Stanley symmetric functions. The multiplication of the dual k-Schur S
(k)
u is

described in terms of the affine Bruhat graph as we will see in the next section.
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4 Affine Bruhat Graph

4.1 Affine Bruhat order

Let ta,b be the transposition in W such that for all m ∈ Z, permutes a + m(k + 1)
and b + m(k + 1) where b − a 6 k. The affine Bruhat order is given by its covering
relation. Namely, for u ∈ W , we have u l uta,b is a cover in the affine Bruhat order if
`(uta,b) = `(u) + 1.

Proposition 8 (see [13]). For u ∈ W and b− a 6 k, we have that ul uta,b is a cover in
the Bruhat order if and only if u(a) < u(b) and for all a < i < b we have u(i) < u(a) or
u(i) > u(b).

Notice that if a′ = a + m(k + 1) and b′ = b + m(k + 1) then ta′,b′ = ta,b, therefore, many
different choices of a and b give the same covering as long as they satisfy the conditions
of the proposition.

4.2 Affine 0-Bruhat graph

The affine 0-Bruhat order arises as a suborder of the Bruhat order. We define it by
its covers. For u ∈ W , a covering u l0 uta,b is encoded by transposition ta,b satisfying
proposition 8 and also u(a) 6 0 < u(b). As noticed before, a transposition ta′,b′ satisfying
the same conditions as ta,b gives the same affine Bruhat covering relation as long as a′ ≡ a,
b′ ≡ b modulo k + 1 and b′ − a′ = b − a 6 k. In view of this, we introduce a multigraph
instead of a graph for the affine 0-Bruhat order, since we want to keep track of the distinct
a, b such that ul0 uta,b is an affine 0-Bruhat covering for a given u.

We then define the following operators in a similar way to the ones defined in equa-
tion (6). For any b− a 6 k, let

tab : ZW −→ ZW,

u 7−→

{
uta,b if ul uta,b and u(a) 6 0 < u(b)

0 otherwise.

(11)

We will write these operators as acting on the right: utab. Remark now that if utab 6= 0,
then utab = uta′,b′ 6= 0 for only finitely many values of m with a′ = a + m(k + 1) and
b′ = b + m(k + 1). To see this, it is enough to notice that there exists m such that
u(a+m(k + 1)) > 0 and similarly for b.

Definition 9. The affine 0-Bruhat graph is the directed multigraph with vertices W and

a labeled edge u
b−→ utab for every uta,b 6= 0. We denote by [u,w] the set of paths from

u to w. Remark that all such paths will have the same length, namely `(w)− `(u).
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Example 10. We give below the interval [|6̄, 8, 3, 1̄, 4, 13|, |8, 6̄, 2̄, 9, 13, 1̄|] in the affine
0-Bruhat graph. For simplicity we removed the commas in the graph:

···8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|︸ ︷︷ ︸
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In this example we see that there are three arrows from u = |6̄ 8 3 1̄ 4 13| to w = |8 6̄ 3 1̄ 13 4|.
We have ut5̄4̄ = ut12 = ut78 = w labeled by 4̄, 2, 8, respectively. Also we have operators
that evaluate to 0, namely, ut11 10 = 0.

Remark: Ignoring multiple edges, the shaded area in this graph represents the embed-
ding of the poset from Example 3 into a dual k-Schur graph, which is part of our main
result and that will be proved later.

When restricted to 0-grassmannian permutations, the affine 0-Bruhat graph behaves
well as shown in the next lemma whose proof (for left coset) can be consulted in [19, Prop.
2.6]. Therefore, we will restrict the affine 0-Bruhat graph to permutations in W 0.

Lemma 11. If utab = w and u ∈ W 0, then we have that w ∈ W 0.

Remark that the converse to Lemma 11 is not true. Take u = |0̄ 2 1| and w = |1 2 0̄|.
We have that w ∈ W 0 and w = ut13, but u 6∈ W 0.

4.3 Multiplication dual k-Schur

For dual k-Schur functions S
(k)
u , the analogue of the Pieri formula (9) is given by

S(k)
u hm :=

∑
uta1b1

···tambm
6=0

b1<b2<...<bm

S
(k)
uta1b1

···tambm
, (12)

where the sum is over all increasing paths b1 < b2 < · · · < bm starting at u [19].

