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Abstract

In a recent paper, Caracciolo, Sokal and Sportiello presented, inter alia, an alge-
braic/combinatorial proof for Cayley’s identity. The purpose of the present paper is
to give a “purely combinatorial” proof for this identity; i.e., a proof involving only
combinatorial arguments. Since these arguments eventually employ a generalization
of Laplace’s Theorem, we present a “purely combinatorial” proof for this theorem,
too.

1 Introduction

For n ∈ N, denote by [n] the set {1, 2, . . . , n} and let X = Xn = (xi,j)(i,j)∈[n]×[n] be an

n× n matrix of indeterminates. For I ⊆ [n] and J ⊆ [n], we denote

• the submatrix of X corresponding to the rows i ∈ I and the columns j ∈ J by XI,J ,

• the complementary submatrix of XI,J (which corresponds to the rows i ∈ I := [n]\I
and the columns j ∈ J := [n] \ J) by XI,J .

LetM = {x1 6 x2 6 . . . 6 xm} be a finite ordered set, and let S = {xi1 , . . . , xik} ⊆M

be a subset of M . We define

sgn (SEM) := (−1)
∑k

j=1 ij .

As pointed out in [2, Section 2.6], the following identity is conventionally but erro-
neously attributed to Cayley. (Muir [4, vol. 4, p. 479] attributes this identity to Vivanti
[6].)

∗Research supported by the National Research Network “Analytic Combinatorics and Probabilistic
Number Theory”, funded by the Austrian Science Foundation.
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Theorem 1 (Cayley’s Identity). Consider X = (xi,j)(i,j)∈[n]×[n], and let ∂ =
(

∂
∂xi,j

)

be

the corresponding n × n matrix of partial derivatives1. Let I, J ⊆ [n] with |I| = |J | = k.
Then we have for s ∈ N:

det (∂I,J) (det (X))s =

s · (s+ 1) · · · (s+ k − 1) · (det (X))s−1 · sgn (IE [n]) · sgn (JE [n]) · det
(

XI,J

)

. (1)

By the alternating property of the determinant, Cayley’s Identity is in fact equivalent
to the following special case of (1).

Corollary 1 (Vivanti’s Theorem). Specialize I = J = [k] for some k 6 n in Theorem 1.
Then we have for s ∈ N:

det
(

∂[k],[k]
)

(det (X))s = s · (s+ 1) · · · (s+ k − 1) · (det (X))s−1 · det
(

X[k],[k]

)

. (2)

2 Combinatorial proof of Vivanti’s Theorem

We may view the determinant of X as the generating function of all permutations π in
Sn, where the (signed) weight of a permutation π is given as ω (π) := sgn π ·

∏n

i=1 xi,π(i):

det (X) =
∑

π∈Sn

ω (π) .

2.1 View permutations as perfect matchings

For our considerations, it is convenient to view a permutation π ∈ Sn as a perfect matching
mπ of the complete bipartite graph Kn,n, where the vertices consist of two copies of [n]
which are arranged in their natural order; see Figure 1 for an illustration of this simple
idea: In the picture, we show the domain of π as lower vertices and the image of π as
upper vertices. It is easy to see that the edges of such perfect matching can be drawn in
a way such that all intersections are of precisely two (and not more) edges, and that the
number of these intersections equals the number of inversions of π, whence the sign of π
is

sgn (π) = (−1)#(intersections in mπ) .

This simple visualization of permutations and their inversions is already used in [1, §15,
p.32]: We call it the permutation diagram. So assigning weight xi,j to the edge pointing
from lower vertex i to upper vertex j and defining the weight ω (mπ) of the permutation
diagram mπ to be the product of the edges belonging to mπ, we may write

ω (π) = (−1)#(intersections in mπ) · ω (mπ) .

