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Abstract

Let Π be a polar space of type Dn. Denote by Gδ(Π), δ ∈ {+,−} the associated
half-spin Grassmannians and write Γδ(Π) for the corresponding half-spin Grassmann
graphs. In the case when n > 4 is even, the apartments of Gδ(Π) will be character-
ized as the images of isometric embeddings of the half-cube graph 1

2Hn in Γδ(Π).
As an application, we describe all isometric embeddings of Γδ(Π) in the half-spin
Grassmann graphs associated to a polar space of type Dn′ under the assumption
that n > 6 is even.

Keywords: half-cube graph; half-spin Grassmann graph; isometric embedding.

1 Introduction

In the present paper we continue to discuss the problem of metric characterization of
apartments in building Grassmannians [11, 12]. This problem is connected to the results
obtained in [3, 4, 8, 9, 13].

By [17], a building is a simplicial complex ∆ containing a family of subcomplexes
called apartments and characterized by some properties. All apartments are isomorphic
to a certain Coxeter complex, i.e. the simplicial complex associated to a Coxeter system,
which defines the type of the building. We suppose that our building is spherical, i.e.
the associated Coxeter system is finite. Maximal simplices of ∆ are said to be chambers.
They have the same finite cardinality n called the rank of ∆. The vertex set of ∆ can be
labeled by the nodes of the diagram corresponding to the associated Coxeter system (such
labeling is unique up to a permutation on the set of nodes). Every set consisting of all
vertices labeled by the same node is said to be a Grassmannian (more general objects are
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investigated in [14]). The intersection of every chamber and every Grassmannian is a single
vertex. Thus the vertex set of ∆ is decomposed in precisely n distinct Grassmannians. The
intersections of apartments with one of the building Grassmannians are called apartments
in this Grassmannian.

Let G be one of the building Grassmannians. We say that a, b ∈ G are adjacent if
there is a simplex P such that P ∪{a} and P ∪{b} are chambers. Consider the associated
Grassmann graph Γ, i.e. the graph whose vertex set is G and whose edges are pairs of
adjacent vertices. Suppose that A is an apartment of G and denote by ΓA the restriction of
the graph Γ to A. We want to distinguish all cases such that the image of every isometric
embedding of ΓA in Γ is an apartment of G. Note that in some cases this does not hold
[2, 11].

By [17], there are the following seven types of irreducible thick spherical buildings of
rank > 3: three classical types An,Bn = Cn,Dn and four exceptional types F4,Ei, i =
6, 7, 8.

Every building of type An−1 is the flag complex of a certain n-dimensional vector
space V (over a division ring). The associated Grassmannians are Gk(V ), where k ∈
{1, . . . , n− 1}. Each Gk(V ) consists of all k-dimensional subspaces of V and two elements
of Gk(V ) are adjacent if their intersection is (k − 1)-dimensional. The corresponding
Grassmann graph is denoted by Γk(V ). The case when k = 1, n − 1 is trivial — any
two distinct vertices of Γk(V ) are adjacent. Every apartment of Gk(V ) is defined by a
certain base of V : it consists of all k-dimensional subspaces spanned by subsets of this
base. All apartments of Gk(V ) are the images of isometric embeddings of the Johnson
graph J(n, k) in Γk(V ). However, the image of every isometric embedding of J(n, k) in
Γk(V ) is an apartment if and only if n = 2k [11].

All buildings of types Cn and Dn are defined by polar spaces. Every building of type Cn
is the flag complex formed by singular subspaces of a rank n polar space. The associated
Grassmannians are the polar Grassmannians consisting of singular subspaces of the same
dimension. The polar Grassmannian whose elements are maximal singular subspaces is
called the dual polar space and the associated Grassmann graph is known as the dual
polar graph. By [12], the apartments in the dual polar space can be characterized as the
images of isometric embeddings of the n-dimensional hypercube graph Hn in the dual
polar graph.

Every building of type Dn can be obtained from a polar space of type Dn. This
construction is known as the oriflamme complex. The Grassmannians of this building are
some of the polar Grassmannians and so-called half-spin Grassmannians. The Grassmann
graphs associated to the half-spin Grassmannians are called the half-spin Grassmann
graphs. In this paper we show that the apartments of the half-spin Grassmannians can
be characterized as the images of isometric embeddings of the half-cube graph 1

2
Hn in the

half-spin Grassmann graphs if n > 4 is even (Theorem 2). In the case when n is odd,
we conjecture the existence of isometric embeddings of 1

2
Hn in the half-spin Grassmann

graphs whose images are not apartments (Section 6). As an application of the main result,
we describe all isometric embeddings of the half-spin Grassmann graphs of a polar space
of type Dn, where n > 6 is even, in the half-spin Grassmann graphs associated to a polar

the electronic journal of combinatorics 21(4) (2014), #P4.4 2



space of type Dn′ (Theorem 4).
Note that in [3] apartments in Grassmannians of finite-dimensional vector spaces, dual

polar spaces and half-spin Grassmannians were characterized in terms of independent
subsets in the associated partial linear spaces. Some more general results can be found
in [8, 9]. See [4] for a survey.

2 Basic definitions and constructions

2.1 Graphs

The distance between two vertices in a connected graph is the smallest number i such that
there is a path of length i (a path consisting of i edges) connecting these vertices. A path
connecting two vertices is said to be a geodesic if the number of edges in this path is equal
to the distance between the vertices. The maximum of all distances between vertices in
a graph is called the diameter of the graph. In the case when the diameter is finite, two
vertices are said to be opposite if the distance between them is equal to the diameter.

A subset in the vertex set of a graph is called a clique if any two distinct elements of
this subset are adjacent vertices. Maximal cliques exist and every clique is contained in a
certain maximal clique. For finite graph this is trivial and we use Zorn lemma for infinite
graphs.

An injective mapping of the vertex set of a graph Γ to the vertex set of a graph Γ′ is an
embedding of Γ in Γ′ if it transfers adjacent vertices to adjacent vertices and non-adjacent
vertices to non-adjacent vertices. Every surjective embedding is an isomorphism between
the graphs. An embedding is said to be isometric if it preserves the distance between
vertices.

2.2 Hypercube and half-cube graphs

The vertex set of the n-dimensional hypercube graph Hn is formed by all sequences
(a1, . . . , an), where each ai is equal to 0 or 1. For any two such sequences a = (a1, . . . , an)
and b = (b1, . . . , bn) we define the distance

d(a, b) := |a1 − b1|+ · · ·+ |an − bn|.

The sequences a and b are adjacent vertices of Hn if d(a, b) = 1. The graph Hn is
connected, d is the distance on Hn and the diameter of Hn is equal to n.