Since the Pieri formula is encoded by increasing chains in the affine 0-Bruhat graph
restricted to W 0, we can define Pieri operators similar to equation (2) using increasing
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chains. This allows us to define the functions K[u,w] for any interval in the affine 0-
Bruhat graph restricted to W 0. In contrast with the weak order, where we had cyclically
increasing chains, any chain ω ∈ [u,w] has a well defined notion of descent. More precisely,
for ω = ta1b1ta2b2 · · · tambm we have D(ω) = (d1, d2, . . . , ds) denotes the unique composition
of n such that bi > bi+1 exactly in position i ∈ {d1, d1 + d2, . . . , d1 + d2 + · · ·+ ds−1}. As
in equation (4) we have

K[u,w] =
∑
ω∈[u,v]

FD(ω) (13)

and in this case K[u,w] is F positive.

Theorem 12.
K[u,w] =

∑
λ

cwu,λ Sλ (14)

where cwu,λ is the coefficient of the dual k-Schur function S
(k)
w in the product S

(k)
u · Sλ.

The proof of this theorem follows from symmetric Pieri operators as developed in [8].

Remark 13. The theory of Pieri operators gives us a combinatorial construction of the
expansion of the function K[u,w] in terms of the fundamental basis. Algebraically, it also
allows us to conclude that the coefficients in (14) correspond to multiplication of certain
dual k-Schur by a Schur, as stated in the Theorem. However, Pieri operators do not allow
us to conclude nonnegativity of these coefficients, neither a postive combinatorial rule to
construct them. Nonetheless, the nonnegativity of the coefficients cwu,λ is shown indirectly
in [18], an thus part of our program will focus on finding a combinatorial rule for them.

Example 14. Considering the interval [u,w] = [|6̄ 8 3 1̄ 4 13|, |8 6̄ 2̄ 9 13 1̄|] we have in
example 10. The total number of chains is 240. In this case

K[u,w] = 9F1111 + 30F112 + 51F121 + 30F13 + 30F211 + 51F22 + 30F31 + 9F4 ,

is symmetric and the expansion in term of Schur functions is positive

K[u,w] = 9S4 + 30S31 + 21S22 + 30S211 + 9S1111 .

The reader can verify that the coefficients are indeed the structure constants as we claim
in Theorem 12 (for example using SAGE/Combinat computer software).

4.4 Relations of the operators tab

The purpose of this section is to understand some of the relations satisfied by the tab
operators restricted to W 0, similar to the work done with Schubert polynomials in [3, 11].
The main theorem of this section presents the needed relations among these operators.

These relations depend on the following data. For tab we need to consider a, b, a′, b′

where a′ and b′ are the residues modulo k+ 1 of a and b respectively. Remark that a′ 6= b′

since b − a < k + 1. Let u ∈ W 0. Lemma 11 implies that, if non-zero, utab and utabtcd
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are both in W 0. The different relations satisfied by the operators tab and tcd depend on
the relation among a′, b′, c′, d′. For this reason it is useful to visualize these operators as
follows.

c d a b︸ ︷︷ ︸
main

u -

utab -

utabtcd -

Above the permutation u, the operator tab is represented by drawing a bold line
connecting positions a, b and repeating this pattern to the left and to the right in all
positions congruent to a, b modulo k+1. Next, to the resulting permutation we apply tcd,
drawing a bold line connecting positions c, d and repeating that pattern modulo k + 1.
The importance of visualizing not only the bold line but also the dotted ones, relies on
the fact that even if in the diagram, the line representing tab does not intersect the line
representing tcd, their “virtual” copies (or dotted copies) might intersect and this will
determine the commutation relation satisfied by these operators. Therefore, it will be
enough if we consider the pattern produced by these two operators in the main window.

With these definitions in mind we present some of the relations satisfied by the t
operators restricted to W 0 (there are less relations if we consider all of W ).

(A) tabtcd ≡ tcdtab if a′, b′, c′, d′ are distinct.

(B1) tabtcd ≡ tcdtab ≡ 0 if (a 6 c < b 6 d) or (b = c and d− a > k + 1).

(B2) tabtcd ≡ 0 if (a′ = c′ and b 6 d) or (b′ = d′ and c 6 a).

(B3) tabtcd ≡ 0 if (b′ = c′ or a′ = d′) and d− c+ b− a > k + 1).

There are more possible zeros than what we present in (B), but we will satisfy ourselves
with these ones for now. It will be more important to identify them in the second part
of this work. Now if the numbers a, b, c, d are not distinct, then we must have b = c or
d = a. If b = c, then d− a 6 k + 1 in view of (B). Similarly if d = a then b− c 6 k + 1.

