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Abstract

We generalize a theorem of W. Jockusch and J. Propp on quartered Aztec dia-

monds by enumerating the tilings of quartered Aztec rectangles. We use subgraph

replacement method to transform the dual graph of a quartered Aztec rectangle

to the dual graph of a quartered lozenge hexagon, and then use Lindström-Gessel-

Viennot methodology to find the number of tilings of a quartered lozenge hexagon.
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1 Introduction

A lattice divides the plane into fundamental regions. A (lattice) region is a finite connected
union of fundamental regions of that lattice. A tile is the union of any two fundamental
regions sharing an edge. A tiling of the region R is a covering of R by tiles with no gaps
or overlaps. Denote by M(R) the number of tilings of the region R.

In general, the tiles of a region R can carry weights. The weight of a tiling is defined
to be the product of the weights of all constituent tiles. Now M(R) is defined to be the
sum of the weights of all tilings in R, and is called the tiling generating function of R. If
R does not have any tiling, we let M(R) := 0.

The Aztec diamond of order n is defined to be the union of all the unit squares with
integral corners (x, y) satisfying |x|+ |y| 6 n+1. The Aztec diamond of order 6 is shown
in Figure 1.1. We denote by ADn the Aztec diamond of order n. It has been shown in

[4] that the number of tilings of ADn is 2
n(n+1)

2 .
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Figure 1.1: Three kinds of quartered Aztec diamonds of order 6.

We are interested in three related families of regions first introduced by Jockusch and
Propp [7] as follows. Divide the Aztec diamond of order n into two congruent parts
by a zigzag cut with 2-unit steps. By superimposing two such zigzag cuts that pass the
center of the Aztec diamond we partition the region into four parts, called quartered Aztec
diamonds. Up to symmetry, there are essentially two different ways we can superimpose
the two cuts. For one of them, we obtained a fourfold rotational symmetric pattern, and
four resulting parts are congruent. Denote by R(n) these quartered Aztec diamonds (see
Figure 1.1(a)). For the other, the obtained pattern has Klein 4-group reflection symmetry
and there are two different kinds of quartered Aztec diamonds (see Figure 1.1 (b)); they
are called abutting and non-abutting quartered Aztec diamonds. Denote by Ka(n) and
Kna(n) the abutting and non-abutting quartered Aztec diamonds of order n, respectively.

For a1 < a2 < . . . < an, we define two functions by setting

E(a1, a2, . . . , an) =
2n

2

0!2!4! . . . (2n− 2)!

∏

16i<j6n

(aj − ai)
∏

16i<j6n

(ai + aj − 1), (1.1)

O(a1, a2, . . . , an) =
2n

2

1!3!5! . . . (2n− 1)!

∏

16i<j6n

(aj − ai)
∏

16i6j6n

(ai + aj − 1). (1.2)

Hereafter, the empty products (like
∏

16i<j6n(aj − ai) for n = 1) equal 1 by convention.
The above two functions have a special connection to the weighted sum of antisymmetric
monotone triangles (see [7]).

The number of tilings of a quartered Aztec diamond is given by the theorem stated
below.

Theorem 1.1 (Jockusch and Propp [7]). For any positive integer n

M(R(4n+ 1)) = M(R(4n+ 2)) = 0, (1.3)
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M(R(4n)) = 2nM(R(4n− 1)) = E(2, 4, . . . , 2n), (1.4)

M(Ka(4n− 2)) = M(Ka(4n)) = E(1, 3, 5, . . . , 2n− 1), (1.5)

M(Ka(4n− 1)) = M(Ka(4n+ 1)) = 2−nO(2, 4, . . . , 2n) (1.6)

M(Kna(4n)) = M(Kna(4n+ 2)) = O(2, 4, . . . , 2n), (1.7)

M(Kna(4n− 3)) = M(Kna(4n− 1)) = 2−n E(1, 3, 5, . . . , 2n− 1). (1.8)

We notice that

E(2, 4, . . . , 2n) = O(1, 3, 5, . . . , 2n− 1) = 2n(3n−1)/2
∏

16i<j6n

2i+ 2j − 1

i+ j − 1
, (1.9)

and that the author presented a simple proof for Theorem 1.1 in [11].

We define a trimmed Aztec diamond of order n to be the region obtained from an
Aztec diamond of order n by removing the squares running along the northwestern and
northeastern sides, denoted by T An.

Label the squares on the southwestern and southeastern sides of ADn and T An by
1, 2, . . . , n from bottom to top. One readily sees that the region R(2k) (resp., R(2k− 1))
is obtained from ADk (reps., T Ak) by removing odd squares on its southwestern side,
and even squares on its southeastern side. Similarly, the region Ka(2k) (resp., Ka(2k −
1)) is obtained from the region ADk (reps., T Ak) by removing even squares from both
southwestern and southeastern sides; the region Kna(2k) (resp., Kna(2k− 1)) is obtained
from the region ADk (reps., T Ak) by removing odd squares from the two sides (see
Figure 1.2 for examples; the quartered Aztec diamonds are the ones restricted by the
bold contours; the shaded squares indicate the ones removed).

Besides Aztec diamonds, we are interested in a similar families of regions called Aztec
rectangles. See Figure 1.3(a) for an example of the Aztec rectangle of order (4, 7). Denote
by ARm,n the Aztec rectangle region of order (m,n). We also consider the trimmed
Aztec rectangle region T Rm,n obtained from ARm,n by removing squares running along
its northwestern and northeastern sides (see Figure 1.3(b)). We notice that the regions
ADn and T An are obtained from ARm,n and T Rm,n, respectively, by specializing m = n.

