
A superlocal version of Reed’s Conjecture

Katherine Edwards∗

Department of Computer Science
Princeton University

Princeton, NJ, U.S.A.

ke@princeton.edu

Andrew D. King†

D-Wave Systems
Burnaby, BC

Canada

andrew.d.king@gmail.com

Submitted: Aug 28, 2012; Accepted: Nov 24, 2014; Published: Dec 4, 2014

Mathematics Subject Classifications: 05C15, 05C72

Abstract

Reed’s well-known ω, ∆, χ conjecture proposes that every graph satisfies χ 6
d1

2(∆+1+ω)e. The second author formulated a local strengthening of this conjecture
that considers a bound supplied by the neighbourhood of a single vertex. Following
the idea that the chromatic number cannot be greatly affected by any particular
stable set of vertices, we propose a further strengthening that considers a bound
supplied by the neighbourhoods of two adjacent vertices. We provide some funda-
mental evidence in support, namely that the stronger bound holds in the fractional
relaxation and holds for both quasi-line graphs and graphs with stability number
two. We also conjecture that in the fractional version, we can push the locality even
further.

1 Introduction

We consider simple graphs with clique number ω, maximum degree ∆, chromatic number
χ, and fractional chromatic number χf (we will define χf later). For a graph G and a set
of vertices S we denote the subgraph of G induced by S by G|S. For a vertex v we use
N(v) and Ñ(v) to denote the neighbourhood and closed neighbourhood of v, respectively.
We use ω(v) to denote ω(G|Ñ(v)), i.e. the size of the largest clique containing v. When
the graph in question is not clear, we specify with a subscript, for example NG(v).

The work in this paper revolves around Reed’s ω, ∆, χ conjecture [15], which itself can
be broadly considered as a generalization of Brooks’ Theorem. Brooks’ Theorem states
that whenever ∆ > 3, a graph with maximum degree ∆ is ∆-colourable unless it has the
obvious obstruction: a clique of size ∆ + 1. Reed’s Conjecture is much more general:

∗Supported by an NSERC PGS-D Fellowship and a Gordon Wu Fellowship.
†Supported in part by an EBCO/Ebbich Postdoctoral Scholarship and the NSERC Discovery Grants

of Pavol Hell and Bojan Mohar.

the electronic journal of combinatorics 21(4) (2014), #P4.48 1



Conjecture 1 (Reed’s Conjecture). Every graph satisfies χ 6 d1
2
(∆ + 1 + ω)e.

In other words, a graph with maximum degree ∆ is (∆ + 1 − k)-colourable unless it
contains a clique of size at least ∆ + 2− 2k.

This conjecture is known to hold for claw-free graphs [10] and some other hereditary
families of graphs [1]. Furthermore Reed proved that the fractional relaxation holds, even
without the round-up – a proof appears in [13]:

Theorem 1 (Fractional relaxation). Every graph satisfies χf 6 1
2
(∆ + 1 + ω).

For a graph G we let γ(G) and γ′(G) denote d1
2
(∆ + 1 + ω)e and 1

2
(∆ + 1 + ω),

respectively. As observed by McDiarmid (Exercise 21.1 in [13]; a proof appears in Chapter
2 of [10]), Theorem 1 can be strengthened so as to consider only the possible bounds
achieved in the closed neighbourhood of a vertex. Letting γ′`(v) denote γ′(G|Ñ(v)) and
γ′`(G) denote maxv∈V (G) γ

′
`(v), we have:

Theorem 2 (Local fractional relaxation). Every graph G satisfies χf (G) 6 γ′`(G).

Inspired by structural observations, the second author conjectured that this local
strengthening holds in the integer setting [10]. Let γ`(v) denote γ(G|Ñ(v)) and let γ`(G)
denote maxv∈V (G) γ`(v).

Conjecture 2 (Local Reed’s Conjecture). Every graph G satisfies χ(G) 6 γ`(G).

