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Abstract

A graph G with a perfect matching is Pfaffian if it admits an orientation D

such that every central cycle C (i.e. C is of even size and G − V (C) has a perfect
matching) has an odd number of edges oriented in either direction of the cycle. It is
known that the number of perfect matchings of a Pfaffian graph can be computed in
polynomial time. In this paper, we show that every embedding of a Pfaffian brace
(i.e. 2-extendable bipartite graph) on a surface with a positive genus has face-width
at most 3. Further, we study Pfaffian cubic braces and obtain a characterization
of Pfaffian polyhex graphs: a polyhex graph is Pfaffian if and only if it is either
non-bipartite or isomorphic to the cube, or the Heawood graph, or the Cartesian
product Ck ×K2 for even integers k > 6.

Keywords: Pfaffian orientation; perfect matching; polyhex graphs; embedding

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A perfect matching of G is a
set M of independent edges such that every vertex of G is incident with exactly one edge
in M . The number of perfect matchings of a graph has applications in statistic physics
and quantum chemistry and usually is difficult to compute (cf. [6, 13]). A subgraph H
of a graph G is central if G− V (H) has a perfect matching. If G has a perfect matching,
a central cycle C must be of even size. In other words, G has a perfect matching M such
that C is M-alternating (i.e. the edges of C alternate between M and E(G)\M). Let
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D be an orientation of G. An even cycle C is oddly oriented if C has an odd number of
edges directed in either direction of the cycle. An orientation of G is Pfaffian if every
central cycle of G is oddly oriented. A graph G is Pfaffian if it has a Pfaffian orientation.
It is known that the number of perfect matchings of a Pfaffian graph can be obtained by
computing the determinant of the skew adjacency matrix of its Pfaffian orientation D (cf.
[13]).

The Pfaffian orientation was first introduced by Kasteleyn [6] for solving 2-dimensional
Ising problem, and Kasteleyn [6] showed that every planar graph admits a Pfaffian ori-
entation. The problem of characterizing Pfaffian bipartite graphs is related to many
interesting problems, such as the Pólya permanent problem, the sign-nonsingular matrix
problem, etc, and gets a lot of attention ([11, 14, 21]). Little [11] proved that a bipar-
tite graph is Pfaffian if and only if it does not contain an even-subdivision of K3,3 as a
central subgraph. However, Little’s characterization does not provide a polynomial time
algorithm to determine Pfaffian bipartite graphs.

A connected graph G is k-extendable (|V (G)| > 2k + 2) if G has k independent edges
and any k independent edges are contained in a perfect matching of G. A 2-extendable
bipartite graph is called a brace. A k-extendable graph is (k− 1)-extendable and (k+1)-
connected [19, 13]. So a brace is 3-connected. A graph G is bicritical if, for any two
vertices u and v of G, the subgraph G−{u, v}, obtained from G by deleting u and v, has a
perfect matching. A bicritical graph with more than two vertices is 1-extendable and non-
bipartite. A brick is a 3-connected bicritical graph. By Lovász’s tight-cut decomposition
[12, 13], every 1-extendable graph can be reduced to a list of braces and bricks. Vazirani
and Yannakakis [27] showed that a graph G is Pfaffian if and only if all braces and bricks
generated from tight-cut decomposition are Pfaffian. Robertson, Seymour and Thomas
[21], and independently McCuaig [14] obtained an elegant characterization of Pfaffian
braces, which leads to a polynomial time algorithm to determine whether a given braces
is Pfaffian or not. The characterization problem remains open for non-bipartite graphs
and graphs on surfaces with positive genera. Readers may refer to the survey of Thomas
[24] on the Pfaffian orientations of graphs.

Let G be a graph and Π an embedding of G on a surface Σ. A closed simple curve ℓ in
Σ is contractible if Σ− ℓ has precisely two components and one of them is homeomorphic
to an open disk. The face-width (or representativity) of Π is the maximum integer k such
that every non-contractible simple closed curve in Σ intersects the graph at least k points
(see [15]), denoted by fw(G,Π). For convenience, assume that a plane graph has face-
width infinity. Robertson and Vitray [22], and independently Thomassen [25], showed
that a planar graph embedded on a surface Σ with a positive genus has the face-width at
most 2.

A polyhex graph is a cubic graph cellularly embedded on a surface such that every face
is bounded by a hexagon. By Euler’s formula, the surface could be only the torus and
the Klein bottle. Polyhex graphs have been studied as surface tilings [16, 26], and are
also considered as possible generalizations of fullerenes in chemistry and material science
[2, 8, 9]. A detailed classification of polyhex graphs was given by Thomassen [26]. A
bipartite polyhex graph is a cubic brace [29]. In [5], P.E. John tried using the Pfaffian
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method to enumerate the perfect matchings of polyhex graphs on the torus. However,
not all polyhex graphs on torus are Pfaffian.

In this paper, we study Pfaffian graphs embedded on surfaces with positive genera.
The paper is organized as follows. In Section 2, we show that every embedding of a
Pfaffian brace embedded on a surface with a positive genus has face-width at most 3. It
is natural to ask whether a Pfaffian brick has bounded face-width. In the end of this
paper, we give a negative answer to this question via non-bipartite polyhex graphs. In
Section 3, we obtain some structure properties of Pfaffian cubic braces, which are applied
to characterize Pfaffian polyhex graphs. In Section 4, the construction of polyhex graphs
is presented and polyhex graphs with small face-width have been determined. In Section
5, we completely characterize Pfaffian polyhex graphs. We show that a polyhex graph is
Pfaffian if and only if it is either non-bipartite or isomorphic to the cube, or the Heawood
graph, or the Cartesian product Ck ×K2 for even integer k > 6.