Similar to quartered Aztec diamonds, we consider the region obtained from ARm,n

by removing even squares on the southwestern side, and removing arbitrarily n− ⌊m+1
2

⌋
squares on the southeastern sides. Assume that we are removing all the squares, except
for the a1-st, the a2-nd, . . . , and the a⌊m+1

2
⌋-th ones, from the southeastern side, then

we denote by REm,n(a1, a2, . . . , a⌊m+1
2

⌋) the resulting region (see Figure 1.4(a)). Next, we

remove all odd squares from the southwestern side of ARm,n, and remove all squares,
except for the ones with labels a1 < a2 < . . . < a⌊m

2
⌋, from the southeastern side. We

denote by ROm,n(a1, a2, . . . , a⌊m

2
⌋) the resulting region (see Figure 1.4(b)).
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Figure 1.2: Obtaining quartered Aztec diamonds from Aztec diamonds and trimmed
Aztec diamonds.

If we remove all even squares on the southwestern side of T Rm,n, and also remove the
squares a1 < a2 < . . . < a⌊m

2
⌋ from its southeastern side, then we get the region denoted

by TEm,n(a1, a2, . . . , a⌊m

2
⌋) (illustrated in Figure 1.4(c)). Repeat process with the odd

squares on the southwestern side removed, we get the region TOm,n(a1, a2, . . . , a⌊m+1
2

⌋)

(shown in Figure 1.4(d)).
We call the four regions in the previous two paragraphs quartered Aztec rectangles.

Surprisingly, the numbers of tilings of quartered Aztec rectangles are given by simple
product formulas involving two functions E(...) and O(...) defined in (1.1) and (1.2).
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(a) (b)

Figure 1.3: The Aztec rectangle AR4,7 (a) and the trimmed Aztec rectangle TR4,7 (b).

Theorem 1.2. For any 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(RE2k−1,n(a1, a2, . . . , ak)) = M(RE2k,n(a1, a2, . . . , ak)) = E(a1, a2, . . . , ak), (1.10)

M(RO2k,n(a1, a2, . . . , ak)) = M(RO2k+1,n(a1, a2, . . . , ak)) = O(a1, a2, . . . , ak), (1.11)

M(TE2k,n(a1, a2, . . . , ak)) = M(TE2k+1,n(a1, a2, . . . , ak)) = 2−k O(a1, a2, . . . , ak), (1.12)

M(TO2k−1,n(a1, a2, . . . , ak)) = M(TO2k,n(a1, a2, . . . , ak)) = 2−k E(a1, a2, . . . , ak). (1.13)

The structure of Aztec rectangles allows us to have the four variants of quartered
Aztec rectangles as follows.

Start with the Aztec rectangle ARm,n. We first, remove all squares along the south-
western side of the region, and remove also the bottommost square of the resulting region
(see the squares with dotted sides in Figure 1.5(a)). We get a region R. We also label
the squares on the southwestern and southeastern side of R by positive integers from
bottom to top. Remove also the even squares on the southwestern side of R, and remove
all squares, except for the ones with labels a1 < a2 < . . . < a⌊m

2
⌋, from the southeastern

side of R. We get a region denoted by REm,n(a1, a2, . . . , a⌊m

2
⌋) (see Figure 1.5(a)). Re-

peat the process, however, we remove all even squares from the southwestern side of R
(as opposed to odd squares), and remove again all the squares, except for the ones with
labels a1 < a2 < . . . < a⌊m+1

2
⌋. We get the region ROm,n(a1, a2, . . . , a⌊m+1

2
⌋) (illustrated in

Figure 1.5(b)).
We also start with the Aztec rectangle ARm,n. Again, we remove all squares along

the southeastern side of the Aztec rectangle, and remove next the bottommost square
the resulting region. Denote the just-obtained region by R′. We now remove all the even
squares on the southwestern side ofR′, and the a1, a2, . . . , a⌊m

2
⌋ squares on the southeastern
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Figure 1.4: Obtaining the quartered Aztec rectangles from Aztec rectangles and trimmed
Aztec rectangles.

side. We get the region TEm,n(a1, a2, . . . , a⌊m

2
⌋) (shown in Figure 1.5(c)). Do similarly,

but remove the odd squares instead of the even squares on the southwestern side, we get
the quartered Aztec rectangle TOm,n(a1, a2, . . . , a⌊m−1

2
⌋) (see Figure 1.5(d)).

We define two new function similar to E(...) and O(...) as follows:

E(a1, a2, . . . , an) =
2n

2
a1a2 . . . ak

0!2!4! . . . (2n− 2)!

∏

16i<j6n

(aj − ai)
∏

16i6j6n

(ai + aj), (1.14)

O(a1, a2, . . . , an) =
2n

2
a1a2 . . . ak

1!3!5! . . . (2n− 1)!

∏

16i<j6n

(aj − ai)
∏

16i<j6n

(ai + aj). (1.15)
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Figure 1.5: The four variants of quartered Aztec rectangles.

We have the following variant of Theorem 1.2.

Theorem 1.3. For any 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(RE2k,n(a1, a2, . . . , ak)) = M(RE2k+1,n(a1, a2, . . . , ak)) = 2kO(a1, a2, . . . , ak) (1.16)

M(RO2k−1,n(a1, a2, . . . , ak)) = M(RO2k,n(a1, a2, . . . , ak)) = 2−kE(a1, a2, . . . , ak) (1.17)

M(TE2k,n(a1, a2, . . . , ak)) = M(TE2k+1,n(a1, a2, . . . , ak)) = O(a1, a2, . . . , ak) (1.18)

M(TO2k+1,n(a1, a2, . . . , ak)) = M(TO2k+2,n(a1, a2, . . . , ak)) =
1

(2k)!
E(a1, a2, . . . , ak)

(1.19)

The paper is organized as follows. In Section 2, we use subgraph replacement method
to “transform” the dual graphs of quartered Aztec rectangles to the dual graphs of new
families of regions, which we call quartered hexagons. In Section 3, we use the classical
methodology of Lindström-Gessel-Viennot to enumerate the tilings of quartered hexagons.
Finally, Section 4 gives the proofs of Theorem 1.2 and 1.3.
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2 Subgraph replacement rules and quartered

hexagons

A perfect matching of a graph G is a collection of disjoint edges so that each vertex of
G is incident to exactly one edge of the collection. The dual graph of a region R is the
graph whose vertices are the fundamental regions in R and whose edges connect precisely
two fundamental regions sharing an edge. The tilings of a regions are in bijection with
the perfect matchings of its dual graph. By this point of view, we still use the notation
M(G) for the number of perfect matchings of a graph G.

