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Abstract

We present new generalizations of Olson’s theorem and of a consequence of
Alon’s Combinatorial Nullstellensatz. These enable us to extend some of their
combinatorial applications with conditions modulo primes to conditions modulo
prime powers. We analyze computational search problems corresponding to these
kinds of combinatorial questions and we prove that the problem of finding degree-
constrained subgraphs modulo 2d such as 2d-divisible subgraphs and the search
problem corresponding to the Combinatorial Nullstellensatz over F2 belong to the
complexity class Polynomial Parity Argument (PPA).
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1 Introduction

In this paper, we are interested in combinatorial and computational problems in con-
nection with Alon’s Combinatorial Nullstellensatz [1] which is a landmark theorem in
algebraic combinatorics.

Theorem 1 (Combinatorial Nullstellensatz, Alon, [1]). Let F be an arbitrary field, and
let f ∈ F[x1, . . . xm] be an m-variable polynomial. Suppose that the degree of f is

∑m
j=1 tj,

where each tj is a nonnegative integer, and that the coefficient of
∏m

j=1 x
tj
j is nonzero.

Then, if S1, S2, . . . , Sm are subsets of F with |Sj| > tj for all j = 1, . . . ,m, then there
exists s = (s1, s2, . . . , sm) ∈ S1 × S2 × · · · × Sm such that f(s) 6= 0.
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The following corollary is often used implicitly in applications, see [1].

Corollary 2. Let p be an arbitrary prime. Let us be given some m-variable polynomials
f1, f2, . . . , fn over Fp with no constant terms and Q1, Q2, . . . , Qn ⊆ Fp such that 0 ∈ Qi

for all i. If

m >
n∑
i=1

deg(fi) · |Fp\Qi|,

then there exists a vector 0 6= x ∈ {0, 1}m such that fi(x) ∈ Qi for all i.

Proof. Let f(x) =
∏n

i=1

∏
q 6∈Qi(q−fi(x))−c·

∏m
j=1(1−xj) over Fp, where c =

∏n
i=1

∏
q 6∈Qi q.

It is easy to check that deg(f) = m >
∑n

i=1 deg(fi) · |Fp\Qi| and for a vector x ∈ {0, 1}m,
f(x) 6= 0 if and only if 0 6= x and fi(x) ∈ Qi for all i. Then, with setting Si = {0, 1} for
all i, the Combinatorial Nullstellensatz implies the statement.

The goal of this paper is to give similar theorems for problems modulo arbitrary prime
powers: we prove that if the number m of variables is sufficiently large, the corollary also
holds modulo arbitrary prime powers. We develop a general method for the Combinato-
rial Nullstellensatz-type proofs, where the polynomials are modulo prime powers instead
of primes. As an application, we extend the following theorem of Olson [2] and its gener-
alization by Alon, Friedland and Kalai [3].

Let us be given a prime p, nonnegative integers d1 > d2 > . . . > dn and sets
Q1, Q2, . . . , Qn such that each of them contains zero and Qi ⊆ Zpdi for every i = 1, . . . , n.
Let us denote (d1, d2, . . . , dn) by d and (Q1, Q2, . . . , Qn) by Q.

Alon et al. [3] ask to determine the minimum value F (d,Q) such that for every
m > F (d,Q) and for arbitrary integers aij (i = 1, . . . , n, j = 1, . . . ,m) there exists a
nonempty subset J ⊆ {1, 2, . . . ,m} that fulfills the following condition:∑

j∈J

aij ≡ qi (mod pdi) for some qi ∈ Qi for every i = 1, . . . , n. (♣)

Using this terminology, we can easily formulate Olson’s theorem and its extension by
Alon et al. as follows:

Theorem 3 (Olson, [2]). F (d,Q) =
∑n

i=1

(
pdi − 1

)
, if {0} = Qi for all i.

Theorem 4 (Alon, Friedland, Kalai, [3]). F (d,Q) 6
∑n

i=1

(
pdi − cardp(Qi)

)
where

cardp(Q) denotes the number of distinct elements in Q modulo p.

Whereas Theorem 4 does not seem to be a strong estimation because of cardp(Q) 6 p,
no better estimation has been known thus far.

It is worth noting that for d1 = d2 = · · · = dn = 1, Theorem 3 and Theorem 4
immediately follow from Corollary 2: for fi(x) =

∑m
j=1 aijxj, there exists a vector 0 6=

s ∈ {0, 1}m such that fi(s) ∈ Qi for all i. Consequently, J = {j : sj = 1} fulfills the
condition (♣).
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Motivated by these questions, in this paper, we give analogous theorems modulo arbi-
trary prime powers instead of primes, extending Corollary 2, and give improved bounds
on F (d,Q).

It is also worth noting that Brink [9] gave another extension of Corollary 2 and Olson’s
theorem in a slightly different way. His theorem also deals with arbitrary prime powers,
however, the variables are restricted to sets where the elements are pairwise incongruent
modulo p. In contrast, our results allow one variable, the right hand side of the polynomial,
to be restricted to arbitrary set, and the other variables remain to be restricted to the set
{0, 1}.

1.1 Complexity aspects

As an application of Olson’s theorem, Alon, Friedland and Kalai [3] discussed the following
extremal graph theoretic question. Given a prime power pd and an integer n, the problem
is to determine the smallest value of m such that for every graph on n vertices and m
edges, there exists a nonempty pd-divisible subgraph, that is, a nonempty subset of edges
such that the number of edges incident to every vertex is divisible by pd. Conversely,
determine the maximum number of edges a graph can have without containing a nonempty
pd-divisible subgraph. The exact answer was given in [3], see Theorem 21.