2 Face-width of Pfaffian braces on surfaces

Let G be a graph cellularly embedded on a surface Σ (each face is homeomorphic to an
open disk in the plane). For a face f of G, the boundary of f is often represented by a
closed walk of G, denoted by ∂f , also called a facial walk. An embedding Π is a strong
embedding if every facial walk is a cycle. The face-width fw(G,Π) of an embedding Π of G
on a surface Σ is the smallest number k such that there exist k faces whose union contains
a non-contractible curve of Σ. Undefined notations and concepts are referred to [15].

The following result presents an important property of a planar graph embedded on
a surface Σ with genus g(Σ) > 0.

Theorem 1 ([22, 25]). Let G be a planar 3-connected graph. Then every embedding of G
on a surface Σ with genus g(Σ) > 0 has face-width at most 2.

Kasteleyn [7] showed that every planar graph is Pfaffian. But the above result does not
hold for all Pfaffian graphs. For example, the Heawood graph, a Pfaffian brace (a Pfaffian
orientation is shown in Figure 1), admits an embedding on the torus with face-width 3
(see Lemma 2.3 and Lemma 4.7).

Figure 1: The Heawood graph with a Pfaffian orientation.
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Lemma 2 (Prop. 5.5.12 on Page 150 in [15]). Let G be a graph and Π be an embedding
of G on a surface Σ. Then the following conditions are equivalent:
(1) fw(G) > 3 and G is 3-connected;
(2) All facial walks of Π are cycles and any two of them are either disjoint or their
intersection is just a vertex or an edge.

Lemma 3. Every embedding of the Heawood graph on a surface Σ has face-width at most
3.

Proof. Let Π be an embedding of the Heawood graph G on a surface Σ. Suppose to the
contrary that fw(G,Π) = k > 4. Then there exist k faces f0, f1, f2, . . . , fk−1 such that
their union contains a non-contractible closed curve ℓ of Σ such that k is minimum. Since
G is 3-connected, every ∂fi is a cycle by Lemma 2. By the minimality of k and Lemma 2,
it follows that fi and fj share an edge if and only if |j − i| ≡ 1 (mod k). In other words,
|V (∂fi ∩ ∂fj)| > 2 if |i − j| ≡ 1 (mod k), and |V (∂fi ∩ ∂fj)| = 0 otherwise. Note that
|V (∂fi)| > 6 since G has the girth six. So

14 = |V (G)| > |V (
k−1
⋃

i=0

∂fi)| =
k−1
∑

i=0

V (∂fi)−
k−1
∑

i=0

|V (∂fi ∩ ∂fi+1)| > 6k − 2k = 4k > 16,

a contradiction. This completes the proof.

The following result shows that the above result holds for all Pfaffian braces.

Theorem 4. Let G be a Pfaffian brace. Then every embedding of G on a surface Σ with
g(Σ) > 0 has face-width at most 3.

In order to prove Theorem 4, we need the characterization of Pfaffian braces obtained
by Robertson, Thomas and Seymour [21], and independently by McCuaig [14]. Let G0

be a graph and C a central 4-cycle of G0; that means, G0−V (C) has a perfect matching.
Let G1, G2 and G3 be three subgraphs of G0 such that G1 ∪ G2 ∪ G3 = G0, and for
distinct i, j ∈ {1, 2, 3}, Gi ∩ Gj = C and V (Gi) − V (C) 6= ∅. A graph G is a tri-sum
of G1, G2 and G3 if it is obtained from G0 by deleting some edges (possibly none) of
C. For example, Figure 2 shows a cubic brace generated from three copies of the cube
by the tri-sum operation along the cycle C illustrated by dash lines (all edges of C are
deleted in the operation). By a result of McCuaig (Lemma 19 on page 36 in [14]), every
tri-sum of three braces is a new brace. The following is a variant of the statement of the
characterization of Pfaffian braces obtained in [14, 21].

Theorem 5 ([21, 14], Theorem 4.2 in [24]). A bipartite graph is a Pfaffian brace if and
only if it is isomorphic to the Heawood graph, or it can be obtained from planar braces by
repeated application of the tri-sum operation.

Let G be a graph, and G1 and G2 be two disjoint subgraphs of G. Denote the set of
edges joining vertices of G1 and vertices of G2 by E(G1, G2). For a vertex w of G, let
N(w) be the set of all neighbors of w in G. The following technical lemma will be used
to prove Theorem 4.
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Figure 2: A cubic brace on the Klein bottle generated from three copies of the cube by
the tri-sum operation (edges of the cycle C are illustrated by dash lines).

Lemma 6. Let G be a 3-connected graph and W be a vertex-cut of size 4. If G−W can be
decomposed into three disjoint graphs G1, G2 and G3 such that for distinct i, j ∈ {1, 2, 3}
and w ∈ W , E(Gi, Gj) = ∅ and N(w) ∩ V (Gi) 6= ∅, then every embedding of G on a
surface with a positive genus has face-width at most 3.

Proof. Let Π be an embedding of G on a surface Σ with g(Σ) > 0. Suppose on the
contrary that fw(G,Π) > 3.

Let W = {v1, v2, v3, v4} and E(W ) be the set of all edges with two end-vertices in
W . For any vi ∈ W , let vivi,0, . . . , vivi,ki be the edges incident with vi in clockwise
direction in some small neighborhood of vi homeomorphic to an open disc. Note that
N(vi) ∩ V (Gα) 6= ∅ for every α ∈ {1, 2, 3}. Let fi,α be a face containing vivi,αi

and
vivi,αi+1 such that vi,αi

∈ V (Gα) and vi,αi+1 /∈ V (Gα). For an edge vivi,k ∈ E(W ), let f
be the face containing vivi,k and vivi,k+1. By the definition of faces fi,α and the ordering
of edges incident with vi, f 6= fi,α for any α ∈ {1, 2, 3} because vi,k /∈ G − W . So the
intersection of two distinct faces fi,α and fi,β does not contain edges of E(W ) incident
with vi.

