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Abstract

Let G; and G2 be two given graphs. The Ramsey number R(Gp,G2) is the
least integer r such that for every graph G on r vertices, either G contains a G or
G contains a Gy. We denote by P, the path on n vertices and W, the wheel on
m + 1 vertices. Chen et al. and Zhang determined the values of R(P,,W,,) when
m < n+ 1 and when n + 2 < m < 2n, respectively. In this paper we determine all
the values of R(P,, W,,) for the left case m > 2n + 1. Together with Chen et al.’s
and Zhang’s results, we give a complete solution to the problem of determining the
Ramsey numbers of paths versus wheels.
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1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here, and consider
finite simple graphs only.

Let G be a graph. We denote by v(G) the order of G, by 6(G) the minimum degree
of G, and by w(G) the component number of G. We denote by P, and C,, the path and
cycle on n vertices, respectively. The wheel on n+ 1 vertices, denoted by W), is the graph
obtained by joining a vertex to each vertex of a C,.

Let G; and G be two graphs. The Ramsey number R(G1,Gs), is defined as the least
integer 7 such that for every graph G on r vertices, either G contains a G or G contains
a Gy, where G is the complement of G. If G} and Gy are both complete, then R(G1, G5)
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is the classical Ramsey number r(v(G1),v(G2)). Otherwise, R(G1,G>) is usually called
the generalized Ramsey number.

In 1967, Gerencsér and Gyarfas [9] computed the Ramsey numbers of all path-path
pairs, and gave the first generalized Ramsey number formula. (In fact, this question of
determining Ramsey numbers of paths versus paths appeared in a paper of Erdds [5] in
1947, and the right upper bound was also determined there.) After that, Faudree et al.
[8] determined the Ramsey numbers of paths versus cycles. We list these results as bellow,
both of them will be used in this paper.

Theorem 1 (Gerencsér and Gyérfas [9]). If m > n > 2, then
n
R(P,, Py) =m + bJ 1.

Theorem 2 (Faudree et al. [8]). If n > 2 and m > 3, then

2n — 1, forn >=m and m s odd,

R(P,,C,) = n+m/2—1, forn >=m and m is even;,
e max{m + |n/2] —1,2n — 1}, for m >n and m is odd;
m+ |n/2| —1, form >mn and m is even.

Recently, graph theorists have begun to investigate the Ramsey numbers of paths
versus wheels. Baskoro and Surahmat [1] conjectured the values of R(FP,,W,,) when
n > m— 1, and got some partial results. Chen et al. [3] completely determined the values
of R(P,,W,,) when n > m — 1. Salman and Broersma [11] further generalized Chen et
al.’s result. Zhang [12] firstly obtained all the values of R(P,, W,,) when n+2 < m < 2n.
We list the results of Chen et al.’s and Zhang’s in the following.

Theorem 3 (Chen et al. [3]). If 3 < m <n+1, then

3n —2, m s odd,
2n —1, m is even.

R(P,,W,,) = {

Theorem 4 (Zhang [12]). If n+2 < m < 2n, then

3n — 2, m is odd,
m+n—2, m is even.

R(P,,W,,) = {

For the case m > 2n + 1, some upper bounds and lower bounds of R(P,, W,,) were
given [11, 12]. Furthermore, for some n,m, the exact values of R(P,,W,,) were also
determined in [11, 12].

In this paper we will prove the following formula, which can be used to determine all
the values of R(P,, W,,) for the left case m > 2n + 1.

Theorem 5. Ifn > 2 and m > 2n + 1, then

(n—1)-8+1, a <

R(Pn, Why,) = { l[(m—=1)/8]+m, a>7%y,
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where

m—1 B B B?

o =

n—1

Together with Theorems 3 and 4, we give a complete solution to the problem of
determining the Ramsey numbers of paths versus wheels.

2 Preliminaries

Before our proof we will first list one result due to Zhang [12] and give some additional
terminology and notation. Second, we will prove a series of lemmas which support our
proof of the main theorem.

The following result is a rewriting of two corollaries in [12]. It helps us to deal with
the cases n = 3,4 in our proof.

Theorem 6 (Zhang [12]). If n > 3 and m > 2n + 1, then

m+n—1, ifm=1 mod (n—1);

For integers s, t, the interval [s,t] is the set of integers ¢ with s < ¢ < t. Note that if
s > t, then [s,#] = (. Let X be a subset of N. We set £(X) = {>F | z;:z; € X,k € N},
and suppose 0 € L£(X) for any set X. Note that if 1 € X, then £(X) = N. For an interval
[s,t], we use L[s,t] instead of L([s,1]).
In the following of the paper, n always denotes an integer at least 2 and m an integer
at least 3. We denote by par(n) the parity of n, i.e., par(n) = [n/2] — [n/2].
For integers n, m, let t(n, m) be the values of R(P,,W,,) defined in Theorem 5, that
is,
(n—1)-8+1, a <y
t(n,m) =
o) ={ {250 S 650
where 52
B+1
Lemma 1. If m > 2n+ 1, then t(n,m) =min{t : t ¢ L[t —m + 1,n — 1]}.

—1
7:_1,5=fa1 and v =

o=

Proof. Set T ={t:te L]t —m+ 1,n—1]}. Note that if t € T, then t — 1 € T". So it is
sufficient to prove that t(n,m) = max(7T) + 1.
Note that

telTeteLlLt—m+1,n—1]
s telk(t—m+1),k(n—1)], for some integer k

k
&t < m(m —1) and ¢t < k(n — 1), for some integer k
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&t < k(n—1) for some integer k < a+ 1, or

-1
t < {%J +m — 1, for some integer k > a + 1.
This implies that
-1
T:{t:tgk(n—l),kgﬁ}u{t:tg {%J +m—1,k2ﬁ+1}.
Thus
max(7") = rnax{(n —1)5, {mT_lJ +m — 1}
_ (n—1)- 8, a <
[(m=1)/B]+m—1, a>~.
We conclude that t(n,m) = max(T) + 1. O

Lemma 2. Let p be an integer, and G be a graph on at least three vertices.

(1) If G is 2-connected and 0(G) = [p/2], then G contains a cycle of order at least
min{v(G), p}.

(2) If z € V(G), G is connected and d(v) = p—1 for every vertex v € V(G)\{x}, then
G contains a path from x of order at least p.

(3) If x,y € V(G), G+ zy is 2-connected and d(v) > p — 1 for every vertex v €
V(G)\{z,y}, then G contains a path from x to y of order at least p.

(4) If x,y € V(G), G+ zy is 2-connected and d(v) = [p/2] for every vertex v €
V(G)\{z,y}, then G contains a path from x of order at least min{v(G), p}.

(5) If G is connected and §(G) = |p/2], then G contains a path of order at least
min{v(G), p}.

(6) If x € V(Q), G is connected, and dg_,(v) = p —2 for every vertex v € V(G)\{x},
then G contains a path from x of order at least p.

(7) Ifx € V(G), G is 2-connected and dg—,(v) = |p/2] for every vertexv € V(G)\{x},
then G contains a path from x of order at least min{v(G), p}.

Proof. The assertions (1), (2) and (3) are results of Dirac [4], Erdds and Gallai [6], re-
spectively. Now we prove the other assertions.

(4) Let G' = G + xy. Since every two nonadjacent vertices of G’ contain one with
degree at least [p/2], by Fan’s theorem [7], G’ contains a cycle C' with order at least
min{v(G),p}. If C does not contain the added edge zy, then C is a cycle of G and G
contains a path from z of order at least min{v(G), p}; if C' contains the added edge zy,
then P = C' — xy is a path of G from x of order at least min{v(G), p}.

(5) We add a new vertex x and join z to every vertex of G. We denote the resulting
graph as G'. Thus every vertex in V(G’) has degree at least |p/2] +1 = [(p+1)/2]. By
(1), G’ contains a cycle C of order at least min{v(G"),p+ 1}, and P = C' — x is a path of
G of order at least min{v(G), p}.
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(6) Let H be a component of G — z, and let 2’ be a neighbor of z in H. Note that
every vertex in H has degree at least p —2 in H. By (2), H contains a path P from x’ of
order at least p — 1. Thus P’ = z2'P is a path of G from x of order at least p.