Similar to the case of regions with weighted tiles, we can generalize the definition
of the operation M(G) to the case of weighted graph G as follows. The weight of a
perfect matching is defined to be the product of the weights of all constituent edges. The
operation M(G) is now defined to be the sum of the weights of all perfect matchings in
G, and is called the matching generating function of G. If G does not have any perfect
matching, we let M(G) := 0. In the weighted case, each edge of the dual graph carries the
weight of the corresponding tile of the region, so the bijection mentioned in the previous
paragraph is now weight-preserved.

An edge in a graph G is called a forced edge, if it is in every perfect matching of G.
Let G be a weighted graph with weight function wt on its edges, and G′ is obtained from
G by removing forced edges e1, . . . , ek, and removing the vertices incident to those edges.
Then one clearly has

M(G) = M(G′)
k
∏

i=1

wt(ei).

From now on, whenever we remove some forced edges, we remove also the vertices incident
to them. We have the following fact by considering forced edges.

Lemma 2.1. For any 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(RE2k−1,n(a1, . . . , ak)) = M(RE2k,n(a1, . . . , ak)), (2.1)

M(RO2k,n(a1, . . . , ak)) = M(RO2k+1,n(a1, . . . , ak)), (2.2)

M(TE2k,n(a1, . . . , ak)) = M(TE2k+1,n(a1, . . . , ak)), (2.3)

M(TO2k−1,n(a1, . . . , ak)) = M(TO2k,n(a1, . . . , ak)). (2.4)

Proof. The proofs of the first two equalities are illustrated by Figures 2.1(a) and (b),
respectively; the forced edges are the circled ones on the top of the graphs. The last two
equalities can be obtained similarly.

Next, we will employ several basic preliminary results stated below.

Lemma 2.2 (Vertex-Splitting Lemma). Let G be a graph, v be a vertex of it, and denote
the set of neighbors of v by N(v). For any disjoint union N(v) = H∪K, let G′ be the graph
obtained from G \ v by including three new vertices v′, v′′ and x so that N(v′) = H ∪{x},
N(v′′) = K ∪ {x}, and N(x) = {v′, v′′} (see Figure 2.2). Then M(G) = M(G′).
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(a) (b)

Figure 2.1: (a) Obtaining the dual graph of RE3,5(1, 4) from the dual graph ofRE4,5(1, 4).
(b) Obtaining the dual graph of RO4,5(1, 4) from the dual graph of RO5,5(1, 4).

v v′

x

v′′

H K H K

Figure 2.2: Vertex splitting.

Lemma 2.3 (Star Lemma). Let G be a weighted graph, and let v be a vertex of G. Let
G′ be the graph obtained from G by multiplying the weights of all edges that are incident
to v by t > 0. Then M(G′) = tM(G).

Part (a) of the following is a generalization due to Propp of the “urban renewal” trick
first observed by Kuperberg. Parts (b) and (c) are due to Ciucu (see [5, Lemma 2.6]).

Lemma 2.4 (Spider Lemma). (a) Let G be a weighted graph containing the subgraph K
shown on the left in Figure 2.3 (the labels indicate weights, unlabeled edges have weight
1). Suppose in addition that the four inner black vertices in the subgraph K, different
from A,B,C,D, have no neighbors outside K. Let G′ be the graph obtained from G by
replacing K by the graph K shown on right in Figure 2.3, where the dashed lines indicate
new edges, weighted as shown. Then M(G) = (xz + yt)M(G′).

(b) Consider the above local replacement operation when K and K are graphs shown
in Figure 2.3(b) with the indicated weights (in particular, K ′ has a new vertex D, that is
incident only to A and C). Then M(G) = 2M(G′).

(c) The statement of part (b) is also true when K and K are the graphs indicated in
Figure 2.3(c) (in this case G′ has two new vertices C and D, they are adjacent only to
one another and to B and A, respectively).

Lemma 2.5 ([1], Lemma 4.2). Let G be a weighted graph having a 7-vertex subgraph H
consisting of two 4-cycles that share a vertex. Let a, b1, b2, b3 and a, c1, c2, c3 be the
vertices of the 4-cycles (listed in cyclic order) and suppose b3 and c3 are only the vertices of
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2

1
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(a)

(b)

(c)

Figure 2.3: Urban renewal and its variants.

H with the neighbors outside H (see Figure 2.4). Let G′ be the subgraph of G obtained by
deleting b1, b2, c1 and c2, weighted by restriction. Then if the product of weights of opposite
edges in each 4-cycle of H is constant, we have M(G) = 2wt(b1, b2)wt(c1, c2)M(G′).

a

b1 b2

b3c1

c2 c3

Figure 2.4: Illustrating Lemma 2.5.
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By the above fundamental lemmas, we have the following fact.

Lemma 2.6. For any 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(RE2k−1,n(a1, . . . , ak)) = 2k M(TO2k−1,n(a1, . . . , ak)) (2.5)

and
M(RO2k,n(a1, . . . , ak)) = 2k M(TE2k,n(a1, . . . , ak)). (2.6)

Proof. The proofs of (2.5) and (2.6) are essentially the same, so we present only the proof
of (2.5). The proof of (2.5) is illustrated in Figure 2.5, for the case k = 3, n = 6, a1 = 1,
a2 = 3, and a3 = 6.