1∂ is also known as Cayley’s Ω–process.
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domain (π): lower vertices.
1 2 3 4 5

image (π): upper vertices.
1 2 3 4 5

π

x1,2

x3,1

x5,3

x2,5

x4,4

Figure 1: View the permutation π = 25143 as the corresponding perfect matching mπ in
the complete bipartite graph K5,5.The intersections of edges are indicated by small circles;
they correspond bijectively to π’s inversions:

# (inversions of π) = |{(1, 3), (2, 3), (2, 4), (2, 5), (4, 5)}| = 5.

Assigning weight xi,j to the edge pointing from lower vertex i to upper vertex j gives the
contribution of the permutation π to the determinant of X5:

ω (π) = (−1)5 · x1,2 · x2,5 · x3,1 · x4,4 · x5,3.

Given this view, the combinatorial interpretation of the s-th power of the determinant
det (X) is obvious: It is the generating function of all s-tuples m = (mπ1, . . . , mπs

) of
permutation diagrams, where the (signed) weight of such s-tuple m is given as

ω (m) =

s
∏

i=1

(−1)#(intersections in mπi) · ω (mπi
) .

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 2: Objects counted by the generating function of a power of a determinant. For
n = 5, the picture shows a typical object of weight

+x1,1x
2
1,2x1,4x2,3x2,4x

2
2,5x3,1x3,3x3,4x3,5x4,1x4,3x4,4x4,5x5,1x

2
5,2x5,3,

which is counted by the generating function det (X)4. (The edge connecting lower vertex
3 to upper vertex 3 in the 4–th (right–most) matching is drawn as zigzag-line, just to
avoid intersections of more than two edges in a single point.)
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2.2 Action of the determinant of partial derivatives

Next we need to describe combinatorially the action of the determinant det
(

∂[k],[k]
)

of par-
tial derivatives. Let m = (mπ1 , . . . , mπs

) be an s-tuple of permutation diagrams counted
in the generating function (det (X))s, and let τ ∈ Sk: Then the summand

∂τ := sgn (τ) ·
k
∏

i=1

∂

∂xi,τ(i)

applied to ω (m) yields

sgn (τ) ·

(

k
∏

i=1

∂

∂xi,τ(i)

)

ω (m) = sgn (τ) · cτ,m ·
ω (m)

∏k

i=1 xi,τ(i)
,

where cτ,m is the number of ways to choose the set of k edges {(i→ τ (i)) : i ∈ [k]} from
all the edges in m (this number, of course, might be zero). We may visualize the action
of δτ as “erasing the edges constituting τ in m”; see Figure 3 for an illustration.

τ = (312) ∈ S3: δτ = ∂
∂x1,3

· ∂
∂x2,1

· ∂
∂x3,2

Figure 3: Let n = 5, s = 4 and k = 3 in Corollary 1. The picture shows four possible
ways of “erasing” the edges constituting τ ∈ S3 from the 4-tuple (mπ1, mπ2 , mπ3, mπ4) of
matchings, where (π1, π2, π3, π4) ∈ S

4
5 is (31254, 51324, 14253, 23415). The erased edges

are shown as grey dashed lines.
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Hence we have:

det
(

∂[k],[k]
)

(det (X))s =
∑

m∈Ss
n

ω (m)
∑

τ∈Sk

cτ,m ·
sgn (τ)

∏k

i=1 xi,τ(i)
. (3)

2.3 Double counting

For our purposes, it is convenient to interchange the summation in (3). This application
of double counting amounts here to a simple change of view: Instead of counting the ways
to choose the set of edges corresponding to τ from all the edges corresponding to some
fixed s-tuple m, we fix τ and consider the set of m’s from which τ ’s edges might be chosen.
This will involve two considerations:

• In how many ways can the edges corresponding to τ be distributed on s copies of
the bipartite graph Kn,n?

• For each such distribution, what is the set of compatible s-tuples of permutation
diagrams?

For example, if k = 3 and s = 4 (as in Figure 3), there clearly

• is 1 way to distribute the three edges on a single copy of the 4 bipartite graphs (see
the fourth row of pictures in Figure 3), and there are 4 ways to choose such single
copy,

• are 3 ways to distribute the three edges on precisely two copies of the 4 bipartite
graphs (see the second and third row of pictures in Figure 3), and there are 4 · 3
ways to choose such pair of copies (whose order is relevant),

• is 1 way to distribute the three edges on precisely three copies of the 4 bipartite
graphs (see the first row of pictures in Figure 3), and there are 4 · 3 · 2 ways to
choose such triple of copies (whose order is relevant).

