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Abstract

We show that the bistatistic of right nestings and right crossings in matchings
without left nestings is equidistributed with the number of occurrences of two certain
patterns in permutations, and furthermore that this equidistribution holds when
refined to positions of these statistics in matchings and permutations. For this
distribution we obtain a non-commutative generating function which specializes to
Zagier’s generating function for the Fishburn numbers after abelianization.

As a special case we obtain proofs of two conjectures of Claesson and Linusson.
Finally, we conjecture that our results can be generalized to involving left cross-

ings of matchings too.
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1 Introduction

Permutations of n elements are counted by n!. To a combinatorialist, objects counted by
some number are often regarded as a representation or concretisation of that number. For
each representation we obtain of a number sequence, we understand it better. The more
objects we have that are counted by n!, the better we will understand that sequence of
numbers.

In 2010, Bousquet-Mélou et al. [1] showed bijectively that the Fishburn numbers,
starting with 1, 1, 2, 5, 15, 53, 217 . . . , count not only the unlabelled (2 + 2)-free posets on
n elements which define them, but also ascent sequences of length n, permutations of [n]
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avoiding the pattern , and matchings on [2n] with no neighbour nestings. This variety
of representations of these numbers indicate that they are well worth studying.

Neighbour nestings in matchings come in two flavours, right and left nesting. As it
turns out, the number of matchings avoiding only one of these flavours, say left nestings,
are counted by n!. The same holds, obviously, for permutations on [n], and also for
(2 + 2)-free posets with some natural labelling, according to a 2011 paper by Claesson
and Linusson [4].

In more detail, we may view a matching on [2n] as a set of arcs between the elements
of [2n] laid out on the real line. A nesting is a pair of arcs, one enclosing the other, and
a right (left) nesting is a nesting where the two right (left) elements are adjacent. In the
matching below, there is a right nesting between edges {2, 7} and {4, 6}, but no other left
or right nestings:

1 2 3 4 5 6 7 8

Turning to permutations, an instance of the pattern in a permutation π is a triple
of entries with the same positions and values, relative to each other, where vertical lines
indicate adjacency in position and horizontal lines indicate adjacency in value. Thus, the
permutation 3412 contains the pattern once, namely 3412. (Note that while 3412 is
a 312 pattern and the last two entries in the pattern are adjacent in position, the first
and last entries in the pattern are not adjacent in value and thus it is not an instance of
the pattern .)

To prove that permutations and matchings without left nestings are equinumerous,
Claesson and Linusson took the following approach. Consider an inversion table, that is
an n-tuple α = (α1, . . . , αn) such that 1 6 αj 6 j. To each inversion table α, we obtain a
permutation if we traverse α from left to right, inserting the number j in position αj from
the left. Similarly, we obtain a matching if we traverse α from left to right, inserting the
right end of a new arc to the far right and the left end immediately to the left of the right
end of the αjth right end from the left. These two bijections induce a bijection between
permutations of [n] and matchings of [2n] with no left nestings, since we would need to
insert the left end of a new arc to the left of a previous left end to obtain a left nesting.
Note also that this bijection ties the given examples of a matching and a permutation
together, via the inversion table α = (1, 2, 1, 2).

During their work, Claesson and Linusson made the observation that the number
of left-nesting-free matchings of [2n] with k right nestings seemed to coincide with the
number of permutations with k occurrences of the pattern , which would make an
interesting refinement. Indeed, their simple recursive bijection gives a right nesting in
step j if and only if αj < αj−1 and the permutation in step j contains the pattern
with top entry j if and only if αj < αj−1. Case closed, right?

Not really! As the bijection progresses, an arc added to the matching may break
previous right nestings. Similarly, the pattern may also be broken when more entries
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are included in the permutation. For example, putting the left end of a new arc between
the arc with the right nesting in the matching drawn above will break the nesting:

1 2 3 4 5 6 7 8 9 10

In the corresponding permutation, via inversion table α = (1, 2, 1, 2, 3), we should add a
5 in position 3, obtaining 34512. This permutation retains its occurrence of the pattern

. On the other hand, inserting the 5 in position 4 would have destroyed the pattern
and the corresponding arc added to the matching would not have ruined the nesting. It is
not hard to see that the total number of right nestings in all matchings of [2n] equals the
total number of occurrences of in permutations of length n, but their equidistribution
is not clear from the bijection.

This paper proves the conjectured equidistribution. We actually show that the bi-
statistic of right nestings and right crossings (pairs of arcs with neighbouring right ends
that cross each other) in matchings is equidistributed with the number of occurrences
of the patterns and in permutations, and furthermore that this equidistribution

holds when refined to positions/values of these statistics in matchings and permutations.
Our proof is built on the bijection from Claesson and Linusson, but the inversion table

in their proof is replaced by a richer structure in ours, namely certain fillings of partition
shapes. (We were inspired by Krattenthaler [6].)

Given a set X ⊆ {2, 3, . . . , n} associated with a partition shape, we obtain a bijection
between some matchings of [2n] and some permutations of [n] such that the occurrences
of right adjacencies and patterns in positions in X match perfectly, whereas other occur-
rences of right adjacencies and patterns may not match at all. We then apply the sieve
principle to obtain a perfect match in the case X = ∅.

The bijections will be presented in more detail in the following four sections, where
Section 5 ties our first results together into a proof of Conjecture 20 in [4]. We then
introduce noncommutative formal power series in Section 6. Section 7 gives generating
functions of matchings and permutations as noncommutative formal power series and we
prove that these two generating functions are identical, giving the equidistribution when
refined to positions. We then abelianize the generating functions and demonstrate that
they coincide with previously known generating functions in special cases. At the end of
Section 8 we obtain a proof of Conjecture 21 in [4]. Finally, in Section 9 we conclude with
some results and conjectures concerning the number of left crossings.

2 Shapes and fillings

For a nonnegative integer n ∈ N we let [n] denote the interval {1, 2, . . . , n}; in particular,
[0] := ∅.
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Figure 1: Left: The shape λ = (1, 2, 3, 4, 4, 4, 5, 5, 6) with `(λ) = 9 and lazy set
X(λ) = {5, 6, 8}. Right: The filling T with λ(T ) = λ as before and dots α(T ) =
(1, 2, 1, 2, 1, 1, 1, 4, 5).

2.1 Shapes

A partition is a weakly increasing sequence of positive integers λ = (λ1 6 λ2 6 · · · 6 λ`),
and we will identify λ with its shape which is the bottom-justified arrangement of squares,
called cells, with λi cells in the ith column from the left. The left part of Figure 1 shows
an example. (This orientation of the shape is more suitable for us than the usual French
or English Young diagram.)

Define the lazy set of λ, denoted by X(λ), to be the set of indices i such that λi−1 = λi.
Also, let `(λ) = ` denote the length (i.e. the number of columns) of λ. A shape is said
to be flat if its rows have distinct lengths and steep if its columns have distinct lengths.
If it is both flat and steep it is a staircase shape. (Note that a flat shape is completely
determined by its length and its lazy set.)

We will number the columns of a shape from left to right and the rows from bottom to
top, and the cells will be identified with their coordinate pairs (i, j) where i is the column
index and j is the row index.

2.2 Fillings

A 0-1-filling, or simply a filling, of a shape is an assignment of the number 0 or 1 to each
cell of the shape. If each column sum is positive or equal to one, the filling is said to be
column-positive or column-strict, respectively. The attributes row-positive and row-strict
are defined analogously, and a filling that is both row- and column-positive is simply
called positive and if it is row- and column-strict it is called strict.

The total sum (i.e. the number of ones) of a filling T is denoted by n(T ). We let
λ(T ) denote the underlying shape of T and for convenience we write `(T ) and X(T )
as shorthand for `(λ(T )) and X(λ(T )). A filling also inherits the properties “flat” and
“steep” from its underlying shape.

Let T(λ) denote the set of fillings of the shape λ, and let T =
⋃
λ T(λ) be the set of

all fillings (of nonempty shapes). Also, if p is a filling property we let Tp(λ) denote the
set of fillings of λ with property p, and if q is a shape property we let Tqp denote the set
of fillings with property p of shapes with property q. For instance, we write Tflat

col-str for the
set of flat column-strict fillings.
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Figure 2: Direct sum of fillings.
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Figure 3: A row-strict filling to the left and the steepening of it to the right.

When drawing fillings we will omit the zeroes and replace the ones by dots, and to each
filling T we associate the set of dots Dots(T ) = {(i, j) : there is a dot at (i, j)} and a set
sequence α(T ) = (α1, . . . , α`(T )) where αi = {j : (i, j) ∈ Dots(T )} contains the row indices
of the dots in column i. If T is column-strict all sets αi are singletons and, for convenience,
in this case we will abuse notation and make no distinction between αi = {j} and j itself.
(Note that if λ is the staircase shape of length n then Tcol-str(λ) can be interpreted as the
set of inversion tables of size n.)