(C1) tabtbd = tabtb−k−1,a if d− a = k + 1,

(C2) tabtbd and tbdtab if d− a < k + 1.

In (C2) above, tabtbd is not related to other operator under the given condition. Similarly
for tbdtab.

Now we look at the cases tabtcd where a, b, c, d are distinct but some equalities occur
between a′, b′ and c′, d′. By symmetry of the relation we will assume that b < d which
(excluding (B)) implies that a < b < c < d.

(D) tabtcd = td−k−1,ctb−k−1,a if b′ = c′, d′ = a′ and (b− a) + (d− c) = k + 1.
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Remark 15. All the relations above and the ones we care about in this paper are local.
This means that if tabtcd = tc̃d̃tãb̃, then |ã− a|, |b̃− b|, |c̃− c| and |d̃− d| are strictly less
than k + 1. For example in (D) we have |(b − k − 1) − a|, |a − b|, |(d − k − 1) − c| and
|c− d| which are strictly less than k + 1. There are some relations that are not local:

tabtcd = ta−k−1,b−k−1tcd = ta+k+1,b+k+1tcd, (15)

if c < a < b < d. The full description of the relations of the operators t is rather
complicated and would take too much space here. It might be an interesting project in
the future but at this point we will be satisfied with the given subset. Also, in [4] it
is remarked that intervals [u,w]r in the r-Bruhat order containing chains produced by
nested operators uabucd (i.e. where c < a < b < d) are problematic. Schensted insertion
and jeu-de-taquin are well behaved as long as the intervals contain no nesting. In (15) we
see that nesting creates even more problems.

We now consider some more relations of length three:

(E1) tbctcdtac ≡ tbdtabtbc if a < b < c < d,

(E2) tactcdtbc ≡ tbctabtbd if a < b < c < d.

also we have

(F) tbctabtbc ≡ tabtbctab ≡ 0 if a < b < c and c− a < k + 1.

Theorem 16. The relations (A)–(F) above describe relations between t-operators in the
Strong Bruhat graph.

Proof.

(A) This relation is clear as the corresponding affine transpositions commute tabtcd =
tcdtab. So if the result is non-zero, it will be non-zero on both sides and equal.

(B1) Let us first assume that a < c < b < d. We want to show that utabtcd = 0 for
all u ∈ W 0. If utab = 0, then we are done. We thus assume that w = utab 6= 0. In
this case we must have that u(a) 6 0 < u(b) and for all a < i < b we have u(i) < u(a)
or u(i) > u(b). In particular, since a < c < b then u(c) < u(a) or u(c) > u(b). If
wtcd 6= 0 then w(c) = u(c) < 0 and thus u(c) < u(a). But also, since c < b < d and
since w(b) = u(a) (which is non positive) then w(b) < w(c), or equivalently, u(a) < u(c).
This is a contradiction, hence utabtcd = 0. A similar argument allows us to conclude that
utcdtab = 0 in this case.

If b = c and d − a > k + 1, then a < d − k − 1 < b < a + k + 1 < d < b + k + 1.
If utabtcd 6= 0, then we must have u(a) 6 0 < u(b) < u(b + k + 1) and 0 < u(d).
We look at the sign of u(d − k − 1). If 0 < u(d − k − 1), then since utab 6= 0 and
a < d−k−1 < b, we must have u(d−k−1) > u(b). This gives u(d) > u(b+k+1). When
we perform w = utab we have w(a+ k+ 1) = u(b+ k+ 1) and w(c) = w(b) = u(a). Hence
w(c) 6 0 < w(a+k+1) < w(d) a contradiction to wtcd 6= 0. Now if u(d−k−1) 6 0, then
we must have u(d− k − 1) < u(a) 6 0. This gives 0 < u(d) < u(a + k + 1) 6 k + 1 and
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this is a contradiction to u ∈ W 0 since the entries 1, 2, . . . , k+ 1 must appear from left to
right. Here we have u(a + k + 1) appearing before u(d). We must thus have utabtcd = 0
The case utcdtab = 0 is similar.

(B2) If c = a + m(k + 1) and b < d, then (a < b < c < d and m > 0) or a = c < b < d.
Assume that w = utab 6= 0. We have u(a) 6 0 < u(b) = w(a). But then w(c) =
w(a+m(k+ 1)) = w(a) +m(k+ 1) > 0. This implies that wtcd = 0. If b = d, then a = c
and clearly tabtab = 0. The case when d = b−m(k+ 1) and c 6 a for m 6 0 is analogous.

