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1 Introduction

This paper is a continuation of our earlier investigations [5], [7] on the Bruhat order on
certain sets of involutions, and our notation follows these references closely:

C : field of complex numbers,

Sn : symmetric group of n× n permutation matrices,

Rn : rook monoid of n× n partial permutation matrices,

In : involutions in Sn,

Fn : fixed-point-free involutions in Sn,

P In : partial involutions in Rn,

Matn : all n× n matrices over C,
Symn : all n× n symmetric matrices over C,
GLn : invertible n× n matrices over C,

Bn : Borel group of invertible upper triangular matrices from GLn.

In addition to the above list of notation, we consider Skewn, the space of all n× n skew-
symmetric matrices over C, and PFn, the set of all fixed-point-free partial involutions.
The purpose of this article is to investigate some combinatorial properties of PFn. In
some sense, this is the final step of our program for showing that the sets of partial
permutations Rn, P In, and PFn all share the same algebraic combinatorial properties.

Let X be a variety on which a Borel group B acts algebraically. Let W denote the set
of B-orbits in X, and define the B-ordering 6 on W by

O1 6 O2 ⇐⇒ O1 ⊆ O2, O1,O2 ∈ W. (1)

Study of this basic combinatorial set-up is important for group theory. Indeed, suppose G
is a linear algebraic group with a Borel subgroup B. Then the double cosets of B in G are
equivalent to the orbits of B × B acting on X = G via (g, h) · x = gxh−1. Furthermore,
B × B-orbits in X are parameterized by the ‘Weyl group’ of G (the Bruhat-Chevalley
decomposition). We have a well-known special case, when G = GLn. Then, Bn × Bn-
orbits are parameterized by Sn, and the induced partial ordering is the Bruhat-Chevalley
ordering on Sn.

In [18], by generalizing Bruhat-Chevalley decomposition to linear algebraic monoids,
Renner constructs a rich family of orbit posets. In particular, among other things, he
shows that the orbits of the Borel group action

(g, h) · A = gAh−1, g, h ∈ Bn, A ∈ Matn. (2)

are parameterized by Rn. Basic combinatorial properties of Bn × Bn-ordering on Rn are
investigated in [6].

In [19], Richardson and Springer investigate the Borel orbits in the setting of symmetric
spaces. In particular, they show that the set of involutions In of Sn parameterizes the Borel
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orbits in the symmetric space SLn/SOn, and furthermore, the corresponding Bn-ordering
on In agrees with the restriction of the Bruhat-Chevalley ordering from Sn (see [20]). Here
SLn is the special linear group and SOn is its special orthogonal subgroup. Also in [19],
they show that Bn-orbits in SLn/Spn are parameterized by Fn ⊂ In.

The monoid of matrices Matn can be viewed as a partial compactification of GLn, and
similarly, the set of all symmetric matrices (respectively, set of all skew-symmetric matri-
ces) can be viewed as a partial compactification of SLn/SOn (respectively, of SL2n/Sp2n).
Similar to the construction of Rn, by using suitable modifications of the method of Gauss-
Jordan elimination, it is shown in [22] for X = Symn, and in [8] for X = Skewn that the
Bn-orbits of the action

g · A =
(
g−1
)>
Ag−1, g ∈ Bn, A ∈ X (3)

are parameterized by PIn and PFn, respectively. Further combinatorial properties of the
Bn-ordering on PIn and on PFn are investigated by the second author in the papers [1]
(joint with E. Bagno) and [8].

There is an interesting relation between PFn and the set of invertible involutions: Let
x ∈ PFn be a partial fixed-point-free involution with determinant 0. We denote by x̃
the completion of x to an involution in In by adding the missing diagonal entries. For
example,

x =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 x̃ =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

Define φ : PFn → In by setting

φ(x) =

{
x̃ if x ∈ PFn \ Fn,
x otherwise.

(4)

It is not difficult to check that φ is a bijection between PFn and In such that φ(x) = x
for all x ∈ Fn. Now that we have two sets in bijection with corresponding Bn-orderings,
it is natural to ask for their comparison. This is one of the goals of our paper.

Recall that the order complex ∆(P ) of a poset P is the abstract simplicial complex
consisting of all chains in P . Important topological information on a simplicial complex
is hidden in the orderings of its facets (which corresponds to the maximal chains in P ).
If the facets are ordered in a way that the intersection of a facet with all the preceding
facets is a simplicial subcomplex of codimension 1, then the complex is called shellable. In
this case, it is known that the simplicial complex has the homology type of a sphere, or of
a ball. For posets, a purely combinatorial criteria for checking the shellability condition
is found by Björner in [2], and it is called the “lexicographic shellability” of P .

A finite graded poset P with the unique maximum 1̂ and the unique minimum 0̂ is
called EL-shellable, if there exists a map f = fΓ : C(P ) → Γ from the set of covering
relations C(P ) of P into a totally ordered set Γ satisfying
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1. in every interval [x, y] ⊆ P of length k > 0 there exists a unique saturated chain

c : x0 = x < x1 < · · · < xk−1 < xk = y

such that the entries of the sequence

f(c) = (f(x0, x1), f(x1, x2), . . . , f(xk−1, xk)) (5)

are weakly increasing.

2. The sequence (5) is lexicographically smallest among all sequences of the form

(f(x0, x
′
1), f(x′1, x

′
2), . . . , f(x′k−1, xk)),

where x0 < x′1 < · · · < x′k−1 < xk.