2.4 Partitioned permutations

A distribution of the edges corresponding to τ ∈ Sk on s copies of the bipartite graph
Kn,n may be viewed (see Figure 3)

• as an s-tuple of matchings (some of which may be empty; to stress the fact that
these matchings are not perfect, we also call them partial matchings) of Kk,k

• such that the union of these s partial matchings gives the perfect matching mτ of
Kk,k.

Clearly, to each such partial matching corresponds a partial permutation τi, which we may
write in two-line notation as follows:
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• the lower line shows the domain of τi in its natural order,

• the upper line shows the image of τi,

• the ordering of the upper line represents the permutation τi.

We say that each of these τi is a partial permutation of τ , and that τ is a partitioned
permutation. We write in short:

τ = τ1 ⋆ τ2 ⋆ . . . ⋆ τs.

For example, the rows of pictures in Figure 3 correspond to the partitioned permutations
(written in the aforementioned two-line notation)

•
(

3
1

)

⋆
(

1
2

)

⋆
(

2
3

)

⋆
()

for the first row,

•
(

3 2
1 3

)

⋆
(

1
2

)

⋆
()

⋆
()

for the second row,

•
(

3 1
1 2

)

⋆
()

⋆
(

2
3

)

⋆
()

for the third row,

•
(

3 1 2
1 2 3

)

⋆
()

⋆
()

⋆
()

for the fourth row.

2.5 Equivalence relation for partitioned permutations

For any partitioned permutation τ = τ1 ⋆τ2 ⋆. . .⋆τs, consider the s-tuple of the upper rows
(in the aforementioned two-line notation) only: We call this s-tuple of permutation words
the partition scheme of τ and denote it by [τ ]. We say that τ = τ1 ⋆ τ2 ⋆ . . . ⋆ τs complies
to its partition scheme [τ ] = [τ1 ⋆ τ2 ⋆ . . . ⋆ τs] and denote this by τ ⊆ [τ1 ⋆ τ2 ⋆ . . . ⋆ τs].

Now consider the following equivalence relation on the set of partitioned permutations:

µ = µ1 ⋆ . . . ⋆ µs ∼ ν = ν1 ⋆ . . . ⋆ νs : ⇐⇒ [µ] = [ν] .

By definition, the corresponding equivalence classes are indexed by a partition scheme,
and µ = µ1 ⋆ µ2 ⋆ . . . ⋆ µs belongs to the equivalence class of τ = τ1 ⋆ τ2 ⋆ . . . ⋆ τs iff µ ⊆ [τ ].
(For s > 1, a partitioned permutation τ is not uniquely determined by [τ ].)

It is elementary to determine the number of these equivalence classes: Think of filling
in successively the entries 1, 2, . . . , k into the partition scheme [τ1 ⋆ τ2 ⋆ . . . ⋆ τs]. Starting
with the empty scheme [⋆ . . . ⋆ ⋆], we find s possibilities to fill in 1, giving [⋆ . . . ⋆ 1 ⋆ . . . ⋆].
Now there are s + 1 possibilities to fill in 2, etc.: So the number of these equivalence
classes is s · (s+ 1) · · · (s+ k − 1), which is precisely the factor in (2). Our proof will be
complete if we manage to show that the generating functions of each of these equivalence
classes are the same, namely

(det (X))s−1 · det
(

XI,J

)

.

the electronic journal of combinatorics 21(4) (2014), #P4.40 6



2.6 Accounting for the signs

A necessary first step for this task is to investigate how the sign of a permutation π is
changed by removing a given partial permutation π1: We view this as erasing all the edges
belonging to π1’s permutation diagram mπ1 from π’s permutation diagram mπ; see again
Figure 3.