Lemma 1. For every vertex of Hn there is unique vertex of Hn opposite to this vertex. If v
and w are opposite vertices of Hn then every vertex of Hn belongs to a geodesic connecting
v and w.

Proof. Easy verification.
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Remark 1. Consider the (2n)-element set J = {±1, . . . ,±n}. A subset I ⊂ J is said
to be singular if for every i ∈ I we have −i 6∈ I. Every maximal singular subset consists
of n elements. The hypercube graph Hn can be defined as the graph whose vertex set is
formed by all maximal singular subsets. Two such subsets are adjacent vertices of Hn if
their intersection consists of n− 1 elements.

The vertex set of Hn can be uniquely decomposed in the sum of two disjoint subsets
A+ and A− such that the distance between any two elements of Aδ, δ ∈ {+,−} is even
and the distance between every element of A+ and every element of A− is odd. Consider
the graph Hδ, δ ∈ {+,−} whose vertex set is Aδ and two vertices of Hδ are adjacent if
the distance between them in Hn is equal to 2. The graphs H+ and H− are isomorphic.
Each of these graphs is called the n-dimensional half-cube graph and denoted by 1

2
Hn.

The graph 1
2
Hn is connected. If v and u are vertices of 1

2
Hn then the distance between

them is equal to d(v,u)
2

. The diameter of 1
2
Hn is equal to n

2
or n−1

2
if n is even or odd,

respectively.
There is the following analogue of Lemma 1.

Lemma 2. Suppose that n is even. For every vertex of 1
2
Hn there is a unique vertex of

1
2
Hn opposite to this vertex. If v and w are opposite vertices of 1

2
Hn then every vertex of

1
2
Hn belongs to a geodesic connecting v and w.

Proof. Easy verification.

If n is odd then the above statement fails and for every vertex of 1
2
Hn there are precisely

n vertices of 1
2
Hn opposite to this vertex.

2.3 Partial linear spaces

Consider a non-empty set P whose elements are called points and a family L of proper
subsets of P called lines. We say that two or more points are collinear if there is a line
containing all of them. Suppose that the pair Π = (P,L) is a partial linear space, i.e. the
following axioms hold:

• every line contains at least two points and every point belongs to a line,

• for any distinct collinear points p, q ∈ P there is precisely one line pq containing
them.

A subset S ⊂ P is a subspace of Π if for any distinct collinear points p, q ∈ S the line pq is
contained in S. A subspace is said to be singular if any two distinct points of the subspace
are collinear (by the definition, the empty set and a single point are singular subspaces).
Using Zorn lemma, we establish the existence of maximal singular subspaces and the fact
that every singular subspace is contained in a certain maximal singular subspace.

For every subset X ⊂ P the minimal subspace containing X, i.e. the intersection of
all subspaces containing X, is called spanned by X and denoted by 〈X〉. We say that X
is independent if the subspace 〈X〉 cannot be spanned by a proper subset of X.
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Let S be a subspace of Π (possible S = P ). An independent subset X ⊂ S is a base of
S if 〈X〉 = S. The dimension of S is the smallest cardinality α such that S has a base of
cardinality α+ 1. The dimension of the empty set and a single point is equal to −1 and 0
(respectively), lines are 1-dimensional subspaces. Every 2-dimensional singular subspace
will be called a plane.

Two partial linear spaces Π = (P,L) and Π′ = (P ′,L′) are isomorphic if there is a
bijection f : P → P ′ satisfying f(L) = L′. Every such bijection is called a collineation of
Π to Π′.

2.4 Polar spaces

By [1, 10, 15, 16], a polar space is a partial linear space Π = (P,L) satisfying the following
axioms:

• every line contains at least three points,

• there is no point collinear to all points,

• if p ∈ P and L ∈ L then p is collinear to one or all points of the line L,

• any sequence of distinct mutually incident singular subspaces is finite.

If our polar space contains a singular subspace whose dimension is not less than 2 then
all maximal singular subspaces of Π are projective spaces of the same dimension n > 2
and the number n+ 1 is called the rank of Π.

The collinearity relation of Π will be denoted by ⊥. For points p, q ∈ P we write p ⊥ q
if p is collinear to q and p 6⊥ q otherwise. Moreover, if X, Y ⊂ P then X ⊥ Y means
that every point of X is collinear to all points of Y . If X ⊥ X then the subspace 〈X〉 is
singular.

For every polar space of rank n one of the following possibilities is realized:

• type Cn — every (n−2)-dimensional singular subspace is contained in at least three
maximal singular subspaces,

• type Dn — every (n−2)-dimensional singular subspace is contained in precisely two
maximal singular subspaces.

All polar spaces of rank > 3 were described by J. Tits [17]. We will focus our attention
on polar spaces of type Dn, n > 4.

Example 1. Let V be a (2n)-dimensional vector space over a field. Suppose that the
characteristic of this field is not equal to 2 and consider a non-degenerate symmetric
bilinear form on V such that maximal totally isotropic subspaces are n-dimensional. The
associated polar space whose points are 1-dimensional isotropic subspaces and whose lines
are defined by 2-dimensional totally isotropic subspaces (the line corresponding to a 2-
dimensional totally isotropic subspace S consists of all 1-dimensional subspaces of S) is
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of type Dn. In the case when the characteristic of the field is equal to 2, we consider a
non-defect quadratic form on V such that maximal singular subspaces are n-dimensional.
The associated polar space (the points are 1-dimensional singular subspaces and the lines
are defined by 2-dimensional singular subspaces) is also of type Dn.

It follows from Tits’s description of polar spaces that every polar space of type Dn,
n > 4 is isomorphic to one of the polar spaces presented in Example 1.

2.5 Polar Grassmannians

Let Π = (P,L) be a polar space of rank n. For every k ∈ {0, 1, . . . , n− 1} we denote by
Gk(Π) the polar Grassmannian consisting of all k-dimensional singular subspaces of Π; in
particular, Gn−1(Π) is formed by maximal singular subspaces.

The dual polar graph Γn−1(Π) is the graph whose vertex set is Gn−1(Π) and two distinct
elements of Gn−1(Π) are adjacent vertices of Γn−1(Π) if their intersection is an (n − 2)-
dimensional singular subspace. The graph Γn−1(Π) is connected and the distance d(S, U)
between S, U ∈ Gn−1(Π) is equal to

n− 1− dim(S ∩ U).

The diameter of Γn−1(Π) is equal to n and two vertices of Γn−1(Π) are opposite if and
only if they are disjoint singular subspaces.