(B3) We do here the case when b′ = c′ as the other case is similar. This is one of
the only relations that requires that the operators are restricted to W 0 as (B3) is not
valid otherwise. Assume that w = utab 6= 0 and wtcd 6= 0. We have u(a) 6 0 < u(b) and
w(c) 6 0 < w(d). Since b′ = c′ and b−a+d−c > k+1 we have that a < b−k−1+d−c < b.
Let d = b− k − 1 + d− c and suppose u(d) > 0. Remark that since b′ = c′ we have that
d ≡ d (mod k + 1). The hypothesis utab 6= 0 implies that 0 < u(b) < u(d). But now, we
have

w(d− d+ c) = w(b− k − 1) = u(a− k − 1) = u(a)− k − 1 6 0 < u(b) < u(d) = w(d)

and this last inequalities contradict wtcd 6= 0. So we must have that w(d) = u(d) 6 0.
Since w(d) > 0 we must have d = d −m(k + 1) for some m > 0. Now utab 6= 0 implies
that u(d) < u(a) 6 0. We thus have

u(d− k − 1) < u(a+ (m− 1)(k + 1)) = w(b+ (m− 1)(k + 1)) = w(c) 6 0

and
0 < w(d) = u(d) < u(a+m(k + 1)) 6 k + 1.

This last inequality contradict the fact that u is grassmannian in W 0 since
a+m(k + 1) < d.

(C1) We have b − k − 1 < a < b < a + k + 1 = d. If w = utab 6= 0, then w(b − k − 1) =
u(a − k − 1) = u(a) − k − 1 < 0 < u(b) = w(a). Since wtb−k−1,a = wtbd, we have that
wtbd 6= 0 implies 0 6= wtb−k−1,a = wtbd. The reverse implication is similar.

(C2) It suffices to see that for u = · · |0̄ 2 4| · · we have ut12t23 6= 0. On the other hand,
we can check that ut12t23 = ut1,0t13 but this is not a local move. Also, it is easy to check
that no other moves can be performed on u to obtain ut12t23.

(D) The conditions imply that c = b + m(k + 1) and d = a + (m + 1)(k + 1) for some
m > 0. We have b − k − 1 < a < b < d − k − 1 < c < d. Assume w = utab 6= 0 so
u(a) 6 0 < u(b) < u(b+m(k+1)) < u(b+(m+1)(k+1)) = w(d). For wtcd 6= 0 as well we
need w(c) = u(d−k−1) 6 0. We also have u(c) = u(b+m(k+1)) > 0. Hence if utabtcd 6= 0,
then 0 6= utd−k−1,c = w. Moreover w(b− k − 1) = u(a− k − 1) < 0 < u(b) = w(a) and so
0 6= wtb−k−1,a = wtcd. The argument for the converse is similar.

(E1) Assume utbctcdtac 6= 0. Then the first condition is u(b) 6 0 < u(c). After applying
utbctcd = v we see that u(a) = v(a) 6 0 < v(d) = u(c) and u(a) < u(c) < u(b). Since
u(c) > 0 then u(c) > u(b). Arguing as above, we get that 0 6= utbdtabtbc = utbctcdtac.

the electronic journal of combinatorics 21(4) (2014), #P4.27 16



(E2) The argument is similar to (E1).

(F) If w = utbctab 6= 0, then u(b) 6 0 < u(c). But w(c) = u(b) 6 0 which implies
wtbc = 0. The other relation holds in the same way.

Remark 17. If we consider a permutation u we can derive more relations of length 2. Let
r = (b− a) + (d− c):
(X1) utabtcd = utd,c+rtb−r,a if r < k + 1, d′ = a′, u(c) 6 0 and u(d) 6 0,

(X2) utabtcd = utcdtb−r,b if r < k + 1, d′ = a′ and u(d) > 0,

(X3) utabtcd = utd−r,dtab if r < k + 1, b′ = c′ and u(a+ r) 6 0,

(X4) utabtcd = utd−r,ctb,a+r if r < k + 1, b′ = c′, u(b) > 0 and u(a+ r) > 0,

(X5) utabtcd = utcdta,b+c−d if b′ = d′, b− a > d− c and u(d− b+ a) > 0,

(X6) utabtcd = utc,d−b+ata,b if b′ = d′, b− a < d− c and u(a) 6 0.