In literature there are different versions of lexicographic shellability and EL-shellability
is known to imply the others (see [23]). A brief history of the shellability questions in Borel
orbit posets is as follows: In [11], Edelman proves that BC-order on Sn is EL-shellable.
Shortly after, Proctor in [16] shows that all classical Weyl groups are EL-shellable. Around
the same time, in [3], Björner and Wachs show that Bruchat-Chevalley ordering on all
Coxeter groups, as well as on all sets of minimal-length coset representatives (quotients) in
Coxeter groups are “dual CL-shellable” (a weaker alternative to EL-shellability). A decade
after the introduction of CL-shellability, in [10], M. Dyer shows that Bruhat-Chevalley
ordering on all Coxeter groups and all quotients are EL-shellable. As an application of
EL-shellability, using Dyer’s methods, in [24], L. Williams shows that the poset of cells of
a cell decomposition for totally non-negative part of a flag variety is EL-shellable. In the
papers [13] and [12] A. Hultman, although avoids showing lex. shellability, obtains the
same topological consequences for the Bruhat-Chevalley ordering on “twisted involutions”
in Coxeter groups.

There are various directions that the results of [3] are extended. For semigroups,
in [17], Putcha shows that “J-classes in Renner monoids” are CL-shellable. In [4], the
first author shows that for the special Renner monoid Rn, not only the J-classes are lex.
shellable, but also the whole rook monoid Rn is EL-shellable. In [7], the first and the
third authors show that PIn is EL-shellable. In [5], we show that Fn is also EL-shellable,
and furthermore, its order complex is a ball of appropriate dimension. In [14], Incitti
shows that In is EL-shellable, and in [15] he shows that the B-order on involutions in all
classical Weyl groups are EL-shellable.

Contributing to the above literature, we show in this paper that PFn is an EL-shellable
poset. Moreover, we show that the order complex of PFn triangulates a ball of dimension
n(n − 1)/2. On the other hand, it is known that the order complex of In triangulates a
sphere of dimension bn2/4c (see [14], page 255).

The structure of our paper is as follows. In the next section we introduce basic nota-
tion for poset theory. In particular, we recollect some known, basic facts about Bruhat-
Chevalley ordering on rooks and partial involutions. In Subsection 2.3, we compare the
length functions of PFn and PIn.

the electronic journal of combinatorics 21(4) (2014), #P4.34 4



Unfortunately, PFn is not a connected subposet of PIn, hence we are not able to
directly utilize our earlier results from [7]. Therefore, we devote all of Section 3 for the
review of the covering relations of In, Fn, and of PIn in order for describing the covering
relations of PFn next.

In Section 4 we present our proof of EL-shellability of PFn. As an application of this
result, in Section 5, we determine the homotopy type of the order complex of the proper
part of PFn, namely PFn with its smallest and the largest elements excluded.

In the final section of our paper, we investigate the length-generating functions of
certain subposets of PFn. In particular, we relate our length generating function com-
putations to the number of rational points of the variety of skew-symmetric matrices of
fixed rank defined over a finite field.

2 Preliminaries

Notation: Let m be a positive integer. We denote the set {1, . . . ,m} by [m]. The rank of
a matrix x ∈ Matn is denoted by rk(x).

2.1 Poset terminology

All of our posets are assumed to be finite, graded, and furthermore, they are assumed to
possess a minimal and a maximal element, denoted by 0̂ and 1̂, respectively. We reserve
the letter P as the name of a generic such poset and denote by ` : P → N (or, by `P , if
needed) the length function on P . The set of all covering relations in P is denoted by
C(P ). If (x, y) ∈ C(P ), then we write y → x to mean that y covers x.

Recall that the Möbius function of P is defined recursively by the formula

µ([x, x]) = 1,

µ([x, y]) = −
∑
x6z<y

µ([x, z])

for all x 6 y in P . As customary, we denote by ∆(P ) the order complex of P . It is
well known that µ(0̂, 1̂) is equal to the “reduced Euler characteristic” χ̃(∆(P )) of the
topological realization of ∆(P ). See Proposition 3.8.6 in [21].

Let Γ denote a finite totally ordered set and let g be a Γ -valued function defined on
C(P ). Then g is called an R-labeling of P , if for every interval [x, y] in P , there exists a
unique chain x = x1 ← x2 ← · · · ← xn−1 ← xn = y such that

g(x1, x2) 6 g(x2, x3) 6 · · · 6 g(xn−1, xn). (6)

Thus, P is EL-shellable, if it has an R-labeling g : C(P )→ Γ such that for each interval
[x, y] in P the sequence (6) is lexicographically smallest among all sequences of the form

(g(x, x′2), g(x′2, x
′
3), . . . , g(x′k−1, y)),
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where x← x2 ←′ · · · ← x′k−1 ← y.
For S ⊆ [n], by PS we denote the subset PS = {x ∈ P : `(x) ∈ S}, and denote by µS

the Möbius function of the poset P̂S that is obtained from PS by adjoining a smallest and
a largest element, if they are missing. For an R-labeling g : C(P ) → Γ of P , it is well
known that the quantity (−1)|S|−1µS(0̂P̂S , 1̂P̂S) is equal to the number of maximal chains

x0 = 0̂ ← x1 ← · · · ← xn = 1̂ in P for which the sequence (g(x0, x1), · · · , g(xn−1, xn)
has descent set S, that is to say, for which {i ∈ [n] : g(xi−1, xi) > g(xi+1, xi)} = S. See
Theorem 3.14.2 in [21].

2.2 B-order on partial involutions

The notation Fn, In, PIn, Rn, Sn, Skewn, and Symn are as in the introduction.
Recall that Rn parameterizes the Bn × Bn-orbits in Matn. For the purposes of this

paper, it is more natural for us to look at the inclusion poset of B>n × Bn-orbit closures
in Rn, whose dual poset we denote by (Rn,6Rook). Here B>n is the Borel subgroup of all
lower triangular matrices from GLn.