Claim 1. The intersection of two distinct faces fi,α and fi,β does not contain another

vertex from W different from vi.

Proof of Claim 1. Note that G is 3-connected and fw(G,Π) > 3. By Lemma 2, the
intersection of fi,α and fi,β is either vi or an edge vivi,k. Since fi,α ∩ fi,β does not contain
an edge from E(W ) incident with vi, it follows that vi,k /∈ W . So Claim 1 holds.

Claim 2. Every fi,α contains precisely two vertices of W .

Proof of Claim 2. First, we show that every fi,α contains at least two vertices of W . By
Lemma 2, each fi,α is bounded by a cycle. Note that vi,αi

∈ V (Gα), vi,αi+1 /∈ V (Gα). If
vi,αi+1 ∈ W , then fi,α contains two vertices from W . So suppose that vi,αi+1 /∈ W . Hence,
∂fi,α −W consists of at least two components: one contains vi,αi

and the other contains
vi,αi+1. These two components are joined by vertices from W because E(Gα, Gβ) = ∅ for
distinct α, β ∈ {1, 2, 3}. So fi,α contains at least two vertices from W .

Since N(vi) ∩ V (Gα) 6= ∅, there are at least three distinct faces fi,α (α ∈ {1, 2, 3})
incident with vi. If one of them contains three vertices from W , then there is a pair of
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vertices which are contained by two distinct faces fi,α and fi,β, contradicting Claim 1. So
Claim 2 follows.

By Claim 1 and Claim 2, we further have the following conclusion:

Any two vertices of W are contained by some face fi,α, and every face fi,α contains

precisely a pair vertices of W .

Without loss of generality, assume that f1,1 contains v1 and v2, and f1,2 contains v1 and
v4, and f1,3 contains v1 and v3 (relabeling Gα for α = 1, 2, 3 if necessary). Then, assume
that v2 and v4 are contained by f2,α, v2 and v3 are contained by f2,β with β 6= α, v3 and v4
are contained by f3,µ for some µ ∈ {1, 2, 3}. (For example, see Figure 3 (left). The shadow
parts illustrate the regions of Σ containing vertices and edges from only Gα−W for some
α ∈ {1, 2, 3}, or one edge from E(W ).) Then each of f1,1 ∪ f2,β ∪ f1,3, f1,1 ∪ f2,α ∪ f1,2,
f1,2 ∪ f3,µ ∪ f1,3 and f2,α ∪ f2,β ∪ f3,µ contains a closed curve which intersects G at three
vertices of W . Denote these closed curves by ℓ1, ℓ2, ℓ3 and ℓ4.

Figure 3: Illustration for the proof of Theorem 4.

Claim 3. At least one of the closed curves ℓi (i = 1, . . . , 4) is non-contractible.

Proof of Claim 3. If not, suppose that all ℓi (i = 1, . . . , 4) are contractible. Then each ℓi
separates Σ into two regions, and at least one of them is homeomorphic to an open disc,
denoted by Di.

First, suppose that v4 lies on D1. Let R1 ⊆ D1 be the region bounded by faces f1,1,
f1,2 and f2,α.

By the definition of f1,2, R1 contains a vertex from G2. Let H2 be the subgraph of G
(not including v1, v2 and v4) embedded in R1. By Claim 1, every face of the embedding
of the subgraph H2 together with v1, v2 and v4 inherited from the embdding Π of G in
the region R1 contains at most one vertex from v1, v2 and v4. So H2 ⊆ G2. Similarly, the
subgraph H3 (not including v1, v3 and v4) in the region R2 ⊆ D1 bounded by faces f1,2,
f1,3 and f3,µ is a subgraph of G3. Further, the subgraph H1 (not including v2, v3 and v4)
in the region R3 ⊆ D1 bounded by faces f2,α, f2,β and f3,µ is a subgraph of G1 (see Figure
3 (right)).
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Let G′ be the subgraph (including v1, v2 and v3) in Σ − D1. If V (G′) = {v1, v2, v3},
then G is embedded in an open disc of Σ. Hence fw(G,Π) = 0 because g(Σ) > 0.

So suppose that G′ contains at least one vertex w different from v1, v2 and v3. Let
H ′

α = G′ ∩ Gα. Then all vertices v1, v2 and v3 have a neighbor in H ′
α since G is 3-

connected. If two of H ′
1, H

′
2 and H ′

3 are not empty, then there exists a face f1,γ for some
γ ∈ {1, 2, 3} which contains a vertex v1,γi ∈ H ′

γ and a vertex v1,γi+1 /∈ H ′
γ . By Claim 1,

f1,γ contains two vertices from W . Then there are two distinct faces, one f1,γ and another
from f1,1, f1,2, f1,3 contains the same pair of vertices from W , a contradiction. So only
one of H ′

1, H
′
2 and H ′

3 is not empty. Without loss of generality, assume H ′
1 6= ∅ and hence

G′ −W ⊂ G1.
Then G2 = H2. Note that N(v3) ∩ V (G2) = ∅, contradicting that N(vi) ∩ V (Gα) 6= ∅

for any vi ∈ W and any α ∈ {1, 2, 3}. The contradiction implies that v4 does not lie on
D1.

By symmetry, the region Di (i ∈ {1, 2, 3, 4}) does not contain the vertex of W which is
not on ℓi. Then Σ must be the sphere since it is formed by pasting the four disc Di along
the four closed curves ℓi, contradicting g(Σ) > 0. This completes the proof of Claim 3.