A typical example of a graph G for which γ(G) is far from χ(G) is the star K1,r. For
such graphs we have γ`(G) = γ(G), so the bound offered by the local conjecture isn’t any
better. And yet a greedy colouring algorithm can very easily 2-colour a star. Furthermore,
examples of the tightness of Reed’s Conjecture tend to be vertex-transitive, or at least
very nearly regular. So can we get a better bound when vertices that are hard to colour
(i.e. have high γ`(v)) form a stable set? The answer, at least in the fractional setting and
for certain graph classes, is yes.

1.1 The superlocal strengthening

Our idea is that a graph should be easy to colour if no two vertices with high γ`(v) are
adjacent. This gives rise to the invariants γ`̀ and γ′`̀ , which we define as follows:

For uv ∈ E(G), define γ′`̀ (uv) as 1
4
(d(u) + d(v) + ω(u) + ω(v) + 2)

= 1
2
(γ′`(u) + γ′`(v)).

Define γ′`̀ (G) as max
uv∈E(V )

γ′`̀ (uv).

For uv ∈ E(G), define γ`̀ (uv) as dγ′`̀ (uv)e.
Define γ`̀ (G) as dγ′`̀ (G)e.

We pose the natural conjecture regarding these invariants:

Conjecture 3 (Superlocal Reed’s Conjecture). Every graph G satisfies χ(G) 6 γ`̀ (G).
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Our first piece of evidence in support of this conjecture is the fact that the fractional
relaxation holds:

Theorem 3 (Superlocal fractional relaxation). Every graph G satisfies χf (G) 6 γ′`̀ (G).

After proving this theorem, we will prove that Conjecture 3 holds for graphs with no
stable set of size 3. We then prove that Conjecture 3 holds for line graphs and quasi-
line graphs. The proofs closely follow the proofs of the Local Reed’s Conjecture for the
corresponding graph classes, which appear in [2] and [10].

Before proving Theorem 3, we describe our original motivation. In [6] we bound
the fractional chromatic number of K∆-free graphs. Our approach is to find a partial
fractional colouring of one type, then use an extension of Theorem 2 as a “finishing
blow” to complete the colouring. So the question naturally arises: can we strengthen the
finishing blow? Although Theorem 3 does not improve the results given in [6], we feel
that Conjecture 3 is of greater interest. In Section 6 we discuss possible extensions of
Theorem 2 that would in fact strengthen these previous results.

2 Proving the fractional relaxation

The proofs of Theorems 1, 2, and 3 all rely on the same natural fractional colouring
algorithm, originally due to Reed [13]: we add equal weight to every maximum stable
set until a vertex is completely coloured, then we discard all completely coloured vertices
and continue the process, respecting the fact that discarding vertices changes the set of
maximum stable sets. Improving the bounds we get is merely a matter of refining the
analysis. Before describing this process in greater detail we give some requisite definitions.

For a graph G and a nonnegative rational k, a fractional k-colouring of G is a nonneg-
ative weighting w on the stable sets of G such that

∑
S w(S) 6 k, and for every vertex v,∑

S3v w(S) = 1. The fractional chromatic number of G, written χf (G), is the smallest k
for which G has a fractional vertex k-colouring.

The proof of Theorem 2 relies on the following lemma, whose proof appears in §2.2 of
[10].

Lemma 4. Let S be a maximum stable set of G chosen uniformly at random. Then for
any vertex v, E(|S ∩N(v)|) > 2− (ω(v) + 1)Pr(v ∈ S).

Before proving Theorem 3 we need an easy generalization. For adjacent vertices u and
v we define N(u, v) as (N(u) ∪N(v)) \ {u, v}.