(7) Let G’ = G —x. If G’ contains a vertex with degree 1, then p < 3 and the assertion
is trivially true. Now we assume that §(G’) > 2.

We first assume that G’ is 2-connected. By (1), G’ contains a cycle C of order at least
min{v(G"),p — par(p)}. Let P be a path from = to C, let 2’ be the end-vertex of P on C,
and let 2" be a neighbor of 2’ on C. Then P’ = PUC — 2’2" (with the obvious meaning)
is a path from z of order at least min{v(G), p}.

Now we assume that G’ is separable. Then every end-block of G’ is 2-connected. Let
B be an end-block of G', and b be the cut-vertex of G’ contained in B. Since G is 2-
connected, x is adjacent to some vertex, say «’, in B — b. By (3), B contains a path P
from 2’ to b of order at least [p/2]| + 1, and by (2), G’ — (B — b) contains a path P’ from
b of order at least |p/2] + 1. Thus P” = x2’ PbP’ is a path from z of order at least p. [

Lemma 3. If G is a disconnected graph such that

(1) m < v(G); and

(2) every component of G has order at most |m/2],
then G contains a C,,.

Proof. Let G’ be an induced subgraph of G of order m. Clearly every component of G’
has order at most [m/2]. Thus every vertex of G’ has degree at least [m/2] in G'. By
Lemma 2, G’ contains a C,,. O]

Lemma 4. Let G be a graph.
(1) If n < v(GQ) < [3n/2] — 2 and G contains no P,, then G contains a path of order
2v(G) + 3 — 2n.
(2) If v(G) = |3n/2] — 1 and G contains no P,, then G contains a path of order
v(G)+1—|n/2].
(3) If n > 4 is even, v(G) = 3n/2 — 1, and G contains no C,, then G contains a path
of order v(G) +1—n/2.

Proof. The lemma can be deduced by Theorems 1 and 2. O]

Lemma 5. Let G and G5 be two disjoint graphs. If

(1) G, contains a path of order p > 2; and

(2) m < min{2v(Gy),v(Gy) + v(Ga),p + 2v(Gs) — 1},
then G1 U Ga contains a C,,.

Proof. We first assume that v(G2) > |m/2]. If m is even, then v(G;) > m/2 and
v(Gy) = m/2. Let xy,29,...,2, be k = m/2 vertices in Gy, and let y1,99,...,yx be k
vertices in Go. Then C' = zyy1x9ys - - - xpypry is a Cp, in G3 UGy, If m is odd, then
then v(G1) > (m+1)/2 and v(G3) = (m — 1)/2. Note that G; has two nonadjacent
vertices. Let z1, 29, ...,z be k = (m + 1)/2 vertices in G such that zyz; ¢ E(G4), and
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let y1,v2,...,yx_1 be k — 1 vertices in Go. Then C = x1y122y2 - - - Tp_1yr_12px1 is a C),
in Gl U GQ.

Now we assume that v(Gy) < |m/2] — 1. Let V(G2) = {v1,v2, - ,yx}, where k =
v(Gy). Since 2 < m + 1 — 2k < p, G contains a path P of order m + 1 — 2k. Let s,t be
the two end-vertices of P. Note that v(Gy) —v(P) >m —k—m —1+2k =k — 1. Let
T1,To,...,Tk_1 be k—1 vertices in V(G1 — P). Then C = sy;x1y2x2 - - - xp_1yxt P is a C,
in G1 U GQ. ]

Lemma 6. Suppose m = 2n+1. Let G be a disconnected graph containing no P,. If

(1) m < v(G); and

(2) the order sum of every w(G) — 1 components in G is at least m + |n/2] — v(G),
then G contains a C,,.

Proof. If every component of G has order at most |m/2], then we are done by Lemma 3.
Now we assume that there is a component H with order at least |m/2] + 1.

Let Gy = H, and Gy = G — H. Note that m < 2v(Gy), m < v(G) = v(Gy) + v(Gs)
and v(G2) = m + [n/2] — v(G).

Note that v(G1) = [m/2] +1 > n. If v(G1) < |3n/2] — 2, then by Lemma 4, G;
contains a path of order p = 2v(G1) + 3 — 2n. Since

p+2v(Ga) — 1 =2v(Gy) +3 —2n+2v(Gs) —
=20(G)+2—2n

Z2m—+2—2n

P

m,

by Lemma 5, G contains a C,,. If v(G;) > [3n/2] — 1, then by Lemma 4, G| contains a
path of order p = v(G;) +1 — [n/2]. Since

P+ 2w(Ge) —1=v(Gy) +1— gJ +20(Gy) — 1
n
= (@) +v(G2) - |5
n n
> v(G)+m+ §J —v(G) — {ﬂ
g m’
by Lemma 5, G contains a C,,. m

Lemma 7. Let G be a graph, X an independent set of G, R=G — X. If
(1) [X][ =

(2) every component of R is joined to at most one vertex in X;
(3) R contains a path of order p > 2; and
(4) m < min{v(G),p + 2| X[ -3},

then G contains a C,,.
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Proof. Let P be a path in R with the largest order. Clearly v(P) > p.

If v(P) > m — 1, then let P’ be a subpath of P of order m — 1. Let s, be the two
end-vertices of P’. Since each of s and t is adjacent to at most one vertex in X and
| X| > 3, there is a vertex x in X nonadjacent to both s and t. Thus C' = sxtP’ is a C,,
in G. Now we assume that v(P) < m — 2.

Let s,t be the two end-vertices of P. If P contains all vertices in R, then v(P) = v(R).
Let x be a vertex in X nonadjacent to s, and 2’ be a vertex in X \{z} nonadjacent to ¢t.
Note that | X| = v(G) —v(R) = m —v(P). Let 21,29, ..., x5 be k = m — v(P) vertices in
X such that z; = z and z, = 2/, then C = sz 25 - - 2tP is a C,, in G. Now we assume
that V(R)\V(P) # 0.

Let U = V(R — P). Note that each of s, is adjacent to every vertex in U, and this
implies that U U {s,t} is contained in a component of R. Thus U U {s,t} is joined to at
most one vertex in X. Let y be the vertex in X that is joined to U U {s,t}. If such a
vertex does not exist, then let y be any one vertex in X.

Note that m —v(P) < m—p < 2|X|—3. lf m —v(P) is odd, then | X| > (m —v(P) +
1)/241. Let x1, 29, ...,z be k = (m—v(P)+1)/2 vertices in X\{y}, and let uy, ..., up_
be k — 1 vertices in U U X\{x1,xs,...,2x}. Then C = sxjuirous - - x_qup_124tP is a
C,, in G. If m —v(P) is even, then m —v(P) < 2|X|—4 and | X| > (m—v(P))/2+2. Let
x1,Z9,...,x, be k = (m —v(P))/2+ 1 vertices in X\{y}, and let uy,...,up_o be k —2
vertices in UU X \{x1, 29, ..., 21}. Then C = szyujzous - - - Tp_ou_o vp_124tP is a Cy, in
G. O

Lemma 8. Let G be a graph, X1, Xs two independent sets of G (possibly joint), X =
XiUXy, R=G-X. If

(1) [Xa] = [Xo] =2 3, [Xi\Xo| = [Xo\X1| = 2;

(2) every component of R is joined to at most one vertex in X;, i = 1,2;

(3) R contains a path of order p > 2; and

(4) m < min{v(G),p+2|X| -5},
then G contains a C,,.

Proof. We first define an adjustable segment of a cycle C. If X; N X, = (), then let
xy, 2,2l € Xy, xo,2h, 2 € Xy and u € V(R), and we call a subpath A an adjustable
segment of C' with the center u if one of the following is true:

(1) A= z2iurhey with xl,xQ ¢ V(C),

(2) A= z2)afuxhey with ) & V(C);

(3) A = o 2fuaizhxy with 21 ¢ V(C); o

(4) A = xxizxuxiahe,.
If X;N Xy # 0, then let x1,2] € X1\ Xo, 22,75 € Xo\X; and 2 € X7 N Xy, and we
call a subpath A an adjustable segment of C' with the center z if one of the following is
true:

(1) A= zzxe with 2,2 ¢ V(O);

(2) A = x2ixxy with 24, ¢ V(C)

(3) A= zxxhay with 2 ¢ V(C)

I

; or
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(4) A = xxixabxs.