Claim 3 implies that fw(G,Π) 6 3, which contradicts the assumption that fw(G,Π) >
3. The contradiction completes the proof.

A minimal vertex-cut W of a connected graph G is a tri-cut if G − W has at least
three components. For any vertex w of a tri-cut W and any component Gi of G − W ,
N(w) ∩ V (Gi) 6= ∅. As a direct corollary of Lemma 6, we have the following result.

Theorem 7. Let G be a 3-connected graph with a tri-cut of size 4. Then every embedding
of G on a surface with a positive genus has face-width at most 3.

Now we are ready to prove Theorem 4.

Proof of Theorem 4: Let G be a Pfaffian brace. If G is the Heawood graph or a planar
brace, the result follows from Lemma 3 and Theorem 1. Otherwise, by Theorem 5, G is
generated from planar Pfaffian braces by applying the tri-sum operations. Assume that G
is generated from Pfaffian braces G1, G2 and G3 by the tri-sum operation along a central
cycle C = v1v2v3v4v1. Since each Gi is 3-connected and bipartite, N(vj)∩(V (Gi)\V (C)) 6=
∅ for every vj ∈ V (C). Note that G itself is a brace and hence 3-connected. So G and
W = V (C) satisfy the conditions of Lemma 6. Hence every embedding of G on a surface
with a positive genus has face-width at most 3 by Lemma 6.

3 Pfaffian cubic braces

In order to characterize Pfaffian polyhex graphs, we need more structure properties of
Pfaffian cubic braces. The following result is a construction for Pfaffian cubic braces
which follows from Theorem 5.
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Theorem 8. A cubic bipartite graph is a Pfaffian brace if and only if it is isomorphic to
the Heawood graph, or it can be obtained from planar cubic braces by repeated application
of the tri-sum operation.

Proof. If G is a non-planar Pfaffian cubic brace different from the Heawood graph, then
by Theorem 5, G is generated from planar braces by tri-sum operations. We may assume
that G is generated from three Pfaffian braces G1, G2 and G3 along a 4-cycle C by the
tri-sum operation. Since each Gi is 3-connected and G is cubic, each vertex of C has
precisely one neighbor in each Gi − V (C). So every Gi is cubic. The other direction
follows directly from Theorem 5.

A set S of edges of a connected graphG is a cyclic edge-cut ifG−S has two components,
each of which contains a cycle. A connected graph G is cyclically k-edge-connected if every
cyclic edge-cut of G has at least k edges. The cyclic edge-connectivity of G is the maximum
integer k such that G is cyclically k-edge-connected, denoted by cλ(G).

Theorem 9 ([3, 4]). Let G be a cubic bipartite graph. Then G is a brace if and only if it
is cyclically 4-edge-connected.

Theorem 10. Let G be a Pfaffian cubic brace different from the Heawood graph. Then
cλ(G) = 4. Furthermore, for any 4-cycle C of G, E(C,G− V (C)) is a cyclic 4-edge-cut.

Proof. First we prove the following claim:

Claim: If G has a 4-cycle C, then E ′ := E(C,G− V (C)) is a cyclic 4-edge-cut.

Proof of Claim: It is obvious that |E ′| = 4. Note that, the only cubic bipartite graph
with 6 vertices is K3,3, which is not Pfaffian. So G has at least n > 8 vertices. Since G is
3-connected, G − V (C) is connected. It is easily seen that G − V (C) has n − 4 vertices
and 3n/2−8 edges. Note that 3n/2−8 > n−4 because n > 8. So G−V (C) has a cycle.
Hence E ′ is a cyclic 4-edge-cut and the claim holds.

If G is planar, by Euler’s formula, G must contain a 4-cycle since G is bipartite. The
claim implies that G contains a cyclic 4-edge cut. If G is non-planar, then G is generated
from Pfaffian cubic braces G1, G2, and G3 by the tri-sum along a 4-cycle C by Theorem 8.
Since G is not the Heawood graph, the claim implies that each E(C,Gi−V (C)) is a cyclic
4-edge-cut of Gi, which is also a cyclic 4-edge-cut of G since each Gi−V (C) (i ∈ {1, 2, 3})
contains a cycle. So cλ(G) 6 4. Hence the theorem follows from Theorem 9.

Let G be a 3-connected graph with a tri-cut W of size 4. Then W is called an ideal
tri-cut if W is an independent set of G and G−W has exactly three components G′

1, G
′
2

and G′
3 such that each G′

i has at least four vertices, and each E(W,G′
i) is a matching

covering all vertices of W .

Proposition 11. Let G be a Pfaffian cubic brace. If G is neither planar nor the Heawood
graph, then G has an ideal tri-cut W .
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Proof. By Theorem 8, G is generated from three Pfaffian cubic braces G1, G2 and G3 by
a tri-sum operation along a 4-cycle C. Let W := V (C). Then W is an independent set of
G. Since every Gi is 3-connected and Pfaffian, Gi − V (C) is connected and has at least
four vertices. Since each vertex of W has a neighbor in every Gi −W , it follows that W
is a minimal vertex-cut of G. It remains to show that each E(W,Gi −W ) is a matching
covering all vertices of W . This holds because E(W,Gi−W ) is a minimum cyclic edge-cut
of Gi by Theorem 10.

4 Construction of polyhex graphs

A polyhex graph is a cubic graph embedded on a surface such that every face is a hexagon,
a cycle of length 6. The embedding of a polyhex graph is a strong embedding. By Euler’s
formula, the surfaces can be only the torus and the Klein bottle [2].