(a)

(b)

(c)

Figure 2.5: Illustrating the proof of Lemma 2.6

First, we apply Vertex-splitting Lemma 2.2 to all vertices of the dual graph G of
RE2k−1,n(a1, . . . , ak) (see Figures 2.5(a) and (b)). Second, apply the suitable replacements
in Spider Lemma 2.4 around (2k− 1)n diamond cells and partial cells with legs (they are
replaced by dotted diamond with edge-weight 1/2). Next, we removed all edges adjacent
to a vertex of degree one (which are forced). We get a weighted version G′ of the dual
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graph of TO2k−1,n(a1, . . . , ak), where all edges have weight 1/2 (see Figures 2.5(b) and
(c)). Finally, we apply Star Lemma 2.3 (with factor t = 2) at all (2k − 1)n − k shaded
vertices in the resulting graph, and get the dual graph G′′ of TO2k−1,n(a1, . . . , ak). By
Lemmas 2.2, 2.3 and 2.4, we obtain

M(G) = 2(2k−1)n M(G′) = 2(2k−1)n2−(2k−1)n+k M(G′), (2.7)

which implies (2.5).

Remark 2.7. One can prove the equality (2.5) by apply Ciucu’s Complementation The-
orem in [2]. We notice that cellular completion (defined in [2]) of the dual graph of the
region RE2k−1,n(a1, . . . , ak) is the graph G′ in the proof of Lemma 2.6. Moreover, each
perfect matching of G′ consists of exactly (2k − 1)n− k edges of weight 1/2, so

M(G′) = 2−(2k−1)n+k M(TO2k−1,n(a1, . . . , ak)).

The connected sum G#G′ of two disjoint graphs G and G′ along the ordered sets of
vertices {v1, . . . , vn} ⊂ V (G) and {v′1, . . . , v

′
n} ⊂ V (G′) is the graph obtained from G and

G′ by identifying vertices vi and v′i, for i = 1, . . . , n.

Lemma 2.8. Let G be a graph, and let {v1, v2, . . . , vn} be an ordered subset of its vertex
set.

(a) Assume thatK is the graph obtained from the dual graph of T R2q+1,n+1 by removing
all bottommost vertices and the odd vertices on the leftmost column; K ′ is obtained from
the dual graph of AR2q,n by removing all bottommost vertices and the odd vertices on
the leftmost column (ordered from bottom to top), and appending n vertical edges to the
bottom of the resulting graph. Then

M(G#K) = 2q M(G#K ′). (2.8)

The transformation is illustrated in Figures 2.6(a) and (b), for q = 2 and n = 4; the white
circles indicate the vertices {v1, v2, . . . , vn}.

(b) Assume H is the graph obtained from the dual graph of AR2q+1,n by removing all
even vertices on the leftmost column (ordered from bottom to top); H ′ is the graph obtained
from the dual graph of T R2q+1,n by removing odd vertices on the leftmost column, and
appending n vertical edges to the bottom of the resulting graph. Then

M(G#H) = 2q+1M(G#H ′). (2.9)

(mistake to use q in the previous version) The transformation is illustrated in Figures
2.6(c) and (d), for q = 2 and n = 5; the white circles indicate the vertices {v1, v2, . . . , vn}.

In the two equalities (2.8) and (2.9), the connected sum acts on G along {v1, v2, . . . , vn}
and acts on the other two summands along their bottom vertices ordered from left to right.
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(a) (b)

(c) (d)

Figure 2.6: Two transformations in Lemma 2.8. The white circles indicate the vertices
{v1, . . . , vn}.

Proof. Since the proofs of parts (a) and (b) are essentially the same, the proof of part
(b) is omitted. The illustration of the proof of part (a) is shown in Figure 2.7, for q = 2
and n = 4. First, we apply Vertex-splitting Lemma 2.2 to all vertices of K. We get the
graph with solid edges in Figure 2.7(b). Second, apply the suitable replacements in Spider
Lemma 2.4 to 2q(n + 1) diamond cells and partial cells with legs in the resulting graph,
and remove all edges adjacent to a vertex of degree 1 (which are forced). We get the
graph in the Figure 2.7(c), the dotted edges are weighted by 1/2. Third, apply Lemma
2.5 to remove all q 7-vertex subgraphs consisting of two shaded 4-cycles on the left of the
graph (see Figure 2.7(c)). Finally, apply Star Lemma 2.3 with factor t = 2 at all 2qn
shaded vertices as in Figure 2.7(d). We get finally the graph G#K ′. By Lemmas 2.2, 2.3,
2.4 and 2.5, we obtain

M(G#K) = 22q(n+1)2−2qn2q M(G#K ′),

which implies (2.8).

Denote by Ha,b,c the centrally-symmetric (lozenge) hexagon of sides a, b, c, a, b, c (in
cyclic order, starting from the northwestern side) in the triangular lattice. In the spirit
of quartered Aztec rectangles, we introduce four new families of regions, which we call
quartered hexagons, that will play a key role in our proofs of Theorems 1.2 and 1.3.

Divide the hexagon Hm,2(n−k)+1,m, where k = ⌊m+1
2

⌋, into four equal parts by its verti-
cal and horizontal symmetry axes (see Figure 2.8 for an example). We consider the portion
of of the hexagon that consists of unit triangles lying completely inside the upper right
quarter. Remove the a1-st, the a2-nd, . . . , and the ak-th up-pointing unit triangles (or-
dered from left to right) from the bottom of the portion. Denote by QHm,n(a1, a2, . . . , ak)
the resulting region. See the region restricted in the bold contour in Figure 2.8 for an
example with k = 7, m = 13, n = 12, a1 = 2, a2 = 3, a3 = 5, a4 = 7, a5 = 8, a6 = 10,

the electronic journal of combinatorics 21(4) (2014), #P4.46 13



(b)
(a)

(c)(d)

Figure 2.7: Illustrating the proof of Lemma 2.8(a).

a7 = 12; and Figure 2.9(a) shows an example, for k = 6, m = 12, n = 11, a1 = 2, a2 = 3,
a3 = 5, a4 = 6, a5 = 8, a6 = 11.