Lemma 1. Let π ∈ Sn be a partitioned permutation π = π1 ⋆ π2, where π1 is the partial
permutation

π1 =

(

π (i1) π (i2) · · · π (ik)
i1 i2 · · · ik

)

(with {i1 6 i2 6 · · · 6 ik} ⊆ [n]). Clearly, π2 is the permutation corresponding to the
matchingmπ with edges (i1, π (i1)) , (i2, π (i2)) , . . . , (ik, π (ik)) erased, which we also denote
by π \ π1. Then we have

sgn (π) = (−1)
∑k

j=1 π(ik)−ik · sgn (π1) · sgn (π2) .

If we denote I = {i1, . . . , ik} and J = {π (i1) , . . . , π (ik)}, we may rewrite this as

sgn (π) = sgn (IE [n]) · sgn (JE [n]) · sgn (π1) · sgn (π \ π1) . (4)

Proof. View the permutation diagram mπ of π = π1 ⋆ π2 as a bicoloured perfect matching
of Kn,n, where the edges and vertices corresponding to π1 are coloured green and the
edges and vertices corresponding to π2 are coloured red (see Figure 4). Clearly,

• the set I is the set of (the labels of the) lower green vertices,

• the set J is the set of (the labels of the) upper green vertices.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 4: The bicoloured permutation diagram mπ corresponding to the partitioned per-
mutation π = π1 ⋆ π2, where

π1 =

(

52769

24578

)

and π2 =

(

3148

1369

)

.

The edges corresponding to π1 are shown as green (solid) lines, the edges corresponding
to π2 are shown as red (dotted) lines. The inactive intersections (of green/red edges) are
indicated by small white circles, the other intersections (of green/green or red/red edges)
are indicated by small black circles.

Note that the intersections in mπ come in three flavours:
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• intersections of two green edges (which are accounted for in sgn (π1)),

• intersections of two red edges (which are accounted for in sgn (π2)),

• intersections of a green and a red edge: Since they do not contribute to the signs,
let us call them the inactive intersections.

We will prove (4) by showing the following two statements:

1. The parity of the number of inactive intersections depends only on the sets I and
J , i.e., on the positions of the (lower and upper) green vertices.

2. The number of inactive intersections equals
∑k

j=1 |π (ij)− ij | (which, of course, is

equal to
∑k

j=1 π (ij) +
∑k

j=1 ij modulo 2) in the case that π1 : I → J and π2 :
([n] \ I) → ([n] \ J) are the unique order–preserving bijections (i.e, there are only
inactive intersections; see Figure 6).

For the first statement, consider two edges e1 and e2 of the same colour, where
e1 = (a, d) and e2 = (b, c) connect lower vertices a and b with upper vertices d and c,
respectively, and look at the effect of replacing these edges by e′1 = (a, c) and e′2 = (b, d):
It is easy to see that an edge e of the other colour

• has an even number of intersections with e1 and e2 (i.e., intersects neither of them
or both of them) if and only if it has an even number of intersections with e′1 and
e′2,

• has an odd number of intersections with e1 and e2 (i.e., intersects exactly one of
them) if and only if it has an odd number of intersections with e′1 and e′2.

See Figure 5 for an illustration: Note that replacing edges e1, e2 by e′1, e
′
2 corresponds

to multiplying π1 with the transposition (c, d), and by multiplying with a sequence of
appropriate transpositions, we can remove all inversions from π1 and π2; and this operation
does not change the parity of the number of inactive intersections.

a

d

b

c

a

d

b

c

Figure 5: The left picture shows the green edges (shown as solid lines) e1 = (a, d) and
e2 = (b, c), which are replaced by the green edges e′1 = (a, c) and e′2 = (b, d) in the right
picture: Observe that for every red edge e (shown as dotted line) the parities of the
numbers of intersections with {e1, e2} and {e′1, e

′
2} are the same. (Some edges are drawn

as curved lines here for graphical reasons.)
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For the second statement, simply have a look at Figure 6 and observe that in the case
where neither π1 nor π2 have inversions, |π (ij)− ij | is the number of intersections of the
j–the green edge with red edges.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 6: Partitioned permutation π′ = π′
1 ⋆ π

′
2, where both π

′
1 and π

′
2 have no inversions;

i.e., there are only inactive intersections in the bicoloured permutation diagram mπ′

1⋆π
′

2
.

