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Abstract

This paper proves an optimal strategy for Ebert’s hat game with three players
and more than two hat colors. In general, for n players and k hat colours, we
construct a strategy that is asymptotically optimal as k →∞. Computer calculation
for particular values of n and k suggests that, as long as n is linear with k, the
strategy is asymptotically optimal. We conclude by comparing our strategy with
the strategy of Lenstra and Seroussi and with the bound of Alon, and suggest our
strategy is better when 2k > n > 7.

1 The Problem

There have been several different versions of hat games and various generalizations of the
games’ rules. For example, the paper [1] discusses the “hybrid” hat game that combines
rules from a hat game where players stand on a single line and the Ebert’s hat game, with
the generalization on the number of hat colors. In this paper, we will focus on Ebert’s
hat game, and the generalization on the number of possible hat colors.

The simple version of Ebert’s hat game is stated as follows [2]: three players walk into a
room and each of them is given a hat. Each hat is either red or blue, and the probabilities
of the colors of each of the three hats are equally and independently distributed. Each
player can see the colors of the other players’ hats but cannot see the color of his own
hat. No communication of any type is allowed after the players walk into the room. After
each player looks at the other players’ hats, each of them has to guess the color of his
own hat or pass. Each player does not know what the other players’ responses are. They
win collectively if at least one of the players guesses the color of his own hat correctly and
no other player guesses incorrectly. Otherwise (if at least one player guesses incorrectly
or everyone passes), they lose. Before the three players walk into the room and receive
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hats, they may plan a strategy of responses. The question is: What is the best strategy
to optimize the chance of winning?

In this paper we will use n as the number of players and k as the number of colors
in Ebert’s hat game. The simple version above (n = 3 and k = 2) has a proven optimal
strategy with a winning probability of 3/4.1 In fact, for k = 2 and n = 2m − 1 for some
positive integer m > 1, there is a proof of the optimal strategy [5]. The solution when
n = 2m − 1 is tied closely with the particular structure of the set of losing positions
known as the 1-error-correcting binary Hamming Code. The question is: what about
when k > 2?

In this paper, we will show, with a combinatorial optimization proof, the optimal
strategy for Ebert’s hat game with n = 3 and k > 2. (The case n = 1 is trivial. For
n = 2, fix one color c0. The strategy is to instruct each player to guess c0 if he does
not see c0, and pass otherwise. It is easy to show that the strategy is optimal with the
winning probability 2(k − 1)/k2.) There has been a construction of strategy for Ebert’s
hat game with three players and k colors [3]. With the case k = 3, that strategy is proved
to be optimal in [3]. However, it was not known whether that strategy is optimal for any
k > 3. We will show in this paper that the strategy is indeed optimal.

Furthermore, we will construct a strategy for general n and k, and compare the winning
probability of that strategy with Lenstra and Seroussi’s strategy [5] and Alon’s lower
bound [4, Theorem 7.1]. Computer search suggests that our strategy has a higher winning
probability when 2k > n > 7 than Lenstra and Seroussi’s strategy and Alon’s bound. We
discuss that Lenstra and Seroussi’s strategy and Alon’s bound are not preferable in the
case k being linear with n. We prove an upper bound for the probability of winning of⌊
nkn−1
n+k−1

⌋
/kn, and we show that our strategy’s winning probability approaches this bound

for fixed n while k approaching infinity. In addition, computer calculation leads to a
conjecture that in the case k being linear with n, and we let n→∞, then the probability
of winning still approaches this same upper bound.

2 Three Players and more than Two Colors

Let k > 2 be a positive integer. Label the colors 1, 2, . . . , k. In the 3-player Ebert’s hat
game, each player receives a hat from among the k equally probable colors. Let

S = {(a, b, c) : a, b, c ∈ {1, 2, 3, . . . , k}}

represent all equally probable k3 outcomes of hat colors distributed among three players.
The first number in a triple represents the color of the first player’s hat, and so on.

For a given strategy, let X ⊆ S be the set of all losing positions, and W ⊆ S be the
set of all winning positions. Each possibility will be either a winning or losing position
(A typical strategy that instructs a player to definitely do a certain action is called a

1Disclaimer: Spoiler for a solution. The strategy instructs a player when sees two other hats of
a same color to guess the opposite of that color, and pass otherwise. That strategy will give a winning
probability 6 out of 8 possibilities.
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deterministic strategy. A strategy that instructs a player to do one of more than one
possible responses according to the given probabilities (a non-deterministic strategy) will
give a winning probability as a linear combination of other deterministic strategies. It
therefore is sufficient to consider only all possible deterministic strategies [5]). Therefore,
(X,W ) is a partition of S. Also, any given strategy will determine the sets X and W .

Definition 1. A line is a set of k triples in S all of which have the same coordinates in
two dimensions. For example, {(1, 3, 4), (2, 3, 4), . . . , (k, 3, 4)} and {(1, 1, 4), (1, 2, 4), . . . ,
(1, k, 4)} are both lines.

Definition 2. For each w ∈ W , a line consisting of k− 1 losing positions and w is called
a supporting line of w. If there can be more than one supporting line for w, pick only
one to be a supporting line for w.