If X1N X,y # 0, then let P be a path in R with the largest order; if X; N Xy = (), then
let P be a non-Hamilton path in R with the largest order.

If v(P) > m — 5, then let P’ be a subpath of P of order m — 5 and s,t be the two
end-vertices of P’. If X;N X5 # (), then let x be a vertex in X; N Xy, 1 a vertex in X1\ X,
nonadjacent to s, ] a vertex in X;\(Xo U {x1}), z2 a vertex in X5\ X; nonadjacent to ¢
and 2, a vertex in X\ (X;U{x5}). Then C = szy2)wxhast P isa Oy, in G. If X1N Xy = 0,
then let u be a vertex in V(R — P'), x; a vertex in X; nonadjacent to s, 2} a vertex in
X1\{z1} nonadjacent to u, xs a vertex in X, nonadjacent to t and x4, a vertex in Xo\{x2}
nonadjacent to u. Then C = sz zjurhrst P is a C,, in G.

Now we assume that v(P) < m — 6. By a similar argument in the analysis above, we
can get a cycle C in G of order at least v(P) + 5 such that

(a) C contains P as a subpath;

(b) C contains an adjustable segment A (with end-vertices z1, x2);

(c) every edge of C' has a vertex in R, unless it is an edge in A.

Now we choose a cycle C in G satisfying (a)(b)(c) with order as large as possible but
at most m. If v(C') = m, then we are done. So we assume that v(C) < m — 1. We claim
that V(R) C V(C'). Assume the contrary. Let v be a vertex in U = V(R)\V (C).

If (X;NXy, =0 and) A= xzfjuxbe, with 2 € X;\V(C), 2§ € X3\V(C), then
C" = C —x2) Uz a]x) is a required cycle with order v(C') +1, a contradiction. Using the
same analysis, we can conclude that A = xyzi 2 {uaixbr, (if XiNXe = ) or A = z 2l xzha,
(if X1 N Xy #0).

If X;N Xy # (), then P is a longest path of R; if Xy N Xy = 0, then noting that
u,v € V(R — P), P is a longest path of R as well. Thus v(P) > p and U U {s,t} is
contained in a component of R. If there is a vertex y in X that is joined to U U {s, ¢},
then we use y instead of the vertex x, x}, or x in C, for the case y € X1\ Xz, y € X5\ X7,
or y € X; N Xy, respectively. Thus we assume that every vertex in X\{z},z%, z} is not
joined to U U {s, t}.

If every vertex in X is in V(C'), then noting that there are at most 5 vertices in X
each of which has a successor on C such that it is not in U, we have

V(C) 2 v(P) +|X] + (IX] = 5) > p+2/X] ~5>m,

a contradiction. So we assume that there is a vertex z’ in X which is not in C. Let ¢/
be the predecessor of z; in C. Clearly v € U U {s,t}. Then C" = v’x’vxlx’l’ﬁ[x’l’,v’]
(if X1NXy=10)or C" = U’x’vxlxa[x,v’] (if X3 N Xy # 0) is a required cycle of order
v(C) + 1, a contradiction. Thus as we claimed, every vertex in R is in C'. This implies
that C is a cycle in G satisfying

(d) there is an edge z12} € E(C) such that zy, 2] € X7;

(e) there is an edge xqoay, € E(C) such that zo, 2 € Xo;

(f) V(R) C V(C).
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Now we choose a cycle C' in G satisfying (d)(e)(f) with order as large as possible but
at most m. If v(C') = m, then we are done. So we assume that v(C') < m — 1. If every
vertex in X is in C, then

v(C) =v(R)+ |X| = m,

a contradiction. So we assume that there is a vertex 2’ in X which is not in C. If 2/ € X3,
then ¢ = C — zy2) U x12'x) is a required cycle of order v(C) + 1; if ' € X5, then
C" = C — zoxh, U zo2'7) is a required cycle of order v(C') 4 1, a contradiction.

Thus the lemma holds. ]

The proof of the next lemma is similar as the proof of Lemma 8, but more involved.

Lemma 9. Let G be a graph, R be an induced subgraph of G, X1, Xy two independent
sets of G — R (possibly joint), X = X3 U Xy. If
(1) X1 = [Xa| = 3, [X0\Xo| = [Xo\ X4 | 2 2
(2) every component of R has order at least 2;
(3) every component of R is joined to at most one vertex in X;, i = 1,2;
(4) for any component H of R, there are at least q vertices in G — R each of which is
either in X or not joined to H;
(5) R contains a path of order p > 2; and
(6) m < min{[3v(R)/2] +4,v(R) +q— 1,p+2q — 5},
then G contains a C,,.

Proof. We use the concept of an adjustable segment defined in Lemma 8. If X; N X, # 0,
then let P be a path in R with the largest order; if X; N X, = 0, then let P be a
non-Hamilton path in R with the largest order.

If v(P) > m — 5, then similar as in Lemma 8, we can find a C,, in G. Thus we assume
that v(P) < m — 6. By a similar argument as in Lemma 8, we can get a cycle C' in G of
order at least v(P) + 5 such that

(a) C contains P as a subpath;

(b) C contains an adjustable segment A (with end-vertices xy, z2);

(c) every edge of C' has a vertex in R, unless it is an edge in A.

Now we choose a cycle C in G satisfying (a)(b)(c) with order as large as possible but
at most m. If v(C') = m, then we are done. So we assume that v(C) < m — 1. We claim
that V(R) C V(C). Assume the contrary. Let v be a vertex in U = V(R — C).

Using the same analysis in Lemma 8, we can conclude that A = zy2)zfuxhxbas (if
X1NX,=0)or A= xxizzhr, (if X; N X, # @) and P is a longest path of R. Thus
v(P) > pand UU/{s,t} is contained in a common component of R. Furthermore, we can
assume that every vertex in X\{z/, 2}, z} is not joined to U U {s, t}.

Let W be the union of X and the set of vertices in G — R that are not joined to
UU{s,t}. Then |W| = q. If every vertex in W is in V(C), then noting that there are at
most 5 vertices in W each of which has a successor on C' such that it is not in U, we have

v(C) 2 v(P)+ W[+ (W] =3) 2p+2¢=5=m,

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.41 9



a contradiction. So we assume that there is a vertex w in W that is not in V(C). Let
v" be the predecessor of x; in C. Clearly v € UU {s,t}. Then C' = v’wvxlx’l’a[x’l’,v’]

if XiNXy=0)or ' =v wvxwﬁ [z,v] (if X1 N Xy # () is a required cycle of order
v(C) + 1, a contradiction. Thus as we clalmed, every vertex in R is in C. This implies C
satisfies (b)(c) and

(d) V(R) Cc V(C).

Now we choose a cycle C' in G satisfying (b)(c)(d) with order as large as possible but
at most m. If v(C') = m, then we are done. So we assume that v(C) < m — 1. By a
similar argument as above, we can conclude that A = zy2)z{uzhzbas (if X3 N Xy =0) or
A = pxjzahas (if XN X #0).

We claim that there are two vertices uq,us in C such that uq,us are in a common
component of R and uf,uj € V(R). Assume the contrary. Note that every component
of R has at least 2 vertices, there is at most one vertex in a component, such that it has
a successor on C' in R, and there are 4 vertices of C' (in the adjusted segment) each of
which is not a successor of some vertex in R. Thus

v(C) = v(R) + Fgﬂ +4= F’V;RW +4 > m,

a contradiction. Thus as we claimed, there are two edges uluf, uzu; such that uq, uy are
in a common component of R and u},uj € V(R).