Next, we consider the variant quartered hexagon obtained from QH2k,n(a1, a2, . . . , ak)
obtained by assigning all k vertical rhombus on its left side a weight 1/2 (see Figure 2.9(b)).
Denote the resulting region by QH2k,n(a1, a2, . . . , ak). We consider another variant of
quartered hexagons as follows. We assign all k − 1 vertical rhombus on the left side of
upper right quarter of the hexagon Hm,2(n−k)+1,m a weight 1/2, and remove the leftmost
up-pointing unit triangle from the bottom of the region. Next, we remove the a1-st, the
a2-nd, . . . , and the ak−1-th up-pointing unit triangles from the bottom of the resulting
region. The new region is denoted by QH2k−1,n(a1, a2, . . . , ak−1) (illustrated in Figure
2.9(c)).

The connection between the numbers of tilings of quartered Aztec rectangles and
quartered hexagons is given by the following lemma.

Lemma 2.9. For 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(TO2k−1,n(a1, a2, . . . , ak)) = 2k(k−1)M(QH2k−1,n(a1, a2, . . . , ak)) (2.10)
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Figure 2.8: The hexagon H13,11,13 and the quartered hexagon QH13,12(2, 3, 5, 7, 8, 10, 12)
(restricted by the bold contour).

(b) (c)(a)

Figure 2.9: The regions (a) QH12,11(2, 3, 5, 6, 8, 11), (b) QH12,11(2, 3, 5, 6, 8, 11), and (c)

QH13,12(1, 4, 6, 7, 9, 11).

the electronic journal of combinatorics 21(4) (2014), #P4.46 15



(a)

(c)

(d)

(b)

(e)

Figure 2.10: Illustrating the proof of Theorem 2.9.

and
M(TE2k,n(a1, a2, . . . , ak)) = 2k

2

M(QH2k,n(a1, a2, . . . , ak)). (2.11)

Proof. We prove the equality (2.10) first. We use the (2k − 2)-step transforming process
consisting alternatively the transformation in Lemma 2.8 parts (a) and (b), for q =
k − 1, . . . , 2, 1, and starting by the transformation in part (a), to transform the dual
graph of TO2k−1,n(a1, a2, . . . , ak) to the dual graph of QHk,n(a1, a2, . . . , ak) (illustrated in
Figures 2.10(a)–(e); the part above the top dotted line in a graph is replaced by the part
above that line in the next graph). By Lemma 2.8, we get

M(TO2k−1,n(a1, a2, . . . , ak))

M(QH2k−1,n(a1, a2, . . . , ak))
= 2

∑
k−1
i=1 (i+i) = 2k(k−1), (2.12)

which implies (2.10).
Similarly, we can get (2.11) by using a (2k − 1)-step transforming process consisting

alternatively the transformations in Lemma 2.8 parts (b) and (a), and starting by the
transformation in part (b) to transform the dual graph of the region on the left hand side
to dual graph of the region on the right-hand side.

3 Enumeration of tilings of quartered hexagons

The main goal of this section is to enumerate the tilings of quartered hexagons using
Lindström-Gessel-Viennot methodology.

The numbers of tilings of quartered hexagons are given by the following theorem.
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G+ G−

a2

a3

b1

b2

b3 b3

a3

b2

a2

b1

Figure 3.1: (a) A graph G with symmetric axis; (b) the resulting graph after the cutting
procedure.

Theorem 3.1. For any 1 6 k < n and 1 6 a1 < a2 < . . . < ak 6 n

M(QH2k−1,n(a1, a2, . . . , ak)) = 2−k2 E(a1, a2, . . . , ak), (3.1)

M(QH2k,n(a1, a2, . . . , ak)) = 2−k2O(a1, a2, . . . , ak), (3.2)

M(QH2k+1,n(a1, a2, . . . , ak)) =
2−k(k+1)

(2k)!
E(a1, a2, . . . , ak), (3.3)

M(QH2k,n(a1, a2, . . . , ak)) = 2−k(k+1)O(a1, a2, . . . , ak). (3.4)

We consider a useful factorization theorem due to Ciucu [1], which we will employ in
the proof of Theorem 3.1.

Let G be a weighted planar bipartite graph that is symmetric about a vertical line ℓ.
Assume that the set of vertices lying on ℓ is a cut set of G (i.e., the removal of these vertices
disconnects G). One readily sees that the number of vertices of G on ℓ must be even if G
has perfect matchings, let w(G) be half of this number. Let a1, b1, a2, b2, . . . , aw(G), bw(G)

be the vertices lying on ℓ, as they occur from top to bottom. Let us color vertices of G
by black or white so that any two adjacent vertices have opposite colors. Without loss
of generality, we assume that a1 is always colored white. Delete all edges on the left of
ℓ at all white ai’s and black bj ’s, and delete all edges on the right of ℓ at all black ai’s
and white bj ’s. Reduce the weight of each edge lying on ℓ by half; leave all other weights
unchanged. Since the set of vertices of G on ℓ is a cut set, the graph obtained from the
above procedure has two disconnected parts, one on the left of ℓ and one on the right of
ℓ, denoted by G+ and G−, respectively (see Figure 3.1).
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Figure 3.2: The region SH4,4(2, 4, 5, 8).

Theorem 3.2 (Factorization Theorem, Ciucu [1]). Let G be a bipartite weighted symmet-
ric graph separated by its symmetry axis. Then

M(G) = 2w(G)M(G+)M(G−). (3.5)

Next, we quote a result on the number of tilings of a semi-hexagon due to Cohn, Larsen
and Propp (see [3], Proposition 2.1). A semi-hexagon of sides a, b, a, a + b is the portion
of a hexagon of sides a, b, a, a, b, a (in cyclic order, starting from the northwestern side)
in the triangular lattice that stays above the horizontal symmetric axis of the hexagon.
We are interested in the number of tilings of the semi-hexagon sides a, b, a, a + b, where
the s1-st, the s2-nd, . . . , and the sa-th up-pointing unit triangles on the base have been
removed, denoted by SHa,b(s1, s2, . . . , sa) (see Figure 3.2).