The following theorem is the same as the Claim in [4, Section 7], but we quote it in
terms of a supporting line.

Theorem 3. The given partition of S into X and W will represent a possible strategy if
and only if each w ∈ W has a supporting line.

Because of Theorem 3, from now on it is sufficient to maximize the size of W subject
to the condition that for each w ∈ W , there exists a line consisting of k−1 losing positions
and w.

We consider the strategy as appeared in [3, Subsection 29.4], which satisfies |W | =
3k2 − 6k + 6, and now demonstrate that this strategy is optimal.

Assume that there exists a possible strategy corresponding to a pair (X,W ) such
that |W | > 3k2 − 6k + 7. If |W | > 3k2 − 6k + 8, we can choose one of the winning
positions and turn that into a losing position. The new pair (X,W ) will still hold the
condition that for each w ∈ W , there exists a line consisting of k− 1 losing positions and
w. Therefore, it is sufficient to consider only when |W | = 3k2 − 6k + 7 and prove that
|W | = 3k2 − 6k + 7 is impossible. Assume |W | = 3k2 − 6k + 7. Since |W |+ |X| = k3, we
have |X| = k3− 3k2 + 6k− 7. Let L be the set of all 3k2− 6k+ 7 supporting lines in this
strategy. Let

C = {(x, l) ∈ X × L : x ∈ l}
Since each w ∈ W has exactly one supporting line, which corresponds to exactly k − 1
elements in C, |C| = (k − 1)|W |. Let

M = {(x, l) : x ∈ X, l is a line, and x ∈ l} − C

Then, M and C are disjoint, and we get

|M |+ |C| = | {(x, l) : x ∈ X, l is a line, and x ∈ l} | = 3|X| (1)

since any position in S is contained in exactly three different lines. We split the S into
k planes P1, P2, P3, . . . , Pk, where Pi = {(i, b, c) ∈ S : 1 6 b, c 6 k}. Let Mi = Ti − C,
where

Ti = {(x, l) : x ∈ Pi ∩X, l is a line in Pi, and x ∈ l}
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Let ai denote the number of losing positions in Pi. For any ai ∈ {0, 1, 2, . . . , k2}, let h(ai)
denote the minimum possible size of Mi given that there are ai losing positions in that
plane i. We will find a lower bound for

∑k
i=1 h(ai) subject to the condition

∑k
i=1 ai =

total number of losing positions = k3 − 3k2 + 6k − 7. We state several Lemmas in order
to find the bound. Lemmas 4, 5, 6, 8, and 9 below are stated with the detailed proofs
and calculations deferred to Appendix A.

Lemma 4. The sum
∑k

i=1 h(ai) can be minimized by only considering ai 6 (k − 1)2 for
all i = 1, 2, . . . , k.

Intuitively, this is because having “too many” losing positions will not give enough
spaces for winning positions to use supporting lines formed within that plane.

For each m ∈ {0, 1, 2, . . . , 2(k − 1)}, let f(m) denote the minimum number of losing
positions in the plane that is needed to generate m supporting lines in that plane.

Lemma 5. For all m ∈ {0, 1, 2, . . . , 2(k − 1)},

f(m) =

{
(k − 1)m− (m

2
)2 if m is even

(k − 1)m− (m
2

)2 + 1
4

if m is odd

The idea is to try to let as many losing positions as possible to be in two supporting
lines.

For each ai ∈ {0, 1, 2, . . . , (k− 1)2}, let g(ai) denote the maximum possible number of
supporting lines in the plane that can be created given that there are ai losing positions
in that plane.

Lemma 6. For all ai ∈ {0, 1, 2, . . . , (k − 1)2},

g(ai) 6 2k − 2 +
⌊
−2
√

(k − 1)2 − ai
⌋

The lemma can be proved using f(ai) in Lemma 5. We now show how defining g(ai)
may help us to find h(ai).

Lemma 7. For all ai ∈ {0, 1, 2, . . . , (k − 1)2},

h(ai) = 2ai − (k − 1)g(ai)

Proof. Each losing position increases the size of Ti by 2, and each supporting line in the
plane Pi corresponds to k− 1 ordered pairs in C which decreases the size of Mi by k− 1.
Thus, h(ai) = 2ai − (k − 1)g(ai).

Now, we use these Lemmas to finally find a lower bound for
∑k

i=1 h(ai) subject to

two conditions:
∑k

i=1 ai = k3 − 3k2 + 6k − 7 and (from Lemma 4) ai 6 (k − 1)2 for all
i = 1, 2, 3, . . . , k.

Lemma 8.
∑k

i=1 h(ai) > 4k − 10
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This can be done by translating h(ai) into g(ai) term and give an upper bound to the
sum

k∑
i=1

(
2k − 2 +

⌊
−2
√

(k − 1)2 − ai
⌋)

.