2.7 Sums of (signed) products of minors

Now consider a fixed equivalence class in the sense of section 2.5, which is indexed by a
partition-scheme

[τ1 ⋆ τ2 ⋆ · · · ⋆ τs] .

We want to compute the generating function G[τ ] of this equivalence class: Clearly, we
may concentrate on the nonempty partial permutations; so w.l.o.g. we have to consider
the partition-scheme

[τ1 ⋆ τ2 ⋆ · · · ⋆ τm]

which consists only of nonempty partial permutations τj for 1 6 j 6 m 6 s. For any
σ ∈ Sk with σ ⊆ [τ1 ⋆ τ2 ⋆ · · · ⋆ τm], such partition scheme corresponds to a unique ordered
partition of the image of σ:

image (σ) = [k] = (image (τ1)) ∪̇ (image (τ2)) ∪̇ · · · ∪̇ (image (τm)) = J1 ∪̇ J2 ∪̇ · · · ∪̇ Jm,

and any specification of a compatible ordered partition I[J ] = (I1, I2, . . . , Im), i.e.,

[k] = I1 ∪̇ I2 ∪̇ · · · ∪̇ Im where |Il| = |Jl| , l = 1, . . . , m,

uniquely determines such σ, which we denote by σ
(

I[J ], [τ ]
)

.
Equation (4) gives the sign-change caused by erasing the edges corresponding to τl

(with respect to any permutation in Sn which contains τl as a partial permutation),
whence we can write the generating function as

G[τ ] = det (X)s−m

×
∑

I[J]

sgn
(

σ
(

I[J ], [τ ]
))

·
m
∏

l=1

(

sgn (τl) · sgn (IlE [n]) · sgn (JlE [n]) · det
(

XIl,Jl

))

,
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where the sum is over all compatible partitions I[J ]. (The factor sgn
(

σ
(

I[J ], [τ ]
))

comes
from the determinant of partial derivatives.) Clearly,

(

m
∏

l=1

sgn (IlE [n])

)

·

(

m
∏

l=1

sgn (JlE [n])

)

= 1,

so it remains to show that

∑

I[J]

sgn σ
(

I[J ], [τ ]
)

·
m
∏

l=1

(

sgn (τl) · det
(

XIl,Jl

))

= det (X)m−1 det
(

X[k],[k]

)

. (5)

This, of course, is true for m = 1. We proceed by induction on m.
For any ordered partition S1 ∪̇S2 ∪̇ . . . ∪̇Sm = [k], we introduce the shorthand nota-

tion
Sl := [k] \ (S1 ∪̇S2 ∪̇ . . . ∪̇Sl) .

Moreover, write dIj := det
(

XIj ,Jj

)

for short. Then the lefthand-side of (5) may be

written as the (m− 1)-fold sum

∑

I1⊆I0
|I1|=|J1|

sgn (τ1) dI1
∑

I2⊆I1
|I2|=|J2|

sgn (τ2) dI2 · · ·
∑

Im−1⊆Im−2

|Im−1|=|Jm−1|

sgn (τm−1) dIm−1 sgn (τm) dIm · sgn (σ) , (6)

where Im = Im−2 \ Im−1 and σ = σ
(

I[J ], [τ ]
)

.
Assume Jm−2 = {j1 6 . . . 6 ja}, Im−2 = {i1 6 . . . 6 ia} and Jm = {js1 6 · · · 6 jsb}.

Then the special choice I ′m = {is1 6 · · · 6 isb} (i.e., with respect to the relative ordering,
“I ′m is the same subset as Jm ”) and I ′m−1 = Im−2 \ I

′
m determines uniquely a partial

permutation τ ′m−1

τ ′m−1 : Im−2 → Jm−2.