A natural question is to determine the computational complexity of finding such a
subgraph if the graph has sufficiently large number of edges. For the case pd = 2, the
problem is equivalent to finding a cycle in a graph. In this case, there exists a polynomial
time algorithm, but the problem is open in all other cases.

Due to various applications of the Combinatorial Nullstellensatz, it is also a natural
question to determine the computational complexity of the corresponding search problem.
An open question by West [5] is about the complexity of the Combinatorial Nullstellensatz
over F2 = {0, 1}. He conjectures that the corresponding search problem belongs to the
complexity class Polynomial Parity Argument (PPA) defined by Papadimitriou [4]. This
complexity class contains such computational search problems that the existence of a
solution can be proved by so-called parity argument: Every finite graph has an even
number of odd-degree nodes. In this paper, we verify his conjecture.

2 Main results

Now we present the first main result of this paper: the extension of Corollary 2 for
arbitrary prime powers. This theorem also implies Theorem 3 and Theorem 4.

Definition 5. Let h(x) be an integer-valued polynomial in Q[x] such that h(0) is not
divisible by p. We say that B ⊆ Zpd is covered by a set of such integer-valued polynomials
H if for every b ∈ B, we have p | h(b) for at least one h ∈ H. The price of the set B is
defined as

price(B) = min{
∑
h∈H

deg(h) : B is covered by H, such that for all h ∈ H, p - h(0)}.
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Theorem 6. Suppose that there are given some m-variable polynomials f1, f2, . . . , fn over
Z without constant terms and some sets Q1, Q2, . . . , Qn such that Qi ⊆ Zpdi and 0 ∈ Qi

for all i. If

m >

n∑
i=1

deg(fi) · price(Zpdi\Qi)

then exists a 0 6= x ∈ {0, 1}m such that

fi(x) ≡ qi (mod pdi) for some qi ∈ Qi for all i.

We will prove this theorem in Section 3. It is easy to check that Theorem 6 implies
Corollary 2: let d = 1, so 0 ∈ Q ⊆ Fp. Then, {h(x) = x − q : q 6∈ Q} covers Fp\Q with
price |Fp\Q|.

Theorem 3 and Theorem 4 will follow from Theorem 6 via the following general esti-
mation for F (d,Q) which we will prove in Section 4.

Theorem 7. F (d,Q) 6
∑n

i=1 price(Zpdi\Qi).

In Section 4, we will give a general and constructive bound for price(B), which gives
a strictly stronger estimation for F (d,Q) than that one in Theorem 4. We also show a
wide class where this estimation is tight.

In the rest of the paper, we analyze the related computational questions. In Section
6, we will prove that the 2d-divisible subgraph problem belongs to the complexity class
Polynomial Parity Argument (PPA). We reduce the 2d-divisible subgraph problem to the
search problem of the Combinatorial Nullstellensatz over F2 and in Section 5, we verify
West’s conjecture: the search problem of the Combinatorial Nullstellensatz over F2 is also
in PPA, if the polynomial is given in a general form such as in most of the applications.
In Section 7, we focus on degree-constrained subgraphs modulo prime powers, and we will
prove an analogous theorem for Shirazi-Verstraëte theorem [7].

3 The proof of Theorem 6

The proof of Theorem 6 presented here is similar to the proof of Theorem 4 in [3]. Alon
et al. used a similar polynomial to the one in Equation (1), however, they used only the
special construction of Equation (2) instead of arbitrary polynomials. Now we extend it
to arbitrary integer-valued polynomials h and we can use more than one polynomial at
the same time.

We apply the following corollary of Gregory-Newton formula for integer-valued poly-
nomials, see e.g. [6].

Theorem 8. Let h(x) be an integer-valued polynomial in Q[x], namely, for every integer
T , h(T ) is an integer. Then, h(x) can be written as

∑d
r=0 αr

(
x
r

)
where αr ∈ Z.

In the following abstract definitions, one can think of the polynomial f as the ’true
meaning’ of the problem such as fi in Corollary 2, and one can think of the polynomial h
as the covering polynomial in Definition 5.
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The key idea is in the following observation. Although h(x) may have non-integral
coefficients, we can construct a polynomial Ψh(f) over Z that satisfies the equality
Ψh(f)(s) = h(f(s)), if s = (s1, s2, . . . , sm) ∈ {0, 1}m. Since Ψh(f) have integral coef-
ficients, it can be considered over Fp, so some information over Z – and hence, modulo pd

– can be encoded over Fp.

Definition 9. Let f =
∑k

i=1 pi be a polynomial over Z, where each pi is a monomial with
coefficient 1. Let Ψr(f) ∈ Z[x1, . . . , xm] be the following polynomial:

Ψr(f) =
∑

16i1<i2<···<ir6k

pi1pi2 . . . pir .

The degree of the constructed polynomial Ψr(f) is at most r · deg(f). It is worth
noting that if s = (s1, s2, . . . , sm) ∈ {0, 1}m, then the possible values of pi(s) are 0 and 1,
so if the number of pis such that pi(s) = 1 is c, then the number of terms in Ψr(f) that
are 1 at s is precisely

(
c
r

)
.