In [8], the second author shows that the Borel orbits in Skewn are parameterized by
those elements x ∈ Skewn such that

1. the entries of x are either 0,1 or -1,

2. any non-zero entry of x that is above the main diagonal is a +1,

3. in every row and column of x there exists at most one non-zero entry.

Note that when -1’s in x are replaced by +1’s, the resulting matrix x̃ is a partial involution
with no diagonal entry. In other words, x̃ is a fixed-point-free partial involution. It is
obvious that this correspondence is a bijection, hence PFn parameterizes the Borel orbits
in Skewn.

Containment relations among the closures of Borel orbits in Skewn define a partial
ordering on PFn. We denote its dual by 6Skew. Similarly, on PIn we have the dual of the
partial ordering induced from the containment relations among the Borel orbit closures
in Symn. We denote this dual partial ordering by 6Sym.

2.3 Combinatorial approach to the posets Rn, P In, PFn

There is a combinatorial method for deciding when two elements x and y from (Rn,6Rook)
(respectively, from (PIn,6Sym), or from(PFn,6Skew)) are comparable with respect to
6Rook (respectively, with respect to 6Sym, or 6Skew). We denote by Rk(x) the matrix
whose i, j-th entry is the rank of the upper left i× j submatrix of x. Hence, Rk(x) is an
n×n matrix with non-negative integer entries. We call Rk(x), the rank-control matrix of
x.

Let A = (ai,j) and B = (bi,j) be two matrices of the same size with real number entries.
We write A 6 B if ai,j 6 bi,j for all i and j. Then

x 6Rook y ⇐⇒ Rk(y) 6 Rk(x). (7)
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The same criterion holds for the posets 6Sym and 6Skew.
We recall some fundamental facts about the covering relations of 6Sym and 6Skew.

Our references are [1] and [8]. Let Rk(x) = (ri,j)
m
i,j=1 denote the rank-control matrix of

an m×m matrix x. As a notation we set r0,i = 0 for i = 0, . . . ,m and define

ρ6(x) = #{(i, j) : 1 6 i 6 j 6 n and ri,j = ri−1,j−1}, (8)

ρ<(x) = #{(i, j) : 1 6 i < j 6 n and ri,j = ri−1,j−1}. (9)

Then the length function `PFn of the poset PFn is equal to the restriction of ρ< to PFn.
Furthermore, x covers y if and only if Rk(x) 6 Rk(y) and `PFn(x)− `PFn(y) = 1.

The length function of PFn differs from the length function of PIn in two ways: The
ranks of two matrices y < x in PFn differ by a multiple of 2, and the smallest element in
PIn is the identity matrix, which is not in PFn. The minimal element in PFn is given
by the matrix with the largest rank-control matrix. This means that in the case when n
is even `PFn(x) = `PIn(x)− n−rk(x)

2
− n

2
. We subtract n−rk(x)

2
so that the length function

increases only by 1 if the rank drops by 2 and we subtract n
2

because the minimal element

has to have length zero. Similarly, when n is odd we have to subtract n−1−rk(x)
2

and n+1
2

.
Summarizing, we see that for all n the length function `PFn(x) of PFn is given by

`PFn(x) = `PIn(x)− n− rk(x)

2
− n

2

= `PIn(x)− 2n− rk(x)

2

= ρ<(x)− 2n− rk(x)

2
. (10)

Example 1. When n = 6, the smallest element is

ω0 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 ,

and when n = 5, the smallest element is ω0 =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 .

3 An EL-labeling of PIn

We recall some results on the covering relations of In, Fn, and of PIn [14, 5, 7].
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3.1 EL-labeling of In

For a permutation σ ∈ Sn, a rise of σ is a pair of indices 1 6 i1, i2 6 n such that

i1 < i2 and σ(i1) < σ(i2).

A rise (i1, i2) is called free, if there is no k ∈ [n] such that

i1 < k < i2 and σ(i1) < σ(k) < σ(i2).

For σ ∈ Sn, define its fixed point set, its exceedance set and its defect set to be

If (σ) = Fix(σ) = {i ∈ [n] : σ(i) = i},
Ie(σ) = Exc(σ) = {i ∈ [n] : σ(i) > i},
Id(σ) = Def(σ) = {i ∈ [n] : σ(i) < i},

respectively.
Given a rise (i1, i2) of σ, its type is defined to be the pair (a, b), if i1 ∈ Ia(σ) and

i2 ∈ Ib(σ), for some a, b ∈ {f, e, d}. We call a rise of type (a, b) an ab-rise. On the other
hand, two kinds of ee-rises have to be distinguished from each other; an ee-rise is called
crossing, if i1 < σ(i1) < i2 < σ(i2), and it is called non-crossing, if i1 < i2 < σ(i1) < σ(i2).

The rise (i1, i2) of an involution σ ∈ In is called suitable if it is free and if its type is
one of the following: (f, f), (f, e), (e, f), (e, e), (e, d).

A covering transformation, denoted ct(i1,i2)(σ), of a suitable rise (i1, i2) of σ is the
involution obtained from σ by moving the 1’s from the black dots to the white dots as
depicted in Figure 1.

It is shown in [14] that if τ and σ are two involutions in In, then

τ covers σ in 6Sym ⇐⇒ τ = ct(i1,i2)(σ), for some suitable rise (i1, i2) of σ.

Let Γ denote the totally ordered set [n] × [n] with respect to lexicographic ordering. In
the same paper, Incitti shows that the labeling defined by

fΓ ((σ, ct(i1,i2)(σ))) := (i1, i2) ∈ Γ (11)

is an EL-labeling, hence, (In,6Sym) is an EL-shellable poset.