Lemma 5. Let S be a maximum stable set of G chosen uniformly at random. Then for
any adjacent vertices u and v,

E(|S ∩N(u, v)|) > 4− (ω(v) + 2)Pr(v ∈ S)

− (ω(u) + 2)Pr(u ∈ S)−
∑

w∈N(v)∩N(u)

Pr(w ∈ S). (1)
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Proof. We know by Lemma 4 that

E(|S ∩N(v)|) > 2− (ω(v) + 1)Pr(v ∈ S) and (2)

E(|S ∩N(u)|) > 2− (ω(u) + 1)Pr(u ∈ S). (3)

By linearity of expectation we have

E(|S ∩N(u, v)|) = E(|S ∩N(u)|) + E(|S ∩N(v)|)− E(|S ∩ Ñ(u) ∩ Ñ(v)|). (4)

Also by linearity of expectation, we have

E(|S ∩ Ñ(u) ∩ Ñ(v)|) = Pr(u ∈ S) + Pr(v ∈ S) +
∑

w∈N(v)∩N(u)

Pr(w ∈ S). (5)

Substituting (2), (3), and (5) into (4) gives us (1).

We are now ready to prove Theorem 3.

Proof of Theorem 3. We fractionally colour G using the following iterative method.

1. Set w(S) = 0 for every S ∈ S. Set G0 = G. Set i = 0.

Set T = 0. T stands for total weight used.

For each v ∈ V , set wov = 0 (wo stands for weight on).

2. If V (Gi) = ∅ or T = γ′`̀ (G) then stop.

3. For each vertex v of Gi, let pi(v) be the probability that v is in a uniformly ran-
dom maximum stable set of Gi. Set low = min{1−wov

pi(v)
|v ∈ V (Gi)}. Set vali =

min(low, γ′`̀ (G)− T ).

4. Let Si be the set of maximum stable sets of Gi. For each stable set in Si, increase
w(S) by vali

|Si| . For each vertex v of Gi, increase wov by pi(v)vali. Increase T by vali.

5. Let Gi+1 be the graph induced by those vertices v which satisfy wov < 1. Increment
i and go to Step 2.

Our choice of vali ensures two things: that T never exceeds γ′`̀ (G), and that if the ith
iteration is not the last, then V (Gi+1) is properly contained in V (Gi). Thus the algorithm
must terminate.

We claim that at the end of the procedure, the w(S) weights give a fractional γ′`̀ (G)-
colouring. It is easy to show by induction that at the end of each iteration and for every
v ∈ V , wov =

∑
{S∈S|v∈S}w(S) and T =

∑
S∈S w(S). The definitions of low and vali

ensure that no wov is ever more than 1. We stop if V (Gi) = ∅ or T = γ′`̀ (G); in the first
case we know that we have the desired fractional colouring. We must now show that the
same is true in the second case. It suffices to show that in this case, each wov = 1.
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So assume that for some v we have wov < 1 when we complete the process. For each
vertex u and iteration i, denote by ai(u) the amount by which wou was augmented in
iteration i, i.e. ai(u) = valipi(u). There are two cases; we will show that each results in a
contradiction.

Case 1: v has a neighbour u with wou < 1.
In this case {u, v} ⊆ V (Gi) for every i. For every i, let S be a maximum stable set

drawn at random from Si. Then by Lemma 5,

valiE(|S ∩N(u, v)|) =
∑

x∈N(u,v)

ai(x)

> 4vali − (ω(v) + 2)ai(v)− (ω(u) + 2)ai(u)−
∑

w∈N(u)∩N(v)

ai(w)

Summing over all iterations,

∑
x∈N(u,v)

wox > 4T − (ω(v) + 2)wov − (ω(u) + 2)wou −
∑

w∈N(u)∩N(v)

wow

> ω(u) + ω(v) + d(u) + d(v) + 2− (ω(v) + 2)− (ω(u) + 2)− |N(u) ∩N(v)|
= d(u) + d(v)− |N(u) ∩N(v)| − 2 = |N(u, v)|,

a contradiction since wox 6 1 for each x ∈ N(u, v).