If there is a vertex y in X\V(C) that is joined to {u;,us}, then we use y instead of
the vertex z), 2, or  in C. Thus we assume that every vertex in X\V(C') is not joined
to {uy, us}. Let W be the union of X and the set of vertices in G — R that are not joined
to {uy,us}. Then |W| > q. If every vertex in W is in C, then

v(C)Zv(R)+ W] Zv(R)+q=>m

a contradiction. Thus we assume that there is a vertex w in W that is not in C

If u,uj are in distinct components of R, then C" = uywuy C [ug, uj Juf ug 8 [ug , us)
is a required cycle with order v(C) + 1. Now we assume that u{,uj are in a common
component of R.

If there is a vertex 3 in X\{w} that is joined to {u;,uj }, then we use y instead of
the vertex x}, z5, or x in C. Thus we assume that every vertex in X\V(C)\{w} is not
joined to {ui,us}.

Let W’ be the union of X and the set of vertices in G — R that are not joined to
{uf,ud}. Then |W’| > q. If every vertex in W'\{w} is in C, then

v(C)Zv(R)+ W |—=12v(R)+q—1=>m

a Contradict(ign. Thus we assume that there is a vertex w’ in W\{w} that is not in C'. Let
' = ulquC[ug,uf]ufu}’u;B[uQ ,ug]. Then C7 = C" — xafx] Uz (it X3 N Xy =0)
or C" = C" — nzlx Uzx (ift X3 N Xy # () is a required cycle of order v(C) + 1, a
contradiction. ]
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3 Proof of Theorem 5

The case of n = 2 is trivial. For the case of n = 3 or n = 4, we are done by Theorem 6.
Thus in the following we will assume that n > 5.

By Lemma 1, t(n,m) = min{t : t ¢ L]t — m + 1,n — 1]}. Let ¢t = t(n,m). Thus
t—leLft—m,n—1]. Lett —1 =3¢ t;, where t; € [t —m,n—1],1 <i < k. Let G be
a graph with & components H, ..., H; such that H; is a clique on ¢; vertices. Note that
G contains no P, since every component of G has less than n vertices; and G contains
no W,, since every vertex of G has less than m nonadjacent vertices. Thus G is a graph
on t — 1 vertices such that G contains no P, and G contains no W,,. This implies that
R(P,,Wp,) > t.

Now we will prove that R(P,, W,,) < t. Assume not. Let G be a graph on t vertices
such that G contains no P, and G contains no W,,.

Let s=m+n—t (ie, v(G) =m+n—s).

Claim 1. 1 <s < [(n+5)/4].
Proof. Let ' =m+n—1. Sincet/—m+1=mn, [t —m+1,n—1] =0, and t' ¢ L(0) = {0},
we have t <t =m +n — 1. This implies that s > 1 (and t —m + 1 < n).

Now we prove that s < (n + 5)/4. By Lemma 1, t ¢ L[t — m + 1,n — 1]. Thus
t ¢ [k(t—m+1),k(n—1)], for every k. That is, t € [k(n—1)+1,(k+1)(t—m+1)—1],
for some k, which implies

k+1
t}l{:(n—l)jtlandt}%m—l,
for some k.
If k£ <2, then we have t < 3(t —m+1) —1, and
k+1 3
t}%m—l}5m—1>3n—1>3(t—m+1)—1,

a contradiction. Thus we assume that & > 3.
If m < (k*n — k* +2k)/(k + 1), then

k*n — k? + 2k

s:m—l-n—tgk—_i_l—i—n—(k’(n—l)—i—l)
_n+2k—1<n+5
k+1 = 4
If m > (k*n — k* + 2k)/(k + 1), then
5:m+n—t<m+n—(%m—1)
:n—m+1<n—w+
k k(k+1)
_n+2k—1<n+5
k+1 = 4
Thus the claim holds. O
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We list the possible values of s for n < 16.

n |5[6[|7|8]9[10 11 12|13|14|15]16
s<|212(313[3|3 |4 |4|4]4]|5>5]5

Table 1: The possible values of s for n < 16.

Claim 2. Let v be an arbitrary vertez of G and G’ be an induced subgraph of G—v—N(v).
Then G' contains no C,,.

Proof. Otherwise, noting that v is nonadjacent to every vertex in the C,,, there will be a

W,, in G (with the hub v). O
Claim 3. 6(G) > [n/2] — s+ 1.

Proof. Assume the contrary. Let v be a vertex of G with d(v) < [n/2] —s. Then
G' = G —v — N(v) has at least m + [n/2| — 1 vertices. Since G’ contains no F,, by
Theorem 2, G’ contains a C),, (note that m > 2n + 1), a contradiction to Claim 2. [

From Claims 1 and 3, one can see that §(G) > 2 (when n > 5).
Case 1. G is disconnected.
Case 1.1. Every component of G has order less than n.

Let H;, 1 < i < k = w(G), be the components of G. Since t ¢ L[t —m + 1,n — 1],
there is a component, say H;, with order at most ¢ — m. Thus Zf:g v(H;) > m. Since

v(H;) <n—1<|m/2|. By Lemma 3, G — H; contains a C,,, a contradiction.
Case 1.2. There is a component of G with order at least n.

Let H be a component of G with the largest order. Note that v(H) > n. If every
vertex of H has degree at least |n/2], then by Lemma 2, H contains a P, a contradiction.
Thus there is a vertex v in H with d(v) < [n/2] — 1. Let G' = G —v — N(v). Then

v(G) =v(G) —1—dv)
Zzm+n—s—1-— LngLl
:m+{gw —s5=m.

Since v(H) > n > 1+ d(v), G’ is disconnected. Let H be the union of w(G’') — 1
components of G'. We will prove that v(H) > m + |n/2| — v(G").

Let H' be a component of G other than H. If H' ¢ H, then v(H) = v(G') —v(H') >
v(G') — |v(G)/2], and

v(H) +v(G") —m — {gJ > (@) — L

v(G)

| +uer-m- 2
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2[2<m+g—3>—m+g_s—m—%—‘
m — 3s 2n+1-3s
il b
If H C H, then v(H) > v(H') 2 §(G) + 1, and
v(H) + (@) —m— | 5] 286 + 1+ (@) —m - |7
P [RSSE
= [gw + par(n) +2 —2s > 0.

Now by Lemma 6, G’ contains a C,,, a contradiction.
Case 2. G has connectivity 1.

Note that 0(G) > 2. Every end-block of G is 2-connected.
Case 2.1. Every end-block of G has order at most [m/2].

Claim 4. Let G’ be a disconnected subgraph of G. If
(1) v(G") = m; and
(2) there are two components of G, each of which is an end-block removing a cut-vertex
of G contained in the end-block,
then the order sum of every w(G') — 1 components in G’ is at least m + |n/2] — v(G').

Proof. Let B — x and B’ — 2’ be two components of G', where B, B’ are two end-blocks
of G and x, 2" are two cut-vertices of G contained in B and B’, respectively.

Let H be the union of any w(G’) — 1 components of G'. We first assume that H does
not contain B — x or B’ — x/. Without loss of generality, we assume that H does not
contain B — z. Then v(H) = v(G’') —v(B —z) 2 v(G') — [m/2] + 1, and

v(H) +1(@) —m— | 2| 2@ - |5 | +1+0(@) —m— [ 5]
= 2m — [%—‘—i—l—m— {gJ
-[3]-[z]+120

Now we assume that both B —x and B’ —2' C H. Then v(H) > v(B—x)+v(B' —2') >
20(@G), and

v(H) + /(@) = m — |5 | > 28(G) +v(G) —m ~ | 7]
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Thus the claim holds. O
Case 2.1.1. G has only two end-blocks.

Let B and B’ be the two end-blocks of GG, and let x and 2’ be the cut-vertices of G
contained in B and B’, respectively. Note that

V(G)—V(B)—I/(B,)>m+n—8—2~’V%-‘ =n—s—par(m) > 1.

This implies that V(G)\(V(B) UV (B')) # 0.

Note that in this case G — (B —x) — (B’ — 2’) + xa’ is 2-connected. If every vertex in
G — B — B’ has degree at least 2s — par(n) — 3, then by Lemma 2, there is a path from
x to 2’ of order at least 2s — par(n) — 2. Note that B contains a path from z of order at
least [n/2] — s+ 2, and B’ contains a path from z’ of order at least [n/2] — s+ 2. Thus
G contains a P, a contradiction. This implies that there is a vertex v in G — B — B’ with
d(v) < 2s — par(n) — 4.