3.2 EL-labeling of F2n

Recall that F2n is a connected graded subposet of I2n. Therefore, its covering relations
are among the covering relations of I2n. On the other hand, within F2n we use two types
of covering transformations, only: a non-crossing ee-rise and an ed-rise. These moves
correspond to the items numbered 4 and 6 in Table 1 of [14]. It is shown in [5] that these
covering labels is an EL-labeling for F2n.
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Figure 1: Covering transformations σ ← τ = ct(i,j)(σ) of In.
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3.3 EL-labeling of PIn

When two partial involutions x and y have the same zero rows and zero columns, the
covering relation x→ y is the same as in the case of invertible involutions.

Example 2.

y =

1 0 0
0 0 0
0 0 1

 is covered by x =

0 0 1
0 0 0
1 0 0

 .

Note that x → y if and only if the invertible involution x̃, that is obtained from x
by removing the rows and columns of x with no non-zero entries, covers the invertible
involution ỹ that is obtained from y by removing its rows and columns with zeros only.

Moving down a non-zero entry along the diagonal gives a covering relation:

Example 3.

y =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

 is covered by x =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

 .

Similarly,

y =

0 0 0
0 1 0
0 0 1

 is covered by x =

0 0 0
0 1 0
0 0 0

 .

Another type of covering relation is obtained by the moving of off-diagonal pairs (i, j)
and (j, i), where i > j to down/right, or to right/down available positions.

Example 4. There are two cases:

1. y =

0 1 0
1 0 0
0 0 0

 is covered by x =

0 0 1
0 0 0
1 0 0

 ,

2. y =

0 0 1
0 0 0
1 0 0

 is covered by x =

0 0 0
0 0 1
0 1 0

 .

When a down/right move is performed on y (as in part 2. of Example 4), there may
not be any available positions to place the non-zero entries of x. In this case, the pushed
entries are placed on the diagonal. If there are no available diagonal entries for both of
the 1’s, then one of them is pushed out of the matrix.
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Example 5. Once again, there are two moves of similar nature:

1. y =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

 is covered by x =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

2. y =

(
0 1
1 0

)
is covered by x =

(
0 0
0 1

)
.

In the light of the above examples, we label a covering relation x → y in PIn as
follows.

Definition 6. 1. As in Example 2, if the covering relation x→ y is derived from the
covering relation x̃ → ỹ of invertible involutions that are obtained from x and y,
respectively, then we use the labeling x̃→ ỹ as defined in [14].

2. If the covering relation results from a move as in Example 3, namely from a diagonal
push where the element that is pushed from is at the position (i, i), then we label
it by (i, i).

3. Suppose x → y is as in Example 4, or 5. Observe that, in all of these covering
relations, one of the 1’s is pushed down and the other is pushed right. Let i denote
the column index of the first 1 that is pushed to the right, and let j denote the
index of the resulting column. Then we label the covering by (i, j).

To illustrate the third labeling let us present a few more examples.

Example 7.

y =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

 is covered by x =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0


The corresponding labeling here is (3, 5).

Example 8.

y =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 is covered by x =


0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


The corresponding labeling here is (1, 3).
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Example 9.

y =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

 is covered by x =


0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


The corresponding labeling here is (2, 3).

Definition 10. If x covers y with label (i, j), then we refer to it as an (i, j)-covering and
say that y is obtained from x by an (i, j)-move. More briefly, we call a covering relation
a c-cover, if it is derived from an involution; a d-cover, if it is obtained by a shift of a
diagonal element; an r-cover, if it is derived from a right/down, or from a down/right
move. The corresponding moves of 1’s are referred to as c-, d- and r-moves.

Lemma 11 (Lemma 16, [7]). Let x and y be two partial involutions. Then x covers y if
and only if one of the following is true:

1. x is obtained from y by a c-move as in Example 2.

2. Without removing a suitable rise, x is obtained from y by one of the following moves:

(a) a d-move, as in Example 3,

(b) an r-move, as in Example 4, or as in Example 5.

It is shown in [7] that the covering labelings defined in Definition 10 is an EL-labeling
for PIn.

4 An EL-labeling of PFn

Covering relations of Fn are covering relations in In, as well. Unfortunately, this is not
the case for PFn relative to PIn. In other words, as a subposet of PIn, PFn is not con-
nected. For example, when n = 2, there are only two partial fixed-point-free involutions:

x =

(
0 0
0 0

)
and y =

(
0 1
1 0

)
, hence x covers y as a partial fixed-point-free involution.

However, viewed as a partial involution x does not cover y since y <

(
0 0
0 1

)
< x.

Lemma 12. Suppose x → y in PFn. Then either x covers y as an element of PIn, or
there exists z ∈ PIn such that x→ z by an d-cover as an element of PIn, and z → y by
an r-cover in PIn, where at each step the rank drops by 1. Furthermore, in the first case,
there are two possibilities:

1. x→ y is an r-cover in PIn, or
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2. x→ y is a c-cover corresponding to a non-crossing ee, or to an ed-rise in PIn.

Proof. Obviously, if x covers y in PIn and if both x and y are members of PFn, then x
covers y in PFn, also. Thus, the last assertion follows from Lemma 11.

We proceed with the assumption that x, y ∈ PFn but x does not cover y in PIn.
Towards a contradiction, assume that there does not exists z ∈ PIn as in the conclusion
of the lemma. This means that the open interval (y, x) = {z ∈ PIn : y < z < x} lies in
PIn \ PFn. In other words, any z ∈ (y, x) has to have a non-zero diagonal entry. This
eliminates the possibility of z → y being a c-cover (see Figure 1). Clearly, z → y cannot
be a d-cover, neither.