Given two fillings T and T ′, we define their direct sum T ⊕T ′ to be the filling obtained
by putting T ′ to the north-east of T and filling out the rectangle below T ′ with empty
cells. Figure 2 shows an example. A filling that cannot be written as a direct sum of
two fillings are called irreducible. Every filling can be written uniquely as a direct sum
of irreducible fillings, called its irreducible components, and we let comp(T ) denote the
number of irreducible components of T .

A row-strict filling T may be steepened by, for each k, merging all columns of length
k into one single column (with dots in the same rows), see Figure 3. Analogously, a
column-strict filling T may be flattened by merging rows of equal length. The resulting
fillings are denoted by St(T ) and Fl(T ), respectively, and obviously St(T ) is steep and
Fl(T ) is flat.

For a filling T , let Min(T ) = {i : (i, 1) ∈ Dots(T )} denote the set of columns with a
dot on the bottom row, and let Max(T ) = {i : (i, λ(T )i) ∈ Dots(T )} denote the set of
columns with a dot in their topmost cell. The cardinalities of these sets are denoted by
min(T ) and max(T ). Also, let

rmax(T ) = #{(i, j) ∈ Dots(T ) : λi − j < λi′ − j′ for any (i′, j′) ∈ Dots(T ) with i′ > i}

denote the number of dots that are strictly closer to the top of its column than is any dot
strictly to the right; and let

lmin(T ) = #{(i, j) ∈ Dots(T ) : i < i′ for any (i′, j′) ∈ Dots(T ) with j′ < j}
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denote the number of dots that are strictly to the left of any dot strictly below.
For column-strict fillings T we extend our notation and let Rmax(T ) := {i : λi − αi <

λj − αj, ∀j > i} denote the set of columns whose dots are closer to the top than is any
dot to the right. Note that this is compatible with our previous notation in the sense that
# Rmax(T ) = rmax(T ).

Also, define the sets

Des(T ) := {i : αi−1 > αi}
Asc(T ) := {i : αi−1 < αi}
Rep(T ) := {i : αi−1 = αi}

of descents, ascents, and repetitions of a column-strict filling T . In each case, we choose
the position of the rightmost element the pattern, to make the following bijections as
natural as possible. The cardinalities of these sets are denoted by des(T ), asc(T ), and
rep(T ).

Example 1. The column-strict filling T with shape λ = λ(T ) = (1, 2, 3, 4, 4, 4, 5, 5, 6)
and dot positions α = α(T ) = (1, 2, 1, 2, 1, 1, 1, 4, 5) will be used as a running example.
In Figure 1, we give a graphical representation of T . We have minimal dots Min(T ) =
{1, 3, 5, 6, 7} and maximal dots Max(T ) = {1, 2}, as well as Rmax(T ) = {2, 9}, Des(T ) =
{3, 5}, Asc(T ) = {2, 4, 8, 9}, and Rep(T ) = {6, 7}.

A pair of dots is said to be descending if one dot is strictly to the south-east of the other
one, and ascending if one dot is strictly to the north-east of the other one. A sequence
of dots in which each dot is strictly to the south-east (north-east) of the previous dot is
called a descending (ascending) chain.

3 Permutations and bivincular patterns

Let Sn be the set of permutations π of [n] = {1, 2, . . . , n}, let S =
⋃
n>1 Sn denote the set

of all permutations, and let n(π) denote the size of a permutation π.
We will write a permutation π ∈ Sn in single-row notation, that is, as the sequence

π(1) · · · π(n) of values. Let Rmin(π) = {π(j) ∈ [n] : j < k ⇒ π(j) < π(k)} denote the set
of right minima of π and let Rmax(π) = {π(j) ∈ [n] : j < k ⇒ π(j) > π(k)} denote the
set of right maxima of π.

Given a permutation π of [n] and a permutation π′ of [n′], we define their direct sum
π⊕π′ as the permutation obtained by juxtaposition of (the single-row notation of) π and
π′ whereafter the entries of π′ are increased by n(π). Example: 213 ⊕ 2413 = 2135746.
Every permutation π can be written uniquely as a direct sum of irreducible components,
the number of which we denote by comp(π). Example: comp(2135746) = comp(21⊕ 1⊕
2413) = 3.

Bivincular patterns were formally defined in [1]. These are classical patterns in per-
mutations drawn in permutation diagrams with optional horizontal and vertical bars, the
horizontal bars indicating adjacency in value and the vertical bars indicating adjacency
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in position. Since we are interested not only in the number of pattern occurrences but
also in their positions we will draw one of the dots in a pattern slightly bigger to signify
that an occurrence of the pattern is identified with the value of that dot.

In particular, an occurrence of the pattern in a permutation π is an entry π(j) in
the single-row notation of π such that π(j − 1) < π(j). Such an occurrence is called an
ascent top, or simply an ascent, and the set of ascents is denoted by Asc(π). We will also
need the set of ascent bottoms Ascbottom(π) = {π(j) : π(j) < π(j + 1)} towards the end
of this article.

Let us refine the ascent statistic. An occurence of the pattern is an ascent π(j)
such that π(j − 1) = π(j)− 1. These are known as adjacencies, especially in the context
of genome rearrangements [2, 5]. To avoid overloading with adjacencies in matchings, we
call the pattern a short ascent. The long ascents, that is where π(j − 1) < π(j) − 1, are
occurrences of the pattern , where the dashed line indicate a lack of adjacency in value.

We refine the long ascents further. Namely, an occurrence of the pattern is an
ascent π(j) such that the entry π(j)− 1 is to the right of π(j) in the single-row notation
of π, and an occurrence of the pattern is an ascent π(j) such that π(j) − 1 is to the

left of π(j − 1). Let P (π), Q(π), Asclong(π) and Ascshort(π) denote the set of occurrences
of , , and in π, respectively. Clearly, the three sets of occurences of the
patterns , and in a permutation π are disjoint, and their union is Asc(π).

3.1 Barred permutations

Definition 2. A barred permutation π̄ is a permutation where zero or more ascents are
marked by a bar. The set of barred elements is denoted by X(π̄) ⊆ Asc(π̄).

The set of barred permutations is denoted by S̄.

The direct sum π̄⊕ π̄′ of two barred permutations is defined exactly as for non-barred
permutations, with the additional rule that the barred entries of π̄ and π̄′ keep their bars in
π̄⊕ π̄′. Every barred permutation π̄ can be written uniquely as a direct sum of irreducible
barred components, the number of which we denote by comp(π̄). Note that comp(π̄) may
be smaller than comp(π̄), the number of irreducible components of π̄ disregarding the
bars. Example: comp(213̄5746̄) = comp(213̄⊕ 2413̄) = 2 while comp(2135746) = 3.

We now define a map φ : Tflat
col-str → S̄ from flat column-strict fillings to barred permuta-

tions. For a flat column-strict filling T , this map iterates through the sequence α = α(T )
to create a barred permutation π̄.

Start with the single block 〈1〉. Now, for i = 2, 3, . . . , n(T ), if i ∈ X(T ), insert ī at the
right end of the αith block from the left. If i /∈ X(T ), insert the new block 〈i〉 immediately
before the αith block from the left or to the right of the rightmost block if αi = λ(T )i.
Having reached n(T ), we dissolve the block structure to obtain (the single-row notation
of) π̄.

Example 3. Using φ, let us map the flat column-strict filling T with shape λ(T ) =
(1, 2, 3, 4, 4, 4, 5, 5, 6) and α = α(T ) = (1, 2, 1, 2, 1, 1, 1, 4, 5) into S̄. Recall that the lazy
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set of λ(T ) is X(T ) = {5, 6, 8}. The block sequences obtained in each step are

〈1〉
〈1〉〈2〉
〈3〉〈1〉〈2〉
〈3〉〈4〉〈1〉〈2〉
〈3 5̄〉〈4〉〈1〉〈2〉
〈3 5̄ 6̄〉〈4〉〈1〉〈2〉
〈7〉〈3 5̄ 6̄〉〈4〉〈1〉〈2〉
〈7〉〈3 5̄ 6̄〉〈4〉〈1 8̄〉〈2〉
〈7〉〈3 5̄ 6̄〉〈4〉〈1 8̄〉〈9〉〈2〉

Dissolving the block structure gives π̄ = φ(T ) = 7 3 5̄ 6̄ 4 1 8̄ 9 2. We note that
P (π̄) = {5}, Q(π̄) = {8}, and Ascshort(π̄) = {6, 9}, and hence the barred elements
X(π̄) = {5, 6, 8} is a subset of P (π̄) ∪Q(π̄) ∪Ascshort(π̄) = {5, 6, 8, 9}. We also note that
4 ∈ Ascshort(3 4 1 2), but when 5 is added, the short ascent pattern is destroyed. Patterns
on barred elements can, on the other hand, never be destroyed.