Let G' =G -2 —2" —v— N(v). Then

v(G') 2 v(G) —3—dv)
>m-+n—s—3—2s+par(n)+4
=m+n+par(n)+1—3s>m.

By Claim 4, the order sum of every w(G’) — 1 components in G” is at least m+ |n/2] —
v(G"). By Lemma 6, G’ contains a C,,, a contradiction.

Case 2.1.2. G has at least three end-blocks.

Let x and 2’ be two cut-vertices of G such that the longest path between x and z’ in
G is as long as possible. Clearly x and 2z’ are both contained in some end-blocks. Let B
and B’ be two end-blocks of G containing x and ', respectively (B # B’). Let v be a
vertex in V(B —x) UV(B' — 2’) such that dg_,_,/(v) is as small as possible. We assume
without loss of generality that v € V(B — x).

Claim 5.
[n/2] =2, if x = af;
dp_.(v) < ¢ [n/2] =3, ifza’ is a cut-edge of G,
|n/2] — 3, otherwise.

Proof. We set a parameter a such that a = 0 if x = 2/, 1 if xa’ is a cut-edge of G, and 2
otherwise. So there is a path between z and 2’ of length at least a.

If§(B—x) > [(n—a)/2|—1, then 6(B'—2') > [(n—a)/2|—1. By Lemma 2, B contains
a path from x of order at least |(n —a)/2] +1 and B’ contains a path from 2’ of order at
least [(n —a)/2] + 1. Thus G contains a path of order at least n+ 1 — par(n —a) > n, a
contradiction. Now we obtain that (B —z) < [(n —a)/2] — 2. O
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Case 2.1.2.1. z =2’
In this case, G has only one cut-vertex x. Let G' = G —x — v — N(v). Then
AG) = V(G) ~ 2~ d_o(0)
>m+n—s—2— LSJ + 2

n
:m—i—{g-‘—s}m.

Note that every end-block of G other than B removing z is a component of G'. By
Claim 4 and Lemma 6, G’ contains a C,,, a contradiction.

Case 2.1.2.2. z2’ is a cut-edge of G.

In this case, G has only two cut-vertices x and 2. Let G' = G — 2 — 2’ — v — N(v).
Then

v(G) =v(G) —3 —dp_,(v)
>m+n—s—3— {g—‘+3
=m+ LgJ —s=m.

Note that every end-block of G other than B removing x or 2z’ is a component of G'.
By Claim 4 and Lemma 6, G’ contains a C,,, a contradiction.

Case 2.1.2.3. z2’ ¢ E(G) or za’ is not a cut-edge of G.

Let B” be an end-block of G other than B and B’, and let " be the cut-vertex of G
contained in B” (possibly z” =z or 2’). Let G' =G —x — 2’ — 2" — v — N(v). Then

v(G) 2 v(G) —4—dg_.(v)
Zm+n—s—4— LSJ +3

n

:m—l—{2

-‘ —s—1>2m.
Note that B’ — 2’ and B” — 2 are two components of G'. By Claim 4 and Lemma 6,
G’ contains a C),, a contradiction.

Case 2.2. There is an end-block of G with order at least [m/2] + 1.

Let B be an end-block of G with the maximum order, and x be the cut-vertex of G
contained in B. Let 2’ be a cut-vertex of G such that the longest path between x and z’
is as long as possible. Clearly 2’ is contained in some end-blocks. Let B’ be an end-block
of G containing 2’ (B # B’). Let v be a vertex in B — x such that dp_,(v) is as small as
possible.
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Claim 6.

[(n+2s —par(n))/4] — 2, if x =2,
dp_(v) < ¢ |(n+2s —par(n))/4] —2, if z2’ is a cut-edge of G;
[(n+2s —par(n))/4] — 3, otherwise.

Proof. We set a parameter a such that a = 0 if z = 2/, 1 if xa’ is a cut-edge of G, and 2
otherwise. So there is a path between x and 2’ of length at least a.

By Claim 3 and Lemma 2, B’ contains a path from z’ of order at least [n/2] — s+ 2,
and G — (B — z) contains a path from x of order at least [n/2] — s+ a+ 2.

Note that v(B) > [m/2]+1 > |n/2|+s—a—1. If §(B—z) > |(|n/2]+s—a—1)/2],
then by Lemma 2, B contains a path from z of order at least |n/2| +s—a— 1. Thus G
contains a P,, a contradiction. This implies that

2 —a—1 2s — -2
5(B - 2) < In/2] +s—a o |nt2s par(n) — 2a Y
2 4
Thus the claim holds. O
Note that

v(iB—xz—v—N@))=v(B)—2—dg_.(v)

2‘@}4_1_2_ n + 2s — par(n) L9
2 4
> @_n+28—|—2 1
2 4
5 3n;2§‘+1>1

This implies that V(B)\({z,v} U N(v)) # 0.
Case 2.2.1. z = 2.

In this case, G has only one cut-vertex z. Let G' = G — 2z — v — N(v). Then G’ is
disconnected and

I/(G/>: (G)—Q—dB P ’U)
n+23—par )_‘+2

m—i—n—s—?—{

fm + par(n) ~ 6s J

Let H be the union of any w(G’) — 1 components of G'. We will prove that v(H) >
m+ [n/2| —v(G).
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If B — 2 ¢ H, then v(H) = v(G") —v(B' —z) 2 v(G') — [(v(G) —1)/2], and
v(G)—1

e e N R

3n + par(n) — 6s m+n—s—1 n
> _ —m— | =
/2(m+{ 1 2 " bJ
[ 3n—6s—2 m+n—s—1 n-‘
m+2- —

4 2 2

_ m+n—>5s—1 > 3n — bs > 0.
2 2

Now we assume that B’ — 2z C H. In this case v(H) > v(B' — z) > §(G), and

>

=

V(M) + v(G) —m — LgJ > 5(G) + v(G') —m — LgJ

3n + par(n) —6SJ o VLJ

2
- Fn + bpar(n) +4 — 103J

n
2{—-‘—8+1+m+{ 1

4

Note that 3n + 5par(n) + 4 — 10s > 0 unless n = 8 and s = 3.
Petty Case. n =8 and s = 3.

In this case v(B' —x) > 2 and dp_,(v) < 2. If ¥(H) > 3, or if dg_,(v) = 1, then it is
easy to see that v(H) > m + [n/2] — v(G’). Now we assume that v(B' —x) = v(H) = 2
and dg_,(v) = 2. This implies that B’ is a triangle, there are only two blocks B, B’, and
every vertex in B — x has degree at least 2 in B — x. If B — x has a cut-vertex, then
noting that every end-block of B — x has at least three vertices, B contains a path from
x of order at least 6, and G contains a Fs, a contradiction. So we assume that B — z is
2-connected.

Note that B — x contains a cycle of order at least 4. Let C' be a longest cycle of B — .
If v(C') > 5, then there is also an path from x in B of order at least 6, a contradiction.
Thus we assume that v(C) = 4. If there is a component of B — z — C' with order at
least 2, or if there is a vertex in B — x — C' adjacent to two consecutive vertices on
C, then it is easy to find a cycle longer than C'. Thus B — x — C' consists of isolated
vertices and every vertex is adjacent to two nonconsecutive vertices on C'. If there are
two vertices in B — x — C adjacent to different vertices on C', we can also find a longer
cycle. Thus all the vertices of B — x — C' have the same neighbors on C'. This implies
that B —x — v — N(v) is disconnected and then v(H) > v(B' —x)+ 1 = 3. Thus we also
have v(H) > m + [n/2] — v(G).

By Lemma 6, G’ contains a C,,, a contradiction.
Case 2.2.2. z2' is a cut-edge of G and there is only one end-block containing z’.
Let G =G —x —v — N(v). Then B’ is a component of G, and
v(G)=v(G) —2—dp_,(v)
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n+2s —par(n)J Lo

> —5—2—
m-+mn-—=s { 1

o F)n + par(n) — 6s

1 —‘>m.