Let S and U be singular subspaces of Π such that S ⊂ U . If

dimS < k < dimU

then we write [S, U ]k for the set of all X ∈ Gk(Π) satisfying S ⊂ X ⊂ U . In the case
when S = ∅, this set will be denoted by 〈U ]k.

LetM be anm-dimensional singular subspace of Π. For every natural k > m we denote
by [M〉k the set of all elements of Gk(Π) containing M . Now suppose that m < n−2. For
every N ∈ Gm+2(Π) containing M the set [M,N ]m+1 is called a line of [M〉m+1. The set
[M〉m+1 together with the family of all such lines is a polar space of rank n−m− 1 [10,
Lemma 4.4]. This polar space will be denoted by ΠM . Every maximal singular subspace
of ΠM is of type [M,U ]m+1, where U is a maximal singular subspace of Π containing
M . Thus [M〉n−1 can be naturally identified with Gn−m−2(ΠM) and the dual polar graph
Γn−m−2(ΠM) is the restriction of the graph Γn−1(Π) to [M〉n−1. In the case when Π is a
polar space of type Dn, the polar space ΠM is of type Dn−m−1.

2.6 Half-spin Grassmannians

Let Π = (P,L) be a polar space of type Dn. Then Gn−1(Π) can be uniquely decomposed
in the sum of two disjoint subsets, we denote them by G+(Π) and G−(Π), such that the
distance between any two elements of Gδ(Π), δ ∈ {+,−} in the dual polar graph Γn−1(Π)
is even and the same distance between any S ∈ Gδ(Π) and U ∈ G−δ(Π) is odd (we write
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−δ for the complement of δ in the set {+,−}). These subsets are called the half-spin
Grassmannians of Π.

The half-spin Grassmann graph Γδ(Π), δ ∈ {+,−} is the graph whose vertex set is
Gδ(Π) and two elements of Gδ(Π) are adjacent vertices of Γδ(Π) if their intersection is
an (n − 3)-dimensional singular subspace, i.e. the distance between the corresponding
vertices of Γn−1(Π) is equal to 2.

This graph is connected and the distance dδ(S, U) between S, U ∈ Gδ(Π) in Γδ(Π) is

equal to d(S,U)
2

. If n is even then the diameter of Γδ(Π) is equal to n
2

and two vertices are
opposite if and only if they are disjoint singular subspaces. In the case when n is odd,
the diameter is equal to n−1

2
and two vertices are opposite if and only if their intersection

is a single point.

Remark 2. If a polar space is defined by a non-degenerate symmetric bilinear form
Ω (see Example 1) then their maximal singular subspaces can be identified with the
maximal totally isotropic subspaces of Ω and the half-spin Grassmannians are the orbits
of the action of the orthogonal group O+(Ω) on the set of all maximal totally isotropic
subspaces. Every element of O(Ω) \ O+(Ω) transfers one half-spin Grassmannian to the
other and it induces an isomorphism between the half-spin Grassmann graphs. The same
holds for the polar spaces defined by quadratic forms.

The latter remark shows that the graphs Γ+(Π) and Γ−(Π) are isomorphic. For n = 2, 3
any two distinct vertices of Γδ(Π) are adjacent and we will always suppose that n > 4.

Let M be an m-dimensional singular subspace of Π and m < n− 2. Denote by [M〉δ
the set of all elements of Gδ(Π) containing M . In the case when m = n−3, this set is called
a line of Gδ(Π). Any two distinct elements of such a line are adjacent vertices of Γδ(Π).
If m < n − 3 then ΠM is a polar space of type Dn−m−1 whose half-spin Grassmannian
Gδ(ΠM) can be naturally identified with [M〉δ and the half-spin Grassmann graph Γδ(ΠM)
is the restriction of the graph Γδ(Π) to [M〉δ.

3 Main result

Let Π = (P,L) be a polar space of rank n. A set F consisting of 2n distinct points
p1, . . . , p2n ∈ P is called a frame of Π if for every i ∈ {1 . . . , 2n} there exists unique
σ(i) ∈ {1 . . . , 2n} such that pi 6⊥ pσ(i). This is an independent subset and any k distinct
mutually collinear points of F span a (k − 1)-dimensional singular subspace. Denote by
A the set consisting of all maximal singular subspaces spanned by subsets of F , i.e. all
subspaces of type

〈pi1 , . . . , pin〉

such that
{i1, . . . , in} ∩ {σ(i1), . . . , σ(in)} = ∅.

This set is the apartment of Gn−1(Π) associated to the frame F . It follows from Remark 1
that A is the image of an isometric embedding of the n-dimensional hypercube graph Hn
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in the dual polar graph Γn−1(Π). If M is an (n −m − 1)-dimensional singular subspace
of Π then ΠM is a polar space of rank m and every apartment of Gm−1(ΠM) = [M〉n−1 is
the image of an isometric embedding of Hm in Γn−1(Π).

Theorem 1 ([12]). The image of every isometric embedding of the m-dimensional hyper-
cube graph Hm, m 6 n in the dual polar graph Γn−1(Π) is an apartment of Gm−1(ΠM),
where M is an (n−m− 1)-dimensional singular subspace of Π. In particular, the image
of every isometric embedding of Hn in Γn−1(Π) is an apartment of Gn−1(Π).

Now suppose that Π is a polar space of type Dn and δ ∈ {+,−}. The intersection

Aδ := A ∩ Gδ(Π)

is the apartment of the half-spin Grassmannian Gδ(Π) associated to the frame F . This is
the image of an isometric embedding of the half-cube graph 1

2
Hn in the half-spin Grass-

mann graph Γδ(Π) (this easily follows from the fact that A is the image of an isometric
embedding of Hn in Γn−1(Π)). If M is an (n −m − 1)-dimensional singular subspace of
Π then ΠM is a polar space of type Dm and every apartment of Gδ(ΠM) = [M〉δ is the
image of an isometric embedding of 1

2
Hm in Γδ(Π).

Example 2. Suppose that n = 4. Then Gδ(Π) together with the family of all lines is a
polar space of type D4 [10, Proposition 4.23]. This polar space will be denoted by Πδ.
Two distinct points of Πδ are collinear if and only if they are adjacent vertices of Γδ(Π).
The graph 1

2
H4 consists of 8 vertices and for every vertex there is precisely one vertex

non-adjacent to it. This means that the frames of Πδ can be characterized as the images
of embeddings of 1

2
H4 in Γδ(Π) (every such embedding is isometric, since both graphs are

of diameter 2). By [10, Corollary 4.4] (see also [3]), the family of all apartments of Gδ(Π)
coincides with the family of all frames of Πδ. So, the image of every embedding of 1

2
H4

in Γδ(Π) is an apartment of Gδ(Π).