Let G1 and G2 be two polyhex graphs isomorphic to each other. An isomorphism σ
from G1 to G2 is hexagon-preserving if h is a hexagon of G1 if and only if σ(h) is a hexagon
of G2. An isomorphism from a graph G to itself is called an automorphism. A graph G
is vertex-transitive if, for any two vertices v1, v2 ∈ V (G), there exists an automorphism σ
such that σ(v1) = v2. A polyhex graph G is hexagon-transitive if for any two hexagons h1

and h2, there exists a hexagon-preserving automorphism σ such that σ(h1) = h2.
Let R be a rectangle of a 2-dimensional Euclidean plane R

2 such that R = {(x, y) :
0 6 x 6 k, 0 6 y 6 q}, where k and q are positive integers. Let vi,j be a vertex
corresponding to the point (i, j) where i and j are non-negative integers. A rectangular
hexagon lattice L(k, q) is a graph on R consisting of all vertices vi,j in R and edges in
{vi,jvi+1,j |0 6 j 6 q, 0 6 i 6 k − 1} ∪ {vi,jvi,j+1|0 6 i 6 k, 0 6 j 6 q − 1 and i ≡ j
mod 2}. For example, L(6, 4) is shown in Figure 4.

Figure 4: A rectangular hexagon lattice L(6, 4).

The vertices vi,j of L(k, q) are colored in black if i + j ≡ 0 (mod 2) and white if
i + j ≡ 1 (mod 2)(see Figure 4). For even k, a polyhex tube L′(k, q) is obtained from
L(k, q) by identifying the vertex v0,j with the vertex vk,j for every j ∈ {0, 1, . . . , q}. So
both L(k, q) and L′(k, q) are bipartite graphs. The cycle v0,iv1,i · · · vk,i is called the i-th
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layer, denoted by Li. Let hi,j denote the hexagon with the center at (2i+αj, j+
1

2
) where

αj :=

{

0, if j ≡ 1 (mod 2);
1, if j ≡ 0 (mod 2).

Equivalently,

hi,j :=

{

v2i−1,jv2i,jv2i+1,jv2i+1,j+1v2i,j+1v2i−1,j+1v2i−1,j , if j ≡ 1 (mod 2);
v2i,jv2i+1,jv2i+2,jv2i+2,j+1v2i+1,j+1v2i,j+1v2i,j , if j ≡ 0 (mod 2).

Altschuler [1] showed that polyhex graphs on torus, denoted by T (k, q, t), can be
constructed in the following way: From L′(k, q) (k even) identify the vertices vi,0 and
vi+q+2t,q where 0 6 t 6 k/2− 1 and the first subscript is always modulo k; that is, vi,0 is
connected to vi+q+2t,q−1 by an edge for each odd i. For example, see Figure 5.

Figure 5: Representations for the polyhex graph T (6, 4, 0) on the torus.

Since a polyhex graph on the torus is a strong embedding, we have the following result.

Theorem 12. A polyhex graph on the torus is isomorphic to T (k, q, t) for k ≡ 0 (mod 2)
and (k, q, t) /∈ {(2, q, t), (4, 1, t), (k, 1, 0), (k, 1, k/2− 1)|k, q ∈ Z

+, 0 6 t 6 k/2− 1}.

Thomassen [26] classified polyhex graphs into seven types: two on the torus, five on
the Klein bottle. According to Thomassen’s constructions, Li et al. [10] reclassified the
polyhex graphs on the Klein bottle into the following two types:

• Bipartite polyhex Ke(k, q)(q > 2, k > 4 is even): From L′(k, q), identify vi,0 with
vk−i,q if q is even, and vi,0 with vk−i−1,q if q is odd.

• Non-bipartite polyhexKo(k, q) (q > 2 is even, and k > 3): From L(k, q) first identify
vi,0 with vi,q; then identify v0,j with vk,q−1−j if k is even, and v0,j with vk,q−j if k is
odd.

Theorem 13 ([10]). A polyhex graph on the Klein bottle is isomorphic to either Ke(k, q)
(q > 2, even k > 4) or Ko(k, q) (even q > 2, k > 3).
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Figure 6: Polyhex graphs Ke(6, 4) (left) and Ko(6, 4) (right) on the Klein bottle.

Polyhex graphs contain many interesting graphs. For example, T (14, 1, 2) is isomor-
phic to the Heawood graph, both T (8, 1, 1) and Ke(4, 2) are isomorphic to the cube, and
T (6, 1, 1) is isomorphic to K3,3.

Proposition 14 ([30]). There is a hexagon-preserving isomorphism between T (k, q, t) and
T (k, q, t′) where t′ ≡ (k − 2q − 2t)/2 (mod k/2).

Proposition 15 ([23]). Every polyhex graph on the torus is vertex-transitive and hexagon-
transitive.

Theorem 16 ([29]). Every bipartite polyhex graph is a brace.

By Theorems 9 and 16, we have the following result.

Corollary 17. Every bipartite polyhex graph is cyclically 4-edge-connected.

Lemma 18. Let G be a polyhex graph on the torus. Then fw(G) = 2 if and only if G is
isomorphic to T (k, q, t) where integers k, q, t satisfy (k, q, t) ∈ {(4, q, t)|q > 2} or (k, q, t) ∈
{(k, 2, t)|k > 6, t ∈ {k/2−2, k/2−1, 0}} or (k, q, t) ∈ {(k, 1, t)|k > 6, k/4−1 6 t 6 k/4}.

Proof. Let G be a polyhex graph on the torus. Then G is isomorphic to some T (k, q, t)
by Theorem 12. It follows that fw(G) = 2 if and only if G has two distinct hexagons h1

and h2 which intersect at two edges. By Proposition 15, without loss of generality, let h1

be the hexagon h0,0 and let h2 = hx,y with 0 6 y 6 q − 1. Since h1 and h2 intersect at
two edges, y = 0 or 1.