We continue with the assumption that z is obtained from y by an r-move, which
places two symmetric entries on the diagonal. In this case, another r-move is possible in
y involving the same 1’s. (To construct an example to this situation, start with y as in
Example 9.) Let z1 denote this new element from PFn. By comparing their rank-control
matrices, we see that Rk(x) < Rk(z1), hence y < z1 < x. This contradicts with our
assumption that the interval (y, x) lies in PIn \PFn. Therefore, z covers y by an r-move,
by deleting a 1 from y and placing another to diagonal. Then by a d-move removing this
diagonal 1 we obtain x. Thus we obtain a contradiction to our initial assumption.

Remark 13. Let x and y be two elements from PFn such that x covers y by an r-move.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) denote x and y in one-line notation. Then
exactly one of the following statements is true:

1. x is obtained from y by replacing exactly two entries of y = (y1, . . . , yn) by 0’s.

2. There exists i ∈ [n] such that x is obtained from y by replacing yi by the number
xi, setting yi-th entry of y to 0 and replacing the xi-th entry of y (which is a 0) by
i.

In the light of Lemma 12 we give the following definition.

Definition 14. 1. If the covering relation is derived from a c-move, then we use the
labeling as defined in [7] and transform this label (i, j) into (n− i, n− j).

2. If the covering relation x → y results from an r-move, then we define the label to
be (i + n, j), where x > y results from y by moving the 1 in column i to row j. If
the 1 is pushed out of the matrix, then we set j = n+ 1.

In the case of invertible fixed-point-free involutions we show in [5] that the lexico-
graphically largest chain is the only decreasing chain. Since the label is transformed from
(i, j) to (n − i, n − j) now the lexicographically smallest chain is increasing. The reason
the label of r-moves is shifted by n in the first coordinate is to ensure that every r-cover
has a bigger label than any c-cover. In Figure 2, we illustrate Definition 14.
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(2, 1, 4, 3)

(3, 4, 1, 2) (2, 1, 0, 0)

(4, 3, 2, 1) (3, 0, 1, 0)

(4, 0, 0, 1) (0, 3, 2, 0)

(0, 4, 0, 2)

(0, 0, 4, 3)

(0, 0, 0, 0)

(3,0) (8,5)

(3,2)
(8,5)

(5,3)

(7,5) (7,2)

(5,4) (8,5)

(8,2) (6,4)

(8,3)

(8,5)

Figure 2: The EL-labeling of PF4.

Proposition 15. Let y < x be two partial fixed-point-free involutions from PFn, and let

c : x = x1 < x2 < · · · < xs+1 = y

denote the saturated chain whose sequence of labels f(c), as defined in Definition 14, is
lexicographically smallest among all such sequences. Then f(c) is a weakly increasing
sequence.

Proof. Towards a contradiction assume that f(c) is not weakly increasing. Then there
exist three consecutive terms

xt−1 < xt < xt+1

in c such that f((xt−1, xt)) > f((xt, xt+1)). We have 4 cases to consider:
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Case 1: type((xt−1, xt)) = c, and type((xt, xt+1)) = c,
Case 2: type((xt−1, xt)) = r, and type((xt, xt+1)) = r,
Case 3: type((xt−1, xt)) = c, and type((xt, xt+1)) = r,
Case 4: type((xt−1, xt)) = r, and type((xt, xt+1)) = c.

In each of these cases, we either produce an immediate contradiction by showing that
the two moves are interchangeable (hence c is not the smallest chain), or we construct
an element z ∈ [x, y] ∩ PFn which covers xt−1, and such that f((xt−1, z)) < f((xt−1, xt)).
Since we assume that f(c) is the lexicographically smallest Jordan-Hölder sequence, the
existence of such an element z is a contradiction, also.

To this end, suppose that the label of the first move (xt → xt−1) is (i, j), and the
second move (xt+1 → xt) is labeled by (k, l).

Case 1: Follows from the proof for invertible fixed-point-free involutions, see [5].
Case 2: If i = k, then l > j. In this case, we interchange the two moves to obtain

our desired contradiction. Therefore we continue with assuming k < i. If k − n = j then
j < i−n and (m+n, l) is possible in xt−1 with m < j < i, where (m, i−n) is the position
of the 1 in xt−1. If k − n 6= j then either the two moves are interchangeable, or (k, l)
removes a suitable rise in xt−1 which corresponds to a move with a smaller label than
(i, j).

Case 3: This case is impossible since every c-move has a smaller label than any r-move.
Case 4: If the r-cover labeled (i, j) is the covering relation with the lexicographically

smallest label then there is no suitable rise in xt−1. The c-move has to involve one of the
moved 1’s since otherwise there is a suitable rise in xt−1. For this, one of the moved 1’s
has to have a 1 to the upper left or the lower right in xt that was not to the upper left
or lower right of it in xt−1. Since the 1’s are moved right and down respectively, it is
impossible that there is a 1 to the lower right in xt that is not to the lower right in xt−1.
If the c-cover corresponds to the suitable rise (m, i−n) (with label (n−m, i)), then (i, j)
is not the r-move with the smallest label in xt−1 since in this case (m+n, j) is possible in
xt−1 with (n+m, j) < (i, j). If the c-cover corresponds to the rise (m, j), then the r-move
(m+ n, i− n) is possible in xt−1 which again has a smaller label than (i, j).

Proposition 16. We retain the notation from (the proof of) Proposition 15. Then f(c)
is the unique increasing chain in [y, x].

Proof. We use induction on the length s + 1 of the interval [y, x] to prove that no other
chain is lexicographically increasing. Clearly, if x covers y, there is nothing to prove, so,
we assume that for any interval of length k 6 s there exists a unique increasing maximal
chain.