Lemma 3.3. For any a, b > 0, and 1 6 s1 < s2 < . . . < sa 6 a+ b

M(SHa,b(s1, s2, . . . , sa)) =
∏

16i<j6a

sj − si
j − i

. (3.6)

The following determinant identity has been proved by Krattenthaler [8].

Lemma 3.4 ([8], Identity (2.10) in Lemma 4). Let X1, X2, . . . , Xn, A2, . . . , An be inde-
terminates, and let C be a constant. Then

det
16i,j6n

(

(Xi −An − C)(Xi − An−1 − C) . . . (Xi −Aj+1 − C)

· (Xi + An)(Xi + An−1) . . . (Xi + Aj+1)
)

=
∏

16i<j6n

(Xj −Xi)(C −Xi −Xj). (3.7)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Write for short R1 := QH2k−1,n(a1, a2, . . . , ak). We use a standard
bijection mapping each tiling µ of the region R1 in the triangular lattice to a k-tuple of
non-intersection lattice paths taking steps west or north on the square grid Z

2.
Label the centers of the left sides of up-pointing unit triangles along the left boundary

of R1 from bottom to top by v1, v2, . . . , vk. Label the centers of the left sides of up-pointing
unit triangles, which have been removed from the bottom of the region, from left to right
by u1, u2, . . . , uk (see Figure 3.3(a) for an example corresponding to the region in Figure
2.8; the black dots indicate the points ui’s and vj ’s).
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Figure 3.3: Bijection between tilings of R1 and families of non-intersecting paths.

Consider now a rhombus r1 of µ whose one side contains ui, for some arbitrary but
fixed 1 6 i 6 k. Denote by w1 the center of the side of r1 opposite the side containing ui.
Let r2 be other rhombus of µ that has a side containing w1. Denote by w2 the center of
the side of r2 opposite the side containing w1. Continue our rhombi selecting process by
picking a new rhombus r3 of µ that has a side containing w2. This process gives a path
of rhombi growing upward, and ending in a rhombus containing one of the vj ’s (see the
paths of shaded rhombi in Figure 3.3(b)). We can identify this path of rhombi with the
linear path ui → w1 → w2 → w3 → . . . → vj (see the dotted paths in Figure 3.3(b)).

Consider next the obtuse (1200 angle) coordinate system whose origin at v1 and whose
x-axis contains all the points ui’s (see Figure 2.9(a)). The linear path connecting ui and
vj is a lattice path in this coordinate. Normalize this coordinate system and rotating it
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in standard position, we get a lattice path on square grid Z
2 (see Figure 2.9(c)). It is

easy to see that vj has coordinate (j− 1, 2j− 2) and ui has coordinate (ai − 1, 0), for any
1 6 i, j 6 k.

We obtain this way a k-tuple P of lattice paths in Z
2 using north and west steps, and

they cannot touch each other (since the corresponding paths of rhombi are disjoint). One
readily sees that the correspondence µ 7→ P is a bijection between the set of tilings of
R1 and the set of k-tuples P of non-intersecting lattice paths starting at u1, . . . , uk, and
ending at v1, . . . , vk.

By Lindström-Gessel-Viennot theorem (see [12], Lemma 1; or [14], Theorem 1.2), the
number of such k-tuples P of non-intersection lattice paths is given by the determinant of
the k × k matrix A whose (i, j)-entry is the number of lattice paths from ui = (ai − 1, 0)
to vj = (j − 1, 2j − 2) in Z

2 , that is

(

ai + j − 2

2j − 2

)

=
(ai + j − 2)!

(2j − 2)!(ai − j)!

(assume that
(

ai+j−2
2j−2

)

= 0 if ai − j < 0). Factor out 1
(2j−2)!

from the each j-th column of
the matrix A, for 1 6 j 6 k, we have

det(A) =
1

0!2! . . . (2k − 2)!
det

16i,j6k
((ai − j + 1)(ai − j + 2) . . . (ai + j − 2)) . (3.8)

Swap the j-th and the (k − j + 1)-th columns, for any 1 6 j 6 k, in the matrix on the
right hand side of (3.8), we get a new matrix

B =
(

(ai − k + j)(ai − k + j + 1) . . . (ai + k − j − 1)
)

16i,j6k
,

and
det(B) = (−1)k(k−1)/2 det

16i,j6k

(

(ai − j + 1)(ai − j + 2) . . . (ai + j − 2)
)

. (3.9)

Apply Lemma 3.4, with C = 1 and Xi = ai and Aj = k − j, to the matrix B, we obtain

det(B) = (−1)k(k−1)/2
∏

16i<j6k

(aj − ai)(ai + aj − 1). (3.10)

By (3.8), (3.9), and (3.10), we have

det(A) =
1

0!2! . . . (2k − 2)!

∏

16i<j6k

(aj − ai)(ai + aj − 1), (3.11)

and (3.1) follows.

Next, we prove (3.2) by the same method. We also have a bijection between the
set of tilings of R2 := QH2k,n(a1, a2, . . . , ak) and the set of k-tuples of non-intersecting
lattice path connecting u1, . . . , uk and v1, . . . , vk, the only difference here is that the obtuse
coordinate system is now selected so that v1 has coordinate (0, 1) (as oppose to having
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Figure 3.4: Bijection between tilings of R2 and families of non-intersecting paths.

coordinate (0, 0) in the proof of (3.1)). Figure 3.4 illustrates an example corresponding
to the region in Figure 2.9(a). One readily sees that ui has also coordinate (ai − 1, 0),
and vj has now coordinate (j − 1, 2j − 1) in the new coordinate system, for 1 6 i, j 6 k.
Again, by Lindström-Gessel-Viennot Theorem the number of tilings of R2 is given by the
determinant of the k × k matrix D whose (i, j)-entry is

(

ai+j−1
2j−1

)

= (ai+j−1)!
(2j−1)!(ai−j)!