There is an inverse φ−1: Given a barred permutation π̄ we construct a flat column-
strict filling T by letting `(T ) = n(π̄) and X(T ) = X(π̄) and letting α(T )i be the number
of entries weakly to the left of i in the single-row notation of π that are not greater than
i and do not belong to X(π̄).

Theorem 4. The map φ : Tflat
col-str → S̄ is a bijection. Furthermore, we have

φ(T ⊕ T ′) = φ(T )⊕ φ(T ′) (1)

for any T, T ′ ∈ Tflat
col-str, and if φ(T ) = π̄ the following equations hold.

n(T ) = n(π̄), (2a)

comp(T ) = comp(π̄), (2b)

Max(T ) = Rmin(π̄), (2c)

Rmax(T ) = Rmax(π̄), (2d)

X(T ) = X(π̄), (2e)

Des(T ) ∩X(T ) = P (π̄) ∩X(π̄), (2f)

Asc(T ) ∩X(T ) = Q(π̄) ∩X(π̄), (2g)

Rep(T ) ∩X(T ) = Ascshort(π̄) ∩X(π̄). (2h)

Proof. First we must check that φ is well-defined. Each barred entry of φ(T ) is preceded
by a smaller entry since it is not the leftmost entry in its block and any greater entries
in the block are inserted to its right. Thus, the barred entries are ascents and it follows
that φ(T ) ∈ S̄.
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That φ−1 as defined above really is an inverse of φ follows from the observation that
each block contains exactly one entry that is not in X(T ) = X(φ(T )).

Turning to the set of equalities, (2a) and (2e) follow directly from the definition of
φ, and (2b) is a consequence of the relation (1) which is straightforward to verify. To
check (2c) we note that a maximal dot in column i in T will put the entry i to the right
of every entry less than i in π̄. Hence i ∈ Rmin(π̄). Conversely, if i ∈ Rmin(π̄), φ−1 will
put the dot in the topmost cell of column i in φ−1(π̄), since i has no smaller entries to its
right in π̄. Equation (2d) is checked similarly: If i ∈ Rmax(T ), it will not have any larger
entries to its right in π̄, hence i ∈ Rmax(π̄), and vice versa.

For the final equalities, (2f), (2g), and (2h), take any i ∈ X(T ) = X(π̄). If i ∈ Des(T ),
αi−1 > αi and the entry i is put to the left of the block containing i− 1; hence i ∈ P (π̄).
If i ∈ Asc(T ), αi−1 < αi and i is put in a block to the right of the block containing i− 1;
hence i ∈ Q(π̄). Finally, if i ∈ Rep(T ), αi−1 = αi and i is put immediately after i− 1 and
in the same block; hence i ∈ Ascshort(π̄).

Example 5. We found in the previous example that π̄ = φ(T ) = 7 3 5̄ 6̄ 4 1 8̄ 9 2.
Clearly, Rmin(π̄) = {1, 2} = Max(T ) and Rmax(π̄) = {2, 9} = Rmax(T ). We also have

P (π̄) ∩X(π̄) = {5} ∩ {5, 6, 8} = {5} = {3, 5} ∩ {5, 6, 8} = Des(T ) ∩X(T ),

Q(π̄) ∩X(π̄) = {8} ∩ {5, 6, 8} = {8} = {2, 4, 8, 9} ∩ {5, 6, 8} = Asc(T ) ∩X(T ),

Ascshort(π̄) ∩X(π̄) = {6, 9} ∩ {5, 6, 8} = {6} = {6, 7} ∩ {5, 6, 8} = Rep(T ) ∩X(T ).

3.2 Hatted permutations

A silly ascent of a permutation π ∈ Sn is an entry π(j) < n in the single-row notation of
π such that π(j−1) < π(j) or j = 1. So the set Ascsilly(π) of silly ascents is obtained from
the set of ordinary ascents by replacing n by π(1) if n is an ascent, that is, Ascsilly(π) =
(Asc(π) ∪ {π(1)}) \ {n}. In particular, the number of silly ascents always equals the
number of ordinary ascents.

In analogy with the refinement Asc(π) = P (π) ∪ Q(π) ∪ Ascshort(π) of ascents, we
partition the set of silly ascents into two types Ascsilly(π) = Psilly(π) ∪ Qsilly(π). Here,
Psilly(π) is the set of occurrences of the pattern , that is, silly ascents π(j) such that
π(j) + 1 is to the left of π(j) in the single-row notation of π. Qsilly(π) is the set of silly
ascents π(j) such that π(j)+1 is to the right of π(j), or equivalently, the set of occurrences
of the pattern in the permutation 0 ⊕ π of [0, n] obtained by inserting a zero at the
very beginning of the single-row notation of π.

Definition 6. A hatted permutation π̂ is a permutation where zero or more silly ascents
are marked by a hat. The set of hatted ascents is denoted by X(π̂) ⊆ Ascsilly(π̂).

The set of hatted permutations is denoted by Ŝ.

The direct sum π̂⊕ π̂′ of two hatted permutations is defined exactly as for barred per-
mutations, and the number of irreducible hatted components of π̂ is denoted by comp(π̂).
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Note that comp(π̂) is not necessarily equal to comp(π̂). Example: comp(213̂5746̂) =
comp(21⊕ 1̂3524̂) = 2 while comp(2135746) = 3.

Let X+(π̂) = X(π̂) + 1 = {i + 1: i ∈ X(π̂)} and define P+
silly(π̂) = Psilly + 1 and

Q+
silly(π̂) = Qsilly + 1 analogously.

We now define a map φsilly : Tflat
col-str → Ŝ from flat column-strict fillings to hatted

permutations. For a flat column-strict filling T , this map iterates through the sequence
α = α(T ) to create a hatted permutation π̂.

Start with the single block 〈0〉. Now, for i = 1, 2, . . . , n(T ), if i+1 ∈ X(T ) (i.e. λ(T )i =
λ(T )i+1) insert î at the right end of the αith block from the left. If i + 1 /∈ X(T ), insert
the new block 〈i〉 immediately after the αith block from the left. Having reached n(T ),
we dissolve the block structure and remove the leading zero to obtain (the single-row
notation of) π̂.

Example 7. Using φsilly, let us map the flat column-strict filling T with shape λ(T ) =

(1, 2, 3, 4, 4, 4, 5, 5, 6) and α = α(T ) = (1, 2, 1, 2, 1, 1, 1, 4, 5) into Ŝ. Recall that the lazy
set of λ(T ) is X(T ) = {5, 6, 8}. The block sequences obtained in each step are

〈0〉
〈0〉〈1〉
〈0〉〈1〉〈2〉
〈0〉〈3〉〈1〉〈2〉
〈0〉〈3 4̂〉〈1〉〈2〉
〈0 5̂〉〈3 4̂〉〈1〉〈2〉
〈0 5̂〉〈6〉〈3 4̂〉〈1〉〈2〉
〈0 5̂ 7̂〉〈6〉〈3 4̂〉〈1〉〈2〉
〈0 5̂ 7̂〉〈6〉〈3 4̂〉〈1〉〈8〉〈2〉
〈0 5̂ 7̂〉〈6〉〈3 4̂〉〈1〉〈8〉〈9〉〈2〉

Removing the block sequence and the leading zero gives π̂ = φ(T ) = 5̂ 7̂ 6 3 4̂ 1 8 9 2.
We note that Psilly(π̂) = {4} and Qsilly(π̂) = {5, 7, 8}, and hence the hatted elements
X(T ) = {4, 5, 7} are a subset of Psilly(π̂) ∪ Qsilly(π̂) = {4, 5, 7, 8}. We also note that
3 ∈ Qsilly(3 4̂ 1 2), but when 5 is added, the pattern is destroyed. Patterns on hatted
elements can, on the other hand, never be destroyed.

There is an inverse φ−1
silly: Given a hatted permutation π̂ we construct a flat column-

strict filling T by letting `(T ) = n(π̂) and X(T ) = X+(π̂) and letting α(T )i be one plus
the number of entries to the left of i in the single-row notation of π that are less than i
and do not belong to X(π̂).

Theorem 8. The map φsilly : Tflat
col-str → Ŝ is a bijection. Furthermore, we have

φsilly(T ⊕ T ′) = φsilly(T )⊕ φsilly(T ′) (3)
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for any T, T ′ ∈ Tflat
col-str, and if φsilly(T ) = π̂ the following equations hold.

n(T ) = n(π̂), (4a)

comp(T ) = comp(π̂), (4b)

Max(T ) = Rmin(π̂), (4c)

Rmax(T ) = Rmax(π̂), (4d)

X(T ) = X+(π̂), (4e)

Des(T ) ∩X(T ) = P+
silly(π̂) ∩X+(π̂), (4f)(

Asc(T ) ∪ Rep(T )
)
∩X(T ) = Q+

silly(π̂) ∩X+(π̂). (4g)

Proof. First we must check that φsilly is well-defined. Let 0⊕ π̂ denote the hatted permu-
tation π̂ preceded by a zero. Each hatted entry of 0 ⊕ π̂ is preceded by a smaller entry
since it is not the leftmost entry in its block and any greater entries in the block are
inserted to its right. Thus, the hatted entries are silly ascents and it follows that π̂ ∈ Ŝ.