Case 2: Every neighbour u of v has wou = 1 at the end of the procedure.
For every neighbour u of v there exists some j such that u ∈ V (Gj) but u /∈ V (Gj+1).

Choose u maximizing j; this implies that NGi
(v) = ∅ for all i > j, and consequently

ai(v) = vali for each i > j. When i 6 j we again have∑
x∈N(u,v)

ai(x) > 4vali − (ω(v) + 2)ai(v)− (ω(u) + 2)ai(u)−
∑

w∈N(u)∩N(v)

ai(w)

by Lemma 5. Summing over the iterations up to j we see∑
x∈N(u,v)

∑
i6j

ai(x)

> 4(T −
∑
i>j

ai(v))− (ω(v) + 2)
∑
i6j

ai(v)− (ω(u) + 2)
∑
i6j

ai(u)−
∑

w∈N(u)∩N(v)

∑
i6j

ai(w)

= d(u) + d(v) + ω(u) + ω(v) + 2

−4
∑
i>j

ai(v)− (ω(v) + 2)
∑
i6j

ai(v)− (ω(u) + 2)
∑
i6j

ai(u)−
∑

w∈N(u)∩N(v)

∑
i6j

ai(w)

> d(u) + d(v) + ω(u) + ω(v) + 2− (ω(v) + 2)
∑
i

ai(v)− (ω(u) + 2)wou −
∑

w∈N(u)∩N(v)

wow

> d(u) + d(v)− |N(u) ∩N(v)| − 2 = |N(u, v)|,

where the third inequality follows since ω(v) + 2 > 4. This is a contradiction as wox 6 1
for each x ∈ N(u, v).

It follows that for every v ∈ V (G), wov = 1. This completes the proof.
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3 Some easy integer colouring cases

Theorem 3 puts Conjecture 3 within reach for several classes of graphs. For circular
interval graphs (see [10] for a definition), the result is an immediate consequence of the
round-up property proved by Niessen and Kind [14]:

Theorem 6. For any circular interval graph G, χ(G) = dχf (G)e.

Theorem 7. For any circular interval graph G, χ(G) 6 γ`̀ (G).

Circular interval graphs are a fundamental subclass of quasi-line graphs, which are
themselves a fundamental subclass of claw-free graphs – see [3] for an explanation. Since
Reed’s Conjecture is known to hold for claw-free graphs, we might hope that the same is
true for Conjecture 3. Although there are still some claw-free graphs for which Conjecture
2 has not been proven, we hope to prove the superlocal Reed’s Conjecture for substantial
subclasses of claw-free graphs. We continue by naming another easy victim: graphs with
stability number at most two.

Theorem 8. Any graph G satisfying α(G) 6 2 also satisfies χ(G) 6 γ`̀ (G).

In this case a colouring of G corresponds to a matching in the complement of G, so
we have a wealth of knowledge at hand. The proof of this theorem is actually an easy
exercise, and follows almost exactly the proof of Theorem 2.15 in [10]. The Edmonds-
Gallai structure theorem [5, 7] implies that a minimum counterexample, which must be
vertex-critical, either satisfies χ(G) = dχf (G)e or has a disconnected complement. Thus
the only work we need to do, after replacing Theorem 2 with Theorem 3, is to prove that
if G is the join of graphs G1 and G2, then γ`̀ (G) > γ`̀ (G1) +γ`̀ (G2). We leave the details
to the reader.

Having exhibited the usefulness of Theorem 3 in bounding the chromatic number, we
move on to something a little more challenging: a class of graphs for which χ and χf are
believed, but not known, to differ by at most 1.

4 Colouring line graphs with γ`̀ (G) colours

In this section we consider line graphs of multigraphs. As we do, we bear in mind the
famous Goldberg-Seymour conjecture [8, 16], which proposes that every line graph G
satisfies χ(G) 6 χf (G) + 1. Kahn [9] proved that this bound holds asymptotically. The
approach used to prove Conjecture 1 for line graphs [12] was no help in proving Conjecture
2. We therefore appeal to Vizing fans, which were the key to proving Conjecture 2 for
line graphs [2]. The extension of this proof is fairly straightforward.