In the (X) relations, the conditions we impose on u are minimal to assure that both
sides of the equality are non-zero. These conditions are not given by the definition of the
operators tab. For example in (X1), the left hand side is non-zero regardless of the value
of u(d) but to guarantee that the right hand side is non-zero, we must have u(d) 6 0.
This shows that as operators tabtcd 6= td,c+rtb−r,a. In the part (II) of our program we will
need to study all of the (X) relations. If one considers an interval [u,w] of rank 3 and
computes K[u,w], then by Theorem 12 the coefficient of F21 and F12 must be the same in
K[u,w]. This means that every time we have a descent followed by an ascent in a chain, we
must have another chain with an ascent followed by a descent. This should be reflected
by relations like (X) and could depend on u. The main work of [6] is first to build a full
set of relations of length 3 that pairs every ascent-descent type to a descent-ascent. This
cannot be done independently from u. The purpose of this will be to define Dual-Knuth
operations on the maximal chains in intervals [u,w] in order to construct dual graphs as
in [2].

5 Schubert vs Schur Imbedded Inside Dual k-Schur

When comparing the relations (7) and the ones given in Section 4.4 we see that it may be
possible to find a homomorphism from the Schubert vs Schur operators uab to the Dual
k-Schur operators ta′b′ . Such a homomorphism vanishes on many chains and this is the
expected behavior. The main result of this section is that for any interval [x, y]r in the
r-Bruhat order we can find a k and a homomorphism such that every chain of [x, y]r maps
to a non-zero chain in an interval [u, v].

Example 18. If we compare Example 3 and Example 10, the map uab 7→ ta−3,b−3 is a
homomorphism that preserves all the chains from the first interval to the second one.
This implies that, coefficient-wise, the quasisymmetric function K[142635,356124]3 is smaller
than K[u,w]. This fact is also implied by noticing that a transposition ta,b could be applied
to several windows in a given affine grassmannian permutation u, which is not the case,
in general, for permutations in the r-Bruhat order.
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Now, given a non-empty interval [x, y]r in the r-Bruhat order, we want to find integers
k, s and an explicit interval [u, v] in the strong 0-Bruhat graph such that the homomor-
phism uab 7→ ta−s,b−s maps the non-zero chains of [x, y]r to non-zero chains of [u, v]. In
fact, we only need to assume that we have a non-zero chain in [x, y]r encoded as an op-
erator uanbn · · ·ua1b1 and obtain the other ones using the corresponding relations. Then,
the interval [x, y]r is isomorphic to the one described in Section 2.1.
For this purpose, let ζ = (an, bn) · · · (a1, b1), up(ζ) = {i1 < i2 < · · · < ir} and upc(ζ) =
{j1 < j2 < · · · }, then r = |up(ζ)|. As in Section 2.1 we have that [x, y]r is nonempty for
y = [i1, i2, . . . , ir, j1, j2, . . .] and x = ζ−1y.

Let k be such that α = x(α) = y(α) for all α > k+1. Such a k exists since x and y have
finitely many non-fixed points. Put xα = x(α) and take the permutation [x1, x2, . . . , xk+1].
Now, we consider the positions α1 < · · · < α` < r < β1 < · · · < βt < k + 1 for which
there are descents before and after r. In other words, where xαi

> xαi+1
and xβj > xβj+1

for 1 6 i 6 `− 1 and 1 6 j 6 t− 1. This defines segments

1, 2, . . . , α1; · · · α` + 1, . . . , r; r + 1, . . . , β1; · · · βt + 1, . . . , k + 1.

We want to construct a 0-grassmannian in the k + 1-affine permutation group W with
this information such that in some adjacent k + 1 positions we have a permutation that
has the same patterns as x−1. The reason we want to look at the inverse permutation x−1

is because the u operators act on the left whereas the t operators act on the right.
For this purpose, we first place the values 1, 2, . . . , k + 1 on the Z-axis as follows.

1, 2, . . . , k − βt + 1 in positions xβt+1 − t(k+1), . . . , xk+1 − t(k+1)
· · ·

k − β1 + 2, . . . , k − r + 1 in positions xr+1, . . . , xβ1

k − r + 2, . . . , k − α` + 1 in positions xα`+1 + (k+1), . . . , xr + (k+1)
· · ·

k − α1 + 2, . . . , k + 1 in positions x1 + (`+1)(k+1), . . . , xα1 + (`+1)(k+1)

This construction places the values 1, 2, . . . , k + 1 on the Z-axis from left to right in
distinct positions modulo k + 1. We build a permutation u′ of Z defining it with the
relation u′i+m(k+1) = u′i + m(k + 1). This may not be a permutation in W as the sum

u′1 + u′2 + · · · + u′k+1 may not be
(
k+2

2

)
, but a simple shift gives us the desired result, as

shown in the next lemma which will be followed by an example to make this construction
clearer.