Note that we split the entire cube S into k planes P1, P2, P3, . . . , Pk in order to obtain
the lower bound on

∑k
i=1 h(ai). However, we could have done the splitting in two other

similar ways but in different orientations of the cubes. Applying similar idea of Lemma 8
to all three ways of splitting and using double counting argument, we get the bound for
|M |:

Lemma 9. |M | > 6k − 15

We are now ready to state the main result in this section, namely that the strategy
for winning Ebert’s hat game in [3, Subsection 29.4] is optimal.

Theorem 10. (3-Player Multicolor Game Theorem) The maximum number of winning
positions for the 3-player k-color hat game, where k > 2, is 3k2 − 6k + 6.

Proof. Suppose |W | = 3k2 − 6k + 7. From (1), |M |+ |C| = 3|X|. Thus,

|C| = 3|X| − |M | = 3(k3 − 3k2 + 6k − 7)− |M |
6 3(k3 − 3k2 + 6k − 7)− (6k − 15)

= 3k3 − 9k2 + 12k − 6

Since |C| = (k − 1)|W |, we have

|W | =
|C|
k − 1

6
3k3 − 9k2 + 12k − 6

k − 1

= 3k2 − 6k + 6

By contradiction to |W | = 3k2 − 6k + 7, we get the result.

3 The General Case

We now consider Ebert’s hat game with more than three players. First, we will look at
the case where 2k > n: in other words, we have a large number of colors relative to the
number of players.
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Case 2k > n:

Label the colors 1, 2, 3, . . . , k. Consider a symmetric strategy as follows:

For i = 1 to k, if a player does not see a hat of color i, guess i. If a player sees one
hat of color i, pass. If a player sees two or more hats of color i, increment i and repeat
the process.

Now, we will find the winning probability from this strategy. Let

S = {(c1, c2, c3, . . . , cn) : ci ∈ {1, 2, 3, . . . , k}}

be the set of all kn possibilities of colors of n hats, where ci represents the color of the
hat of player i.

Definition 11. Let c = (c1, c2, c3, . . . , cn) ∈ S. Let dj be the number of appearances of
color j in c1, c2, . . . , cn. Then, c has property P0 if 1 appears before 0 in the sequence
d1, d2, . . . , dk.

Theorem 12. An element (c1, c2, c3, . . . , cn) ∈ S is a winning position according to the
strategy described above if and only if (c1, c2, c3, . . . , cn) satisfies the property P0.

Proof. First, suppose an element c ∈ S has the property P0 with the least positive integer
i appears exactly once. It is clear to see that the player with hat color i will guess correctly
and the rest will pass. Hence, the team will win. Second, suppose we have an element
c ∈ S that does not satisfy the property P0. Let i be the least positive integer that does
not appear more than once. Since i does not appear, any player with a hat color d > i
will incorrectly guess color i, so the team will lose. If there is no player with a hat color
d > i, i.e. 2k = n and each color appears two times, every player will pass, and the team
will lose.

Theorem 13. The number of winning positions in the strategy we constructed (where
2k > n) is

n!
n−1∑
i=0

(−1)n−1+i
ki

i!

Proof. The number of winning positions of the strategy is equal to the number of elements
in S that has the property P0. In order to count that, we will use generating functions.
The degree of the term will represent the length of the string of numbers constructed.
The factorial in the denominator of a term represents all permutations of the same num-
bers being considered the same. Therefore, the number of elements satisfying P0 with
i being the least positive integer that appears once is the coefficient of the term xn

n!
in(

x2

2!
+ x3

3!
+ x4

4!
+ . . .

)i−1
x
(

1 + x
1!

+ x2

2!
+ x3

3!
+ . . .

)k−i
. Thus, the total number of elements
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satisfying P0 is the coefficient of the term xn

n!
in

k∑
i=1

(
x2

2!
+
x3

3!
+
x4

4!
+ . . .

)i−1
x

(
1 +

x

1!
+
x2

2!
+
x3

3!
+ . . .

)k−i

= x

(
1 + x

1!
+ x2

2!
+ x3

3!
+ . . .

)k
−
(
x2

2!
+ x3

3!
+ . . .

)k
(
1 + x

1!
+ x2

2!
+ x3

3!
+ . . .

)
−
(
x2

2!
+ x3

3!
+ . . .

)
= x

(ex)k − (ex − x− 1)k

x+ 1

= x
(
1− x+ x2 − x3 + . . .

) (
(ex)k − (ex − x− 1)k

)
Since ex − x − 1 has only terms with degree at least 2, (ex − x − 1)k has only terms
with degree at least 2k. Therefore, the term (ex − x − 1)k in the expression (3.1) will
only contribute terms with degree at least 2k + 1, which, from 2k > n, is at least n + 1.
However, we consider only the term of degree n, so we can neglect (ex − x − 1)k. The
expression then becomes

x
(
1− x+ x2 − x3 + . . .

)
(ex)k = x

(
1− x+ x2 − x3 + . . .

)(
1 +

kx

1!
+

(kx)2

2!
+ . . .

)
And the coefficient of xn

n!
is

n!
n−1∑
i=0

(−1)n−1+i
ki

i!

as desired.