In order to prove Conjecture 3 for line graphs, we prove an equivalent statement in the
setting of edge colourings of multigraphs. Given distinct adjacent vertices u and v in a
multigraph G, we let µG(uv) denote the number of edges between u and v. We let tG(uv)
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denote the maximum, over all vertices w forming a triangle with {u, v}, of the number of
edges with both endpoints in {u, v, w}. That is,

tG(uv) := max
w∈N(u)∩N(v)

(µG(uv) + µG(uw) + µG(vw)) .

We omit the subscripts when the multigraph in question is clear.
Observe that given an edge e in G with endpoints u and v, the degree of e in L(G)

is d(u) + d(v) − µ(uv) − 1. And since any clique in L(G) containing e comes from the
edges incident to u, the edges incident to v, or the edges in a triangle containing u and v,
we can see that ω(e) in L(G) is equal to max{d(u), d(v), t(uv)}. Therefore we prove the
following theorem, which is equivalent to proving Conjecture 3 for line graphs:

Theorem 9. Let G be a multigraph and let

γ̄`̀ (G) :=

⌈
1
2 max
uv,vw∈E(G)

{
d(u) + 1

2(d(v)− µ(uv)) + d(v) + 1
2(d(w)− µ(vw)), (6)

d(u) + 1
2(d(v)− µ(uv)) + d(w) + 1

2(d(v)− µ(vw)), (7)

d(u) + 1
2(d(v)− µ(uv)) + 1

2(d(v) + d(w)− µ(vw) + t(vw)), (8)

d(v) + 1
2(d(u)− µ(uv)) + d(v) + 1

2(d(w)− µ(vw)), (9)

d(v) + 1
2(d(u)− µ(uv)) + d(w) + 1

2(d(v)− µ(vw)), (10)

d(v) + 1
2(d(u)− µ(uv)) + 1

2(d(v) + d(w)− µ(vw) + t(vw)), (11)
1
2(d(u) + d(v)− µ(uv) + t(uv)) + d(v) + 1

2(d(w)− µ(vw)), (12)
1
2(d(u) + d(v)− µ(uv) + t(uv)) + d(w) + 1

2(d(v)− µ(vw)), (13)
1
2(d(u) + 2d(v) + d(w)− µ(uv) + t(uv)− µ(vw) + t(vw)) (14)}⌉

.

Then χ′(G) 6 γ̄`̀ (G).

Remark: One can turn the proof of this theorem into an algorithm as in [2], yielding
an O(n2) algorithm for γ`̀ (G)-colouring a line graph on n vertices. In fact, what we
implicitly prove is that the algorithm presented in [2] gives a γ`̀ (G)-colouring, not just a
γ`(G)-colouring.

To prove this theorem we assume that G is a minimum counterexample and investigate
γ̄`̀ (G)-edge-colourings of G − e for an edge e. We begin by defining, for a vertex v, a
fan hinged at v. Let e be an edge incident to v, and let v1, . . . , v` be a set of distinct
neighbours of v with e between v and v1. Let c : E \ {e} → {1, . . . , k} be a proper edge
colouring of G \ {e} for some fixed k. Then F = (e; c; v; v1, . . . , v`) is a fan if for every
j such that 2 6 j 6 `, there exists some i less than j such that some edge between v
and vj is assigned a colour that does not appear on any edge incident to vi (i.e. a colour
missing at vi). We say that F is hinged at v. If there is no u /∈ {v, v1, . . . , v`} such that
F ′ = (e; c; v; v1, . . . , v`, u) is a fan, we say that F is a maximal fan. The size of a fan refers
to the number of neighbours of the hinge vertex contained in the fan (in this case, `).
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These fans generalize Vizing’s fans, originally used in the proof of Vizing’s theorem [17].
Given a partial k-edge-colouring of G and a vertex w, we say that a colour is incident
to w if the colour appears on an edge incident to w. We use C(w) to denote the set of
colours incident to w, and we use C̄(w) to denote [k] \ C(w).