Definition 10. Let f =
∑k

i=1 pi be a polynomial over Z as above. Let h(x) =
∑d

r=0 αr
(
x
r

)
be an integer-valued polynomial in Q[x] where αr ∈ Z. Let Ψh(f) ∈ Z[x1, . . . , xm] be the
following polynomial:

Ψh(f) =
d∑
r=0

αrΨr(f).

Note that, deg(Ψh(f)) 6 deg(h) · deg(f). In the following lemma, we can obtain
the benefit of these definitions: h(f(x)) can be written as a polynomial with integer
coefficients.

Lemma 11. Let f =
∑k

i=1 pi be a polynomial over Z as above. Let h(x) =
∑d

r=0 αr
(
x
r

)
be an integer-valued polynomial as above. Further, let s = (s1, s2, . . . , sm) ∈ {0, 1}m.

Then,
Ψh(f)(s) = h(f(s)).

Proof. Let c = f(s). Then, the number of terms in Ψr(f) that are 1 at s is precisely
(
c
r

)
,

the other terms are 0. So

Ψh(f)(s) =
d∑
r=0

αrΨr(f)(s) =
d∑
r=0

αr

(
c

r

)
= h(c) = h(f(s)).

Now we are ready to prove Theorem 6.

Proof of Theorem 6. To simplify the notation, let Ci be the complementary set of Qi, that
is, Zpdi\Qi. Due to the definitions, there exists a set of polynomials Hi which covers Ci
with the total degree price(Ci). Let us consider the following polynomial in Fp[x1, . . . , xm]:

f(x) =
n∏
i=1

∏
h∈Hi

Ψh (fi(x))− c ·
m∏
j=1

(1− xj), (1)
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where c is a nonzero constant to be defined later.
The degree of the first part of the polynomial is at most

∑n
i=1

(
deg(fi) ·

∑
h∈Hi deg(h)

)
=
∑n

i=1 deg(fi) ·price(Ci) < m, so the degree of the polynomial f is m, and the coefficient
of x1x2 . . . xm is −c · (−1)m 6= 0.

If x = 0, then the first part is nonzero, because h(0) is not divisible by p for every h ∈
Hi. Let c be the value of the first part at 0. So, f(0) = c− c = 0. Let tj = 1, Sj = {0, 1}.
Then, the conditions of Combinatorial Nullstellensatz hold, so there exists an s ∈ {0, 1}m
such that f(s) 6= 0. For this s ∈ {0, 1}m, at least one component of s is 1 due to f(0) = 0,
so the second part of the polynomial f is zero.

For the sake of contradiction, suppose that fi(s) ∈ Ci. Since Hi covers Ci, there exists
an integer-valued polynomial h ∈ Hi such that p|fi(s). This means that the first part of
the polynomial f is also zero at vector s, so f(s) = 0, and this is a contradiction.

So,
fi(s) ≡ qi (mod pdi) for some qi ∈ Qi for every i = 1, . . . , n,

completing the proof.

4 The generalization of Olson’s theorem:

estimation for F (d,Q)

Let us now derive Theorem 7 from Theorem 6.

Proof of Theorem 7. Let fi(x1, . . . , xm) =
∑m

j=1 aijxj and m >
∑n

i=1 price(Zpdi\Qi). Ap-
plying Theorem 6, there exists a vector 0 6= s ∈ {0, 1}m such that

fi(s) ≡ qi (mod pdi) for some qi ∈ Qi for every i = 1, . . . , n.

Let J = {j : sj = 1}. Then,∑
j∈J

aij = fi(x) ≡ qi (mod pdi) for some qi ∈ Qi for every i = 1, . . . , n.

Hence, F (d,Q) 6
∑n

i=1 price(Zpdi\Qi).

We are ready to show that Theorem 7 implies Theorem 4 and its special case, Theorem
3.

Let d be arbitrary, and 0 ∈ Q′ ⊆ Zpd be a set of distinct integers modulo p. Then, let

h(T ) :=
1

pδ

∏
q 6∈Q′

(T − q), where δ =
d−1∑
r=0

(pr − 1). (2)

For every integer T , in the product
∏

q 6∈Q′(T−q), at least pd−r−1 numbers are divisible
by pr for every 1 6 r 6 d. Hence h(T ) is an integer-valued polynomial. Further, h(T ) is
not divisible by p if and only if no factor is divisible by pd. So h(T ) is divisible by p if
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and only if T ≡ q (mod pd) for some q 6∈ Q′. Hence, h(0) is not divisible by p and h(T )
covers Zpd\Q′ with price deg(h) = pd − |Q′|.

This implies that if 0 ∈ Q is an arbitrary subset of Zpd , price(Zpd\Q) 6 pd−cardp(Q),
so Theorem 4 follows from Theorem 7.

Furthermore, Theorem 7 enables to obtain strictly stronger bounds than the one in
Theorem 4 via the following general constructive estimation on price(B).

Definition 12. For set B of integers modulo p, let κ(B) = |B|. For any d > 1 and
for set B of integers modulo pd, let us define k as the cardinality of the set {b ∈ B :
b is divisible by pd−1} and B̂ as the set of such residues modulo pd−1 that appear in B
more than k times. Then, let κ(B) = k · pd−1 + κ(B̂).

The following definition for κ is equivalent to the above one. It gives a way to compute
the value of κ(B). Let B be a set of integers modulo pd. Now, we define integers
kd−1, . . . , k0 and sets Bd, . . . , B1 such that Br is a set of integers modulo pr. Let Bd = B
and

kd−1 = |{b ∈ B : b is divisible by pd−1}|.
Then, for r = d− 1, . . . , 2, 1, if Br+1 is given, let Br be the set of such residues modulo pr

that appear in Br+1 more than kr times and let kr−1 = |{b ∈ Br : b is divisible by pr−1}|.
Then, κ(B) =

∑d−1
r=0 kr · pr.