That φ−1
silly as defined above really is an inverse of φsilly follows from the observation

that each block contains exactly one entry that is not in X(π̂).
Turning to the set of equalities, (4a) and (4e) follow directly from the definition of

φsilly and (4b) is a consequence of (3) which is straightforward to verify. To check (4c) we
note that a maximal dot in column i in T will put i to the right of every entry less than
i. Hence i ∈ Rmin(π̂). Conversely, if i ∈ Rmin(π̂), φ−1

silly will put the dot in the topmost

cell of column i in φ−1
silly(π̂), since i has no smaller entries to its right in π̂. Equation (4d)

is checked similarly: If i ∈ Rmax(T ), it will not have any larger entries to its right in π̂,
hence i ∈ Rmax(π̂), and vice versa.

For the final equalities, (4f) and (4g), since we know that X(T ) = X+(π̂) it suffices
to show that for i ∈ X(T ), i ∈ Des(T ) if and only if i − 1 ∈ Psilly(π̂). If i ∈ Des(T ),
αi−1 > αi and i is put to the left of the block containing i− 1; hence i− 1 ∈ Psilly(π̂). If
i /∈ Des(T ), αi−1 6 αi and i is put in the same block as the block containing i − 1 or to
its right; hence i− 1 /∈ Qsilly(π̂).

Example 9. We saw in the previous example that π̂ = φsilly(T ) = 5̂ 7̂ 6 3 4̂ 1 8 9 2.
Clearly, Rmin(π̂) = {1, 2} = Max(T ) and Rmax(π̂) = {2, 9} = Rmax(T ). We also have

P+
silly(π̂) ∩X+(π̂) = {5} ∩ {5, 6, 8} = {5} = {3, 5} ∩ {5, 6, 8} = Des(T ) ∩X(T )

and

Q+
silly(π̂) ∩X+(π̂) = {6, 8, 9} ∩ {5, 6, 8} = {6, 8}

= {2, 4, 6, 7, 8, 9} ∩ {5, 6, 8} =
(
Asc(T ) ∪ Rep(T )

)
∩X(T ).

4 Matchings and adjacencies

A matching of size n is a set partition of [2n] into parts of size 2. Each part is called
an arc. For each arc A, we refer to the smaller of its elements as the opener op(A) and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9

Figure 4: The arcs drawn above induce a pictorial representation of the matching
{{1, 6}, {7, 9}, {2, 10}, {8, 12}, {3, 13}, {4, 14}, {5, 16}, {11, 17}, {15, 18}} .

the greater as the closer cl(A). We denote the arcs of a matching M by M1,M2, . . . ,Mn

ordered by closer so that M1 is the arc with the smallest closer.
In the following, we will identify a set of drawn arcs between 2n points on a horizontal

line with a matching M by assigning the numbers 1, 2, . . . , 2n to the points from left to
right, see Figure 4.

A pair of arcs {A,B} is called

• a nesting if op(B) < op(A) < cl(A) < cl(B),

• a crossing if op(A) < op(B) < cl(A) < cl(B),

• a left adjacency if |op(A)− op(B)| = 1,

• a right adjacency if |cl(A)− cl(B)| = 1,

• a left (right) nesting (crossing) if it is both a left (right) adjacency and a nesting
(crossing),

• a double crossing if it is both a left and a right crossing, and

• a single crossing if it is either a left or a right crossing.

Let us index the right adjacencies {Mi−1,Mi} by i, that is the index of the arc with
the rightmost closer, and the left adjacencies by the index of the arc with the leftmost
opener. The set of (indices of) right and left adjencencies are denoted by Radj(M) and
Ladj(M), respectively. Let Rne(M) and Rcr(M) denote the sets of (indices of) right
nestings and right crossings, respectively, and correspondingly, let Lcr(M) denote the
sets of left crossings. Further, let LRcr(M) denote the set of double crossings, indexed by
their right arc. In other words,

Radj(M) := {i : cl(Mi−1) = cl(Mi)− 1},
Rne(M) := {i : op(Mi) < op(Mi−1) < cl(Mi−1) = cl(Mi)− 1}
Rcr(M) := {i : op(Mi−1) < op(Mi) < cl(Mi−1) = cl(Mi)− 1}
Lcr(M) := {i : ∃j : op(Mi) = op(Mj)− 1 < cl(Mi) < cl(Mj)}

LRcr(M) := {i : op(Mi−1) + 1 = op(Mi) < cl(Mi−1) = cl(Mi)− 1}.
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1 2 3 4 5 6

⊕
1 2 3 4 5 6 7 8

=
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5: Direct sum of two matchings.

We also let Rcr0(M) = Rcr(M)\LRcr(M) and Lcr0(M) = Lcr(M)\(LRcr(M)−1) denote
the set of right and left single crossings, respectively, and we let rne(M), rcr(M), lcr(M),
lrcr(M), radj(M), and ladj(M) denote the cardinalities of Rne(M), Rcr(M), Lcr(M),
LRcr(M), Radj(M), and Ladj(M).

Define Min(M) := {i : op(Mi) < cl(M1)} and note that the cardinality min(M) =
# Min(M) coincides with min(M) as defined in [4].

The set of matchings of size n is denoted by Mn. We let M =
⋃
n>1 Mn denote the set

of all matchings. Of special importance is the set Nn of matchings with no left nesting
and the set N =

⋃
n>1 Nn of all such matchings. The size of a matching M is denoted by

n(M).
Define the direct sum M ⊕ M ′ of two matchings M,M ′ ∈ M to be the matching

obtained by putting their arc diagrams side by side, M to the left and M ′ to the right, and
then increasing the labels of M ′ by 2n(M). Figure 5 shows an example. Every matching
M can be written uniquely as a direct sum of irreducible matchings, the number of which
we denote by comp(M).

Example 10. We will investigate the matching

M = {{1, 6}, {7, 9}, {2, 10}, {8, 12}, {3, 13}, {4, 14}, {5, 16}, {11, 17}, {15, 18}}

(see Figure 4 for a pictorial presentation). It has nine arcs, so n(M) = 9. The arcs
are ordered by closers, indicated in the bottom row of numbers. We have Rne(M) =
{3, 5}, Rcr(M) = {6, 8, 9}, LRcr(M) = {6}, Lcr(M) = {1, 2, 3, 5, 6}, and Min(M) =
{1, 3, 5, 6, 7}. Note that M is irreducible, so comp(M) = 1.

Definition 11. A marked matching M̄ is a matching without left nestings where zero or
more of the right adjacencies are marked. The set of (indices of) marked adjencencies is
denoted by X(M̄) ⊆ Radj(M̄).

The set of marked matchings is denoted by N̄.

There is a well-known bijection between strict fillings of shapes of length n and match-
ings on [2n]: Follow the border of the shape from the south-west corner to the north-east
corner and label the edges 1, 2, . . . , 2n as in Figure 6. Consider this to be a labelling of
the rows and columns of the shape. Now, construct a matching on [2n] by drawing an arc
between i and j if there is a dot in the row labelled i and the column labelled j.

Under this bijection it is easy to see that left adjacencies in the matching correspond to
adjacent rows of the same length in the shape, and similarly right adjacencies correspond
to adjacent columns of the same length. Furthermore, a pair of dots in adjacent rows or
columns of the same length correspond to a (left or right) crossing if they are ascending,
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Figure 6: Upper left: The flat column-strict filling T with λ(T ) = (1, 2, 3, 4, 4, 4, 5, 5, 6)
and α(T ) = (1, 2, 1, 2, 1, 1, 1, 4, 5). Upper right: T ′ obtained by removing the empty rows
from T . Bottom: The unique strict filling T ′′ such that Fl(T ′′) = T ′. The corresponding
matching ψ−1(T ′) is the one shown in Figure 4.

and to a (left or right) nesting if they are descending. (Recall that a pair of dots are said
to be descending (ascending) if one of them is strictly to the south-west (north-west) of
the other one.) In particular, matchings without left nestings correspond to strict fillings
such that, for each k, the dots on rows of length k form an ascending chain. Thus, via the
flattening function T 7→ Fl(T ) (i.e. merging rows of equal length) we obtain a bijection
ψ from matchings without left nestings to flat column-strict row-positive fillings, see
Figure 6.

Next we will define a function f : Tflat
col-str → N̄ from flat column-strict fillings to marked

matchings. Given a T ∈ Tflat
col-str, remove its empty rows to obtain a flat column-strict

row-positive filling T ′. Let M = f(T ) be given by M := ψ−1(T ′) together with the marks
X(M) := X(T ). Those marks are legal since X(T ) ⊆ X(T ′) = Radj(M).