For this section let us call G a minimum counterexample if χ′(G) > γ̄`̀ (G) and for
every graph G′ on fewer edges, χ′(G′) 6 γ̄`̀ (G′). Fans allow us to modify partial k-edge-
colourings of a graph (specifically those with exactly one uncoloured edge). As a first step
towards Theorem 9, we show that if G is a minimum counterexample and k = γ̄`̀ (G),
then every maximal fan has size 2. For ease of notation we will denote γ̄`̀ (G) by k for the
remainder of this section. We begin with two simple lemmas that guarantee disjointness
of certain colour sets in partial k-edge-colourings of G− e. These follow from the work of
Vizing [17]; for proofs see for example Lemmas 6 and 7 in [2].

Lemma 10. Let G be a minimum counterexample, let e be an edge in G and let c be a
k-edge-colouring of G − e. If F = (e; c; v; v1, . . . , v`) is a fan, then C̄(v) ∩ C̄(vj) = ∅ for
every j.

Lemma 11. Let G be a minimum counterexample, let e be an edge in G and let c be
a k-edge-colouring of G − e. If F = (e; c; v; v1, . . . , v`) is a fan, then for every i and j
satisfying 1 6 i < j 6 `, C̄(vi) ∩ C̄(vj) = ∅.

We can now prove that no maximal fan has size 1 or at least 3.

Lemma 12. Let G be a minimum counterexample, let e be an edge in G and let c be a
k-edge-colouring of G− e. Let F = (e; c; v; v1, v2, . . . , v`) be a maximal fan. Then ` > 1.

Proof. Suppose that ` = 1. If C̄(v)∩C̄(v1) is nonempty, then c can easily be extended to a
k-edge-colouring of G, so we may assume C̄(v)∩ C̄(v1) is empty. Now, k = γ̄`̀ (G) > d(v1)
by (9) and so C̄(v1) is nonempty. Therefore there is a colour in C̄(v1) appearing on an
edge incident to v whose other endpoint, call it v2, is not v1. Thus (e; c; v; v1, v2) is a fan,
contradicting the maximality of F .

Lemma 13. Let G be a minimum counterexample, let e be an edge in G and let c be a
k-edge-colouring of G− e. Let F = (e; c; v; v1, v2, . . . , v`) be a maximal fan. Then ` < 3.

Proof. Suppose ` > 3. Let v0 denote v for ease of notation. If C̄(v0), C̄(v1), . . . , C̄(v`) are
not all pairwise disjoint, then using Lemma 10 or Lemma 11 we can find a k-edge-colouring
of G, contradicting χ′(G) > k. We therefore assume they are pairwise disjoint.

The number of missing colours at vi, i.e. |C̄(vi)|, is k−d(vi) if 2 6 i 6 `, and k−d(vi)+1
if i ∈ {0, 1}. Since F is maximal, any edge with one endpoint v0 and the other endpoint
outside {v0, . . . , v`} must have a colour not appearing in ∪`i=0C̄(vi). Therefore(∑̀

i=0

(k − d(vi))

)
+ 2 +

(
d(v0)−

∑̀
i=1

µ(v0vi)

)
6 k. (15)

`k + 2−
∑̀
i=1

µ(v0vi) 6
∑̀
i=1

d(vi). (16)
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But since k = γ̄`̀ (G) we have for each i,

2k > d(vi) + d(vi+1) + d(v0)− 1
2
(µ(v0vi) + µ(v0vi+1)) (17)

by (7), taking indices modulo `. This tells us that

2`k >
∑̀
i=1

(
d(vi) + d(vi+1) + d(v0)− 1

2
(µ(v0vi) + µ(v0vi+1))