Lemma 19. Any permutation u′ of Z such that u′i+m(k+1) = u′i +m(k+ 1) and the values
1, 2, . . . , k + 1 are in distinct positions modulo k + 1 satisfies

u′1 + u′2 + · · ·+ u′k+1 =

(
k + 2

2

)
− s(k + 1)

for some integer s.
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Proof. Let w−1 = u′. Since 1, 2, . . . , k + 1 are in distinct positions in u′ modulo k + 1 we
have that w1 + w2 + · · · + wk+1 = 1 + 2 + · · · + (k + 1) + s(k + 1) for some s ∈ Z. The
result follows by inverting the permutation.

Notice that each time we shift the values of u′ by 1, like vi = u′i+1 we get that

v1 + v2 + · · ·+ vk+1 = u′1 + u′2 + · · ·u′k+1 + (k + 1) =

(
k + 2

2

)
+ (1− s)(k + 1).

Hence, if u′ is as above and if the entries 1, 2, . . . , k + 1 appear from left to right in u′,
then by defining the permutation u by ui = u′i+s, we get a 0-affine permutation in W 0.

Example 20. Let us take the permutation from Example 3. Let ζ = [3, 6, 2, 5, 4, 1, . . .]
where all other values are fixed. We can choose k + 1 = 6. We have that up(ζ) =
{3, 5, 6} and upc(ζ) = {1, 2, 4, . . .}. In this case, r = 3, y = [3, 5, 6, 1, 2, 4, . . .] and x =
[1, 4, 2, 6, 3, 5, . . .]. The descents in the permutation x are in positions α = 2 and β = 4
so that ` = t = 1 and α < r < β. With the procedure above, we get

1 = u′(x5 − 6) = u′(−3), 2 = u′(x6 − 6) = u′(−1);
3 = u′(x4) = u′(6);
4 = u′(x3 + 6) = u′(8);
5 = u′(x1 + 12) = u′(13), 6 = u′(x2 + 12) = u′(16).

Once we determine the values in the positions above, all other values of u′ are determined
as follows

u′ = · · · |13 8̄ 1 12 2 3̄ |7̄ 2̄ 7 6̄ 8 3|︸ ︷︷ ︸
main

1̄ 4 13 0̄ 14 9|5 10 19 6 20 15| · · ·

the sum of the entries in the main window of u′ is 3 =
(

7
2

)
− 3(6), hence s = 3. We see

that the entries of u′ in the main window [7̄ 2̄ 7 6̄ 8 3] are in the same relative order as
x−1 = [1 3 5 2 6 4]. We also see that the smallest r = 3 entries of the main window of u′

are 6 0 and the remaining ones are positive. Now we get u by shifting the positions of u′

by s:
u = · · · 13 8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|︸ ︷︷ ︸

main

0̄ 14 9 5 10 19|6 20 · · ·

We remark that by construction, the entries [u1−s, u2−s, . . . , uk+1−s] are the same as
[u′1, u

′
2, . . . , u

′
k+1] which in turn are in the same relative order as in x−1. Therefore, from

the previous paragraph we see that the smallest r entries in [u1−s′ , u2−s′ , . . . , uk+1−s′ ] are
6 0 and the other entries in that window are positive. This implies that if x is covered
by a non-zero permutation given by uabx where x−1

a 6 r < x−1
b , then we have uta−s,b−s is

a cover in the 0-Bruhat graph. Recursively, we get that

Theorem 21. Let [x, y]r be a non-empty interval in the r-Bruhat order and let u and s
be as above. For any maximal chain uanbn · · ·ua1b1 in the interval [x, y]r we have that the
chain ta1−s,b1−s · · · tan−s,bn−s is a non-zero maximal chain in the 0-affine Bruhat graph in
[u, uta1−s,b1−s · · · tan−s,bn−s].
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This theorem shows our main claim, namely the fact that the Schubert vs Schur
problem is imbedded in the dual k-Schur problem. In the second part of our program
[6] we will construct dual Knuth operators on the intervals [u,w]. Under the morphism
above, connected components of certain dual equivalent graphs obtained in [3] are mapped
to connected components of the dual equivalent graph of [u,w]. This shows in a stronger
sense the imbedding above and explains the difficulty of the two problems. This allows us
to conclude that solving the dual k-Schur problem is harder than the problem of Schubert
vs Schur.
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