Case 2k < n:

A more general strategy is as follows:

For i = 0 to
⌊
n−1
2k

⌋
:

For j = 1 to k: if a player sees exactly 2i hats of color j, guess j. If a player sees
exactly 2i+ 1 hats of color j, pass. Else, go to the next case.

The following definition is the natural generalization of P0.

Definition 14. Let c = (c1, c2, c3, . . . , cn) ∈ S. Let dj be the number of appearances of
color j in c1, c2, . . . , cn. Then, for each non-negative integer i, c has property Pi if dj > 2i
for all j, and 2i+ 1 appears before 2i in the sequence d1, d2, . . . , dk.

Analogously to Theorem 12, we can prove that the sequence of n integer will represent
a winning position if and only if that sequence satisfies Pi for some i. The number of
sequences in which every integer appears at least 2i times, and the least integer j ∈
{1, 2, 3, . . . , k} which appears no more than 2i + 2 times appears exactly 2i + 1 times is
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the coefficient of xn

n!
in (E2i+2(x))j−1

(
x2i+1

(2i+1)!

)
(E2i(x))k−j, where Ea(x) =

∑∞
i=a

xi

i!
. The

total number of winning positions then is the coefficient of xn

n!
in

∞∑
i=0

k∑
j=1

(E2i+2(x))j−1
(

x2i+1

(2i+ 1)!

)
(E2i(x))k−j

With some computation, we deduce that the number of winning positions is the coefficient
of xn−1

n!
in

n−1∑
i=0

(−1)n−1+i
ki

i!
xn−1 +

bn−1
2k c∑
i=1

(
n−1−2ik∑
j=0

(−1)j
(
(2i+ 1)−j−1 − (2i− 1)−j−1

)
xj

)
(E2i(x))k

(2)
This expression may be more helpful when is used by computer to calculate the exact
coefficient of xn−1

n!
.

4 The Behavior of the Constructed Strategy

In this paper, the symbol ∼ means that the ratio of quantities in the left and right is
approaching one. Before we start, consider the simple upper bound for |W |. The bound
|W | 6 nkn

n+k−1 is stated in [5] and [3], and proved in [3]. Proposition 5 in [5, Subsection 3.1]

implies that there is no strategy which gives |W | to be exactly nkn

n+k−1 for any k > 2. The
paper, however, does not include the proof of that proposition. The following theorem
can be used to prove both the bound and the proposition.

Theorem 15. For all n, k > 3,

|W | 6
⌊
nkn − 1

n+ k − 1

⌋
Proof. We can generalize the definition and Theorem 3 to general n as well. That is,
define

S = {1, 2, 3, . . . , k}n

The line is a set of k triples in S all of which have the same coordinates in k−1 dimensions.
Use the same definition of a supporting line. Then, Theorem 3 is still true for all general
n and k (the proof is analogous). Similarly, define L as the set of all supporting lines,
and define

C = {(x, l) ∈ X × L : x ∈ l}
M = {(x, l) : x ∈ X, l is a line, and x ∈ l} − C

Since there can be n lines passing through a position, every losing position will be counted
exactly n times in {(x, l) : x ∈ X, l is a line, and x ∈ l}. Also, because

C ⊆ {(x, l) : x ∈ X, l is a line, and x ∈ l}
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Table 1: Ratio |W |/
⌊
nkn−1
n+k−1

⌋
in different values of n and k. The value close to 1 shows

when the strategy gives a winning probability close to the upper bound
H
HHH

HHn
k

3 5 7 10 20 50 100 250

10 0.7158 0.9505 0.9642 0.9743 0.9889 0.9973 0.9992 0.99987
50 0.5722 0.6433 0.7116 0.8111 0.9897 0.9950 0.9978 0.99945
250 0.5271 0.5509 0.5724 0.6029 0.6973 0.9678 0.9980 0.99900

We get |M | = n|X|− |C|. Since each winning position will be counted exactly k−1 times
in C, we have

|M | = n|X| − (k − 1)|W |
|M | = n(kn − |W |)− (k − 1)|W |

|W | =
nkn − |M |
n+ k − 1

Now, suppose |M | = 0. Then, |X| = kn − |W | = (k−1)kn
n+k−1 . We split S into kn−2 non-

intersecting planes P1, P2, . . . , Pkn−2 , and let ai be the number of losing positions in the
ith plane. Because |M | = 0, we must have h(ai) = 0 for all i = 1, 2, 3, . . . , kn−2 (here we
use the same definition for Mi, Ti, and h as in the proof of the 3-player game). However,

h(ai) = 0 if and only if ai = 0 or (k − 1)2. Therefore, |X| =
∑kn−2

i=1 ai must be a multiple

of (k − 1)2. We have (k − 1)2 | |X|, which is the same as (k − 1)2 | (k−1)kn
n+k−1 . This gives

k − 1 | kn, and so k − 1 | 1. But for all k > 2, this is impossible. Therefore, |M | > 1.
This gives

|W | = nkn − |M |
n+ k − 1

6
nkn − 1

n+ k − 1

Because |W | is an integer,

|W | 6
⌊
nkn − 1

n+ k − 1

⌋
.