Assume that there exists another increasing chain

c′ : y = x0 < x′1 < · · · < x′s < xs+1 = x.

Since the length of the chain

x′1 < · · · < x′s < xs+1 = x
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is s, by the induction hypothesis, it is the lexicographically smallest chain between x′1 and
x. We are going to find contradictions to each of the following possibilities:

Case 1: type(x0, x1) = c, and type(x0, x
′
1) = c,

Case 2: type(x0, x1) = r, and type(x0, x
′
1) = r,

Case 3: type(x0, x1) = c, and type(x0, x
′
1) = r,

Case 4: type(x0, x1) = r, and type(x0, x
′
1) = c.

In each of these cases we will construct a partial fixed-point-free involution z ∈ [y, x]
such that z covers x′1 and f((x′1, z)) < f((x′1, x

′
2)), contradicting the induction hypothesis.

To this end, let f((x0, x1)) = (i, j), f((x0, x
′
1)) = (k, l) and assume that (k, l) < (i, j).

Case 1: Done in the proof for the invertible case, see [5].
Case 2: It is impossible for i = k since there is only one r-move for each 1. Therefore

assume that i < k. Let the moved 1’s be on the symmetric positions (i − n,m) and
(m, i − n) in x0. If k = m + n then (l + n, j) is possible in x′1 with (l + n, j) < (k, l). If
k 6= m then either the two moves are interchangeable or the suitable rise (n− i, n− k) is
possible in x′1.

Case 3: Since no r-move can remove a suitable rise, there exists a legal c-move in x′1.
But this c-move has a smaller label than (k, l) which is our desired contradiction.

Case 4: This case is not possible because every c-move has a smaller label than any
r-move.

Combining previous two propositions, we have our first main result:

Theorem 17. The poset PFn is an EL-shellable poset.

5 The order complex of PFn

In [5], it is shown that the order complex ∆(Fn) of fixed-point-free involutions triangulates
a ball of dimension n2 − n− 2. In this section we obtain a similar result for PFn.

Lemma 18. For all n > 2,

dim ∆(PFn) = `(PFn) = n+ (n− 1) + · · ·+ 1− n =

(
n

2

)
.

Proof. Straightforward by using (10).

We continue by analyzing the intervals of length two.

Lemma 19. Each length two interval [y, x] ⊆ PFn has at most four elements.

Proof. Just as in the proof of Theorem 17, if y < z < x, then there are 4 cases to consider:

Case 1: type((y, z)) = c, and type((z, x)) = c,
Case 2: type((y, z)) = r, and type((z, x)) = r,
Case 3: type((y, z)) = c, and type((z, x)) = r,
Case 4: type((y, z)) = r, and type((z, x)) = c.
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In the first case, [y, x] is isomorphic to an interval in Fm for some m 6 n, and therefore,
it has at most 4 elements (since Fm is a connected subposet of Im, which is Eulerian).

In the second case, we look at the one-line notations of y and x. If z is obtained from
y by setting two non-zero entries of y to 0’s, and if, at the same time, x is obtained from
z by setting two non-zero entries of z to 0’s, then y and x differ at exactly 4 entries.
Therefore, [y, x] contains at most one other element other than z, which is obtained from
y by setting two entries of y to 0’s. If z is obtained by increasing the i-th entry yi of y to
zi, and if, at the same time, x is obtained from z by increasing the i-th entry zi of z to xi,
then [y, x] has exactly 3 elements. If z is obtained from y by increasing the i-th entry yi of
y to zi, and if x is obtained from z with no overlap with the replaced/increased entries of
y, then [y, x] has exactly 4 elements. Finally, if z is obtained by increasing the i-th entry
yi of y to zi, and x is obtained from z by replacing the zi-th entry of z by 0, then y and
x differ at exactly at 4 positions. Therefore, the interval [y, x] have at most 4 elements.

Since the arguments of Case 3 and Case 4 are identical, we handle Case 3 only. Suppose
that there exist more than 4 elements in [y, x]. Since one of the elements y < z < x is
obtained from y by a c-move, the covering type of any other y < z1 < x is not of type
c. Otherwise, to obtain x from z we need to apply another c-move to z. But then the
matrix ranks of y and x would be the same. Therefore, we conclude that if z1 6= z and
y < z1 < x, then z1 is obtained from y by an r-move, and x is obtained from z1 by a
c-move. Now it is clear that it is impossible to have another element y < z2 < x such
that z2 covers y by an r-move and z2 /∈ {z, z1}. Therefore [y, x] have exactly 4 elements
and the proof is complete.

We know from [9] that a pure, shellable simplicial complex ∆ of which every dim ∆−1
face is contained in at most two facets is homeomorphic to either a ball, or a sphere. By
Lemma 19, we see that ∆(PFn) satisfies this property.

Theorem 20. Let P̃F n denote the proper part of PFn, namely the subposet obtained from
PFn by removing its smallest and the largest elements. For n > 3, the order complex
∆(P̃F n) triangulates a ball of dimension dim ∆(PFn)− 2 =

(
n
2

)
− 2.

Proof. By the discussion above, it is enough to show that the reduced Euler characteristic
of ∆(P̃F n) is 0.

By Hall’s Theorem (see Chapter 3, [21]), we know that the reduced Euler characteristic
of an order complex of a poset P is equal to the value of the Möbius function µP̂ on the

interval [0̂, 1̂], where P̂ is P with a 0̂ (a smallest element) and a 1̂ (a largest element)
adjoined. Therefore, it is enough to show that µPFn([0̂, 1̂]) = 0, where 0̂ = (0, . . . , 0) and
1̂ = (0, . . . , 0, n, n− 1).