The main result of the present paper is the following.

Theorem 2. Suppose that Π is a polar space of type Dn. If m is an even integer satisfying
4 6 m 6 n then the image of every isometric embedding of the m-dimensional half-cube
graph 1

2
Hm in the half-spin Grassmann graph Γδ(Π), δ ∈ {+,−} is an apartment of

Gδ(ΠM), where M is an (n−m− 1)-dimensional singular subspace of Π. In particular, if
n is even then the image of every isometric embedding of 1

2
Hn in Γδ(Π) is an apartment

of Gδ(Π).

In Section 7, we apply Theorem 2 to isometric embeddings of half-spin Grassmann
graphs.

4 Cliques

4.1 Maximal cliques of half-spin Grassmannian graphs

Let Π = (P,L) be a polar space of type Dn and δ ∈ {+,−}. By [10, Subsection 4.5.2],
there are precisely the following two types of maximal cliques of Γδ(Π):
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• The star [M〉δ, M ∈ Gn−4(Π) (if two distinct elements of Gδ(Π) contain M then
their intersection is (n − 3)-dimensional and they are adjacent vertices of Γδ(Π)).
The star [M〉δ together with all lines of Gδ(Π) contained in [M〉δ is a 3-dimensional
projective space.

• The special subspace [U ]δ, U ∈ G−δ(Π) formed by all elements of Gδ(Π) intersecting
U in (n− 2)-dimensional singular subspaces, i.e. all vertices of Γn−1(Π) adjacent to
U . The special subspace [U ]δ together with all lines of Gδ(Π) contained in [U ]δ is an
(n− 1)-dimensional projective space.

Recall the following facts concerning the intersection of two distinct maximal cliques:

• The intersection of two distinct stars [M〉δ and [M ′〉δ is empty or a single vertex or
a line. The second possibility is not realized if n = 4. The intersection is a line if
and only if M and M ′ span an (n− 3)-dimensional singular subspace.

• The intersection of two distinct special subspaces is empty or a line. The second
possibility is realized if and only if the associated elements of G−δ(Π) are adjacent
vertices of Γ−δ(Π).

• The dimension of the intersection of a star [M〉δ and a special subspace [U ]δ is not
greater than 2. This intersection is a plane if and only if M is contained in U .

Therefore, the dimension of the intersection of two distinct maximal cliques of Γδ(Π) is
not greater than 2. If this intersection is a plane then one of the cliques is a star and the
other is a special subspace.

Lemma 3. For any distinct maximal cliques C and C ′ in Γδ(Π) there is a sequence of
maximal cliques

C = C0, C1, . . . , Ci = C ′

such that Cj−1 ∩ Cj is a plane for every j ∈ {1, . . . , i}. The cliques C and C ′ are of the
same type (both are stars or both are special subspaces) if and only if i is even.

Proof. Consider the elements of Gn−4(Π)∪G−δ(Π) associated to C and C ′. There is a frame
F such that these singular subspaces are spanned by subsets of F (this follows from one
of the basic building properties [17]). We construct the required sequence of maximal
cliques such that the corresponding elements of Gn−4(Π)∪G−δ(Π) are spanned by subsets
of the frame F .

4.2 Maximal cliques of half-cube graphs

As in the previous subsection, we suppose that Π = (P,L) is a polar space of type Dn.
Let δ ∈ {+,−} and let A be the apartment of Gδ(Π) defined by a frame F .

The restriction of Γδ(Π) to A is isomorphic to the half-cube graph 1
2
Hn. Every clique

of this restriction is a clique in Γδ(Π). Therefore, this graph has precisely the following
two types of maximal cliques:
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• The star A ∩ [S〉δ, where S ∈ Gn−4(Π) is spanned by a subset of F . This is a base
of the projective space [S〉δ, i.e. it consists of 4 vertices.

• The special subset A∩ [U ]δ, where U ∈ G−δ(Π) is spanned by a subset of F . This is
a base of the projective space [U ]δ. It consists of n elements of A adjacent to U in
Γn−1(Π).

The intersection of two distinct stars contains at most two vertices. This intersection is
maximal if and only if the associated elements of Gn−4(Π) span an element of Gn−3(Π).
Similarly, the intersection of two distinct special subsets contains at most two vertices
and this intersection is maximal only in the case when the associated elements of G−δ(Π)
are adjacent vertices of Γ−δ(Π). The intersection of a star and a special subset contains
at most three vertices. This intersection is maximal if and only if the associated elements
of Gn−4(Π) and G−δ(Π) are incident. Therefore, the intersection of two distinct maximal
cliques contains precisely three vertices if and only if one of these maximal cliques is a
star and the other is a special subset. There is the following analogue of Lemma 3.

Lemma 4. For any distinct maximal cliques C and C ′ there is a sequence of maximal
cliques

C = C0, C1, . . . , Ci = C ′

such that |Cj−1 ∩ Cj| = 3 for every j ∈ {1, . . . , i}. The cliques C and C ′ are of the same
type if and only if i is even.

Let A′ be another apartment of Gδ(Π). Suppose that h is an isomorphism between the
restrictions of Γδ(Π) to A and A′. A star and a special subset are of the same cardinality
only in the case when n = 4. This means that h sends stars to stars and special subsets
to special subsets if n > 4. If n = 4 and there is a star whose image is a special subset
then Lemma 4 implies that all stars go to special subsets and all special subsets go to
stars.

In the next section we will use the following fact: if h transfers stars to stars and
special subsets to special subsets then for every S ∈ Gk(Π), k ∈ {0, . . . , n − 2} spanned
by a subset of F there is S ′ ∈ Gk(Π) spanned by a subset of the frame associated to A′
such that

h(A ∩ [S〉δ) = A′ ∩ [S ′〉δ.

5 Proof of Theorem 2

5.1 Reduction

We show that the general case can be reduced to the case when m = n. Let Π = (P,L)
be a polar space of rank n.

Lemma 5 (Lemma 2 in [12]). If X0, . . . , Xi is a geodesic in Γn−1(Π) then

X0 ∩Xi ⊂ Xj

for every j ∈ {1, . . . , i− 1}.
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Now suppose that Π is a polar space of type Dn and δ ∈ {+,−}.

Lemma 6. If Y0, . . . , Yi is a geodesic in Γδ(Π) then

Y0 ∩ Yi ⊂ Yj

for every j ∈ {1, . . . , i− 1}.

Proof. There exists a geodesic X0, . . . , X2i in Γn−1(Π) such that X2j = Yj for every j ∈
{0, . . . , i}. Lemma 5 gives the claim.