Example 13. Let pd = 53 = 125 and

B = {1, 2, 5, 6, 12, 20, 40, 42, 50, 51, 52, 56, 69, 70, 87, 95, 100, 101, 102, 112}.

Then, k2 = 2, because two integers in B are divisible by 25 (50 and 100). Then, B2 =
{1, 2, 12, 20}. For instance, 20 ∈ B2, because 20 ≡ 70 ≡ 95 are in B3, but 6 6∈ B2,
because only 6 ≡ 56 are in B3. So on, k1 = 1, B1 = {2}, and k0 = 1. Hence, κ(B) =
2 · 25 + 1 · 5 + 1 · 1 = 56.

Theorem 14. With the above definition, price(B) 6 κ(B) holds.

Proof. As the first step, we construct a polynomial that covers a complete pr-residue
system modulo pr+1 with price pr.

Let q1, q2, . . . , qpr be a complete pr-residue system and let

h(T ) :=
1

pδ

pr∏
i=1

(T − qi), where δ =
r−1∑
j=0

pj.

For every integer T , the integers T−q1, T−q2, . . . , T−qpr also form a complete residue

system modulo pr, so in the product
∏pr

i=1(T−qi), pr−j factors are divisible by pj for every
1 6 j 6 r. Hence, the product is divisible by pδ and h(T ) is an integer-valued polynomial.

Further, h(T ) is divisible by p if and only if the factor which is divisible by pr is
also divisible by pr+1. This means T ≡ qi (mod pr+1) for some i, that is, h(T ) covers
q1, q2, . . . , qpr modulo pr+1, precisely, it covers the set

{q ∈ Zpd : q ≡ qi (mod pr+1) for some i}
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with price pr.
Then, by Definition 12, the statement immediately follows: one can cover the integers

that are divisible by pd−1 with k such conditions. These conditions also covers other
residues k times, so such residues are not covered by the conditions that appear more
than k times. These remaining residues are in B̂ modulo pd−1 and they can be covered
with κ(B̂).

4.1 A special case when Theorem 7 is tight

Here we show a special case when the theorem is tight. This statement shows a wide class
where Theorem 7 and hence Theorem 6 give tight estimation. In general, tightness is not
yet known. This result also shows cases when Theorem 4 gives strictly weaker estimation
than the one in Theorem 7.

Definition 15. Let R be a subset of {0, 1, . . . , d− 1}. Let us define the set Ω ⊆ Zpd by
the following property: c ∈ Ω if and only if c(r) = 0 for every r ∈ R in the c(d−1) . . . c(1)c(0)

form of c in base p. We call Ω the R-zero set modulo pd. Let σ(R) = (p− 1)
∑

r∈R p
r.

Theorem 16. Let Ri be an arbitrary subset of {0, 1, . . . , di − 1} and denote the Ri-zero
set modulo pdi by Ωi. Then, F (d,Ω) =

∑n
i=1 σ(Ri).

Proof. We show that σ(R) = κ(Zpd\Ω) and hence F (d,Ω) 6
∑n

i=1 σ(Ri) by Theorem 7
and Theorem 14.

The proof is by induction on d. Let B = Zpd\Ω. Further, let d′ = d− 1 and let Ω′ be
the R′ = R\{d− 1}-zero set modulo pd

′
and B′ = Zpd′\Ω′. By induction, σ(R′) = κ(B′).

If d − 1 6∈ R, then k = |{b ∈ B : b is divisible by pd−1}| = 0, and B̂ = B′. Then
κ(B) = 0 + κ(B′) = σ(R′) = σ(R).

If d − 1 ∈ R, then k = |{b ∈ B : b is divisible by pd−1}| = p − 1 and B̂ = B′. Then
κ(B) = (p− 1) · pd−1 + κ(B′) = (p− 1) · pd−1 + σ(R′) = σ(R).

Moreover, these bounds are tight: F (d,Ω) =
∑n

i=1 σ(Ri), because if m =
∑n

i=1 σ(Ri),
then there exists integers aij such that the proper nontrivial subset does not exist. Let
aij be −1 if

∑i−1
l=1 σ(Rl) < j 6

∑i
l=1 σ(Rl), and zero otherwise. However, in the range

−pdi , . . . , 0, the largest integer of the Ri-zero sets modulo pdi is∑
r 6∈Ri

(p− 1) · pr = pdi − 1−
∑
r∈Ri

(p− 1) · pr = pdi − 1− σ(Ri) ≡ −σ(Ri)− 1 (mod pdi)

and −σ(Ri) 6
∑

j∈J aij 6 0, hence, no nonempty subset exists that fulfills the condition
(♣).

5 Complexity aspects of

the Combinatorial Nullstellensatz

Due to various applications of the Combinatorial Nullstellensatz, it is a natural and im-
portant question to determine the computational complexity of the corresponding search
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problem. Now, we study the complexity of the Combinatorial Nullstellensatz over F2. It
is worth noting that if ti = 0 for some indices, then we could choose |Si| = 1, so in an
appropriate vector (s1, s2, . . . , sm), we have to choose the only element of Si to si and
therefore, we could replace xi by the only element of Si in f . Hence, we may assume that
Si = F2 for every index i and the problem is finding a vector (s1, s2, . . . , sm) ∈ Fm2 such
that f(s1, s2, . . . sm) 6= 0.