Let PF ∗n denote the dual of PFn. By abuse of notation we use 0̂ for the smallest
element of PF ∗n although it is 1̂ of PFn. Similarly, we denote the largest element of PF ∗n
by 1̂. Now, since µPFn([0̂, 1̂]) = µPF ∗n ([0̂, 1̂]), we are going to show that the later value is
zero.

It is easy to see that the cardinality of the set {x ∈ PF ∗n : `PF ∗n ([0̂, x]) 6 3} is 1, for
n > 3. Indeed, if `PF ∗n (x) = 3, then in one-line notation x = (0, . . . , 0, n, 0, n − 2), and

[0̂, x] = {0̂ < 0 < z0 < x}, where z0 = (0, . . . , 0, n, n− 1).
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For simplicity, let us denote µPF ∗n by µ, and denote the length function `PF ∗n by `.

We prove by induction that µ([0̂, z]) = 0 for all z with `(z) > 1. Our base case is when
`(z) = 2. In this case, [0̂, z] is a chain of length 2 by the discussion in the previous
paragraph, and hence, the corresponding value is 0. Now assume that µ([0̂, z]) = 0 for all
z with 2 6 `(z) 6 s, and let z′ ∈ PF ∗n be an element with `(z′) = s+ 1. Since

µ([0̂, z′]) = −
∑

0̂6z<z′

µ([0̂, z]) = −(µ([0̂, 0̂]) + µ([0̂, 0]) = −(1 + (−1)) = 0,

the proof is complete.

6 Length-generating functions

Recall that the standard form of an involution π ∈ In is a product of transpositions of
the form

π = (i1, j1) (i2, j2) · · · (im, jm) , (12)

where for all 1 6 t 6 m, it < jt and i1 < i2 < · · · < im. We call the transpositions
appearing in (12) as arcs. Using bijection (4) from the Introduction section, we identify
the elements of PFn as involutions in Sn. With this identification, let us denote by I(n, k)
the set of involutions of Sn having k arcs, and define its length generating function by

iq(n, k) :=
∑

π∈I(n,k)

q`PFn (π).

Recall also that the q-analog of a natural number n ∈ N is the polynomial [n]q =
1 + q + · · ·+ qn−1.

Proposition 21. For all n > 2 and k ∈ {2, . . . , n}, we have

iq(n+ 1, k) = qniq(n, k) + [n]qiq(n− 1, k − 1) .

Proof. We begin with defining a bijection:

Φ : I(n+ 1, k)→ I(n, k)
⋃

({2, 3, . . . , n, n+ 1} × I(n− 1, k − 1)) .

Let π be an element of I(n + 1, k). If π(1) = 1, then we define Φ(π) = σ ∈ I(n, k) as
follows: σ(j) = π(j + 1) for j ∈ {1, 2, . . . , n}. In other words, in matrix notation, σ is
obtained from π by deleting its first row and its first column. Notice that if π(1) = 1, then
`PFn+1(π) = `PFn(σ) + n, since when we delete the first zero row from the rank-control
matrix, the parameter ρ< decreases by n, which is the number of zeros in this row in
positions from 2 to n+ 1.
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Suppose now that π(1) = i ∈ {2, 3, . . . , n+ 1}. In this case, we define Φ(π) to be the
pair Φ(π) = (i, σ), where σ is the involution from I(n− 1, k − 1) defined by

σ(j) =

{
π(j + 1) if j ∈ {1, .., i− 2},
π(j + 2) if j ∈ {i− 1, .., n− 1}.

In matrix notation, σ is obtained from π by deleting the first and the i-th rows of π, as well
as deleting its first and i-th columns. In this case we have: `PFn+1(π) = `PFn−1(σ) + i− 2.
To see this, notice that all the equalities in the upper triangular portion of Rk(π) are
carried into that of Rk(σ) with additional i − 2 equalities arising from the 0’s at the
positions (1, 2), (1, 3),. . . ,(1, i− 1) of π. Thus ρ<(π) = ρ<(σ) + i− 1. On the other hand,
since the ranks of π and σ differ by 2, and their sizes differ by 2, by the formula (10), we
see that

`PFn+1(π) = ρ<(π)− 2(n+ 1)− rk(π)

2

= ρ<(σ) + i− 1− 2(n− 1)− rk(σ) + 2

2
= `PFn−1(σ) + i− 2. (13)

See Example 22 for an illustration.
Now, in the light of these observations, we derive the desired recurrence:

iq(n+ 1, k) =
∑

π∈I(n+1,k)

q`PFn+1
(π)

=
∑

π∈I(n+1,k),π(1)=1

q`PFn+1
(π) +

∑
π∈I(n+1,k),π(1)6=1

q`PFn+1
(π)

=
∑

σ∈I(n,k)

q`PFn (σ)+n +
n+1∑
i=2

∑
σ∈I(n−1,k−1)

q`PFn−1
(σ)+i−2

= qn ·
∑

σ∈I(n,k)

q`PFn (σ) +
n+1∑
i=2

qi−2 ·
∑

σ∈I(n−1,k−1)

q`PFn−1
(σ)

= qniq(n, k) + (1 + q + q2 + · · ·+ qn−1)iq(n− 1, k − 1)

= qniq(n, k) + [n]qiq(n− 1, k − 1).

Example 22. Let us consider an example in order to understand (13). Consider

π =


0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

 with Rk(π) =


0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 2
1 1 1 1 2 3
1 1 1 2 3 4

 .
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σ = Φ(π) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 with Rk(σ) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 2

 .

By using (10), it is easy to verify `PF6(π) = 12− 4 = 8 and `PF4(σ) = 8− 3 = 5.