Lemma 7. If m is an even integer not greater than n then for every isometric embedding
f of 1

2
Hm in Γδ(Π) there is an (n −m − 1)-dimensional singular subspace M such that

the image of f is contained in [M〉δ, in other words, f can be considered as an isometric
embedding of 1

2
Hm in Γδ(ΠM), where ΠM is the associated polar space of type Dm.

Proof. Let v and w be opposite vertices of 1
2
Hm. Then

m = 2dδ((f(v), f(w))) = d(f(v), f(w)) = n− 1− dim(f(v) ∩ f(w))

which implies that
M := f(v) ∩ f(w)

is an (n−m− 1)-dimensional singular subspace. Our statement is a simple consequence
of Lemmas 2 and 6.

By Lemma 7, it is sufficient to prove Theorem 2 only in the case when m = n.

Remark 3. In the case when m is odd, the graph 1
2
Hm is more complicated (Subsection

2.2) and we cannot prove the latter statement.

5.2 Proof of Theorem 2 for the case m = n

Let Π = (P,L) be a polar space of type Dn and let F = {p1, . . . , p2n} be a frame of Π.
For every integer k ∈ {1, . . . , n− 1} we denote by Ak the associated apartment of Gk(Π),
i.e. the set formed by all k-dimensional singular subspaces of type

〈pi1 , . . . , pik+1
〉.

Note that points pi1 , . . . , pik span a (k − 1)-dimensional singular subspace if and only if

{i1, . . . , ik} ∩ {σ(i1), . . . , σ(ik)} = ∅,

or equivalently, these points are mutually collinear. In this case, we will say that i1, . . . , ik
form a singular set.

Let δ ∈ {+,−}. Then
A := An−1 ∩ Gδ(Π)
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is the apartment of Gδ(Π) associated to F . For every singular set {i1, . . . , ik} we denote
by A(i1, . . . , ik) the set of all elements of A containing pi1 , . . . , pik , i.e.

A(i1, . . . , ik) = A ∩ [S〉δ,

where S = 〈pi1 , . . . , pik〉.
It was noted in Subsection 4.2 that the restriction of Γδ(Π) to A is isomorphic to 1

2
Hn.

Let f : A → Gδ(Π) be an isometric embedding of 1
2
Hn in Γδ(Π). Then

dim(X ∩ Y ) = dim(f(X) ∩ f(Y ))

for all X, Y ∈ A.
Using induction we show that X := f(A) is an apartment of Gδ(Π) if n is even. For

n = 4 this is true, see Example 2. Suppose that the statement holds for n = 2l > 4 and
consider the case when n = 2(l + 1) > 6.

For every singular set {i1, . . . , ik} we define

X (i1, . . . , ik) := f(A(i1, . . . , ik)).

If i, j is a singular pair then the restriction of Γδ(Π) to A(i, j) is isomorphic to 1
2
Hn−2 and

Lemma 7 implies the existence of a line Lij such that

X (i, j) ⊂ [Lij〉δ.

Lemma 8. If i, j and s, t are singular pairs satisfying {i, j} ∩ {s, t} = ∅ then

Lij ∩ Lst = ∅.

Proof. We choose X ∈ A(i, j) and Y ∈ A(s, t) such that X ∩ Y = ∅. Then

f(X) ∩ f(Y ) = ∅.

The statement follows from the fact that f(X) ∈ X (i, j) and f(Y ) ∈ X (s, t) contain Lij
and Lst, respectively.

Let i, j be a singular pair. Then Πpipj is a polar space of type Dn−2 and A(i, j) is an
apartment of Gδ(Πpipj). The inductive hypothesis implies that X (i, j) is an apartment of
Gδ(ΠLij

). Our embedding induces an isomorphism between the restrictions of Γδ(Π) to
A(i, j) and X (i, j) (they are isomorphic to 1

2
Hn−2) and, by Subsection 4.2, we have the

following possibilities:

(1) f transfers every star of A(i, j) to a star of X (i, j),

(2) n = 6 and f sends every star of A(i, j) to a special subset of X (i, j).

Lemma 9. The second possibility is not realized.
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Proof. Suppose that n = 6 and f transfers every star of A(i, j) to a special subset of
X (i, j). We take any t such that i, j, t form a singular set. Then A(i, j, t) is a star of
A(i, j) and, by our assumption, X (i, j, t) is a special subset of X (i, j). The latter implies
that the intersection of all elements from X (i, j, t) coincides with Lij.

On the other hand, A(i, j, t) is a star in A(i, t) and A(j, t). Hence X (i, j, t) is a special
subset in X (i, t) and X (j, t). By the above arguments, the lines Lit and Ljt both coincide
with Lij.

Now we take any s 6= t such that i, j, s form a singular set. Then A(i, j, s) is a star
of A(i, j) and X (i, j, s) is a special subset of X (i, j). As above, we establish that Lis
coincides with Lij. Thus Lis = Ljt which contradicts Lemma 8.

Lemma 9 shows that f transfers every star of A(i, j) to a star of X (i, j). Then,
by Subsection 4.2, for every t such that {i, j, t} is a singular set there is a plane Sij(t)
containing Lij and such that X (i, j, t) consists of all elements of X (i, j) containing Sij(t).
The intersection of all elements from X (i, j, t) coincides with Sij(t). Since

A(i, j, t) = A(i, j) ∩ A(i, t) ∩ A(j, t),

we have
X (i, j, t) = X (i, j) ∩ X (i, t) ∩ X (j, t)

and
Sij(t) = Sit(j) = Sjt(i).

In what follows this plane will be denoted by Sijt. The following fact is obvious.

Lemma 10. If i, j is a singular pair then all Sijt with t 6∈ {i, j, σ(i), σ(j)} form a frame
of the polar space ΠLij

and X (i, j) is the apartment of Gδ(ΠLij
) associated to this frame.

The plane Sijt contains the lines Lij, Lit, Ljt. Hence for any pair of these lines one of
the following possibilities is realized: the lines are coincident or they are distinct and span
Sijt.

Lemma 11. If i, j, t form a singular set then the lines Lij, Lit, Ljt are mutually distinct,
i.e. any two of these lines span the plane Sijt.

Proof. Suppose that Lij = Lit. Consider X ∈ A(i, j) and Y ∈ A(i, t) such that

X ∩ Y = pips and s 6= j, t.

Then X, Y ∈ A(i, s) and f(X), f(Y ) ∈ X (i, s). Since f(X) ∩ f(Y ) is a line, we have

f(X) ∩ f(Y ) = Lis.