According to (4), by construction we have

sgn
(

τ ′m−1

)

= sgn (τm−1) · sgn (τm) . (7)

Now consider σ = σ
(

I[J ], [τ ]
)

in the innermost sum of (6): Erasing the edges correspond-
ing to τm−1 and τm−2 from mσ and replacing them by the edges corresponding to τ ′m−1

yields a permutation σ′ = τ1 ⋆ · · · τm−2 ⋆ τ
′
m−1 (which, of course, complies to the partition

scheme [τ ′] =
[

τ1 ⋆ · · · τm−2 ⋆ τ
′
m−1

]

). Since by (4) together with (7) we have

sgn
(

τ ′m−1

)

= sgn (τm−1 ⋆ τm) · sgn (ImEIm−2) · sgn (JmEJm−2)

and (clearly)
σ \ (τm−1 ⋆ τm) = σ′ \ τ ′m−1,

we also have (again by (4))

sgn (σ) = sgn (ImEIm−2) · sgn (JmEJm−2) · sgn (σ
′) .
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Hence the innermost sum of (6) can be written as

sgn
(

τ ′m−1

)

·









∑

Im−1⊆Im−2

|Im−1|=|Jm−1|

sgn (ImEIm−2) · sgn (JmEJm−2) · dIm−1 · dIm









· sgn (σ′) .

If we can show that this last sum equals det (X) · det
(

X
Im−2,Jm−2

)

, then (5) follows by

induction, since the (m− 1)–fold sum in (6) thus reduces to an (m− 2)–fold sum, which
corresponds to the partition-scheme [τ ′] =

[

τ1 ⋆ τ2 ⋆ . . . , τm−2 ⋆ τ
′
m−1

]

.

2.8 (A generalization of) Laplace’s theorem

Luckily, a generalization (see [5, section 148]) of Laplace’s Theorem serves as the closer
for our argumentation:

Theorem 2. Let X be an (m+ k) × (m+ k)-matrix, and let 1 6 i1 < i2 < · · · < im 6

m + k and 1 6 j1 < j2 < · · · < jm 6 m + k be (the indices of) k fixed rows and k

fixed columns of X. Denote the set of these (indices of) rows and columns by R and C,
respectively. Consider some fixed subset I ⊆ R. Then we have:

det (X) · det
(

XR,C

)

=
∑

J⊆C,
|J |=|I|

sgn (IER) · sgn (JEC) · det
(

XR\I,C\J

)

· det
(

XI,J

)

. (8)

A combinatorial proof for this identity (using an interpretation of determinants as
non–intersecting lattice paths) is implicit in [3, proof of Theorem 6], but we shall give a
combinatorial argument which employs the ideas presented in this paper.

Proof. Denote by lhs (rhs) the set of signed and weighted objects corresponding to the
left–hand side (right–hand side) of (8). We will prove (8) by showing

• that there is a weight–preserving and sign–preserving injection φ : lhs → rhs,

• and that there is as weight–preserving but sign–reversing involution ψ on the set
rhs \ φ (lhs).

Overlays of green/red (partial) matchings: In the same sense as presented in
section 2.1, we may view both lhs and rhs as families of pairs of matchings (mπ, mσ),
where we may draw the first matching mπ (with green edges) upon the second one mσ

(with red edges), so that the pairs appear as overlays of green and red matchings.
Figure 7, which serves as running example in our proof, shows such overlay of match-

ings belonging to lhs for m = 5, k = 4, R = {2, 3, 6, 8, 9} and C = {1, 2, 5, 6, 8} (whence
R = [9] \R = {1, 4, 5, 7} and C = [9] \C = {3, 4, 7, 9}). More precisely, the picture shows
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the permutation diagrams mπ and mσ corresponding to the pair of partial permutations
(π, σ), where (in 2–line notation)

π =

(

142735698

123456789

)

and σ =

(

3794

1457

)

.

The green edges belonging to mπ are shown as solid lines, and the red edges belonging to
mσ are shown as dotted lines.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 7: Terms in the expansion of the product of determinants may be viewed as
“overlays” of the permutation diagrams of two partial permutations. The red (dotted)
edge connecting lower vertex 4 to upper vertex 7 is drawn as curved line for graphical
reasons only. The active intersections of edges are indicated by small circles.