Now let ‘H be the union of any w(G’) — 1 components of G'. If B" ¢ H, then v(H) =
W(G') — v(B) 2 v(G) — [¥(G)/2), and

v(H) + v(G) — LgJ —m > (@) - V(QG)J (G —m— EJ

22(m+ FneraZ(n)_Gﬂ) B Ler:—sJ o LgJ

n—6s m+n—s n
> ) _ _ =z
/[m—l—Z 1 5 2—‘
:[m+n—5s-‘>{3n+1—5s-‘20.
2 2
If B C H, then v(H) > v(B') 2 6(G) + 1, and
v(H) +v(G) = m = | 5] =66 + 1+ v(G) —m - | F]
n 3n + par(n) — 6s n
> |2 | Z
> [5] st pame | 2ERERZE 2]
_ Fm + 5par(z) +8— 103—‘ >0

By Lemma 6, G’ contains a C,,, a contradiction.

Case 2.2.3. z2’ ¢ E(G), or z2’ is not a cut-edge of G, or there are at least two end-blocks
of G containing z’.

Let G =G —x — 2’ — v — N(v). Note that in this case w(G’) > 3, and we have

I/(G/> = (G)—?) dB P ’U)
n+23—par )J Lo

m—i—n—s—?)—{

{3n+par n) —6s — —‘
:m 4

Now let H be the union of any w(G’) — 1 components of G'. If B' — 2’ ¢ H, then
v(H) =v(G') —v(B' —2') 2 v(G') — [v(G)/2] + 1, and

v(H) +v(G') —m — LgJ > v(G) - {@J +1+v(G)—m— LSJ
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22(m+ [3n+par(n)—6s—4-‘) B {m+n—sJ e PJ

4 2 2
n—6s—4 m+n-—s n
> 9. _ 1 — —
[m—ir 1 5 + 2-‘
_ m-+mn—>5s—2 > 3n —bs—1 > 0.
2 2

If B" — &’ C H, then noting that w(G’) > 3, v(H) > v(B' —2') +1 > 6(G) + 1, and

00+0) - 2] 461+ 14 [}
> [g] —s+24m+ [3n+par(z>_65_ﬂ —m— {SJ

_ Fm + 5par(z) +4- 103-‘ > 0.

By Lemma 6, G’ contains a C,,, a contradiction.
Case 3. (G is 2-connected.

By Claim 3 and Lemma 2, G contains a cycle of order at least 2([n/2] — s+ 1) =
n — 2s + par(n) + 2. Let C be a longest cycle of G (with a given orientation). Suppose
that v(C') = n — r, where
r < 2s — par(n) — 2.

For a vertex z of C, we use x+ to denote the successor, and x~ the predecessor, of x
on C. For a subset X of V(C), weset XT ={2t:2x€ X} and X~ ={a™ : 2 € X}.

Let H be a subgraph of a component of G —C, and let No(H) = {21, 22, . . . 2.}, where
k = dc(H), and z;, 1 < ¢ < k, are in order along C. We call the subpath C'[z;, z;41]
(the indices are taken modulo k) a good segment of C' (with respect to H); moreover, if
z; and z;,; are joined to two distinct vertices x,y in H, then we call C'lz;, z;41] a better
segment of C' (with respect to H); moreover, if there is a path from z to y in G — C of
order at least 3, then we call C'[z;, z;41] a best segment of C' (with respect to H). Since
G is 2-connected, we conclude that for any component H of G — C there are at least two
good (better, best) segments of C' with respect to H if v(H) > 1 (v(H) > 2, v(H) > 3
and H is not a star, respectively). Note that every good (better, best) segment has order
at least 3 (4, 5, respectively).

Now we consider a component H of G—C. If H is non-separable, then H is a K, a K>
or 2-connected; if H is separable, then H has at least two end-blocks. In the later case,

we call an end-block of H removing the cut-vertex contained in the end-block a branch of
H (also, of G — C).

Claim 7. Let H be a component of G —C and u € V(H).
(1) If H is non-separable, then H contains a path from w of order at least min{v(H),

[7/21}-
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(2) If H 1s separable and D is a branch of H not containing u, then H contains a path
from w of order at least min{v(D) + 1, [r/2]}.

Proof. We first claim that for any two vertices u,v € V(H), dg(u)+dg(v) > [r/2], unless
uv is a cut-edge of H. Assume that uv is not a cut-edge of H. Then H contains a path
from u to v of order at least 3. Let No({u,v}) = {21, 22, ..., 21}, where z;, 1 <i < k, are
in order along C. If z; is joined to exactly one vertex of u,v, then C'lz;, z;41] is a good
segment of C' with respect to {u,v}; if z; is adjacent to both v and v, then C'[z;, z;11] is
a best segment with respect to {u,v}. This implies that dc(u) +de(v) < [(n—7)/2] and

Now we prove the claim.

(1) If H contains only one or two vertices, then the assertion is trivially true. So we
assume that v(H) > 3. Let «’ be a vertex in H such that dg(u') is as small as possible.
Thus dg(v) = [[r/2]/2] for any vertex v € V(H)\{u,u'}. By Lemma 2, H contains a
path from u of order at least min{v(H), [r/2]}.

(2) Let B be the end-block of H containing D and b be the cut-vertex of H contained
in B. If D contains only two vertices, then the assertion is trivially true. So we assume
that v(D) > 3, from which we can see that B is 2-connected. Let u’ be a vertex in
B — b such that dg(u') is as small as possible. Thus every vertex in V(B)\{b, v’} has
degree at least [[r/2]/2] in B. By Lemma 2, B contains a path from b of order at least
min{v(B), [r/2]}, and H contains a path from u of order at least min{v(B), [r/2]} =
min{r(D) + 1, [r/2]}. O

Now we choose D among all the non-separable components and branches of G — C'
such that the order of D is as small as possible. We set a parameter a such that a = 0 if
D is a non-separable component, and a = 1 if D is a branch of G — C.

If D is a branch of G —C, then let H be the component of G —C, and B the end-block
of G — C, containing D; if D is a component of G — C, then let H = B = D.

Case 3.1. v(D) = 1.

Let v be the vertex in D. If D = H, thenles R=G—-C—H, X = N/ (H). If D # H,
then let y be a vertex in H — B, R=G—C — B —yand X = N/ (H)U{y}. Thus every
component of R is joined to at most one vertex in X. Moreover, we have

v(R)=v(G)—v(C)—1-2a

=m+n—s—n+r—1-2a
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=m-+r—s—2a-—1,
and

1X| = de(H) +a > do(v) +a = d(v) > [g] — s+ 1.

Let G' = G[V(R)UX]. Note that there is a path of order at least 2+2a with an end-vertex
in C and all other vertices in H. We have r > 2 + 2a, and

v(G') = v(R) + | X]

>m+r—s—2a—1—l—[g—‘ —s+1
:m+{g—‘+r—25—2a

>m+{gw+2—2$>m.

Claim 8. D # H ordcs(H) > 3.

Proof. Assume that D = H and d¢(H) = 2. Since do(H) = d(v) > [n/2] — s+ 1, we
have n < 8. We claim that every component of G — C' is an isolated vertex. Suppose
on the contrary that there is a component H' of G — C' with order at least 2. Note that
there are at least two better segments of C' with respect to H'. We have v(C) > 6, and
G[V(C)UV(H")] contains a Pg, a contradiction. Thus as we claimed, every component
of G — C'is an isolated vertex.

Note that v(R) = m +r —s—1. Since s < 3 (when n < 8) and r > 2, we have
v(R) > m — 2. If v(R) > m, then there is a C,, in G'; if v(R) = m — 1, then r = 5 < 3,
and one of the two vertices in NZ (H) is nonadjacent to every vertex in R, and there is a
Cy, in G'; if Y(R) = m — 2, then r = s — 1 < 2, and both of the two vertices in N} (H)
are nonadjacent to every vertex in R, and there is a C,, in G’. In any case we get a
contradiction. So we conclude that D # H or de(H) > 3. O

By Claim 8, we can see that | X| > 3.