On the other hand, f(X) ∈ X (i, j) contains Lij and f(Y ) ∈ X (i, t) contains Lit. This
means that the line Lij = Lit is contained in both f(X) and f(Y ), i.e. it coincides with
Lis. Therefore, the lines Lis and Ljt have a non-empty intersection (Lis coincides with Lij
and the latter line has a non-empty intersection with Ljt) which is impossible by Lemma
8.
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Consider the graph Γ1(Π) whose vertex set is G1(Π) and two lines are adjacent vertices
of Γ1(Π) if they span a plane. By [10, Proposition 4.16], maximal cliques of this graph
are of the following two types:

• the star [p, U ]1, where p is a point of U ∈ Gn−1(Π);

• the top 〈T ]1, where T ∈ G2(Π).

An easy verification shows that the restriction of the graph Γ1(Π) to A1 has precisely the
following two types of maximal cliques:

• the star A1 ∩ [pi, U ]1, where U ∈ An−1 contains pi;

• the top A1 ∩ 〈T ]1, where T ∈ A2.

Denote by g the mapping of A1 to G1(Π) sending every line pipj to the line Lij. It follows
from Lemma 11 that g transfers adjacent vertices of Γ1(Π) to adjacent vertices of Γ1(Π).
Then g sends every star of A1 to a subset in a star or a top of G1(Π). We cannot state
that g is injective, but its restriction to a star or a top of A1 is injective.

Lemma 12. Let U ∈ A and pi ∈ U . Then

g(A1 ∩ [pi, U ]1) (1)

is contained in a star of G1(Π).

Proof. Let J be the set of all j 6= i such that pj ∈ U . Then A1∩ [pi, U ]1 consists of all lines
pipj with j ∈ J and (1) is formed by all Lij with j ∈ J . Now we fix j ∈ J and consider
f(U) as an element of X (i, j). Since U belongs to A(i, j, t) for every t ∈ J \ {j}, the
planes Sijt, t ∈ J \{j} are contained in f(U) and Lemma 10 implies that f(U) is spanned
by these planes. Then Lemma 11 guarantees that f(U) is spanned by all lines belonging
to (1). This means that (1) cannot be contained in a top and we get the claim.

Let U and T be distinct elements of A containing pi. Lemma 12 implies the existence
of points qi(U), qi(T ) and maximal singular subspaces U ′, T ′ such that

g(A1 ∩ [pi, U ]1) ⊂ [qi(U), U ′]1

and
g(A1 ∩ [pi, T ]1) ⊂ [qi(T ), T ′]1.

If U and T are adjacent vertices of the graph Γδ(Π) then

dim(U ∩ T ) = n− 3 > 3

and
(A1 ∩ [pi, U ]1) ∩ (A1 ∩ [pi, T ]1)
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contains more than one element. The same holds for

[qi(U), U ′]1 ∩ [qi(T ), T ′]1

(since the restriction of g to every star is injective). This means that qi(U) = qi(T ) (if
qi(U) and qi(T ) are distinct then the latter intersection contains at most one element).
The graph Γδ(Π) is connected and the equality qi(U) = qi(T ) holds for any U, T ∈ A
containing pi.

Since every line pipj is contained in a certain U ∈ A, we get the following: for every
point pi there is a point qi such that

g(A1 ∩ [pi〉1) ⊂ [qi〉1.

The point qi is the intersection of all lines Lij.
We show that qi 6= qj if i 6= j. The lines Lis and Ljt contain qi and qj (respectively)

and, by Lemma 8, these lines are disjoint if {i, s} ∩ {j, t} = ∅.
Thus Lij is spanned by qi and qj. Then for every U ∈ A the subspace f(U) is spanned

by all qi such that pi ∈ U (see the proof of Lemma 12). So, the required statement is a
simple consequence of the following.

Lemma 13. The points q1, . . . , q2n form a frame of Π.

To prove Lemma 13 we need some elementary properties of collinearity relation in
polar spaces.

Lemma 14. The following assertions are fulfilled:

(1) if p ∈ P and X ⊂ P then p ⊥ X implies that p ⊥ 〈X〉,

(2) if p ∈ P and S is a maximal singular subspace then p ⊥ S implies that p ∈ S.

Proof. See, for example, [10, Section 4.1].

Proof of Lemma 13. We have qi ⊥ qj if j 6= σ(i) (since these points span the line Lij).
Suppose that qi ⊥ qσ(i) for a certain i. Then qσ(i) is collinear to all points qj. Every
element of X is spanned by some qj and the first statement of Lemma 14 guarantees that
qσ(i) ⊥ S for every S ∈ X . By the second statement of Lemma 14, every element of
X contains qσ(i) and any two elements of X have a non-empty intersection. The latter
contradicts the fact that X is the image of an isometric embedding of 1

2
Hn in Γδ(Π).

6 Conjecture

In this section we will suppose that Π = (P,L) is a polar space of type Dn, where n is
an odd integer greater than 4. Let A be the apartment of Gδ(Π), δ ∈ {+,−} defined by
a frame F = {p1, . . . , p2n}. Let also f : A → Gδ(Π) be an isometric embedding of 1

2
Hn
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in Γδ(Π). For every i ∈ {1, . . . , 2n} the restriction of Γδ(Π) to A ∩ [pi〉δ is isomorphic to
1
2
Hn−1 and Lemma 7 implies the existence of a point qi such that

f(A ∩ [pi〉δ) ⊂ [qi〉δ.

We can prove that there are precisely the following possibilities:

(1) all qi are coincident,

(2) all qi are mutually distinct.

In the second case, an easy verification shows that all qi form a frame and f(A) is the
apartment of Gδ(Π) associated to this frame.

We conjecture that the first possibility is realized, i.e. there exists an isometric em-
bedding of 1

2
Hn in Γδ(Π) whose image is not an apartment of Gδ(Π).

In the first case, f can be considered as an isometric embedding of 1
2
Hn in Γδ(Πq),

where q = q1 = · · · = q2n. The rank of the polar space Πq is equal to n − 1. Thus the
graphs 1

2
Hn and Γδ(Πq) are of the same diameter n−1

2
. This trivial observation supports

our conjecture.