From the last section, we have a construction of the strategy with

|W | =

{
Coefficient of xn−1/n! in the expression (3.2) if 2k < n

n!
∑n−1

i=0 (−1)n−1+i k
i

i!
if 2k > n

We will investigate the ratio of |W | from this construction to the upper bound
⌊
nkn−1
n+k−1

⌋
.

Some values are shown in Table 1. More samples are shown in Appendix B.
One observation is that the ratio gets close to 1 as k grows. The computation suggests

that for n > 50, one need k > n/2 for the probability to be at least 99% of the simple
upper bound, and as n grows, the ratio k/n we need to attain the same 99% ratio seems
to get smaller. Below is the mathematical proof that the strategy indeed is asymptotically
optimal as k →∞.
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Table 2: Ratio |W |/
⌊
nkn−1
n+k−1

⌋
when α = 0.25 as n increases

n 12 20 28 40 100 200 400 1000

|W |/
⌊
nkn−1
n+k−1

⌋
0.6999 0.7767 0.8222 0.8721 0.9727 0.9955 0.9984 0.9994

Table 3: Ratio |W |/
⌊
nkn−1
n+k−1

⌋
when α = 0.15 as n increases

n 20 40 60 100 200 300 500 1000

|W |/
⌊
nkn−1
n+k−1

⌋
0.6342 0.7082 0.7438 0.7867 0.8358 0.8618 0.8984 0.9521

Theorem 16. For any fixed positive integer n, as k →∞,

|W | ∼
⌊
nkn − 1

n+ k − 1

⌋
Proof. Because n is fixed and k is growing, we can assume 2k > n and use |W | =

n!
∑n−1

i=0 (−1)n−1+i k
i

i!
. Then,

|W |⌊
nkn−1
n+k−1

⌋ ∼ |W |
nkn

n+k−1
=

(n+ k − 1)(n!
∑n−1

i=0 (−1)n−1+i k
i

i!
)

nkn

As k → ∞, since both numerator and denominator are a polynomial of variable k of
degree n, we only need to take ratio of the coefficients of the leading terms kn. Thus,

lim
k→∞

(n+ k − 1)(n!
∑n−1

i=0 (−1)n−1+i k
i

i!
)

nkn
= lim

k→∞

(1)(n!)( 1
(n−1)!)

n
= 1.

The upper incomplete gamma function is defined as Γ(n,−k) =
∫∞
−k t

n−1e−tdt. When

n is a positive integer, by induction on n, Γ(n,−k) is equal to (n − 1)!ek
∑n−1

i=0
(−k)i
i!

.

Therefore, |W | = n!
∑n−1

i=0 (−1)n−1+i k
i

i!
can be written as |W | = n(−1)n−1e−kΓ(n,−k).

Then, Theorem 16 can also be viewed as the asymptotic behavior of the incomplete
gamma function Γ(n,−k) as n is fixed and k →∞.

We also investigate the asymptotic behavior in the case when k is linear with n. Table
2 and 3 provide some evidences that the ratio |W |/

⌊
nkn−1
n+k−1

⌋
still approaches 1 as n→∞,

which lead us to Conjecture 17.

Conjecture 17. As long as k > αn, for some fixed positive real α, then as n→∞,

|W | ∼
⌊
nkn − 1

n+ k − 1

⌋
∼ nkn

n+ k

The convergence seems to be slower if α is closer to 0. If we constrain this conjecture
only with α > 1/2, we can look at the conjecture in two other perspectives:
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1. From the conjecture |W | = n!
∑n−1

i=0 (−1)n−1+i k
i

i!
∼ nkn

n+k
, multiply by −1, add kn,

and then divide by n! to both sides. The conjecture is then equivalent to the
approximation of a finite alternating exponential series:

(−1)n
n∑
i=0

(−1)i
ki

i!
∼ kn+1

(k + n)n!

The approximation of a finite alternating exponential series seems to be more precise
than to think about Taylor series expansion of e−k, since the next term of the Taylor
series kn+1

(n+1)!
& α(αe)n√

2nπ
(from Stirling’s approximation) which bounds the error grows

to infinity.

2. From |W | = n(−1)n−1e−kΓ(n,−k), the statement |W | ∼ nkn

n+k
is equivalent to

(−1)n−1Γ(n,−k) ∼ ekkn

n+ k

which implies,

|Γ(n,−k)| ∼ ekkn

n+ k

This last statement may be further investigated whether it still holds for general
n, k in some real and/or complex domain.

Now we will compare the combinatorial strategy constructed in this paper to Lenstra
and Seroussi’s and Alon’s bound. Specifically, we want to know in what case our strategy
will have higher winning probability and observe asymptotic behaviors in the case k = αn
for some α > 0 as well.

Comparison with Lenstra and Seroussi’s strategy

Lenstra and Seroussi’s strategy [5] is constructed using the algebraic method and matrix

multiplication so that the probability of winning 1 −
(
1− 1

k

)log2(n+1)
approaches 1 as

n → ∞. However, as k grows, even moderately around a hundred, the probability goes
down rapidly. In other words, the strategy is good for big n, but not with big k, whereas
the combinatorial strategy in this paper works well for big k. Examples of performance
of this strategy is shown in Table 5 in Appendix B.