The complexity of finding such a vector whose existence is guaranteed by the Combi-
natorial Nullstellensatz depends on the input form of the given polynomial.

It is easy to check that the problem belongs to P if the polynomial is given explicitly

as the sum of monomials. First, we can replace the term x
ti1
i1
x
ti2
i2
. . . x

tik
ik

by xi1xi2 . . . xik ,
because these are equal due to the fact 0t = 0, 1t = 1 in F2. Substitute 0 and 1 to x1: let
g(x2, . . . , xn) = f(0, x2, . . . , xn) and h(x2, . . . , xn) = f(1, x2, . . . , xn). If in f the coefficient
of x2x3 . . . xm is nonzero, then in g the coefficient of x2x3 . . . xm will be also nonzero. If it is
zero, in h the coefficient of x2x3 . . . xm will be nonzero. Then, substitute 0 and 1 to x2 and
in one of them the coefficient of x3x4 . . . xm will be nonzero, and so on. Finally, we obtain
a constant nonzero polynomial, and this means that for this substitution s ∈ Fm2 , f(s) 6= 0
holds. It is worth noting that a similar polynomial time algorithm can be obtained over
arbitrary finite field, if the polynomial is given explicitly.

However, if the polynomial is given as the sum of products of polynomials (such as in
most of the applications), the problem is not known to be solvable in polynomial time.
Furthermore, the existence of an efficient general algorithm for this case would imply that
there cannot be any one-way permutations [10].

An open question in [5] is about the complexity of the Combinatorial Nullstellensatz
conjecturing that the problem over F2 belongs to the class Polynomial Parity Argument
(PPA) defined by Papadimitriou [4].

In this section, we verify this conjecture: we prove that the Combinatorial Nullstellen-
satz over F2 is in PPA if the polynomial is given as the sum of products of polynomials.
Consequently, the applications given in Sections 6 and 7 also belong to PPA.

Roughly speaking, the class PPA is a subclass of the semantic class TFNP, the set of
all total search problems. A search problem is called total if the corresponding decision
problem is trivial, that is, for every feasible input, there exists a solution. A total problem
is usually equipped with a mathematical proof showing that it belongs to TFNP, so the
problems can be classified based on their proof styles. The complexity class PPA is the
class of all search problems whose totality is proved using the parity argument: Every
finite graph has an even number of odd-degree nodes.

It is worth noting that the class TFNP coincides with the set of search variants of NP
∩ coNP problems [11], so the class PPA is between the the set of search variants of P and
NP.

The class PPA can be defined with a canonical complete problem, the End Of The
Line. Hence, a computational search problem is in PPA if and only if it is reducible to
the problem End Of The Line.

In this problem, we are given a graph G = (V,E) on exponentially many nodes. It
can be assumed that each node has an unique code from Σn, that is V ⊆ Σn. The edges
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of the graph are described by a polynomial time algorithm in n. This polynomial time
pairing function is the following.

For an undirected graph G = (V,E), the function φ : V × V → V ∪ {∗} is called
a pairing function, if it satisfies the following conditions: if vw is not an edge of G, let
φ(v, w) = ∗. Otherwise, it outputs a node w′ = φ(v, w) such that w′ is also connected to
v and φ(v, φ(v, w)) = w holds. Furthermore, for every v, at most one such node w exists
with property φ(v, w) = w.

It means that φ pairs up the neighbours of an input node v: for an even-degree node
v, it pairs its neighbours completely, and for an odd-degree node v, φ pairs all but one
neighbours. The task is to find an odd-degree node v and a node w such that φ(v, w) = w.
This node w verifies that v is an odd-degree node.

The problem End Of The Line can be defined as follows.

End of the Line.

Input: an undirected finite graph G = (V,E) in the above way. The
edges of the graph is described by a polynomial time pairing func-
tion. Furthermore, a node ε is given which has odd number of
edges and a node δ which shows it: φ(ε, δ) = δ.

Find: another node v which has odd number of edges and a node w
which give the certificate φ(v, w) = w.

In order to prove problems belonging to PPA, we give reductions to the problem End
Of The Line.

It is worth noting that this problem is computationally equivalent to the problem in
which the nodes have at most two neighbours, a node of degree one is given and the task
is to find another node which has exactly one incident edge. (Instead of the polynomial
time pairing function, a polynomial time algorithm is given which outputs the neighbours
of an input node.) It is easy to see that this is an easier problem, however, Papadimitriou
showed that they are computationally equivalent.

In [4], Papadimtriou shows that the following computational problem Chévalley
MOD 2 belongs to the class PPA. The required vector exists due to Chévalley’s following
theorem.

Theorem 17 (Chévalley). Let F be a finite field with characteristic p. Let p1, p2, . . . , pn
be polynomials in m variables over F. Suppose that

∑n
i=1 deg(pi) < m. Then, the number

of common solutions of the polynomial equation system pi(x1, . . . , xm) = 0 (i = 1 . . . n) is
divisible by p. In particular, if there is a solution, there exists another.
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Chévalley MOD 2.

Input: polynomials p1, p2, . . . , pn in F2[x1, . . . xm] such that

n∑
i=1

deg(pi) < m.

Also, we are given a root (c1, c2, . . . , cm) ∈ Fm2 of the equation
system pi(x) = 0 (i = 1, . . . , n).