Theorem 12. The function f : Tflat
col-str → N̄ is a bijection. Furthermore, we have

f(T ⊕ T ′) = f(T )⊕ f(T ′) (5)

for any T, T ′ ∈ Tflat
col-str, and if f(T ) = M̄ the following equations hold.

n(T ) = n(M̄), (6a)

comp(T ) = comp(M̄), (6b)

Min(T ) = Min(M̄), (6c)
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X(T ) = X(M̄), (6d)

Des(T ) ∩X(T ) = Rne(M̄) ∩X(M̄), (6e)

Asc(T ) ∩X(T ) = Rcr0(M̄) ∩X(M̄), (6f)

Rep(T ) ∩X(T ) = LRcr(M̄) ∩X(M̄). (6g)

Proof. We know from above that ψ is a bijection and it is easy to see that for any subset
X of X(T ′) there is a unique way of inserting empty rows into T ′ to obtain a flat column-
strict filling T with X(T ) = X. This shows that f is a bijection.

Turning to the set of equalities, (6a) and (6d) follow directly from the definition of
f , and (6b) is a consequence of (5) which is straightforward to verify. The remaining
equations, (6c), (6e), (6f), and (6g) are also just matters of inspection.

Example 13. Let T be the flat column-strict filling from our previous examples. We
have previously seen that X(T ) = {5, 6, 8} and for M̄ = f(T ), X(M̄) is the same set. We
have Min(M̄) = {1, 3, 5, 6, 7} = Min(T ). With Rne(M̄) = {3, 5}, Rcr(M̄) = {6, 8, 9}, and
LRcr(M̄) = {6} we find that

Rne(M̄) ∩X(M̄) = {3, 5} ∩ {5, 6, 8} = {5} = {3, 5} ∩ {5, 6, 8} = Des(T ) ∩X(T ),

Rcr0(M̄) ∩X(M̄) = {8, 9} ∩ {5, 6, 8} = {8} = {2, 4, 8, 9} ∩ {5, 6, 8} = Asc(T ) ∩X(T ),

LRcr(M̄) ∩X(M̄) = {6} ∩ {5, 6, 8} = {6} = {6, 7} ∩ {5, 6, 8} = Rep(T ) ∩X(T ).

Equations (2f), (2g), (2h), (4f), (4g), (6e), (6f), and (6g) all include an intersection
with X(T ). Looking back at the examples, we note that without taking this intersection
the equations would not hold. In the following sections we will use inclusion-exclusion
to prove that while the bijections above seem to indicate the opposite, there are other
bijections that allow the restriction to X(T ) to be dropped.

5 Restriction to right nestings

Later on, in Section 7, we will take full advantage of the bijections φ, φsilly, and f from
the previous sections. As a warm-up, in this section we will confine ourselves to hatted
permutations and matchings and we will forget about crossings and consider only right
nestings. In the end we will obtain a proof of Conjecture 20 in [4].

Define the following three sets.

T′
flat

col-str := {T ∈ Tflat

col-str : Des(T ) ⊇ X(T )} ⊂ Tflat

col-str,

Ŝ′ := {π̂ ∈ Ŝ : Psilly(π̂) ⊇ X(π̂)} ⊂ Ŝ,

N̄′ := {M̄ ∈ N̄ : Rne(M̄) ⊇ X(M̄)} ⊂ N̄.

In other words, T′
flat

col-str is the set of flat column-strict fillings such that, for any k, the

dots in columns of length k form a descending chain; Ŝ′ is the set of hatted permutations
where only occurrences of are hatted; and N̄′ is the set of marked matchings where
only right nestings are marked.
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Lemma 14. When restricted to T′
flat

col-str, the maps φsilly and f from Theorems 8 and 12

are bijections T′
flat

col-str → Ŝ′ and T′
flat

col-str → N̄′, respectively. Moreover, the equalities
comp(φsilly(T )) = comp(f(T )) = comp(T ) hold for any T ∈ T′

flat

col-str.

Proof. The first assertion follows immediately from Theorems 8 and 12, and the second
assertion is clear after noting that comp(π̂) = comp(π̂) for any π̂ ∈ Ŝ′.

Define

S̄ ′silly(x, t, s, r) :=
∞∑
n=1

tn
∑
π∈Sn

rcomp(π)srmax(π)xpsilly(π),

N̄ ′(x, t, s, r) :=
∞∑
n=1

tn
∑
M∈Nn

rcomp(M)smin(M)xrne(M).

Our goal in this section is to show that these generating functions are equal and to obtain
an expression for them.

Let us first make a variable substitution, and define

S ′silly(u, t, s, r) := S̄ ′silly(u+ 1, t, s, r), (7)

N ′(u, t, s, r) := N̄ ′(u+ 1, t, s, r). (8)

Proposition 15. The following identities hold.

S ′silly(u, t, s, r) =
∑
π̂∈Ŝ′

tn(π̂)srmax(π̂)rcomp(π̂)u#X(π̂),

N ′(u, t, s, r) =
∑
M̄∈N̄′

tn(M̄)smin(M̄)rcomp(M̄)u#X(M̄)

Proof. Since an element π̂ ∈ Ŝ′ is essentially a permutation together with a subset X(π̂)
of Psilly(π̂), the sieve principle yields the desired result, see e.g. [7]. The same holds for
matchings.

The steepening function T 7→ St(T ) is clearly a bijection from T′
flat

col-str to Tstaircase
col-pos , the

set of column-positive staircase fillings. Moreover, it preserves the statistics n, min, max,
rmax, and comp, and #X(T ) = n(St(T )) − `(St(T )) for any T ∈ T′

flat

col-str. These facts
together with Lemma 14 yield the following theorem.

Theorem 16. The identities

S ′silly(u, t, s, r) = I ′ rmax(u, t, s, r),

N ′(u, t, s, r) = I ′min(u, t, s, r)

hold, where we define the generating functions

I ′µ(u, t, s, r) :=
∑

T∈Tstaircase
col-pos

tn(T )sµ(T )rcomp(T )un(T )−`(T ).

for µ ∈ {min, rmax}.
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Figure 7: Boxed sum of enriched permutations.

It remains to show that I ′ rmax(u, t, s, r) = I ′min(u, t, s, r) and to compute this gener-
ating function. To show equality we will present an involution ι on Tstaircase

col-pos taking rmax
to min while preserving the statistics n, `, and comp.

An enriched permutation filling is a positive filling of a square shape with the property
that each dot is the leftmost dot in its row if and only if it is the topmost dot in its
column. Let R denote the set of enriched permutations. (Note that the dot diagram of a
permutation π (where there is a dot at (i, j) if π(i) = j) is indeed an enriched permutation
filling.)

Given two enriched permutation fillings ρ, ρ′ ∈ R, we define their boxed sum ρ� ρ′ as
the enriched permutation filling obtained by putting ρ′ to the north-east of ρ and then
filling out with empty rectangles at the north-west and south-east corners in order to get
a square shape. Enriched permutation fillings that cannot be written as a boxed sum is
called box-irreducible. Every enriched permutation ρ can be written uniquely as a boxed
sum of box-irreducible components, and the number of such components is denoted by
boxcomp(ρ).

We will define a map g from column-positive staircase fillings to enriched permutation
fillings recursively as follows.

• The filling is mapped to itself.

• If T ∈ Tstaircase
col-pos has more than one column, remove the rightmost column from T to

obtain T ′ ∈ Tstaircase
col-pos , and let ρ′ = g(T ′). Now we obtain ρ = g(T ) by inserting an

empty row of length `(ρ′) into ρ′ at position maxα(T )`(T ) and then inserting the
rightmost column of T to the far right.

It is easy to see that g is a bijection and the inverse map g−1 from enriched permu-
tation fillings to column-positive staircase fillings is straightforward: Given an enriched
permutation filling ρ, delete every cell in ρ that is to the left of the leftmost dot in its
row. Then, flush the remaining cells downwards to obtain the column-positive staircase
filling g−1(ρ).

The bijection g transfers many useful properties as stated by the following theorem
whose proof is just a matter of straightforward verification and therefore omitted.

Theorem 17. The bijection g : Tstaircase
col-pos → R has the property

g(T ⊕ T ′) = g(T )� g(T ′) (9)
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for any T, T ′ ∈ Tstaircase
col-pos , and if ρ = g(T ) the following equations hold.

`(T ) = `(ρ)

n(T ) = n(ρ)

comp(T ) = boxcomp(ρ)

min(T ) = lmin(ρ)

rmax(T ) = rmax(ρ)

We are now able to state the theorem that will give an affirmative answer to Claesson
and Linusson’s Conjecture.

Theorem 18.