If there is a cycle C' in R with order r + par(r), then let P be a path between C' and
C’, and C'U P U C" will contain a P,, a contradiction. Thus we assume that R contains
no cycle of order r + par(r). Since

3 3
v(R)+1— §(r+par(r)) =m+r—s—2a—1+1-— §(r+par(r))
>m—s—2a— E-‘ — par(r)
>2n—2s—12>20,

by Lemma 4, there is a path in R of order at least

r 4 par(r)

p=v(R)+1— 5
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:m+r—s—2a—1+1—[g—‘

:m+FJ—s—2a.

2
Note that
r n
p+2X|—3=m+ bJ —s—2a+2({§w —s+1) -3
=m+ n+ par(n) + { J—3s—2a—1
> m+n+ par(n) — 3s — a.
9

We can see that p+ 2| X| —3 > m, when n >
then noting that | X| > 3, we also have

,unlessn=11or 12 and a = 1. If n <8,

p+2|X\—3>m—l—gJ —s—2a+3>m—s5+3=>2m

By Lemma 7, G’ contains a C,,, a contradiction.
Petty Case. n =11 or 12 and a = 1.

We claim that every component of G — C'is a K, Ky, K3 or a star K, ;. Suppose the
contrary that there is a component H' of order at least 4 which is not a star. Since there
are at least two best segments of C' with respect to H', we can see that v(C') > 8. Note
that there is a path of order at least 5 with one end-vertex in C' and all other vertices
in H'. This implies that G[V(C) U V(H')] contains a Pjs, a contradiction. Thus as we
claimed, every component of G — C'is a Ky, Ky, K3 or a star K.

Since H is not a Ky, Ky or K3, we conclude that H is a star. Now we choose a
component H' of G — C that is a maximum star of G — C, and let «’ be the center of H’,
v" and ¢’ be two end-vertices of H'. Let R = G — C — {u/,v',y'}, X' = N} (H') U {y'}
and G” = G[V(R') U X']. By the analysis above, we have

v(R)>zm+r—s—3and |[X'| > [gw —s+1.

Since v(R') > m+r—s—3 > 2n+2—s > 20. If G—C has at least three components,
then R’ is disconnected; if G — C' has exactly two components, then H' is a star with at
least 4 vertices, and R’ is disconnected; if G — C' consists of only one component H’, then
R = H' — {u',v,y'} is empty, and thus disconnected. Thus in any case, R’ is connected.

Let H"” be a component of R with the maximum order. If v(H"”) < [v(R')/2], then
every vertex of R’ has degree at least |v(R')/2| in R'. By Lemma 2, R’ contains a
Hamilton path. If v(H"”) > [v(R')/2] + 1, then H" is a star with at least 4 vertices.
Let u” be the center of the star. Then every vertex in V(R')\{u"} has degree at least
[V(R')/2] in R —u”. By Lemma 2, R’ — u” contains a Hamilton cycle and R’ contains a
Hamilton path. In any case R’ contains a path of order at least p’ = v(R'). Thus we have

P +21X|-3>2v(R)+|X'|=>m

By Lemma 7, G” contains a C,,, a contradiction.
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Case 3.2. v(D) = 2.

Let v,v’ be the two vertices in D. If D = H, thenlet R=G—C — H, X; = N} (H),
Xo = Ni(H). If D # H, then let y be a vertex in H — B, let R =G - C — B — v,
X1 =N (H)U{y}, Xo = Ng(H)U{y}. Thus every component of R is joined to at most
one vertex in X;, i = 1,2, and

v(R)=v(G)—v(C)—2—-2a
=m+n—s—n+r—2-—2a

=m+r—s—2a—2.

Let X = X; U X, and G = G[V(R) U X]. Note that there is a path of order at least
3 + 3a with an end-vertex in C and all other vertices in H. We have that » > 3 + 3a.

Let No(H) = {z1,22,...,2k}, where z;, 1 < i < k, are in order along C. Since
there are at least two better segments, we have | X;\Xs| = | X5\ X;| > 2. For any vertex
zi € No(H): if z; is adjacent to exactly one vertex in {v,v'}, then C'[z;, z;41] is a good
segment; if z; is adjacent to both v and v/, then C'[z;, z;,1] is a better segment. This
implies that

| X[ > de(v) +de(v) +a

22([?‘—8—#1—1—@)—#@

= n + par(n) — 2s — a,
and

v(G') =v(R)+ |X|
>m+r—s—2a—2+n+par(n) —2s—a
>m+3+3a—s—2a—2+n+par(n) —2s—a
>m+n+par(n)+1—3s>m.

Since there are at least two better segments of C' with respect to H, v(C') > 6. Thus
there is a path in G[V(C) UV (H)] of order at least 8, which implies that n > 9.

Claim 9. D # H ordc(H) > 3.

Proof. Assume that D = H and do(H) = 2. Note that the two segments of C' with
respect to H are both better. Since do(H) > d(v) —1 > [n/2] — s, we have n < 12. We
claim that every component of R has order at most 3. Suppose on the contrary that there
is a component H’ of G—C that has order at least 4. Note that H’ is not a star. There are
at least two best segments of C' with respect to H', which implies that v(C) > 8. Recall
that H' is not a star and has order at least 4. We can see that there is a path of order
at least 5 with one end-vertex in C' and all other vertices in H'. Thus G[V(C) UV (H')]
contains a Py, a contradiction. Thus as we claimed, every component of R has order 2
or 3.
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Note that ¥(R) = m +r —s — 2. Since s < 4 (when n < 12) and r > 3, we have
v(R) > m — 3. If v(R) > m, then by Lemma 3 there is a C,,, in G’; if v(R) = m — 1
or m — 2, then we have r < s+ 1 < 5, and one of the two vertices in NZ (H) (N (H))
is nonadjacent to every vertex in R, and there is a C,, in G’; if v(R) = m — 3, then
r=s—1 <3, and every vertex in NZ (H) and N (H) is nonadjacent to every vertex
in R, and there is a C,, in G’. In any case, we get a contradiction. So we conclude that

D # Horde(H) > 3. O

By Claim 9, we have |X;| = |X3| > 3.
If there is a cycle in R of order r + par(r), then there will be a path of order at least
n in G. Thus we assume that R contains no cycle of order r + par(r). Since

3
V(R)—I—l—§(r+par(r)):m+r—s—2—2a+1—2(r+par(r))
r
>Sm—oc—9 — |—| — _
>m—s—2a [QW par(r) — 1

> —2s—2 >0,

by Lemma 4, there is a path in R of order at least

T + par(r
p:y(R)+1_pT()
:m+r—s—2—2a—|—1—[g—‘
r
= —| —s5s—2a—-1
g o

Note that

p+2|X|=5>m+ EJ —s—2a—142(n+par(n) —2s—a)—5
=m + 2n + 2par(n) + EJ —5s —4a —6

> m + 2n + 2par(n) — bs — 7.

We can see that p+2|X|—5 > m, when n > 13. If n < 12, then noting that do(H)+a > 3
and | X| > 5, we also have

p+2|X!—5>m+EJ—5—2a—1+5>m—8+5>m.

By Lemma 8, G’ contains a C,,, a contradiction.
Case 3.3. 3<v(D) < [r/2] — 1.

In this case, r > 7. If D = H, then let R = G —C — H, X; = N}(H) and
Xo = N (H). If D # H, then let y be a vertex in H — B which is not a cut-vertex of
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H—-B/let R=G—-C—-B-y, X; = N;(H)U{y} and Xo = N5 (H)U{y}. Thus every
component of R is joined to at most one vertex in X;, ¢« = 1,2, and

v(R) =v(G) —v(C) —v(D) — 2a

i—‘+1—2a

Zm+n—s—n+r— {2

r

:m+b

J+1—s—2a.

Clearly, every component of R has order at least 2, and

{Mw +4 > P(mﬂr/zﬁl_‘s_%)w +4

2 2
> m4 [m+3(3+21—s—2a)-‘ 4
2n+ 15— 3s
Zm+ 5 = m.