7 Isometric embeddings of half-spin Grassmann

graphs

7.1 Application of Theorem 2

Let Π = (P,L) and Π′ = (P ′,L′) be polar spaces of rank n and n′, respectively. The
existence of isometric embeddings of Γn−1(Π) in Γn′−1(Π

′) implies that the diameter of
Γn−1(Π) is not greater than the diameter of Γn′−1(Π

′), i.e. n 6 n′.
First, we consider the case when n = n′. Let f : P → P ′ be a mapping which transfers

every frame of Π to a frame of Π′. By [10, Subsection 4.9.6], f sends lines of Π to subsets
contained in lines of Π′; moreover, if S is a singular subspace of Π then f(S) spans a
singular subspace of Π′ whose dimension is equal to the dimension of S. The mapping
which transfers every X ∈ Gn−1(Π) to 〈f(X)〉 is an isometric embedding of Γn−1(Π) in
Γn−1(Π

′). If Π and Π′ both are polar spaces of type Dn then the restriction of this mapping
to Gδ(Π), δ ∈ {+,−} is an isometric embedding of Γδ(Π) in Γγ(Π

′), γ ∈ {+,−}.
Suppose that n 6 n′ and M is an (n′ − n − 1)-dimensional singular subspace of Π′.

Then Π′M is a polar space of rank n (if n = n′ then M = ∅ and Π′M coincides with Π′).
Every frame preserving mapping of Π to Π′M induces an isometric embedding of Γn−1(Π)
in Γn−1(Π

′
M). This is an isometric embedding of Γn−1(Π) in Γn′−1(Π

′), since Γn−1(Π
′
M)

can be naturally identified with the restriction of Γn′−1(Π
′) to [M〉n′−1. In the case when Π

and Π′ are polar spaces of type Dn and Dn′ (respectively), we get an isometric embedding
of Γδ(Π), δ ∈ {+,−} in Γγ(Π

′), γ ∈ {+,−}.
Theorem 3 ([12]). Every isometric embedding of Γn−1(Π) in Γn′−1(Π

′) is induced by a
frame preserving mapping of Π to Π′M , where M is an (n′ − n− 1)-dimensional singular
subspace of Π′.
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As an application of Theorem 2 we prove the following.

Theorem 4. Suppose that Π and Π′ are polar spaces of type Dn and Dn′, respectively. If
n is an even integer not less than 6 then every isometric embedding of Γδ(Π), δ ∈ {+,−}
in Γγ(Π

′), γ ∈ {+,−} is induced by a frame preserving mapping of Π in Π′M , where M is
an (n′ − n− 1)-dimensional singular subspace of Π′.

7.2 Proof of Theorem 4

Suppose that f : Gδ(Π) → Gγ(Π′) is an isometric embedding of Γδ(Π) in Γγ(Π
′) and n is

even. Then f transfers maximal cliques of Γδ(Π) (stars and special subspaces) to subsets
in maximal cliques of Γγ(Π

′).

Lemma 15. The following assertions are fulfilled:

(1) distinct maximal cliques go to subsets of distinct maximal cliques,

(2) the image of every maximal clique of Γδ(Π) is contained in a unique maximal clique
of Γγ(Π

′).

Proof. (1). If X and Y are distinct maximal cliques of Γδ(Π) whose images are contained
in the same maximal clique of Γγ(Π

′) then there exist non-adjacent vertices X ∈ X and
Y ∈ Y such that f(X) and f(Y ) are adjacent vertices of Γγ(Π

′). This contradicts the
fact that f is an embedding.

(2). Let C be a maximal clique of Γδ(Π) and let S be the associated singular subspace
of Π (an element of Gn−4(Π) or G−δ(Π)). By [10, Proposition 4.7], there is a frame F
such that S is spanned by a subset of F . Let A be the apartment of Gδ(Π) defined by
F . Then A∩C is a base of the projective space C (see Subsection 4.2). Theorem 2 states
that f(A) is an apartment of Gδ(Π′M), where M is an (n′ − n − 1)-dimensional singular
subspace of Π′. This guarantees that f(A∩C) is an independent subset in every maximal
clique of Γγ(Π

′) containing f(C) and the dimension of the subspace spanned by f(A∩ C)
is not less than 3.

Now suppose that f(C) is contained in two distinct maximal cliques of Γγ(Π
′). If these

cliques are of the same type then f(C) is contained in a line of Gγ(Π′). If one of the cliques
is a star and the other is a special subspace then f(C) spans a proper subspace in the
star and the dimension of this subspace is not greater than 2. Each of these possibilities
contradicts the fact established above.

Lemma 16. One of the following possibilities is realized:

(A) stars go to subsets of stars and special subspaces go to subsets of special subspaces,

(B) stars go to subsets of special subspaces and special subspaces go to subsets of stars.

The second possibility can be realized only in the case when n = 4.
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Proof. Let C and C ′ be maximal cliques of Γδ(Π) such that C ∩ C ′ is a plane. Then one
of these cliques is a star [M〉δ, M ∈ Gn−4(Π) and the other is a special subspace [U ]δ,
U ∈ G−δ(Π). There is a frame F such that M and U are spanned by subsets of F [10,
Proposition 4.7]. Let A be the apartment of Gδ(Π) defined by F . Then

A ∩ C ∩ C ′

is a base of the plane C ∩ C ′. By Theorem 2, f(A) is an apartment of Gδ(Π′M), where M
is an (n′ − n− 1)-dimensional singular subspace of Π′. This means that

f(A ∩ C ∩ C ′)

is an independent subset in the intersection of the maximal cliques of Γγ(Π
′) containing

f(C) and f(C ′). Since this set contains three elements, the dimension of the intersection
is not less than 2. Therefore, the intersection of the maximal cliques of Γγ(Π

′) containing
f(C) and f(C ′) is a plane.

Lemma 15 implies that f induces an injective mapping of the set of maximal cliques
of Γδ(Π) to the set of maximal cliques of Γγ(Π

′). Using Lemma 3, we show that one of
the possibilities (A) or (B) is realized.

Now suppose that n > 6. Let U ∈ G−δ(Π). We take a frame F such that U is spanned
by a subset of F and denote by A the associated apartment of Gδ(Π). Then A ∩ [U ]δ
is a base of the projective space [U ]δ. As above, we establish that f(A ∩ [U ]δ) is an
independent subset in the maximal clique of Γγ(Π

′) containing f([U ]δ). Since f(A∩ [U ]δ)
consists of n elements and n > 4, the maximal clique containing f([U ]δ) cannot be a star
and the possibility (B) is not realized.

From this moment we suppose that f satisfies (A). Then for every U ∈ G−δ(Π) there
is unique U ′ ∈ G−γ(Π′) such that

f([U ]δ) ⊂ [U ′]γ.

We set f(U) := U ′ and extend f to a mapping of Gn−1(Π) to Gn′−1(Π
′). The first part of

Lemma 15 guarantees that the extension is injective.

Lemma 17. The following assertions are fulfilled:

(1) f transfers adjacent vertices of Γn−1(Π) to adjacent vertices of Γn′−1(Π
′),

(2) d(X, Y ) = d(f(X), f(Y )) if X, Y ∈ Gδ(Π).