Find: another root of the equation system pi(x) = 0 (i = 1, . . . , n).

Using Theorem 18 and that Chévalley’s theorem can be proved via a reduction to
the Combinatorial Nullstellensatz, see [1], one can give an alternative proof for the PPA
membership of Chévalley MOD 2. Originally, this reduction motivates West’s question
[5] about the complexity of the Combinatorial Nullstellensatz.

Now, let us define the following computational problem. Note that the required vector
exists due to the Combinatorial Nullstellensatz.

Combinatorial Nullstellensatz over F2.

Input: a polynomial f in m variables in a general form

f =
k∑
i=1

(
mi∏
j=1

pij

)
,

where pij is an explicitly given polynomial in F2[x1, . . . xm], k,mi

and the number of monomials of pij is polynomially bounded in
m. Suppose that

∑mi
j=1 deg(pij) 6 m for all i and there is a

polynomial time pairing function which can pair up all but one
terms x1x2 . . . xm to prove that the degree of f is m and the
coefficient of x1x2 . . . xm is nonzero.

Find: a vector (s1, s2, . . . , sm) ∈ Fm2 such that f(s1, s2, . . . , sm) 6= 0.

Theorem 18. The Combinatorial Nullstellensatz over F2 is polynomially re-
ducible to End of the Line. Consequently, The Combinatorial Nullstellensatz
over F2 is in PPA.

The proof of Theorem 18 is similar to the proof for PPA membership of Chévalley
MOD 2. Our construction is based on that proof, nevertheless, we need a new key idea
about the upper-level pairing function which pairs up blocks whose value at 1 for the
substitution x.
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We construct a graph, the nodes correspond to the vectors and the terms. The nodes
with odd degree correspond to the vectors x such that f(x) 6= 0 and an extra node w. As
we mentioned, we have to present a pairing function. It can be done easily at the terms,
but it is more complicated at the vectors. The main idea here is the following.

We call the polynomials
∏mi

j=1 pij as the blocks of the input polynomial f . Each term
is the product of monomials from the given polynomials of a block, so each term in the
ith block can be represented by an (mi + 1)-tuple of integers: (i, ai,1, . . . , ai,mi). The
first coordinate shows the block the term belongs to, and the other coordinates show the
monomials the term is product of: it is the product of ai,jth monomials of pij. (Note that
the same term might have more than one occurrence and these occurrences are represented
by different tuples.) In the next proof, we will pair up these tuples.

Remark 19. In a standard PPA-type problem definition it is required that the assumptions
of the problem should be in NP. If the input is feasible, we have to return a solution, but
if the input is infeasible, we have to return a polynomial certificate of infeasibility.

It is easy to check that the assumptions in the definition of the Combinatorial
Nullstellensatz over F2 are in NP. In the case of an infeasible input, we can give
the following certificate: the index i such that

∑mi
j=1 deg(pij) > n or two occurrences of

the term x1x2 . . . xm for which the polynomial time pairing function fails.

Proof of Theorem 18. We shall construct a graph Γ whose odd-degree nodes precisely
correspond to appropriate vectors s such that f(s) 6= 0 and furthermore, we add an extra
node w: the standard leaf.

The graph is bipartite. The nodes on one side are all the vectors in Fm2 and the extra

node w. The nodes of the other side are the terms of the polynomial f =
∑k

i=1

(∏mi
j=1 pij

)
.

Each term is represented in the above way as an (mi + 1)-tuple of integers.
There is an edge between vector x and term t if and only if t(x) = 1, and there is an

edge between the extra node w and the term t if and only if t(x) = x1x2 . . . xm.
It is easy to see that for a vector x, f(x) 6= 0 holds if and only if its degree is odd.

The extra node w also has an odd degree because the coefficient of x1x2 . . . xm is nonzero
due to the assumptions.

All nodes in the other side have even degree. In Γ, the degree of each term t(x) =
x1x2 . . . xm is precisely 2, because it is connected only to the vector (1, 1, . . . , 1) and to the
extra w node. Let t be any other term, and let xl be a variable not appearing in t. Then,
if t is connected to (s1, s2, . . . , 0, . . . , sm), it is also connected to (s1, s2, . . . , 1, . . . , sm), so
the degree of these nodes are even.

Therefore, odd-degree nodes are precisely the vectors s such that f(s) 6= 0 and the
extra node w.

However, the nodes of this graph have exponentially large degrees, and therefore we
must exhibit a pairing function between the edges incident to a node.

For a node corresponding to the term t(x) 6= x1x2 . . . xm, we pair up the vector x for
which t(x) = 1 to (x1, x2, . . . , 1 − xl, . . . xm) where xl is such a variable which does not
appear in t. (We choose the smallest such index l.) The degree of nodes corresponding
to terms x1x2 . . . xm in this side is only 2, its edges can be simply paired up.
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For such node corresponding to a vector x that f(x) = 0 holds, we should pair up the
terms such that t(x) = 1. Suppose that term t is represented by (i, ai1, . . . , aij, . . . , ai,mi).

Denote its block by g =
∏mi

j=1 pij. If g(x) = 0, then there is an index j such that
pij(x) = 0. Pick the smallest such j. There is an even number of monomials of pij such
that pij(x) = 1. We pair these monomials by a pairing function φi. Then the mate of
term (i, ai1, . . . , aij, . . . , ai,mi) is (i, ai1, . . . , φi(aij), . . . , ai,mi).