Conjecture 18. When 2k > n > 7, the winning probability of the combinatorial strategy

in this paper is greater than 1−
(
1− 1

k

)log2(n+1)
.

Also, if 2k is still “close enough” to n, such as when n = 50 and k = 10 or 20, the
winning probability from combinatorial construction seems to be greater as well. How
exactly “close” it should be is still unknown.
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If we have k = αn for some α > 0, then as n→∞, the ratio

1−
(
1− 1

k

)log2(n+1)⌊
nkn−1
n+k−1

⌋
/kn

≈ (α + 1)

(
1−

(
1− 1

αn

)log2(n)
)

will converge to 0 because
(
1− 1

αn

)log2(n) converges to 1.

Comparison with Alon’s bound

Alon’s paper [4] uses a probabilistic argument to show an existence of a strategy with

probability of winning at least 1 − m(k−1
k

)n − 1
n
, where m =

⌈
kn logn

(k−1)n−1n

⌉
. The bound

obtained is good for the asymptotic behavior n→∞, which is even better than Lenstra
and Seroussi’s when n is big enough. For example, roughly n > 500 for k = 3. Again,
the strategy however does not work well when k grows. Examples of performance of this
strategy is shown in Table 6 in Appendix B.

Theorem 19. When 2k > n > 7, the winning probability of the combinatorial strategy in

this paper is greater than 1−
⌈

kn logn
(k−1)n−1n

⌉
(k−1

k
)n − 1

n
.

Proof.

1−
⌈

kn log n

(k − 1)n−1n

⌉(
k − 1

k

)n
− 1

n
6 1− kn log n

(k − 1)n−1n

(
k − 1

k

)n
− 1

n

= 1− (k − 1) log n+ 1

n
(3)

6 1− (n− 2) log n+ 2

2n
The last expression is a function of n, where after n ≈ 9.61, will be less than 0. For
n = 7, 8, 9, we can compute directly that the statement is true.

As we can see from the proof in Theorem 19, Alon’s bound itself does not give any
information for k > 2n. In fact, for any α > 0, if k > αn (k linear with n) and n→∞, the

bound still eventually will not be useful. This is because (k−1) logn+1
n

will asymptotically
behave to be at least α log n, and so the term (3) will become negative as n grows.

5 Conclusion

It is interesting to see how different approaches solve the same hat problem. The combi-
natorial approach seems to work well with low values of n and big values of k, and with
asymptotically when k > αn for some α > 0. In fact, the strategy seems to approach the
proven upper bound. In contrast, when n gets bigger, for example when n is much bigger
than 2k, or when n → ∞ while k is fixed, Lenstra and Seroussi’s and Alon’s strategies
may be better alternatives. Between Lenstra and Seroussi’s and Alon’s strategies, when
n → ∞ with fixed k, Alon’s bound converges closer to 1, with the exception of some
moderate values of n.
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in the same plane using those (k − 1)-by-(k − 1) losing positions. Since equality can be
achieved, h(ai) = 2ai − (k − 1)(k2 − ai). Let 1 6 m 6 k2 − (k − 1)2. Then,

h((k − 1)2 +m) = 2(k − 1)2 + 2m− (k − 1)(k2 − (k − 1)2 −m)

= 2(k − 1)2 + 2m− (k − 1)(2k − 1) + (k − 1)m

= −(k − 1) + (k + 1)m = 2 + (k + 1)(m− 1) (4)

Second, h((k − 1)2) = 0 because we can arrange (k − 1)2 losing positions in a (k − 1)-
by-(k − 1) square in a plane and let 2k − 2 winning positions in the plane adjacent to
that square have supporting lines in the same plane using those (k − 1)-by-(k − 1) losing
positions. The last winning position (i, k, k) may have supporting line that does not lie
in plane i. Third, when 0 6 ai 6 (k − 1)2 − 1,

h(ai + 1)− h(ai) 6 2 (5)

because a newly added losing position to Pi will increase the size of Ti by only 2, and we
can put a newly added losing position replacing a winning position that has supporting
line not in Pi. Thus, the size of Mi cannot increase by more than 2. If the set of ai that
minimizes

∑k
i=1 h(ai) has some aj > (k − 1)2, let at be an element in the set of ai that is

less than (k − 1)2 (such at exists because
∑k

i=1 ai = k3 − 3k2 + 6k − 7 and k > 3). We
may create a new set of ai by reducing aj by 1 and increasing at by 1. By (4) and (5),

the new set of ai will have
∑k

i=1 h(ai) less than or equal to the one with the old set of ai.
We may keep doing this until no aj is greater than (k − 1)2.

Proof of Lemma 5. Each supporting line passes through k− 1 losing positions. Our intu-
ition would say that with m supporting lines, there should be (k − 1)m losing positions.
However, some losing positions may be used for more than one supporting lines. Because
we are considering on a plane, a losing position can be used at most twice for two different
supporting lines. Thus, to minimize the number of losing positions we need, we have to
maximize the number of losing positions that are used for supporting lines twice.