If y = 1, then q = 2. It follows that x = 1 or k − 1 since k > 4. Hence t ∈
{k/2−2, k/2−1, 0}. On the other hand, a polyhex T (k, 2, t) with t ∈ {k/2−2, k/2−1, 0}
does have face-width 2.

If y = 0, then either k = 4 or q = 1. If k = 4, then q > 2 by Theorem 12, and further
fw(T (4, q, t)) = 2. The lemma holds. So suppose q = 1. Then vi,0 = vi+1+2t,1 for each i. As
h1 and h2 intersect at two edges, {v0,0, v2,0}∩V (hx,0) 6= ∅ and {v2x,0, v2x+2,0}∩V (h0,0) 6= ∅.
Note that {v0,0, v2,0} ∩ V (hx,0) 6= ∅ implies

2x− 1 6 1 + 2t 6 2x+ 1, (1)
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and {v2x,0, v2x+2,0} ∩ V (h0,0) 6= ∅ implies

k − 1 6 2x+ 1 + 2t 6 k + 1. (2)

Combining inequalities (1) and (2), we have k/4 − 1 6 t 6 k/4. On the other hand, if
k/4 − 1 6 t 6 k/4 and k > 6, then h0,0 and h⌊k/4⌋,0 intersect at two edges. So T (k, 1, t)
with k/4− 1 6 t 6 k/4 and k > 6 has face-width 2.

By Lemmas 3 and 18, the Heawood graph has an embedding T (14, 1, 2) on the torus
with face-width 3.

Theorem 19. Let G be a polyhex graph on the Klein bottle. Then fw(G) = min{⌈k/2⌉, q}.

Proof. Let G be a polyhex graph on the Klein bottle. By Theorem 13, G is isomorphic
to either Ke(k, q) or Ko(k, q).

Let H be a set of hexgons of G such that
⋃

hx,y∈H

hx,y contains a non-contractible curve

ℓ and H is minimum. Then fw(G) = |H|.
First, assume that G is isomorphic to Ke(k, q) (k is even). Let Hi be the graph

consisting of all hexagons hx,y with y = i. If H ∩Hi 6= ∅ for all i ∈ Zq, then |H| > q. So
suppose that H∩Ht = ∅ for some t ∈ Zq. Let Et = {vi,tvi,t+1|i+ t ≡ 0 (mod 2), i ∈ Zk}.
All hexagons of Ke(k, q) − Et induce a tube. Let Rj,t be the graph consisting of all
hexagons hm,y with y ∈ Zq, where

m =

{

j if 0 6 y 6 t;
k/2− j if t+ 1 6 y 6 q − 1.

Denote Ej = {e|e = hm,y ∩hm,y+1 and y, y+1 ∈ Zq\{t}}∪{e1, e2} where e1 = hj,t−1∩hj,t

and e2 = hk/2−j,t ∩ hk/2−j,t+1. Note that Ej ⊂ E(Rj). Then the union of all hexagons of
Ke(k, q)− Et − Ej does not contain a non-contractible closed curve. So H ∩ Rj,t 6= ∅ for
any j ∈ Zk/2. Hence |H| > k/2. It follows that fw(G) = |H| > min{q, k/2}.

On the other hand, each Hi and R⌈k/4⌉,t of Ke(k, q) contains a non-contratible closed
curve. Note that Hi has k/2 hexagons and R⌈k/4⌉,t has q hexagons. It follows that
fw(G) 6 min{q, k/2}. Hence fw(G) = min{q, k/2}.

In the following, assume that G is isomorphic to Ko(k, q) (q is even). Let Ri be the
graph consisting of all hexagons hx,y with x = i and y ∈ Zq. If H ∩Ri 6= ∅ for all integer
i ∈ [0, ⌈k/2⌉], then |H| > ⌈k/2⌉. So suppose that H∩Rt = ∅ for some t ∈ Z⌈k/2⌉. Denote
Et = {v2t,jv2t+1,j |j ∈ Zq}. All hexagons of Ko(k, q) − Et induce a tube. Let Hj be the
graph consisting of all hexagons hx,m with x ∈ Z⌈k/2⌉\{t}, where

m =







j if 0 6 x 6 t;
q − 1− j if t + 1 6 x 6 k/2− 1 and k is even;
q − j if t + 1 6 x 6 ⌈k/2⌉ − 1 and k is odd;

Let Ej = {vi,mvi,m+1|i+m ≡ 0 (mod 2), i ∈ Zk} where m is defined as above. Then the
union of all hexagons of Ko(k, q) − Et − Ej does not contain a non-contractible closed
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curve. Note that the edges in Ej are contained by only hexagons from Hj . So H∩Hj 6= ∅
for any j ∈ Zq. Hence |H| > q. It follows that fw(G) = |H| > min{q, ⌈k/2⌉}.

On the other hand, both Hq/2 and Ri of Ko(k, q) contain a non-contractible closed
curve. Note that Hq/2 has ⌈k

2
⌉ hexagons, and R⌈k/2⌉−1 contains q hexagons. So fw(G) 6

min{⌈k
2
⌉, q}. This completes the proof.

Lemma 20. Let G be a polyhex graph on the Klein bottle. Then fw(G) = 2 if and only
if G is isomorphic to either Ke(k, q) with k = 4 or q = 2, or Ko(k, q) with 3 6 k 6 4 or
q = 2.

Proof. By Theorem 19, fw(G) = 2 if and only if min{⌈k
2
⌉, q} = 2. It follows that 3 6 k 6 4

or q = 2.
By Theorem 13, G is isomorphic to either Ke(k, q) with k = 4 or q = 2, or Ko(k, q)

with 3 6 k 6 4 or q = 2.