)
(18)

=
∑̀
i=1

(
2d(vi) + d(v0)− µ(v0vi)

)
(19)

so we have

1
2

∑̀
i=1

(
2d(vi) + d(v0)− µ(v0vi)

)
+ 2−

∑̀
i=1

µ(v0vi) 6
∑̀
i=1

d(vi). (20)

But then

2 + 1
2
`d(v0)− 3

2

∑̀
i=1

µ(v0vi) 6 0

`
2
d(v0) < 3

2
d(v0),

a contradiction since ` > 3.

We are now ready to finish the proof of Theorem 9. We approach the theorem by
constructing a sequence of overlapping fans of size two until we can apply a previous
lemma. If we cannot do this, then our sequence results in a cycle in G and a set of partial
k-edge-colourings of G with a very specific structure that leads us to a contradiction.

Proof of Theorem 9. Let G be a minimum counterexample and let e0 be an edge of G.
Let c0 be a k-edge-colouring of G− e.

Let v0 and v1 be the endpoints of e0, and let F0 = (e0; c0; v1; v0, v2) be a maximal fan
whose existence and maximality are guaranteed by Lemmas 12 and 13.

Let C̄0 denote the set of colours missing at v0 in the partial colouring c0, and take some
colour α0 ∈ C̄0. Note that if α0 does not appear on an edge between v1 and v2 then we
can find a fan (e0; c0; v1; v0, v2, u) of size 3, contradicting Lemma 13. So we can assume
that α0 does appear on an edge between v1 and v2.

Let e1 denote the edge between v1 and v2 given colour α0 in c0. We construct a new
colouring c1 of G−e1 from c0 by uncolouring e1 and assigning e0 colour α0. Let C̄1 denote
the set of colours missing at v1 in the colouring c1. Now let F1 = (e1; c1; v2; v1, v3) be
a maximal fan. As with F0, we can assume that F1 exists and is indeed maximal. The
vertex v3 may or may not be the same as v0.

Let α1 ∈ C̄1 be a colour in C̄1. Just as α0 appears between v1 and v2 in c0, we can
see that α1 appears between v2 and v3. Now let e2 be the edge between v2 and v3 having
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α0 ∈ C̄2e0 e2α1 ∈ C̄1

F1

v2

v3

e2

v1
e1

e0 v0

c1(e2) = α1

α0 ∈ C̄0

v2

v1

e1

F0

v0

c0(e1) = α0

e1

F2

v2

v4

v3

e3

e0

v0

v1

c2(e3) = α0

Figure 1: Construction of the first few fans Fi

colour α1 in c1. We construct a colouring c2 of G − e2 from c1 by uncolouring e2 and
assigning e1 colour α1.

We continue to construct a sequence of fans Fi = (ei, ci; vi+1; vi, vi+2) for i = 0, 1, 2, . . .
in this way, maintaining the property that αi+2 = αi (see Figure 1). This is possible
because when we construct ci+1 from ci, we make αi available at vi+2, so the set C̄i+2

(the set of colours missing at vi+2 in the colouring ci+2) always contains αi. We continue
constructing our sequence of fans until we reach some j for which vj ∈ {vi}j−1

i=0 , which
will inevitably happen if we never find a fan of size 3 or greater. We claim that vj = v0

and j is odd. To see this, consider the original edge-colouring of G − e0 and note that
for 1 6 i 6 j − 1, α0 appears on an edge between vi and vi+1 precisely if i is odd, and
α1 appears on an edge between vi and vi+1 precisely if i is even. Thus since the edges of
colour α0 form a matching, and so do the edges of colour α1, we indeed have vj = v0 and
j odd. Furthermore F0 = Fj. Let C denote the cycle v0, v1, . . . , vj−1. In each colouring,
α0 and α1 both appear (j − 1)/2 times on C, in a near-perfect matching. Let H be the
sub-multigraph of G consisting of those edges between vi and vi+1 for 0 6 i 6 j (with
indices modulo j). Let A be the set of colours missing on at least one vertex of C, and
let HA be the sub-multigraph of H consisting of e0 and those edges receiving a colour in
A in c0 (and therefore in any ci).