.

Factor out 1
(2j−1)!

from the j-th column, and factor out ai from the i-th row of the
matrix D, for any 1 6 i, j 6 k, we get

det(D) =
a1a2 . . . ak

1!3!5! . . . (2k − 1)!
(3.12)

× det
16i,j6k

(

(ai − j + 1) . . . (ai − 1)(ai + 1) . . . (ai + j − 1)
)

.

Swap the j-th and the (k − j + 1)-th columns, for any 1 6 j 6 k, of the matrix on the
right hand side of (3.12), we get a new matrix

E =
(

(ai − k + j)(ai − k + j + 1) . . . (ai − 1)

· (ai + 1)(ai + 2) . . . (ai + k − j)
)

16i,j6k
, (3.13)

and
det(D) = (−1)k(k−1)/2 a1a2 . . . ak

1!3!5! . . . (2k − 1)!
det(E). (3.14)

Apply Lemma 3.4, with C = 0 and Xi = ai and Aj = k − j, to the matrix E, we have

det(E) = (−1)k(k−1)/2
∏

16i<j6k

(aj − ai)(ai + aj). (3.15)
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(a) (b)

Figure 3.5: Illustrating the proof of Theorem 3.1.

Therefore, by (3.12)–(3.15), we obtain

det(D) =
a1a2 . . . ak

1!3!5! . . . (2k − 1)!

∏

16i<j6k

(aj − ai)(ai + aj), (3.16)

which implies (3.2).

Apply the Factorization Theorem to the dual graph G of the semi-hexagon SH2k,2n(S),
where the triangles removed from the bottom are at the positions in the set S := {n+1−
ak, a+1−ak−1, . . . , n+1−a1}∪{n+a1, n+a2, . . . , n+ak}. We get G− which is isomorphic
to the dual graph of the region QH2k,n(a1, . . . , ak); and after removing all forced edges on
the top of G+, we get a graph isomorphic to the dual graph of QH2k−1,n(a1, . . . , ak) (see
Figure 3.5(a) for an example with k = 3, n = 7, a1 = 2, a2 = 4, a3 = 6). Therefore, we
obtain

M(SH2k,2n(S)) = 2k M(QH2k−1,n(a1, . . . , ak))M(QH2k,n(a1, . . . , ak)). (3.17)

Similarly, apply the Factorization Theorem to the dual graph of the semi-hexagon
SH2k+1,2n+1(S

′), where S ′ := {n + 1− ak, a+ 1− ak−1, . . . , n+ 1− a1} ∪ {n+ 1} ∪ {n+
1 + a1, n + 1 + a2, . . . , n + 1 + ak} (see Figure 3.5(b) for an example with k = 3, n = 7,
a1 = 2, a2 = 3, a3 = 6), we get

M(SH2k+1,2n+1(S
′)) = 2k M(QH2k,n(a1, . . . , ak))M(QH2k+1,n(a1, . . . , ak)). (3.18)

We define an operation ∆ by setting

∆(A) :=
∏

16i<j6k

(sj − si),

for any finite set A := {s1, s2, . . . , sk}. One can check that

∆(S) =

(

∏

16i<j6k

(aj − ai)

)2
∏

16i,j6k

(ai + aj + 1)
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and

∆(S ′) =

(

∏

16i<j6k

(aj − ai)

)2( k
∏

i=1

ai

)2
∏

16i,j6k

(ai + aj),

for the above sets S and S ′.
Thus, by (3.1) and (3.17), together with Lemma 3.3, we have

M(QH2k,n(a1, . . . , ak)) =
2−k∆(S)

0!1!2!3! . . . (2k − 1)! ·M(QH2k−1,n(a1, . . . , ak))
(3.19)

=
2−k∆(S)

0!1!2!3! . . . (2k − 1)! · 2−k2 E(a1, . . . , ak)
(3.20)

=
2−k

1!3! . . . (2k − 1)!

∏

16i<j6k

(aj − ai)
∏

16i6j6k

(ai + aj − 1), (3.21)

which completes the proof of (3.4).
Analogously, by the Lemma 3.3, and the equalities (3.2) and (3.18), we obtain (3.3).

Remark 3.5. If we construct the non-intersecting lattice paths in the region QH2k−1,n(a1,
a2, . . . , ak) in different way: by starting from the rhombi on the north side to the rhombi
on the south side, we will get different family of non-intersecting lattice paths (see Figure
3.5(a) in [9]). These new families of lattice paths were enumerated in [9] under the name
stars. However, the number of stars obtained in [9] has a different form from the one in
Theorem 1.1, and the authors of [9] did not consider stars in a bijection with the tilings
of QH2k−1,n(a1, . . . , ak) or any other regions.

4 Proof of Theorems 1.2 and 1.3

The dual graph of an Aztec rectangle is called an Aztec rectangle graph, denoted by ARm,n

the Aztec rectangle graph of order (m,n) (see Figure 1.3(c) and 4.1(a) for examples).
Before presenting the proof of Theorems 1.2 and 1.3, we quote two results about the

number of perfect matchings of an Aztec rectangle graph with holes (i.e, vertices removed)
on the bottom.

Lemma 4.1 (see Theorem 2 in [13]). The number of perfect matchings of a m× n Aztec
rectangle, where all the vertices in the bottom-most row, except for the a1-st, the a2-nd,
. . . , and the am-th vertex, have been removed (see Figure 4.1(b) for an example with
m = 3, n = 5, a1 = 1, a2 = 3, a3 = 5), equals

2m(m+1)/2
∏

16i<j6m

aj − ai
j − i

. (4.1)

Next, we consider a variant of the lemma above (see [6], Lemma 2).
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(a) (b) (c)

Figure 4.1: Aztec rectangle and two holey Aztec rectangles of order 3 × 5. The white
circles indicate the removed vertices.