5 Pfaffian polyhex graphs

In this section, we characterize Pfaffian polyhex graphs.

5.1 Polyhex graphs on the torus

Let G be a polyhex graph on the torus. If G is planar, then it is Pfaffian. Now assume
that G is neither planar nor the Heawood graph. Proposition 11 implies that G must
contain an ideal tri-cut if it is Pfaffian.

Lemma 21. Let G be a polyhex graph on the torus. Then G does not contain an ideal
tri-cut.

Proof. Let G be a polyhex graph on the torus. By Theorem 12, G can be represented as
T (k, q, t) for some suitable triple of integers (k, q, t). Suppose on the contrary that G has
an ideal tri-cut W . Then |W | = 4 and G−W has exactly three components, denoted by
G1, G2 and G3, each of which has at least four vertices.

First suppose q > 2. If T (k, q, t) has a layer Li containing at least three vertices of W .
Then k > 6 as W is independent in G. Since q > 2, any other layer Lj (j 6= i) contains
at most one vertex in W . So all Lj − W with j ∈ Zq\{i} are contained in a common
component of G−W . Note that at least one vertex of every component of Li −W has a
neighbor in either Li+1 −W or Li−1 −W . Hence G −W is connected, a contradiction.
So every layer Li has at most two vertices in W . That implies that Li −W has at most
two paths as components. So G−W has at most two components, also a contradiction.

Now suppose q = 1. By Lemma 15, let W = {vi0,0, vi1,0, vi2,0, vi3,0} with 0 = i0 < i1 <
i2 < i3 6 2k − 2. Then L0 −W has four paths P0, P1, P2 and P3 such that viα,0 joins Pα

and Pα+1 with α, α + 1 ∈ Z4. Since G − W has three components, precisely two paths
from Pα’s (α ∈ Z4) belong to a common component of G −W . Note that every vertex
of W has exactly one neighbor in each component Gi. So Pα and Pα+1 can not belong
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to the same component of G − W . On the other hand, every component has at least 4
vertices. So every Pα has at least two vertices. We may assume that P1 and P3 belong to
the same component of G−W . Then both P0 and P2 are components of G−W .

Let vm,0 ∈ V (P2) be adjacent to v0,0 ∈ W . Then m = k − (1 + 2t) since vm,0 =
vm+1+2t,1 = v0,1. Note that vm+2,0 = vk+1−2t,0 is adjacent to v2,0 ∈ V (P1). Since P1 and
P2 belong to different components of G −W , vm+2,0 /∈ V (P2). Since each E(W,Gi) is a
matching and P1 and P3 belong to the same component of G−W , vm+2,0 6= vi2,0 and thus
vm+2,0 ∈ V (P3). Then vm+1,0 = vi2,0, and vm−2,0 ∈ V (P2) is adjacent to vk−2,0 ∈ V (P0),
which contradicts that P0 and P2 belong to different components of G−W .

By Proposition 11, Theorem 12 and Lemma 21, we immediately have the following
result.

Corollary 22. Let G be a polyhex graph on the torus. Then G is Pfaffian if and only if
it is planar or isomorphic to the Heawood graph T (14, 1, 2).

By Theorem 1, planar polyhex graphs embedded on the torus must have face-width
two. Using Kuratowski’s Theorem that a graph is planar if and only if it contains no K5

and K3,3 as minor, the following lemma characterizes planar polyhex graphs on the torus.

Lemma 23. A polyhex graph on the torus is planar if and only if it is isomorphic to
either T (4, 2, t), or T (8, 1, t) or T (k, 2, k/2− 1).

Proof. We can see that both T (4, 2, t) and T (8, 1, t) are isomorphic to the cube Q3 and
hence are planar. For T (k, 2, k/2 − 1), it is isomorphic to Ck × K2 (a plane embedding
shown in Figure 7).

Figure 7: A plane embedding of T (k, 2, k/2− 1).

Next we will show that the other polyhex graphs on the torus are not planar. By
Theorem 1 and Lemma 18, it suffices to show that T (4, q, t) (q > 3), and T (k, 2, t) (k > 6,
t = 0 or k/2− 2), and T (k, 1, t) (k > 6, k 6= 8 and k/4− 1 6 t 6 k/4) are all non-planar.

Note that T (4, q, t) (q > 3) is non-planar by Kuratowski’s Theorem since it contains a
subdivision of K3,3 as a subgraph (see the subgraphs induced by thick lines in Figure 8).

Figure 8: K3,3-subdivisions in T (4, q, t) with q > 3.

the electronic journal of combinatorics 21(4) (2014), #P4.37 14



By Proposition 14, T (k, 2, 0) is isomorphic to T (k, 2, k/2−2). Since T (k, 2, 0) (k > 3)
contains a K3,3-minor (see Figure 9), both T (k, 2, 0) and T (k, 2, k/2− 2) are non-planar.

Figure 9: A K3,3-minor in T (k, 2, 0) (k > 6).

Now consider T (k, 1, t) (k > 6, k 6= 8 and k/4 − 1 6 t 6 k/4). Since T (6, 1, 1) is
isomorphic toK3,3, it is thus non-planar. For T (k, 1, t) with k > 12 and k/4−1 6 t 6 k/4,
it contains a subdivision of K3,3 as a subgraph induced by edges v0,0vk−1−2t,0, v2,0vk+1−2t,
vk−1,0vv−3−2t,0 and all edges of L0 (see Figure 10 (left)). If k = 10, t = 2. So T (10, 1, 2)
contains a subdivision of K3,3 as shown in Figure 10 (right).