6.1 An explicit formula for iq(n, k).

Let π ∈ PFn be a partial involution and let π = (i1, j1) (i2, j2) · · · (im, jm) denote its
standard form viewed as an involution in In via bijection (4). It follows from the proof of
Proposition 6.2 of [8] that the following equality is true:

`PFn(π) = ρ<(π) = ĩnv(π) +
∑

a :π(a)=a

(n− a) , (14)

where ĩnv(π) is the “modified inversion number,” which is equal to the number of inver-
sions in the word i1j1i2j2 · · · imjm.

Proposition 23. iq(2k, k) = [2k − 1]q!!.

Proof. By Proposition 21 we have

iq(2k, k) = q2n−1iq(2k − 1, k) + [2k − 1]qiq(2k − 2, k − 1).

Since there are no involutions in S2k−1 which have k arcs (the maximal number of arcs
for an involution in S2k−1 is k − 1), we have iq(2k − 1, k) = 0 and therefore iq(2k, k) =
[2k−1]qiq(2k−2, k−1) = [2k−1]qiq (2(k − 1), k − 1). Now, by induction we get iq(2k, k) =
[2k − 1]q!!.

Proposition 24.

iq(n, k) = q(
n−2k

2 ) ·
(
n

2k

)
q

· [2k − 1]q!!,

where
(
n
2k

)
q

= [n]q !

[2k]q ![n−2k]q ! .

Proof. Let π an element from I(n, k). The involution π ∈ Sn has k arcs, hence, it has
n − 2k fixed points. Thus, n − 2k zero rows and columns in the corresponding partial
fixed-point-free involution matrix. So, there is a natural bijection

π ↔ ({i1, . . . , in−2k}, σ) ,

where 1 6 i1 < i2 < · · · < in−2k 6 n are the fixed points of π and σ ∈ I(2k, k) is the fixed
point free involution of S2k, whose partial fixed-point-free involution matrix is obtained
from π by deleting zero rows and columns. Now, using formula (14) we have

iq(n, k) =
∑

π∈I(n,k)

q`PFn (π)
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=
∑

({i1,...,in−2k} σ):

16i1<i2<···<in−2k6n,σ∈I(2k,k)

qn−i1+n−i2+···+n−in−2k+`F2k (σ)

=

 ∑
16i1<i2<···<in−2k6n

qn−i1+···+n−in−2k

 ·
 ∑
σ∈I(2k,k)

q`F2k (σ)


=

 ∑
06j1<···<jn−2k6n−1

qj1+···+jn−2k

 · iq(2k, k). (15)

To simplify (15), we use well known Gaussian identity (see [21], formula (1.87)):

j−1∏
i=0

(1 + xqi) =

j∑
k=0

xkq(
k
2)
(
j

k

)
q

, (16)

which is equivalent, by expanding the product, to

∑
06s1<s2<···<sk6j−1

q
∑k
r=1 srxk =

j∑
k=0

xkq(
k
2)
(
j

k

)
q

. (17)

Replacing j by n, and comparing the coefficients of xn−2k in (17), we obtain our desired
formula

iq(n, k) = q(
n−2k

2 ) ·
(
n

2k

)
q

· [2k − 1]q!!.

6.2 Length generating function of PFn

Next, we look at the length generating function of PFn more closely.

pq(n) :=
∑
π∈PFn

q`PFn (π) =

bn
2
c∑

k=0

iq(n, k) .

By a straightforward calculation we see that pq(1) = 1, pq(2) = 1+q, pq(3) = 1+q+q2+q3.

Proposition 25. For all n > 2, we have

pq(n+ 1) = qnpq(n) + [n]qpq(n− 1).

Proof. Follows from Proposition 21.

Example 26. It is easy to verify the following calculation from the Hasse diagram of
PF4 in Figure 2: pq(4) = q3pq(3) + [3]qpq(2) = 1 + 2q + 2q2 + 2q3 + q4 + q5 + q6.
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6.3 Skew-symmetric matrices over Fq

There is an interesting similarity between the rank generating function iq(n, k) and the
number of Fq-rational points of rank 2k, n×n skew symmetric matrices, which we denote
by Skew2k

n . Here Fq is the finite field with q elements. It is well known that the number of
Fq-rational points of the general linear group GLn and the symplectic group Spn (n = 2m)
are given by

|GLn|Fq = q(
n
2)

n∏
i=1

(qi − 1) and |Sp2m|Fq = qm
2
m∏
i=1

(q2i − 1).

The group G = GLn acts Skew2k
n transitively. A simple matrix computation shows that

|Gx|Fq = |GLn−2k|Fq |Sp2k|Fq |Matn−2k,2k|Fq ,

where Matn−2k,2k is the space of 2k × (n− 2k) matrices. Thus,

|Skew2k
n |Fq = |G/Gx|Fq =

q(
n
2)
∏n

i=1(q
i − 1)

qk2
∏k

i=1(q
2i − 1)q(

n−2k
2 )∏n−2k

i=1 (qi − 1)q2k(n−2k)
,

which simplifies as follows

|Skew2k
n |Fq = q(

n
2)−k2−(n−2k

2 )−2k(n−2k) [n]!(q − 1)n

(
∏k

i=1[2i])(q − 1)k[n− 2k]!(q − 1)n−2k

= q2(
k
2) [n]!(q − 1)k

(
∏k

i=1[2i])[n− 2k]!

= q2(
k
2)(q − 1)k

(
n

2k

)
q

[2k − 1]!! .

In other words, |Skew2k
n |Fq = iq(n, k)q2(

k
2)−(n−2k

2 )(q − 1)k .
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