Figure 4.2: Illustrating the proof of Theorem 1.2

Lemma 4.2. The number of perfect matchings of a m× n Aztec rectangle, where all the
vertices in the bottom-most row have been removed, and where the a1-st, the a2-nd, . . . ,
and the am-th vertex, have been removed from the resulting graph (see Figure 4.1(c), for
and example with m = 3, n = 5, a1 = 3, a2 = 4,a3 = 6), equals

2m(m−1)/2
∏

16i<j6m

aj − ai
j − i

. (4.2)

Denote by ARm,n(a1, . . . , am) and ARm,n(a1, . . . , am) the graphs in Lemmas 4.1 and
4.2, respectively.

Proof of Theorem 1.2. By Theorems 3.1 (equality (3.1)), Lemma 2.1 (equality (2.4)), and
Lemma 2.9 (equality (2.10)), we get (1.13). From (1.13), Lemmas 2.6 (equality (2.1)),
and Lemma 2.1 (equality(2.5)), we deduce (1.10).

Apply the Factorization Theorem to the graph AR2k,2n(S), where S = {n+1−ak , n+
1− ak−1, . . . , n+1− a1}∪{n+ a1, n+ a2, . . . , n+ ak} (see Figure 4.2 for an example with
n = 7, k = 3, a1 = 1, a2 = 3, a3 = 7), we get

M(AR2k,2n(S)) = 2k M(RE2k,n(a1, a2, . . . , ak))M(RO2k,n(a1, a2, . . . , ak)). (4.3)

Similar to the proof of the equality (3.4) in Theorem 3.1, by equalities (1.10), (4.3) and
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Lemma 4.1, we obtain

M(RO2k,n(a1, a2, . . . , ak)) =
2k(2k+1)∆(S)

0!1!2! . . . (2k − 1)! · 2k O(a1, . . . ak)
(4.4)

=
2k

2

1!3! . . . (2k − 1)!

∏

16i<j6k

(aj − ai)
∏

16j6i6k

(ai + aj − 1). (4.5)

Thus, Lemma 2.1 implies (1.11).
Finally, by Lemma 2.6 (equality (2.3)), Lemma 2.1 (equality (2.6)), and the equality

(1.11), we get (1.12).

Proof of Theorems 1.3. By considering forced edges, we have the following facts similar
to that in Lemma 2.1:

M(RO2k−1,n(a1, a2, . . . , ak)) = M(RO2k,n(a1, a2, . . . , ak)), (4.6)

M(RE2k,n(a1, a2, . . . , ak)) = M(RE2k+1,n(a1, a2, . . . , ak)), (4.7)

M(TO2k+1,n(a1, a2, . . . , ak)) = M(TO2k+2,n(a1, a2, . . . , ak)), (4.8)

M(TE2k,n(a1, a2, . . . , ak)) = M(TE2k+1,n(a1, a2, . . . , ak)). (4.9)

By using the four fundamental Lemmas 2.2, 2.3, 2.4 and 2.5 as in the proof Lemma 2.6,
one can get

M(RE2k,n(a1, a2, . . . , ak)) = 2k M(TE2k,n(a1, a2, . . . , ak)). (4.10)

We get (1.19) from the equality (4.9), Lemma 2.9 (the equality (2.11)), and Lemma3.1
(the equality (3.2)). Moreover, by (4.10), (4.7) and (1.18), we obtain (1.17).

Factorization Theorem implies

M(AR2k+1,2n(S
′)) = 2k M(TO2k+1,n(a1, . . . , ak))M(TE2k,n(a1, . . . , ak)) (4.11)

and

M(AR2k,2n−1(S
′′)) = 2k M(RO2k−1,n(a1, . . . , ak))M(RE2k,n(a1, . . . , ak)), (4.12)

where S ′ := {n+1−ak, n+1−ak−1, . . . , n+1−a1}∪{n+1}∪{n+1+a1, n+1+a2, . . . , n+
1+ak}, and where S ′′ := {n−ak, n−ak−1, . . . , n−a1}∪{n}∪{n+a1, n+a2, . . . , n+ak}.
It is easy to verify that

∆(S ′) = ∆(S) =

(

k
∏

i=1

ai

)2(
∏

16i<j6k

(aj − ai)

)2
∏

16i,j6k

(ai + aj).
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Therefore, by (4.8) and (4.11), we get

M(TO2k+2,n(a1, . . . , ak)) = M(TO2k+1,n(a1, . . . , ak)) =
M(AR2k+1,2n(S

′))

2k M(TE2k,n(a1, . . . , ak))
(4.13)

=
2(2k+1)k∆(S ′)

0!1!2!3! . . . (2k)!2kO(a1, . . . , ak)
(4.14)

=
2k

2∏k
i=1 ai

0!2!4! . . . (2k)!

∏

16i<j6k

(aj − ai)
∏

16i6j6k

(ai + aj), (4.15)

which deduces (1.18).
Similarly, by (4.6) and (4.12), we obtain

M(RO2k,n(a1, . . . , ak)) = M(RO2k−1,n(a1, . . . , ak)) =
M(AR2k,2n−1(S

′′))

2k M(RE2k,n(a1, . . . , ak))
(4.16)

=
2(2k+1)k∆(S ′)

0!1!2!3! . . . (2k − 1)!22kO(a1, . . . , ak)
(4.17)

=
2k(k−1)

∏k
i=1 ai

0!2!4! . . . (2k − 2)!

∏

16i<j6k

(aj − ai)
∏

16i6j6k

(ai + aj). (4.18)

Then (1.16) follows.
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