This pair (π, σ) corresponds to the term

(−1)6 · (x1,1x2,4x3,2x4,7x5,3x6,5x7,6x8,9x9,8) · (−1)2 · (x1,3x4,7x5,9x7,4) ,

which occurs in the expansion of the product of the minors

det (X) · det
(

XR,C

)

for X = (xi,j)
9
i,j=1. Obviously, the lower vertices correspond to the rows of X , while the

upper vertices correspond to the columns of X in Figure 7.
Note that for an overlay of matchings, an intersection of two edges does only contribute

to the sign if the edges are of the same colour (both red or both green): We call such
intersections active; all other intersections (of edges of different colours) are called inactive
(recall section 2.1).

Green, red and uncoloured vertices: In every overlay of matchings in lhs∪ rhs,
all upper vertices labelled with numbers from the set C and all lower vertices labelled
with numbers from the set R are incident with a red edge and with a green edge: We
call these the uncoloured vertices. All the other vertices are incident with precisely one
(either green or red) edge: We assign to them the colour of this single incident edge and
call them the coloured (i.e., either green or red) vertices. (All coloured vertices are green
in Figure 7.)

Bicoloured paths:
Obviously, an overlay of matchings constitutes a bipartite graph (with double edges

allowed). The connected components of this bipartite graph are either double edges (one
green and one red, see the edges connecting lower vertex 4 to upper vertex 7 in Figure 7)
or paths
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• whose endpoints are coloured points,

• and whose edges alternate in colour.

We call these components bicoloured paths: Figure 8 shows the two bicoloured paths
connecting the lower vertices labelled 3 and 8 with the upper vertices labelled 2 and 1,
respectively, in our running example.
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3 8

Figure 8: Bicoloured paths (drawn here as thick gray lines) starting in lower vertices 3
and 8 (see the running example in Figure 7).

Obviously, if a bicoloured path connects vertices x and y, then

• x and y are on different levels (i.e., one lower and one upper vertex) if and only if
x and y have the same colour,

• x and y have different colours (i.e., one green and one red vertex) if and only if x
and y are on the same level.

Swapping of colours in bicoloured paths: Observe that for any overlay of
matchings, the swapping of the colours (red and green) for all edges in some bicoloured
path p simply yields another overlay of matchings with the same absolute weight (since
only the colour of edges and vertices does change) and with the same set of uncoloured
vertices: We call this operation the swapping of colours in the bicoloured path p. (Figure 9
shows the effect of swapping colours in both bicoloured paths from Figure 8: Observe that
now there are also red vertices.)

Note that a bicoloured path p might have “inner intersections” (i.e., p may contain
intersecting edges), but the swapping of colours in p does not change the status (active or
inactive) of such “inner intersections”. On the other hand, for every “outer intersection”
(of some edge e1 belonging to p with some edge e2 belonging to another bicoloured path),
the status is changed (from active to inactive and vice versa) by swapping colours. So
swapping colours in p effects a sign change (−1)k, where k is the number of intersections
of (edges of) p with (edges of) other bicoloured paths.

The injection φ: For (mπ, mσ) ∈ lhs, we define φ (mπ, mσ) by swapping colours
in all (distinct!) bicoloured paths starting in the lower vertices labelled by the numbers
from I ⊆ R. It is easy to see that φ is an injective mapping lhs → rhs (in fact, it is an
involution lhs → φ (lhs)) which preserves (absolute) weights.

In our running example, choose I = {3, 8}: Figure 9 shows the result of swapping
colours in the bicoloured paths shown in Figure 8. The lower vertices with labels in I
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are now red, and the subset of labels of upper red vertices is J = {1, 2}. The overlay of
matchings (mπ′ , mσ′) corresponds to the partial permutations

π′ =

(

3479568

1245679

)

and σ′ =

(

127349

134578

)

,

which correspond to the term

(−1)5 · (x1,3x2,4x4,7x5,9x6,5x7,6x9,8) · (−1)2 · (x1,1x3,2x4,7x5,3x7,4x8,9)

occuring in the expansion of the product of the minors

det
(

XR\I,C\J

)

· det
(

XI,J

)

.
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Figure 9: Overlay of matchings obtained by swapping colours in the bicoloured paths (see
Figure 8) starting in lower vertices 3 and 8 (see the running example in Figure 7).