∞∑
n=1

tn
∑
π∈Sn

rcomp(π)srmax(π)xpsilly(π) =
∞∑
n=1

tn
∑
M∈Nn

rcomp(M)smin(M)xrne(M)

=
r
∑∞

m=1

∏m
k=1(x− 1)−1

(
(1 + t(x− 1))k−1(1 + st(x− 1))− 1

)
1 + (1− r)

∑∞
m=1

∏m
k=1(x− 1)−1

(
(1 + t(x− 1))k − 1

)
Proof. For any enriched permutation filling ρ, define the transpose of ρ, denoted by ρT , to
be the enriched permutation filling obtained by reflecting ρ in the north-west to south-east
diagonal. Clearly, transposition is an involution on R with the properties that lmin(ρ) =
rmax(ρT ) and boxcomp(ρ) = boxcomp(ρT ).

We define the involution ι on Tstaircase
col-pos by ι(T ) = g−1(g(T )T ). Clearly, ι has the promised

properties and we conclude that

I ′ rmax(u, t, s, r) = I ′min(u, t, s, r). (10)

Figure 8 gives an example of the situation.
Now, we turn to the task of computing I ′min(u, t, s, r). Let

I ′min
irr (u, t, s) = lim

r→0
r−1I ′min(u, t, s, r)

be the corresponding generating function that keeps track only of irreducible fillings. Since
only the first irreducible component of a filling T contributes to min(T ), we have

I ′min(u, t, s, r) = rI ′min
irr (u, t, s)

(
1 + I ′min(u, t, 1, r)

)
, (11)

I ′min(u, t, s, r) =
rI ′min

irr (u, t, s)

1− rI ′min
irr (u, t, 1)

. (12)

Plugging r = 1 into (11) yields

I ′min
irr (u, t, s) =

I ′min(u, t, s, 1)

1 + I ′min(u, t, 1, 1)
=

J(s)

1 + J(1)
, (13)
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min = 3
rmax = 4

min = 3
rmax = 4

lmin = 3
rmax = 4

St7−→ g7−→

xytransposition

St7−→ g7−→

min = 4
rmax = 3

min = 4
rmax = 3

lmin = 4
rmax = 3

Figure 8: The fillings to the left belong to T′
flat

col-str and are steepened to the column-
positive staircase fillings in the middle. These in turn are mapped by g to the enriched
permutations to the right which are each others’ transposes.

where we have put J(s) := I ′min(u, t, s, 1) for notational convenience. Now plugging this
into (12), we obtain

I ′min(u, t, s, r) =
r J(s)

1+J(1)

1− r J(1)
1+J(1)

=
rJ(s)

1 + (1− r)J(1)
. (14)

To compute J(s) = I ′min(u, t, s, 1) we construct a typical column-positive staircase filling
by first choosing the number ` of columns and then, for k = 1, 2, . . . , `, choosing which
cells in the kth column should have a dot. Translated to a generating function, this
procedure becomes

J(s) = I ′min(u, t, s, 1) =
∞∑
`=1

∏̀
k=1

u−1
(
(1 + tu)k−1(1 + stu)− 1

)
.

and plugging this into (14) finally yields

I ′min(u, t, s, r) =
rJ(s)

1 + (1− r)J(1)
=
r
∑∞

m=1

∏m
k=1 u

−1
(
(1 + tu)k−1(1 + stu)− 1

)
1 + (1− r)

∑∞
m=1

∏m
k=1 u

−1
(
(1 + tu)k − 1

) .
From (10) and Theorem 16 we see that substituting x − 1 for u in the last equation,

according to (7) and (8), yields the theorem.

The first equation of the theorem proves Claesson and Linusson’s Conjecture 20 in [4]
after two simple observations:
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• The pattern p used by Claesson and Linusson is our pattern psilly = rotated 180

degrees. Hence our rmax(π) corresponds to their lmin(π).

• The part of their conjecture stating that (rne, comp,min) is equidistributed on
matchings and posets follows from their Proposition 17 together with the fact that
their bijection h preserves rne.

6 Noncommutative formal power series

For the rest of this paper we will continue concerning ourselves with permutation patterns
and matching adjacencies. However, we will not be interested merely in their numbers but
in their positions inside the permutations and matchings as well, so ordinary generating
functions will not suffice anymore. Instead, our results will typically be expressed in terms
of noncommutative power series, sometimes mixed up with commutative variables.

For noncommutative variables we will use bold symbols, like x and y, while the com-
mutative ones will be thin, like x and y. The ring C[[x1, . . . , xm]]〈〈x1, . . . ,xn〉〉 of formal
series over the complex numbers in the variables x1, . . . , xm (commutative) and x1, . . . ,xn
(noncommutative) is an object that requires some care, so in this section we will define
it precisely and discuss some of its properties. Assuming that the reader is familiar with
the integral domain C[[x1, . . . , xm]] of ordinary commutative formal series in variables
x1, . . . , xm, we will define R〈〈x1, . . . ,xn〉〉 for any integral domain R. We will follow Stan-
ley’s exposition in [7, Sec. 6.5] closely, but Stanley deals only with the case where R is a
field.

Let X = {x1, . . . ,xn} be a set of noncommutative variables and let X∗ be the free
monoid generated by X. Thus X∗ consists of all finite strings (including the empty string
1) of letters in X.

Definition 19. A formal (power) series in X over an integral domain R is a function
S : X∗ → R. We write 〈S,w〉 for S(w) and then write

S =
∑
w∈X∗
〈S,w〉w.

The set of all formal series in X is denoted R〈〈X〉〉.

We identify 1 ∈ X∗ with 1 ∈ R and abbreviate the term α · 1 of the above series S as
α. To make R〈〈X〉〉 a ring, we define addition and multiplication in the obvious way:

S + T =
∑
w∈X∗

(〈S,w〉+ 〈T,w〉)w,

ST =
∑

u,v∈X∗
〈S, u〉〈T, v〉uv =

∑
w∈X∗

(∑
uv=w

〈S, u〉〈T, v〉

)
w.

A sequence S1, S2, . . . of formal series is said to converge to a formal series S if for all
w ∈ X∗ the sequence 〈S1, w〉, 〈S2, w〉, . . . has only finitely many terms unequal to 〈S,w〉.
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Theorem 20. S is invertible in R〈〈X〉〉 if and only if 〈S, 1〉 is invertible in R.

Proof. The “only if” direction follows from the fact that 〈ST, 1〉 = 〈TS, 1〉 = 〈S, 1〉〈T, 1〉.
For the “if” direction, suppose 〈S, 1〉 = α is invertible in R and define

T = α−1

∞∑
k=0

(1− α−1S)k.

This sum converges formally and it is easy to check that ST = TS = 1.

It is evident from the definition of addition and multiplication on R〈〈X〉〉 that R〈〈X〉〉
is a domain, that is ST = 0 implies S = 0 or T = 0. Thus, for any S, U ∈ R〈〈X〉〉 with
U 6= 0 there can be at most one T ∈ R〈〈X〉〉 such that S = TU and if there is such a T
we may write T = SU−1 without ambiguity, even if U is not invertible.

7 Generating functions

In this section we will exploit the bijections φ, φsilly, and f from Theorems 4, 8, and 12
in their full splendour, and extract enumerative results in the form of noncommutative
generating functions.

Let x1, . . . ,xk, t be noncommutative variables. If n ∈ N and A1, . . . , Ak are disjoint
subsets of [n], we write [xA1

1 · · ·x
Ak
k ; t]n for the monomial of length n where the ith factor

is xj if i ∈ Aj and t if i /∈ A1 ∪ · · · ∪ Ak. For instance, [x{2,4}y{1}; t]5 = yxtxt.
Let us define three generating functions S̄, S̄silly and N̄ , where S̄ counts permutations

π with respect to the sets P (π), Q(π), and Ascshort(π), S̄silly counts permutations π with
respect to P+

silly(π) and Q+
silly(π), and N̄ counts matchings M without left nestings with

respect to Rne(M), Rcr0(M), and LRcr(M).

S̄(x,y, z, t, s) :=
∞∑
n=1

∑
π∈Sn

srmin(π)[xP (π)yQ(π)zAscshort(π); t]n,

S̄silly(x,y, t, s) :=
∞∑
n=1

∑
π∈Sn

srmin(π)[xP
+
silly(π)yQ

+
silly(π); t]n,

N̄(x,y, z, t, s) :=
∞∑
n=1

∑
M∈Nn

smin(M)[xRne(M)yRcr0(M)zLRcr(M); t]n.

Our goal in this section is to show the equalities S̄(x,y, z, t, 1) = N̄(x,y, z, t, 1) and
S̄(x,y,y, t, s) = S̄silly(x,y, t, s) = N̄(x,y,y, t, s) and to obtain expressions for these
functions. To this end we will make extensive use of the sieve principle, which takes the
following form in terms of noncommutative generating functions.

Theorem 21 (The sieve principle). Let n be a positive integer and let A1, . . . , Ak be
disjoint subsets of [n]. Then,

[(u1 + t)A1 · · · (uk + t)Ak ; t]n =
∑

Y⊆A1∪···∪Ak

[uY ∩A1
1 · · ·uY ∩Ak

k ; t]n.
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Proof. The left-hand side is a product of factors, some of which are t and some of which
are (uj + t) for some j. Expanding all factors of type (uj + t) yields the right-hand
side.