Let X = X; U X5 and G’ = G[V(G — B)\N¢(H)|. Since there are at least two best
segments with respect to H, we have | X7\ Xs| = | X2\ X;| > 2. Let v be a vertex in D.
Since R contains no cycle of length r + par(r) and

r

2J+1—s—2a+1—3-ﬁw

V(R)+1—g(r+par(r)):m+ { 5

>m+2—r—2par(r) — s — 2a
> 2n+ 3 — 2s + par(n) + 2 — 2par(r) — s — 2a
> 2n+par(n)+1—3s >0,

R contains a path of order at least

p=w(r)+1- P
ZW%%EJ+1—S—QG+1—[9

=m+2—s—par(r) — 2a.
Claim 10. D # H ordc(H) > 3.
Proof. Assume that D = H and do(H) = 2. Thus

@mo>[g]—s+1—2:{g]—s—L
and
v(D) > 1+dpv) > [5] —s>s-2> L] -1

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.41 25



This implies that [r/2] = s — 1, v(D) = [r/2] — 1, and dp(v) = v(D) — 1. Note that in
this case every vertex in D has degree v(D) — 1, and thus D is a clique.

If every vertex in N/ (H) is joined to some component of G — C, then by Claim 7, we
can find a path from the cycle C', component H and the two components joined to the
two vertices in NZ (H), of order at least

V(C) + 30(D) = v(C) + 3 - (H - 1)

=n—r+r+par(r) + EW -3

Z N,

a contradiction. Thus there is a vertex v’ in NZ (H) that is not joined to every component

of G-C. Let G" =G —C.
Since [r/2] = s—1and r > 7, we can see that 7 > s + 1. Thus

v(G")=v(G)—v(C)Zm+n—s—n+r=m+r—s=m.

Note that in this case, G — H = R contains a path of order at least p > m +2 — s —
par(r )>m—|—3—r—par( ) and

p—|—21/(H)—1>m+3—r—par(r)+2-<E—‘ —1)—1
=m+3—r —par(r)+r+par(r) —2—1

=1m.
Since

v(R) = m+ F

2J+1_s:m—par(7“)> {ﬂk

2
by Lemma 5, G” contains a C,,, and G contains a W,, with the hub ¢/, a contradiction. [

By Claim 10, |X;| = |Xs| > 3. If D # H, then since there are at least two best
segments with respect to H, we can see that v(C) > 8; if D = H and d¢(H) > 3, noting
that at least two segments of C' with respect to H are best, we have v(C') > 10. Since
v(C)=n—r and r > 7, we conclude that n > 15.

Let H' be a component of R, and let W be the union of X and the set of vertices in
V(C)\N¢(H) not joined to H'. For any two vertices z,y with zy € E(C): if one of x,y
is in N¢(H), then the other one will be in X C W if none of them is in No(H), then at
least one of them will not be joined to H', otherwise there will be a cycle longer than C'.
This implies that [W| > [(n —7)/2] +a = q.

Since

n—r

vV(R)+q—12 m—i—bJ—i—l—s—%—i—{ —‘—i-a—l

n
Em—i—{—

2J—s—a>m,
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(n > 14) and

2
=m+n—r—s—3+par(n —r)— par(r)

p+2q—5>m+2—s—par('r)—2a+2-<[n_r-‘ —|—a)—5

=m+n —3s — 1 + par(n) + par(n — r) — par(r)
>m-+n—3s—1,

we can see that p+2¢ — 5> m, unlessn =15, s=5and r = 7.
Petty Case. n =15, s=5and r =T.

In this case, v(C) = 8 which implies that D # H. It is easy to find a path with two
end-vertices in C' and all internal vertices in H of order at least 7. Thus v(C) > 12, a
contradiction.

By Lemma 9, G’ contains a C,,, a contradiction.

Case 3.4. v(D) > max{[r/2],3}.

In this case, there is a path of order at least 4 with an end-vertex in C' and all other
vertices in H. Thus we have r > 4. Let H' be an arbitrary component of G — C' and
u € V(H'). By Claim 7, H' contains a path from u of order at least [r/2]. Thus for any
edge ry € E(C), either x or y is not joined to any components of G — C', otherwise there
will be a P, in G. Moreover, if r is odd and z is joined to some component, say H', of
G — C, then 2+ will not be joined to any component of G — C other than H' as well.

Case 3.4.1. Every component of G — C' has order less than r.

Let v be a vertex in NZ (H), and let G’ = G[V(G — C)UNZ (H)\{v}]. Note that v is
nonadjacent to every vertex in G', and every component of G’ has order at most

n m

1< pat)—2-1< [ < |2
r s — par(n) 5 5

Let u be a vertex in H. Since
do(H) > do(u) > d(u) — v(H) +1 > d(u) + 2 —r,
and

V(@) =v(G) —v(C)+de(H) —1

+n—s—n+r+dv)+1-r
n
2
=m+ {gw +2—2s =2 m,

m
m

VoV

—s+[ W—s+1+1

by Lemma 3, there is a C,, in G’, a contradiction.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.41 27



Case 3.4.2. There is a component of G — C' of order at least r.

Let H' be a component of G — C' with order at least ». We claim that there is a vertex

win H' with dg:(u) < [r/2] —1. Suppose the contrary that every vertex of H' has degree
at least [r/2] in H'. If H' is 2-connected, then by Lemma 2, there is a cycle of order at

least r in H’', and G will contain a P,; if G is separable, letting B’ be any end-block of

H', V' be the cut-vertex of H' contained in B’, and u' be any vertex in V(B’)\{b'}, then
there is a path from b’ to «’ of order at least [r/2] 4+ 1. Thus G will contain a P, as well.

So we assume that there is a vertex v in H' with dg/(u) < [r/2] — 1.

Let v be a vertex in NI (H'), X = NZ(H)\{v}. If r is odd, then let 8[2,2’] be a

better segment of C' with respect to H' not containing v, and we add 2zt to X. Let
G' = G]V(G — C)U X]. Note that v is nonadjacent to every vertex in G’, and there are

no edges between G — C and X.

Since
do(H') > de(u) = d(u) — dpgr(u)
P {—-‘ —s+1- {—-‘ +1
-[i2- [
we have
| X | =do(H) — 1+ par(r) > [g-‘ 41— {gJ s
and

v(G) = v(G) —v(C) + [ X]
Zm+n—s—n+r+ {2—‘ +1- FJ -5

2 2
>m—st[5]+[5] -s
>m—3s 5 5 s
2m+[gw+3—252m.

Since G — C' contains no cycle of length r + par(r) and

V(G—C’)+1—;(r+par(r)):m+r—s+1—3-[

\
>m— | 5| = pu(r) —s
>2n —2s >0,

G — C contains a path of order at least

r + par(r)

p=v(G-C)+1— 5
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+ +1 m
=m+r—s+1—|=
2

r

=m+ {2

J +1—s.
Clearly |X| > 1. If [r/2] > s — 2, then

p+2|X|—1>m+EJ+1—S+2—1
>m+s—2+1—s+2-1

=1m.

If |r/2] < s—3, then

p+2|X|—1>m+LgJ%—l—s—i—Z-([g—‘—i—l—EJ—S)—I

=m+n+ par(n) +2 — EJ —3s

> m+n+ par(n) + 5 — 4s = m.
Since

WG=C)=m+r—s>[2].

by Lemma 5, there is a C,, in G’, a contradiction.
The proof is complete. U

4 Remarks

A linear forest is a forest such that every component of it is a path. From our main result
of the paper, we can conclude the following result.

Corollary 1. Letn > 2, m > 2n+ 1 and F be a linear forest on m vertices. Then
R(P,, K1V F) =t(n,m).

Proof. Note that the graph constructed at the beginning of Section 3 contains no P, and
its complement contains no K; V F. We conclude that R(P,, K1 V F) > t(n,m). On the
other hand, since K; V F'is a subgraph of W,,, we have R(P,, K1 V F) < R(P,,W,,) <
t(n,m). O

For the case F' is an empty graph, the above formula gives the Ramsey numbers of
paths versus stars when m > 2n + 1. In fact, Parsons [10] gave all the values of the
path-star Ramsey numbers by a recursive formula.
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