It is a more complicated case when g(x) = 1. Since f(x) = 0, there is an even

number of indices l, such that
(∏ml

j=1 plj

)
is 1 at x. We pair these blocks by a pair-

ing function φ. So, for i and every j = 1, . . . ,mi, pij is 1 at x, and we can pair all
but one monomials of pij with pij(x) = 1 by a pairing function φij. One of them does
not have a mate, denote its index by ωij. If aij = ωij for all indices j, then we de-
fine its mate to be (φ(i), ωφ(i),1, . . . , ωφ(i),mφ(i)

). Otherwise there is an index j such that
aij 6= ωij. Pick the smallest such j. Then the mate of (i, ai1, . . . , ai,mi) is defined as
(i, ai1, . . . , φij(aij), . . . , ai,mi).

Observe that this gives a bijection and a correct pairing function.
For such node corresponding to a vector x that f(x) = 1 holds, we should pair up all

but one terms such that t(x) = 1. If t is a term of such block g =
∏mi

j=1 pij that g(x) = 0
holds, it can be paired up similarly to the previous case. If g(x) = 1, we pair these blocks
by a pairing function. One of them does not have a mate, denote its index by Ω. If g is
not the block with index Ω, the pairing can be similar to the previous case. If g is the
block with index Ω, we can pair up the terms similarly to the previous case, only the term
t represented by (Ω, ωΩ1, . . . , ωΩ,mΩ

) does not have a mate. So we paired up all but one
neighbours of the node corresponding to the vector x.

Finally, we pair up the terms which are connected to the extra node w. These are the
terms x1x2 . . . xm. Due to the assumptions, there is a polynomial time pairing function
which can pair up all but one terms x1x2 . . . xm, so it can pair up the nodes which are
connected to the extra node w.

We presented a polynomial algorithm that computes the mate of an edge out of a
node, so the proof is complete.

6 Complexity of finding divisible subgraphs

Alon, Friedland and Kalai proved the following corollary of the original Olson’s Theorem 3
and using it in the case p = 2, they derived the result on pd-divisible subgraphs (Theorem
21) mentioned in the Introduction. We present their proofs since they also show the
reductions between the corresponding computational problems.

Corollary 20 ([3]). Let n,m be positive integers and let p be a prime. Let d1 > d2 >
. . . > dn > 1 positive integers and for i = 1, . . . , n, j = 1, . . . ,m let aij be an integer such
that

∑n
i=1 aij is divisible by p for every j index. If m > pdn−1 − 1 +

∑n−1
i=1 (pdi − 1), then

there is a subset ∅ 6= J ⊆ {1, 2, . . . ,m} such that
∑

j∈J aij is divisible by pdi for every
i = 1, . . . , n.
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Proof in [3]. For j = 1, . . . ,m, let bij = aij, if i = 1, . . . , n− 1 and let bnj = 1
p

(
∑n

i=1 aij).

According to Olson’s Theorem 3, there is an ∅ 6= J ⊆ {1, 2, . . . ,m} such that
∑

j∈J bij
is divisible by pdi for every i = 1, . . . , n − 1 and

∑
j∈J bnj is divisible by pdn−1 because

m > pdn−1 − 1 +
∑n−1

i=1 (pdi − 1).
However,

∑
j∈J bnj =

∑
j∈J

1
p

(
∑n

i=1 aij) is divisible by pdn−1 , so
∑

j∈J (
∑n

i=1 aij) is

divisible by pdn . Because of d1 > d2 > . . . > dn > 1,
∑

j∈J bij =
∑

j∈J aij is divisible

by pdn for every i = 1, . . . , n − 1, hence
∑

j∈J anj should be divisible by pdn and we are
done.

Theorem 21 (Alon, Friedland, Kalai, [3]). For the maximum number of edges of a graph
G on n vertices that contains no nontrivial pd-divisible subgraph,

f(n, pd) =

{
(pd − 1) · n if p is an odd prime.

(2d − 1) · n− 2d−1 if p = 2

Proof in [3]. Here, we only prove the direction 6 of the equality. In [3], Alon et al. showed
by examples that these bounds are tight.

Denote the number of edges of G by m. Let aij = 1 if and only if the jth edge is
incident to the ith vertex, as usual. (That is, ((aij)) is the incidence matrix of G.)

For an odd prime p, suppose m > (pd − 1) · n. According to Olson’s Theorem 3 with
d1 = d2 = · · · = dn = d, there is a nonempty subset J of edges such that

∑
j∈J aij is

divisible by pd for every i, so there is nontrivial pd-divisible subgraph.
For p = 2, suppose m > (2d− 1) · n− 2d−1 = (n− 1) · (2d− 1) + (2d−1− 1). According

to Corollary 20 with d1 = d2 = · · · = dn = d, there is a nonempty subset J of edges such
that

∑
j∈J aij is divisible by pd for every i, so there is nontrivial pd-divisible subgraph.

The conditions of corollary hold, because
∑n

i=1 aij = 2 for every index j.

Let us now define the computational problems corresponding to the above theorems.
The existence of the solutions is guaranteed by Theorem 21, Theorem 3 and Corollary 20,
respectively.

2d-divisible subgraph.

Input: a positive integer d and a graph G = (V,E), where |V | = n,
|E| = m and m > n · (2d − 1)− 2d−1 holds.

Find: a 2d-divisible subgraph, that is, an ∅ 6= F ⊆ E such that for every
v ∈ V , the number of incident edges of F is divisible by 2d.

Olson MOD 2d.