It turns out that it is convenient to make a variable substitution and work instead
with the generating functions

S(u,v,w, t, s) := S̄(u + v + t,v + t,v + w + t, t, s), (15)

Ssilly(u,v, t, s) := S̄silly(u + v + t,v + t, t, s), (16)

N(u,v,w, t, s) := N̄(u + v + t,v + t,v + w + t, t, s). (17)

Of course, we can reverse the substitution by the formulas S̄(x,y, z, t, s) = S(x− y,y −
t, z−y, t, s), S̄silly(x,y, t, s) = Ssilly(x−y,y− t, t, s), and N̄(x,y, z, t, s) = N(x−y,y−
t, z− y, t, s) if we want.

Proposition 22. The following identities hold.

S(u,v,w, t, s) =
∑
π̄∈S̄

srmin(π̄)[(u + v)X(π̄)∩P (π̄)vX(π̄)∩Q(π̄)(v + w)X(π̄)∩R(π̄); t]n(π̄),

Ssilly(u,v, t, s) =
∑
π̂∈Ŝ

srmin(π̂)[(u + v)X
+(π̂)∩P+

silly(π̂)vX
+(π̂)∩Q+

silly(π̂); t]n(π̂),

N(u,v,w, t, s) =∑
M̄∈N̄

smin(M̄)[(u + v)X(M̄)∩Rne(M̄)vX(M̄)∩Rcr0(M̄)(v + w)X(M̄)∩LRcr(M̄); t]n(M̄).

Proof. We will prove only the first identity since the proofs of the other two are completely
analogous.

By the sieve principle,

[(u + v + t)P (π)(v + t)Q(π)(v + w + t)Ascshort(π); t]n(π) =∑
X⊆P (π)∪Q(π)∪Ascshort(π)

[(u + v)X∩P (π)vX∩Q(π)(v + w)X∩Ascshort(π); t]n(π)

and thus, since P (π) ∪Q(π) ∪ Ascshort(π) = Asc(π), we have

S(u,v,w, t, s) =
∑
π∈S

srmin(π)
∑

X⊆Asc(π)

[(u + v)X∩P (π)vX∩Q(π)(v + w)X∩Ascshort(π); t]n(π)

=
∑
π̄∈S̄

srmin(π̄)[(u + v)X(π̄)∩P (π̄)vX(π̄)∩Q(π̄)(v + w)X(π̄)∩R(π̄); t]n(π̄).
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For µ ∈ {min,max}, we define the generating functions

Iµ(u,v,w, t, s) =
∑

T∈Tflat
col-str

sµ(T )[(u + v)X(T )∩Des(T )vX(T )∩Asc(T )(v + w)X(T )∩Rep(T ); t]n(T ).

In the light of Proposition 22, Theorems 4, 8, and 12 immediately yield the following
theorem.

Theorem 23. The identities

S(u,v,w, t, s) = Imax(u,v,w, t, s)

Ssilly(u,v, t, s) = Imax(u,v, 0, t, s)

N(u,v,w, t, s) = Imin(u,v,w, t, s)

hold.

What remains now is to show the equalities Imax(u,v,w, t, 1) = Imin(u,v,w, t, 1) and
Imax(u,v, 0, t, s) = Imin(u,v, 0, t, s) and to derive expressions for these functions.

Lemma 24. For µ ∈ {min,max}, we have

Iµ(u,v,w, t, s) =
∞∑
m=1

m∏
k=1

(
tv−1F µ

k (u,v,w, s)
)
, (18)

where
F µ
k (u,v,w, s) =

∑
T

sµ(T )[(u + v)Des(T )(v + w)Rep(T ); v]`(T ),

the sum taken over all column-strict fillings T of rectangular shapes of height k.

Proof. A flat shape can be seen as a finite sequence of rectangular blocks, where all columns
of height k constitute the kth block. An alternative way of describing a flat column-strict
filling is to specify the number m of blocks and then for each k ∈ [m] specify the kth
block, that is, a column-strict filling of a rectangular shape of height k. But this is exactly
what the right-hand side of (18) does. Furthermore, in both the left-hand side and the
right-hand side

• t keeps track of the leftmost dot in each block,

• (u + v) keeps track of the descents αi−1 > αi lying inside a block (i.e. such that
columns i− 1 and i have the same height),

• v keeps track of the ascents αi−1 < αi lying inside a block,

• (v + w) keeps track of the repetitions αi−1 = αi lying inside a block, and finally

• s counts the minima or maxima of T .
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Now, we are just one final step from success.

Lemma 25. The generating functions F µ
k (u,v,w, s) as defined in Lemma 24 are given

by

Fmax
k (u,v,w, s) =

(
1− vu−1(AB − 1)

)−1 − 1,

Fmin
k (u,v,w, s) =

(
1− vu−1(BA− 1)

)−1 − 1,

where

A = 1 + su(1− sw)−1,

B = (1 + u(1−w)−1)k−1.

In particular, we have

F µ
k (u,v,w, 1) =

(
1− vu−1[(1 + u[1−w]−1)k − 1]

)−1 − 1,

F µ
k (u,v, 0, s) =

(
1− vu−1[(1 + u)k−1(1 + su)− 1]

)−1 − 1

for µ ∈ {min,max}.

Proof. By the sieve principle we have

F µ
k (u,v,w, s) =

∑
T

sµ(T )
∑

Y⊆Des(T )∪Rep(T )

[uY ∩Des(T )wY ∩Rep(T ); v]`(T ). (19)

This generating function chooses a column-strict filling T of a rectangular shape of height
k, and a set Y ⊆ Des(T ) ∪ Rep(T ). Divide the shape λ(T ) into rectangular blocks of
height k, so that adjacent columns i − 1 and i belong to the same block if and only if
i ∈ Y . Since the dots inside each block form a weakly descending chain (i.e. each dot is
below or at the same level as the dot in the column immediately to the left), we get

F µ
k (u,v,w, s) = (1− vu−1Gµ

k(u,w, s))−1 − 1,

where
Gµ
k(u,w, s) =

∑
T

sµ(T )[wRep(T ); u]`(T ),

the sum taken over column-strict fillings T of rectangular shapes of height k such that
Asc(T ) = ∅. The generating function Gµ

k(u,w, s) only has to choose the number of dots
on each row, so Gmax

k (u,w, s) = AB − 1 and Gmin
k (u,w, s) = BA− 1.

Finally, we are ready to present our main theorem.

Theorem 26. The following equalities of generating functions hold:

S(u,v,w, t, 1) = N(u,v,w, t, 1) =
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∞∑
m=1

m∏
k=1

tv−1
[(

1− vu−1[(1 + u[1−w]−1)k − 1]
)−1 − 1

]
and

S(u,v, 0, t, s) = Ssilly(u,v, 0, t, s) = N(u,v, 0, t, s) =
∞∑
m=1

m∏
k=1

tv−1
[(

1− vu−1[(1 + u)k−1(1 + su)− 1]
)−1 − 1

]
.

This implies, via (15), (16), and (17), that S̄(x,y, z, t, 1) = N̄(x,y, z, t, 1) and also that
S̄(x,y,y, t, s) = S̄silly(x,y,y, t, s) = N̄(x,y,y, t, s).

Proof. The theorem follows from Theorem 23 and Lemma 24 and 25.

8 Abelianization

In this section we will replace the noncommutative variables in the generating functions
from the previous section by commutative variables and relate the resulting expressions
to known enumerative results. At the end we will obtain a proof of Conjecture 21 in [4].

From (15) it is clear that

S̄(xt,yt, zt, t, s) = S((x− y)t, (y − 1)t, (z− y)t, t, s).

Substituting commutative variables x, y, z, t for x,y, z, t and using Theorem 26 yields the
following theorem.

Theorem 27. The following identities of generating functions hold:

∞∑
n=1

tn
∑
π∈Sn

xp(π)yq(π)zascshort(π) =
∞∑
n=1

tn
∑
M∈Nn

xrne(M)yrcr0(M)zlrcr(M)

=
∞∑
m=1

m∏
k=1

1

y − 1

(1− y − 1

x− y

[(
1 +

(x− y)t

1− (z − y)t

)k
− 1

])−1

− 1


and

∞∑
n=1

tn
∑
π∈Sn

srmin(π)xp(π)yq(π)+ascshort(π) (20)

=
∞∑
n=1

tn
∑
π∈Sn

srmin(π)xpsilly(π)yqsilly(π) (21)

=
∞∑
n=1

tn
∑
M∈Nn

smin(M)xrne(M)yrcr(M) (22)

=
∞∑
m=1

m∏
k=1

1
y−1

[(
1− y−1

x−y

[
(1 + (x− y)t)k−1(1 + (x− y)st)− 1

])−1

− 1

]
. (23)
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If we set y = 1 we obtain the following corollary.