Proof. (1). If X ∈ Gδ(Π) and Y ∈ G−δ(Π) are adjacent vertices of Γn−1(Π) then X belongs
to [Y ]δ and

f(X) ∈ [f(Y )]γ

which implies that f(X) and f(Y ) are adjacent vertices of Γn′−1(Π
′).

(2). This follows from the fact that the restriction of f to Gδ(Π) is an isometric
embedding of Γδ(Π) in Γγ(Π

′).
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By Theorem 3, it is sufficient to show that f is an isometric embedding of Γn−1(Π) in
Γn′−1(Π

′). Since for any two distinct elements of Gn−1(Π) there is an apartment containing
them [10, Proposition 4.7], we need to show that the restriction of f to every apartment
of Gn−1(Π) is an isometric embedding of Hn in Γn′−1(Π

′).
Let A be an apartment of Gn−1(Π). Then

Aδ := A ∩ Gδ(Π)

is an apartment of Gδ(Π) and A \ Aδ is an apartment of G−δ(Π). Every special subset of
Aδ is defined by an element of A \ Aδ, i.e. it is the intersection of Aδ and [U ]δ, where
U ∈ A \ Aδ. Theorem 2 states that f(Aδ) is an apartment of Gγ(Π′M), where M is an
(n′ − n − 1)-dimensional singular subspace of Π′. Let A′ be the apartment of Gn−1(Π′M)
containing f(Aδ). Then A′ \ f(Aδ) is an apartment of G−γ(Π′M) and every special subset
of f(Aδ) is defined by an element of A′ \ f(Aδ). Since f transfers special subsets of Aδ
to special subsets of f(Aδ), we have

f(A \ Aδ) = A′ \ f(Aδ)

which implies that f(A) = A′.
Now we show that

d(X, Y ) = d(f(X), f(Y )) (2)

for all X, Y ∈ A. By the second part of Lemma 17, this is true if X, Y ∈ Aδ. In the
case when X ∈ A \ Aδ and Y ∈ Aδ, we have d(X, Y ) 6 n − 1 and there is a geodesic
Y0, Y1, . . . , Yi in Γn−1(Π) such that

Y0 ∈ Aδ, Y1 = X, Yi = Y.

Lemma 17 shows that
d(Y0, Yi) = d(f(Y0), f(Yi))

and
f(Y0), f(Y1), . . . , f(Yi)

is a geodesic in Γn′−1(Π
′) which implies (2). If X, Y ∈ A \ Aδ and d(X, Y ) 6 n− 2 then

there is a geodesic Y0, Y1, . . . , Yi in Γn−1(Π) such that

Y0, Yi ∈ Aδ, Y1 = X Yi−1 = Y.

As above, the image of this geodesic is a geodesic in Γn′−1(Π) and we get (2).
Consider the case when X, Y ∈ A \ Aδ are opposite vertices of Γn−1(Π). It is clear

that
A \ {Y } = {Z ∈ A : d(X,Z) 6 n− 1}

There is unique Y ′ ∈ A′ satisfying d(f(X), Y ′) = n and

A′ \ {Y ′} = {Z ′ ∈ A′ : d(f(X), Z ′) 6 n− 1}.
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It follows from the above arguments that

f(A \ {Y }) = A′ \ {Y ′}.

Then f(Y ) = Y ′ (since f(A) = A′) and (2) holds.
So, we get the following.

Proposition 1. If Π and Π′ are polar spaces of type Dn and Dn′(respectively) and n
is even then every isometric embedding of Γδ(Π), δ ∈ {+,−} in Γγ(Π

′), γ ∈ {+,−}
satisfying (A) is induced by a frame preserving mapping of Π in Π′M , where M is an
(n′ − n− 1)-dimensional singular subspace of Π′.

Theorem 4 is a direct consequence of Proposition 1 and Lemma 16.

7.3 Remarks on the case n = 4

Suppose that Π is a polar space of type D4. Then the associated half-spin Grassmannians
(together with the families of lines) also are polar spaces of type D4. These polar spaces
are denoted by Π+ and Π− (Example 2).

Every maximal singular subspace of the polar space Πδ, δ ∈ {+,−} is a star (defined
by a point of Π) or a special subspace (associated to an element of G−δ(Π)). Using
the intersection properties given in Section 4.1, we can show that one of the half-spin
Grassmannians of Πδ consists of all stars and the other is formed by all special subspaces.
The corresponding polar spaces can be identified with Π and Π−δ. By Remark 2, they
are isomorphic.

So, the polar spaces Π and Πδ, δ ∈ {+,−} are isomorphic. Every collineation be-
tween Π and Π−δ induces a collineation of Πδ to itself (an automorphism of Γδ(Π)) which
transfers stars to special subspaces and special subspaces to stars.

Let f be an isometric embedding of Γδ(Π), δ ∈ {+,−} in Γγ(Π
′), γ ∈ {+,−} satisfying

(B). We take any automorphism h of Γδ(Π) sending stars to special subspaces and special
subspaces to stars. Then fh is an isometric embedding of Γδ(Π) in Γγ(Π

′) satisfying (A)
and we can apply Proposition 1.

7.4 Remarks on frame preserving mappings

In this subsection we suppose that Π = (P,L) and Π′ = (P ′,L′) are polar spaces of an
arbitrary type and embedable in the projective spaces ΠV and ΠV ′ associated to vector
spaces V and V ′, respectively. It is well-known that every collineation of Π to Π′ can be
extended to a collineation of ΠV to ΠV ′ and, by the Fundamental Theorem of Projective
Geometry, the latter collineation is induced by a semilinear isomorphism of V to V ′ [5,
Chapter III].

Let f : P → P ′ be a mapping which transfers frames of Π to frames of Π′. It was
noted above that this mapping sends lines of Π to subsets in lines of Π′. We state that f
can be extended to a mapping of ΠV to ΠV ′ which transfers lines of ΠV to subsets in lines
of ΠV ′ (the proof is a modification of the proof given in [5, Chapter III]). It follows from
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a generalized version of the Fundamental Theorem of Projective Geometry [6, 7] that the
latter mapping is induced by a semilinear mapping l : V → V ′ (it must be pointed out that
the associated homomorphism between the division rings is not necessarily surjective).
Also, we state that the mapping l : V → V ′ is a strong semilinear embedding, i.e. it
transfers any collection of linearly independent vectors to linearly independent vectors. In
some special cases, for example, if our polar spaces are of type Dn, or for the symplectic
polar spaces, this statement is obvious. In the general case, we need some algebraic
technique to prove it. For this reason, it will be natural to consider this question in a
separate paper.
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