Input: a positive integer d, the integers n and m such that m > n·(2d−1)
and given integers aij (i = 1, . . . , n, j = 1, . . . ,m).

Find: a ∅ 6= J ⊆ {1, 2, . . . ,m} such that
∑

j∈J aij is divisible by 2d for
every i.
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Even-Sum Olson MOD 2d.

Input: a positive integer d, the integers n and m such that m > n · (2d−
1)− 2d−1 and given integers aij (i = 1, . . . , n, j = 1, . . . ,m) such
that 2 |

∑n
i=1 aij.

Find: a ∅ 6= J ⊆ {1, 2, . . . ,m} such that
∑

j∈J aij is divisible by 2d for
every i.

As we have seen in the previous sections, Olson’s theorem can be proved via the
Combinatorial Nullstellensatz. It implies the following propositions.

Theorem 22. Olson MOD 2d and Even-Sum Olson MOD 2d are polynomially
reducible to the Combinatorial Nullstellensatz over F2. Consequently, they are
in PPA.

Proof. In the proof of Theorem 7 and Theorem 6, we construct a polynomial f in m
variables over F2 such that deg(f) = m and the coefficient of

∏m
j=1 xj is nonzero. Such

vectors s that satisfy f(s) 6= 0 precisely correspond to the subsets ∅ 6= J ⊆ {1, 2, . . . ,m}
such that

∑
j∈J aij is divisible by 2d for every i.

We only have to check that this reduction is a polynomial reduction. In the proofs the
size of the constructed polynomial is O(2d ·d·n+m), which can be bounded O(nm log(m))
due to condition m > n · (2d − 1), so the reduction is polynomial.

For reduction to the Combinatorial Nullstellensatz over F2, we have to
present a pairing function which can pair up terms x1x2 . . . xm. Here it is obvious, because
there is only one term x1x2 . . . xm.

Similarly, one can check that Even-Sum Olson MOD 2d is also polynomially re-
ducible to the Combinatorial Nullstellensatz over F2.

The reduction in the proof of Theorem 21 immediately implies the following.

Theorem 23. 2d-divisible subgraph is polynomially reducible to Even-Sum Olson
MOD 2d. Consequently, 2d-divisible subgraph is in PPA.

7 Degree-constrained subgraphs: Louigi’s problem

In Louigi’s problem, given are a graph G = (V,E) and forbidden sets F (v) ⊆ N for every
v ∈ V . By an F -avoiding subgraph we mean a subgraph ∅ 6= E ′ ⊆ E such that for every
v ∈ V the number of incident edges of E ′ is not in F (v). Shirazi and Verstraëte [7] proved
the following theorem. We give a new proof using our techniques.

Theorem 24 (Shirazi, Verstraëte [7]). If 0 6∈ F (v) for all v ∈ V and
∑

v∈V |F (v)| < |E|,
then there exists a nontrivial F -avoiding subgraph.
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Proof. Let p be a prime greater than the maximum degree in G. For the node vi ∈ V , let
Qi = Zp\F (vi) and aij = 1 if the node vi is incident to the edge ej ∈ E, and 0 otherwise.
Due to the conditions,

∑
vi∈V price(Zp\Qi) =

∑
vi∈V |Zp\Qi| =

∑
v∈V |F (v)| < |E|, so

according to Theorem 7, there exists a subset J , which corresponds to a nontrivial F -
avoiding subgraph.

Note that, in [7], the authors also proved their theorem via the Combinatorial Null-
stellensatz, but in a different way via polynomials over R.

One may ask a version of Louigi’s problem modulo prime powers: given are a prime
power pd, a graph G = (V,E) and forbidden sets modulo pd: F (v) ⊆ Zpd for every v ∈ V .
By an F -avoiding subgraph modulo pd we mean a subgraph ∅ 6= E ′ ⊆ E such that for
every v ∈ V the number of incident edges of E ′ is not congruent to any number in F (v)
modulo pd. We can show the following.

Theorem 25. If 0 6∈ F (v) for all v ∈ V and
∑

v∈V price(F (v)) < |E|, then there exists
a nontrivial F -avoiding subgraph modulo pd.

Proof. Similarly to the proof above, for the node vi ∈ V , let Qi = Zpd\F (vi) and aij = 1
if the node vi is incident to the edge ej ∈ E, and 0 otherwise. Due to the conditions,∑

vi∈V price(Zp\Qi) =
∑

v∈V price(F (v)) < |E|, so according to Theorem 7, there exists

a subset J , which corresponds to a nontrivial F -avoiding subgraph modulo pd.

Frank et al. [8] gave a polynomial time combinatorial algorithm for finding an F -
avoiding subgraph as in Theorem 24. For F -avoiding subgraph modulo 2d, one can show
that the search problem belongs to PPA.

Let us define the corresponding computational problem. The existence of a solution
is guaranteed by Theorem 25.

Degree-constrained subgraph modulo 2d.

Input: a positive integer d, a graph G = (V,E), subsets F (v) ⊆ Zpd such
that

∑
v∈V price(F (v)) < |E|.

Find: a nontrivial F -avoiding subgraph modulo 2d.

Similarly to the proofs of Theorems 22, 23, the proofs of Theorems 25, 7, 6 imply the
following.

Theorem 26. Degree-constrained subgraph modulo 2d is polynomially reducible
to Combinatorial Nullstellensatz over F2. Consequently, the problem Degree-
constrained subgraph modulo 2d is in PPA.
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