Corollary 28. The following identitites of generating functions hold:

∞∑
n=1

tn
∑
π∈Sn

xp(π)zascshort(π) =
∞∑
n=1

tn
∑
M∈Nn

xrne(M)zlrcr(M)

=
∞∑
m=1

m∏
k=1

1

x− 1

[(
1 +

(x− 1)t

1− (z − 1)t

)k
− 1

]
,

and

∞∑
n=1

tn
∑
π∈Sn

srmin(π)xp(π)

=
∞∑
n=1

tn
∑
π∈Sn

srmin(π)xpsilly(π)

=
∞∑
n=1

tn
∑
M∈Nn

smin(M)xrne(M)

=
∞∑
m=1

m∏
k=1

1

x− 1

[
(1 + (x− 1)t)k−1(1 + (x− 1)st)− 1

]
.

Now, putting z = 1 or s = 1 in the equations of the last corollary yields

∞∑
n=1

tn
∑
π∈Sn

xp(π) =
∞∑
n=1

tn
∑
M∈Nn

xrne(M) =
∞∑
m=1

m∏
k=1

1

x− 1

[
(1 + (x− 1)t)k − 1

]
and if we set x = 0 into this expression we obtain Zagier’s [9] beautiful generating function
for the Fishburn numbers:

∞∑
n=1

tn#{π ∈ Sn : p(π) = 0} =
∞∑
n=1

tn#{M ∈ Nn : rne(M) = 0}

=
∞∑
m=1

m∏
k=1

(1− (1− t)k).

Conjecture 21 from [4] can now be proved via the following theorem.

Theorem 29. For any positive integer n the following identity of generating functions
holds. ∑

π∈Sn

srmin(π)xpsilly(π)wdes(π) =
∑
M∈Nn

smin(M)xrne(M)wint(M)−1
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Proof. Note that des(π) = n−1−asc(π) = n−1−
(
psilly(π)+qsilly(π)

)
for any permutation

π ∈ Sn and that int(M) − 1 = n − 1 − radj(M) = n − 1 −
(
rne(M) + rcr(M)

)
for any

M ∈ Nn. Now the theorem follows from (22) in Theorem 27.

Seeing that Conjecture 21 from [4] follows from the theorem only requires two simple
observations:

• The pattern p used by Claesson and Linusson is our pattern psilly = rotated 180

degrees. Hence our rmin(π) corresponds to their lmax(π).

• The part of their conjecture stating that the triple (rne,min, lev−1) of statistics on
posets is equidistributed with the triple (rne,min, int−1) on matchings follows from
their Proposition 17 together with the fact that their bijection h preserves rne.

9 Left crossings and open problems

So far, we have only counted right adjacencies. Turning to the left adjacencies, left
nestings are forbidden and thus easily counted. We are, however, able to account for the
number of left crossings as well.

Theorem 30. The following identities of generating functions hold:

∞∑
n=0

tn
∑
π∈Sn

xp(π)yq(π)zascshort(π)υasclong(π) =
∞∑
n=0

tn
∑
M∈Nn

xrne(M)yrcr0(M)zlrcr(M)υlcr0(M)

=
∞∑
m=0

m∏
k=1

1

υy − 1

(1− υy − 1

υ(x− y)

[(
1 +

(x− y)υt

1− (z − yυ)t

)k
− 1

])−1

− 1


and

∞∑
n=0

tn
∑
π∈Sn

srmin(π)xp(π)yq(π)+ascshort(π)υasc(π)

=
∞∑
n=0

tn
∑
π∈Sn

srmin(π)xpsilly(π)yqsilly(π)υasc(π)

=
∞∑
n=0

tn
∑
M∈Nn

smin(M)xrne(M)yrcr(M)υlcr(M)

=
∞∑
m=0

m∏
k=1

1
υy−1

[(
1− υy−1

υ(x−y)

[
(1 + (x− y)υt)k−1(1 + (x− y)υst)− 1

])−1

− 1

]
.

Proof. This theorem amounts only to noting that the number of left adjacencies equals
the number of right adjacencies in a matching, since the number of switches from openers
to closers is always one more than the number of switches from closers to openers when
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we traverse through a matching from left to right. Thus, with no left nestings, the number
of left crossings equals the number of right crossings and nestings. Mapping long right
adjacencies to and , the number of long left crossings must equal the number of long
ascents. Theorem 27 then gives the first generating function. For the second, the patterns

and refine silly ascents, which are equinumerous with ordinary ascents.

It would of course be interesting if we could also pinpoint the positions of the left
crossings. To this end, we need to adjust our ascent definition somewhat. Let the ascent
bottoms be the set Ascbottom(π) = {π(j) : π(j) < π(j + 1)} and the long ascent bottoms
be the set Asclong

bottom(π) = {π(j) : π(j) < π(j + 1)− 1}.
Based on computations up to n = 8 and n = 7, respectively, we make the following

conjectures.

Conjecture 31. The sets

M(n,A,B,C) = {M ∈ Nn|Lcr(M) = A,Rne(M) = B,Rcr(M) = C}

and
P (n,A,B,C) =

{
π ∈ Sn|Ascbottom(π) = A,P+

silly(π) = B,Q+
silly(π) = C

}
are equinumerous for all (n,A,B,C), where n is a positive integer and A,B,C ⊆ [n].

Conjecture 32. The sets

M(n,A,B,C,D)

=
{
M ∈ Nn|Lcr0(M) = A,LRcr(M) = B,Rne(M) = C,Rcr0(M) = D

}
and

P (n,A,B,C,D)

=
{
π ∈ Sn|Asclong

bottom(π) = A,Ascshort(π) = B(π), P (π) = C,Q(π) = D
}

are equinumerous for all (n,A,B,C,D), where n is a positive integer and A,B,C,D ⊆ [n].

Letting go of right adjacencies, we are able to compute the noncommutative generating
function for left adjacencies, which constitutes further evidence for the conjectures above.

Theorem 33. The following equalities of generating functions hold.

∞∑
n=1

∑
π∈Sn

[υAsclong
bottom(π)zAscshort(π)−1; t]n

=
∞∑
n=1

∑
M∈Nn

[υLcr0(M)zLRcr(M)−1; t]n

=
∞∑
m=1

m∏
k=1

(m+ 1− k)
[
1− (m+ 1− k)

(
1− (z− υ)

)−1
(υ − t)

]−1(
1− (z− υ)

)−1
t.
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Proof. To establish the connection between permutations and matchings, there is a fairly
simple bijection f from matchings without left nestings to permutations which maps left
crossings to ascents. We define the bijection recursively.

Assume that M is a matching of size n without left nestings and let M ′ be the matching
obtained by removing arc Mn, i.e. the arc with the rightmost closer. We then define
π = f(M) from π′ = f(M ′) as follows. Assume that op(Mn) = cl(Mj)− 1:

• If j = n, insert n to the far left of π′;

• If op(Mn)− 1 is a closer, insert n to the immediate left of j in π′;

• If op(Mn)− 1 = op(Mk), insert n to the immediate right of k in π′.

It is not obvious that this yields a bijection, since the left of j and the right of k might
coincide. However, it is not hard to see that in the second case, n is inserted to the left
of an ascent top, breaking an ascent. In the third case, n is inserted to the right of a
descent top or to the far right, hence not breaking an ascent. Thus, the map is injective.
It is also clear that left crossings are mapped to ascent bottoms, since the left crossing k
is introduced in the third case, where k becomes the ascent bottom of n. It is also easy
to check that double crossings are mapped to short ascents.

Neither left crossings nor ascent bottoms can be destroyed by adding more arcs or
higher elements.

Turning to the generating function, we note that ascent bottoms in a permutation turn
into ascent tops in the same permutation rotated 180 degrees. Ascent tops are counted
by the patterns P (π), Q(π) and Ascshort(π). Thus, by Theorem 26 we have

∞∑
n=1

∑
π∈Sn

[υAsclong(π)zAscshort(π); t]n

= S̄(υ,υ, z, t, 1)

= S(0,υ − t, z− υ, t, 1)

=
∞∑
m=1

m∏
k=1

t(υ − t)−1
([

1− k(υ − t)(1− (z− υ))−1
]−1 − 1

)
=

∞∑
m=1

m∏
k=1

kt
(
1− (z− υ)

)−1[
1− k(υ − t)

(
1− (z− υ)

)−1]−1
.

Since rotating the permutation turns ascent top k into ascent bottom n+ 1− k, the gen-
erating function of ascent tops should be the vertical reflection of the generating function
for ascent bottoms.

To conclude the picture, we would like to allow left nestings. Is there a nice bijection
from all matchings of size n to, for instance, ternary trees? What kind of patterns would
be the counterparts of and ? What are the generating functions?
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Another possibly fruitful path of generalisation could be to study the distribution of
left and right nestings and crossings in partitions. Recent work of Chen et al. [3] and of
Yan and Xu [8] shows some progress in this direction.
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