The mapping φ is not injective, so we really need the involution ψ: So far
we found an injection φ : lhs → rhs which preserves absolute weights: We need to show
yet

• that the change of sign effected by φ equals sgn (IER) · sgn (JEC),

• and that the total weight of rhs \ φ (lhs) equals 0.

Figure 10 demonstrates that (in general) φ is not surjective (whence rhs\φ (lhs) 6= ∅):
The overlay of matchings (mπ′′ , mσ′′) depicted there corresponds to the partial permuta-
tions

π′′ =

(

5346789

1245679

)

and σ′′ =

(

123479

134578

)

,

which correspond to the term

(−1)2 · (x1,5x2,3x4,4x5,6x6,7x7,8x9,9) · (−1)0 · (x1,1x3,2x4,3x5,4x7,7x8,9)

also occuring in the expansion of the product of the minors

det
(

XR\I,C\J

)

· det
(

XI,J

)

,
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but not occurring as φ (z) for any z ∈ lhs, since there is a bicoloured path starting in the
upper vertex with label 1, which also ends in an upper vertex (with label 5): This cannot
happen in overlays belonging to lhs. It is easy to see that every element of rhs \ φ (lhs)
contains a bicoloured path starting and ending in upper vertices, so the involution ψ

suggests itself: Identify the leftmost upper vertex which is connected to another upper
vertex by a bicoloured path p, and swap colours in p. This clearly defines an involution
preserving absolute weights: It remains to show that ψ is sign–reversing, so that the total
weight of rhs \ φ (lhs) equals 0.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 10: An overlay of two matchings belonging to rhs which does not belong to φ (lhs).

Sign changes effected by swapping colours in bicoloured paths: Bicoloured
paths are connections of coloured points, which we may simply indicate by corresponding
edges (see Figures 11 and 12). Observe that two such edges corresponding to (different)
bicoloured paths p1 and p2 have an intersection if and only if p1 and p2 have an odd
number of intersections, and recall that swapping the colours in some bicoloured path p
yields a sign change of (−1)k, where k is the number of “outer intersections” of p (i.e.,
intersections with other bicoloured paths).

If we forget the uncoloured points in Figure 11, we recognize a permutation diagram: It
is clear that for every overlay of matchings from lhs, we obtain such permutation diagram.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 11: The edges corresponding to the connections by bicoloured paths in Figure 7.

Denote by B the set of all bicoloured paths in an overlay of matchings from lhs and
consider some subset S ⊂ B and its complement S = B \ S. By swapping colours of all
bicoloured paths in S, the status (active/inactive) of every “inner intersection” of S (i.e.,
an intersection of some p ∈ S with another p′ ∈ S, where p = p′ is possible) is unchanged,
while the status of every “outer intersection” of S (i.e., an intersection of some path p ∈ S
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with some path q ∈ S) is swapped (from active to inactive and vice versa): So the sign
change equals (−1)k, where k is the number of “outer intersections” of S. But this is
the same sign change we encounter if we partition the permutation corresponding to B
into the two partial permutations corresponding to S and S, respectively, in the sense
of Lemma 1: So by (4), this sign equals sgn (IER) · sgn (JEC), and the injection φ is
sign–preserving.
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Figure 12: The edges corresponding to the connections by bicoloured paths in Figure 10.

By the same reasoning, we see that the sign change effected by swapping some bi-
coloured path connecting two upper vertices x and y (see Figure 13) is (−1)k, where
k is the number of coloured vertices lying between x and y. Assuming that x is the
i–th and y is the (i+ k + 1)–the element of the ordered set C (which is the set of up-
per coloured vertices), such swapping replaces factor (−1)i by (−1)i+k+1 (or vice versa)
in sgn (JEC), which gives sign change (−1)k+1: Altogether, such swapping yields sign
change (−1)2k+1 = −1, whence the involution ψ is sign–reversing.

1 2 3 4 5 6 7 8 9

Figure 13: An edge corresponding to a connection between two upper vertices.
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