Figure 10: K3,3-subdivisions in T (k, 1, t) (k > 12 and k/4− 1 6 t 6 k/4 (left)) and
T (10, 1, 2) (right).

By Corollary 22 and Lemma 23, we have the following result which characterizes
Pfaffian polyhex graphs on the torus.

Theorem 24. Let G be a polyhex graph on the torus. Then G has a Pfaffian orientation
if and only if G is isomorphic to either the Heawood graph,or the cube Q3, or Ck ×K2 for
even k > 4.

5.2 Polyhex graphs on the Klein bottle

First, we consider bipartite polyhex graphs on the Klein bottle.

Lemma 25. Let G be a bipartite polyhex graph on the Klein bottle. Then G does not
contain an ideal tri-cut.
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Proof. By Theorem 13, we have that G is isomorphic toKe(k, q) with q > 2. An analogous
argument as the proof of Theorem 21 in case q > 2 shows that the lemma is true.

It can be seen that the Heawood graph can not be a polyhex graph on the Klein bottle.
So, by Lemma 25 and Proposition 11, a Pfaffian bipartite polyhex graph on the Klein
bottle must be planar.

Lemma 26. A bipartite polyhex graph G on the Klein bottle is planar if and only if it is
Ke(4, 2).

Proof. Let G be a planar bipartite polyhex graph on the Klein bottle. By Theorem 1 and
Lemma 20, we may assume that G is isomorphic to Ke(4, q) (q > 2) or Ke(k, 2) (k > 4).

Since Ke(k, 2) (k > 6) contains a subdivision of K3,3 (see Figure 11), it is non-planar.
Note that Ke(4, q) is isomorphic to T (4, q, 1). Since T (4, q, 1) with q > 3 contains a
subdivision of K3,3, it is non-planar. The polyhex graph Ke(4, 2) is isomorphic to the
cube and hence planar. Hence G is Ke(4, 2).

Figure 11: A K3,3-subdivision in Ke(k, 2) and Ke(4, 2) is isomorphic to Q3.

By Proposition 11, Theorem 8 and Lemmas 25 and 26, we have the following charac-
terization of Pfaffian bipartite polyhex graphs on the Klein bottle.

Theorem 27. Let G be a bipartite polyhex graphs on the Klein bottle. Then G is Pfaffian
if and only if it is isomorphic to the cube.

In the following, let G be a non-bipartite polyhex graphs on the Klein bottle. A cycle
C of G is 1-sided if its tubular neighborhood is homeomorphic to a Möbius strip, and
2-sided, otherwise. An embedding of a graph G in the Klein bottle is cross-cap-odd if
every non-separating cycle C of G has odd size if and only if it is 1-sided.

Lemma 28 ([17]). Every graph that admits a cross-cap-odd embedding in the Klein bottle
is Pfaffian.

Lemma 29. The embedding of a non-bipartite polyhex graph Ko(k, q) is a cross-cap-odd
embedding.

Proof. For Ko(k, q), let

E0 :=

{

{v0,ivk−1,q−1−i|i ∈ Zk}, if k ≡ 0 (mod 2);
{v0,ivk−1,q−2−i|i ∈ Zk}, otherwise.
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Figure 12: The tube T4,6 obtained from Ko(4, 6) by deleting edges v0,iv3,5−i for i ∈ Z6.

The subgraph obtained from Ko(k, q) by deleting all edges in E0, together with its hexag-
onal faces, is a tube, denoted by Tk,q. Conversely, Ko(k, q) can be generated from the
tube Tk,q by adding edges in E0.

Note that Tk,q is a bipartite graph since a proper 2-coloring of L(k, q) is also a proper
2-coloring of Tk,q. Any edge in E0 joins two vertices with the same color. Now for any
cycle C of Ko(k, q), if C is also a cycle of Tk,q, then C is 2-sided and has even length. If C
is not a cycle of Tk,q, then E(C) ∩ E0 6= ∅. Let δ := |E(C) ∩ E0|. Contract every edge in
E0 ∩E(C) in C to a single vertex, and let C ′ be the new cycle. Then C ′ has even length
since the vertices alternate in color along C ′. Hence |E(C)| ≡ δ (mod 2).

Note that the tubular neighborhood of C is homeomorphic to a Möbius strip if and only
if δ = |E(C)∩E0| ≡ 1 (mod 2). So C is 1-sided if and only if |E(C)| ≡ δ = |E(C)∩E0| ≡ 1
(mod 2). It follows that Ko(k, q) is a cross-cap-odd embedding.

By Lemmas 28 and 29, the following result follows immediately.

Theorem 30. Every non-bipartite polyhex graph on the Klein bottle is Pfaffian.

In [10], it has been shown that Ko(k, q) is 2-extendable if and only if k > 4 and
q > 5. By a result of Lovász and Plummer (Theorem 5.5.23 on Page 206 in [13]) that
a 2-extendable graph is either bicritical or elementary bipartitie, Ko(k, q) is bicritical
and hence a brick. By Theorem 19, the face-width fw(Ko(k, q)) = min{⌈k

2
⌉, q} → ∞ as

min{k, q} → ∞. Hence we have the following remark.

Remark 1. Theorem 4 shows that a Pfaffian brace embedded on a surface Σ with g(Σ) > 0
has a small face-width. But the face-width of a Pfaffian brick on sufaces with a positive
genus could be arbitrarily large.

Remark 2. In [18], Norine and Thomas conjectured that every Pfaffian cubic graph is 3-
edge colorable. As shown in [28], every polyhex graph on the Klein bottle is Hamiltonian
and hence 3-edge colorable. By Theorem 30, every Pfaffian polyhex graph is 3-edge
colorable. Hence the conjecture of Norine and Thomas is true for Pfaffian polyhex graphs.
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