If among m supporting lines, there are u lines parallel to the x-axis and v lines parallel
to the y-axis, the number of losing positions that are used in supporting lines twice is uv.
Since u + v = m is constant, uv is maximized when u and v are as close to each other
as much as possible. That is, u = v when m is even and |u − v| = 1 when m is odd. If
m is even, there are m/2 lines in each orientation. Thus, there are (m

2
)2 losing positions

that are used for supporting lines twice. Therefore, there are (k − 1)m − (m
2

)2 losing
positions. If m is odd, there are (m−1)/2 lines in the first orientation and (m+1)/2 lines
in the second orientation. Thus, there are (m−1

2
)(m+1

2
) losing positions that are used for

supporting lines twice. Therefore, there are (k−1)m− (m−1
2

)(m+1
2

) = (k−1)m− (m
2

)2 + 1
4

losing positions.

Proof of Lemma 6. If there are d supporting lines in the plane, from the definition of
f , there must be at least f(d) losing positions in that plane. Also, as ai 6 (k − 1)2,
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g(ai) 6 2(k − 1) because each losing position can be used for a supporting line at most
twice. Thus,

g(ai) = max {d ∈ {0, 1, 2, . . . , 2(k − 1)} : f(d) 6 ai}

From Lemma 5, whether d ∈ {0, 1, 2, . . . , 2(k − 1)} is even or odd, when f(d) 6 ai, we
have

ai > f(d) > (k − 1)d− (
d

2
)2

((k − 1)− d

2
)2 > (k − 1)2 − ai

(k − 1)− d

2
>

√
(k − 1)2 − ai (∵ d 6 2(k − 1) and ai 6 (k − 1)2)

2(k − 1)− 2
√

(k − 1)2 − ai > d

Because d is an integer,

d 6
⌊
2(k − 1)− 2

√
(k − 1)2 − ai

⌋
= 2k − 2 +

⌊
−2
√

(k − 1)2 − ai
⌋

Proof of Lemma 8. From h(ai) = 2ai − (k − 1)g(ai), we have

k∑
i=1

h(ai) = 2
k∑
i=1

ai − (k − 1)
k∑
i=1

g(ai)

= 2k3 − 6k2 + 12k − 14− (k − 1)
k∑
i=1

g(ai)

From g(ai) 6 2k − 2 +
⌊
−2
√

(k − 1)2 − ai
⌋
, we get

k∑
i=1

h(ai) > 2k3 − 6k2 + 12k − 14− (k − 1)
k∑
i=1

(
2k − 2 +

⌊
−2
√

(k − 1)2 − ai
⌋)

= 2k3 − 6k2 + 12k − 14− (k − 1)k(2k − 2)− (k − 1)
k∑
i=1

⌊
−2
√

(k − 1)2 − ai
⌋

(6)

For i = 1, 2, 3, . . . , k, let bi = (k − 1)2 − ai. Observe that 0 6 bi 6 (k − 1)2, and that∑k
i=1 bi = k(k − 1)2 −

∑k
i=1 ai = k2 − 5k + 7. Also, the expression (2.4) becomes

2k3 − 6k2 + 12k − 14− (k − 1)k(2k − 2)− (k − 1)
k∑
i=1

⌊
−2
√
bi

⌋

= −2k2 + 10k − 14− (k − 1)
k∑
i=1

⌊
−2
√
bi

⌋
(7)
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To minimize
∑k

i=1 h(ai), we need to maximize
∑k

i=1

⌊
−2
√
bi
⌋
. It is not hard to prove

that
∑k

i=1

⌊
−2
√
bi
⌋

is maximized when every term but one of bi is 0. Thus,

k∑
i=1

⌊
−2
√
bi

⌋
6
⌊
−2
√

0
⌋

+
⌊
−2
√

0
⌋

+ . . .+
⌊
−2
√

0
⌋

︸ ︷︷ ︸
k−1 terms

+
⌊
−2
√
k2 − 5k + 7

⌋
=
⌊
−
√

4k2 − 20k + 28
⌋

But, since k > 3,

4k2 − 20k + 25 < 4k2 − 20k + 28 6 4k2 − 16k + 16

which gives
2k − 5 <

√
4k2 − 20k + 28 6 2k − 4

−2k + 5 > −
√

4k2 − 20k + 28 > −2k + 4

Therefore, ⌊
−
√

4k2 − 20k + 28
⌋

= −2k + 4

So,
k∑
i=1

⌊
−2
√
bi

⌋
6 −2k + 4

From (2.5),

k∑
i=1

h(ai) > −2k2 + 10k − 14− (k − 1)
k∑
i=1

⌊
−2
√
bi

⌋
> −2k2 + 10k − 14− (k − 1)(−2k + 4)

= 4k − 10

as we claim.

Proof of Lemma 9. Recall when we split the entire cube S into k planes P1, P2, P3, . . . , Pk,
where Pi = {(i, b, c) ∈ S : 1 6 b, c 6 k}, and when we let Mi = Ti − C, where

Ti = {(x, l) : x ∈ Pi ∩X, l is a line in Pi, and x ∈ l}

From Lemma 8, we have
∑k

i=1 |Mi| > 4k− 10. However, we can also split the cube S into
k planes in two other ways:

• Q1, Q2, Q3, . . . , Qk, where Qi = {(a, i, c) ∈ S : 1 6 a, c 6 k}, and we let Ni = Ui−
C, where

Ui = {(x, l) : x ∈ Qi ∩X, l is a line in Qi, and x ∈ l}
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• R1, R2, R3, . . . , Rk, where Ri = {(a, b, i) ∈ S : 1 6 a, b 6 k}, and we let Oi = Vi −
C, where

Vi = {(x, l) : x ∈ Ri ∩X, l is a line in Ri, and x ∈ l}

Using Lemma 8 similarly, we get
∑k

i=1 |Ni| > 4k − 10 and
∑k

i=1 |Oi| > 4k − 10. Each
element in M = {(x, l) : x ∈ X, l is a line, and x ∈ l}−C will be counted exactly twice
among sets Mi, Ni, Oi because a line can be contained in exactly two different planes in
Pi, Qi, Ri. Also, Mi, Ni, Oi ⊆M for all i = 1, 2, 3, . . . , k. Therefore,

|M | = 1

2
(
k∑
i=1

|Mi|+
k∑
i=1

|Ni|+
k∑
i=1

|Oi|)

>
1

2
(4k − 10 + 4k − 10 + 4k − 10)

= 6k − 15

B Comparing Different Strategies

Table 4 shows the ratio |W |/
⌊
nkn−1
n+k−1

⌋
of the combinatorial strategy constructed in this

paper for several values of n, k.

Table 4:

H
HHH

HHn
k

3 5 7 10 20 50 100 250

3 0.9375 0.9623 0.9737 0.9880 0.9963 0.9993 0.9998 0.99997
5 0.9538 0.9476 0.9641 0.9778 0.9926 0.9986 0.9996 0.99994
7 0.8276 0.9497 0.9629 0.9752 0.9906 0.9980 0.9995 0.99991
10 0.7158 0.9505 0.9642 0.9743 0.9889 0.9973 0.9992 0.99987
20 0.6342 0.7767 0.9267 0.9774 0.9873 0.9959 0.9986 0.99974
50 0.5722 0.6433 0.7116 0.8111 0.9897 0.9950 0.9978 0.99945
100 0.5466 0.5901 0.6305 0.6895 0.8811 0.9955 0.9975 0.99918
250 0.5271 0.5509 0.5724 0.6029 0.6973 0.9678 0.9980 0.99900

Table 5 shows the ratio of probability of winning of Lenstra and Seroussi’s strategy

1 −
(
1− 1

k

)log2(n+1)
to the upper bound

⌊
nkn−1
n+k−1

⌋
/kn. In their paper [5], their strategy

only works when n = 2m− 1 for some positive integer m. Here we use 1−
(
1− 1

k

)log2(n+1)

(from equation 5 in the paper) for general n only to see the big picture of comparison
between winning probabilities of two strategies.
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Table 5:

HHH
HHHn

k
3 5 7 10 20 50 100 250

3 0.9375 0.8491 0.7982 0.7631 0.7156 0.6865 0.6766 0.6707
5 0.9122 0.7890 0.7231 0.6676 0.5961 0.5495 0.5334 0.5236
7 0.9053 0.7669 0.6876 0.6194 0.5298 0.4705 0.4498 0.4371
10 0.9049 0.7530 0.6613 0.5804 0.4715 0.3983 0.3725 0.3566
20 0.9147 0.7497 0.6395 0.5372 0.3934 0.2930 0.2569 0.2347
50 0.9357 0.7754 0.6528 0.5309 0.3484 0.2144 0.1651 0.1344
100 0.9514 0.8046 0.6802 0.5495 0.3443 0.1875 0.1288 0.0919
250 0.9682 0.8445 0.7243 0.5887 0.3611 0.1779 0.1075 0.0628

Table 6 shows the ratio of the lower bound of probability of winning in Alon’s paper [4],

1−
⌈

kn logn
(k−1)n−1n

⌉
(k−1

k
)n − 1

n
, to the upper bound

⌊
nkn−1
n+k−1

⌋
/kn. Sometimes the lower bound

1−
⌈

kn logn
(k−1)n−1n

⌉
(k−1

k
)n − 1

n
is less than 0, in which case we put 0 in the table instead.

Table 6:

H
HHH

HHn
k

3 5 7 10 20 50 100 250

3 0 0 0 0 0 0 0 0
5 0.1988 0 0 0 0 0 0 0
7 0.3497 0 0 0 0 0 0 0
10 0.5181 0 0 0 0 0 0 0
20 0.7152 0.4206 0.0437 0 0 0 0 0
50 0.8565 0.7204 0.5716 0.3232 0 0 0 0
100 0.9159 0.8380 0.7565 0.6273 0.1354 0 0 0
250 0.9594 0.9222 0.8842 0.8259 0.6202 0 0 0
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