Suppose j = 3. If some colour is missing on two vertices of C in c0, c1, or c2, we can
easily find a k-edge-colouring of G since any two vertices of C are the endpoints of e0, e1,
or e2, a contradiction since G is a minimum counterexample. We know that every colour
in C̄0 appears between v1 and v2, and every colour in C̄1 appears between v2 and v0 and
every colour in C̄2 appears between v0 and v1. Therefore |E(HA)| = |A| + 1 and by (14)
we have

4γ̄`̀ (G) > dG(v1) + dG(v2) + 2dG(v0)− µG(v0v1)− µG(v0v2) + tG(v0v1) + tG(v0v2)

= dHA
(v1) + dHA

(v2) + 2dHA
(v0)

+4(k − |A|)− µG(v0v1)− µG(v0v2) + tG(v0v1) + tG(v0v2)

> dHA
(v1) + dHA

(v2) + 2dHA
(v0)

+4(k − |A|)− µHA
(v0v1)− µHA

(v0v2) + tHA
(v0v1) + tHA

(v0v2)

> 4|E(HA)|+ 4(k − |A|)
> 4|A|+ 4(k − |A|) = 4k,
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a contradiction since k = γ̄`̀ (G). We can therefore assume that j > 5.
Let β be a colour in A \ {α0, α1}. If β is missing at two consecutive vertices vi and

vi+1 then we can easily extend ci to a k-edge-colouring of G. Bearing in mind that each
Fi is a maximal fan, we claim that if β is not missing at two consecutive vertices then
either we can easily k-edge-colour G, or the number of edges coloured β in HA is at least
twice the number of vertices at which β is missing in any ci.

e′β eβ

v0

vj−1

v3

v2

v1

vj−2

vj−3

β /∈ C̄j−3 β /∈ C̄3

β ∈ C̄0

Figure 2: The graph HA

To prove this claim, first assume without loss of generality that β ∈ C̄0. Since β is not
missing at v1, β appears on an edge, say eβ, between v1 and v2 for the same reason that
α0 does. Likewise, since β is not missing at vj−1, β appears on an edge e′β between vj−1

and vj−2. Finally, suppose β appears between v1 and v2, and is missing at v3 in c0. Then
let eβ be the edge between v1 and v2 with colour β in c0. We construct a colouring c′0
from c0 by giving e2 colour β and giving eβ colour α1 (i.e. we swap the colours of eβ and
e2). Thus c′0 is a k-edge-colouring of G− e0 in which β is missing at both v0 and v1. We
can therefore extend G− e0 to a k-edge-colouring of G. Thus if β is missing at v3 or vj−3

we can easily k-edge-colour G. We therefore have at least two edges of HA coloured β for
every vertex of C at which β is missing, and we do not double-count edges (see Figure
2). This proves the claim, and the analogous claim for any colour in A also holds.
Now, taking indices modulo j, we have

j−1∑
i=0

µHA
(vivi+1) = |E(HA)| > 2

j−1∑
i=0

(k − dG(vi)). (21)

Therefore
j−1∑
i=0

(2dG(vi) + µHA
(vivi+1)) > 2jk. (22)

Rewriting,

j−1∑
i=0

(
dG(vi) + 1

2
µHA

(vi+1vi+2) + dG(vi+2) + µHA
(vivi+1)

)
> 2jk. (23)
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Therefore there exists some index i for which

dG(vi) + 1
2
µHA

(vi+1vi+2) + dG(vi+2) + 1
2
µHA

(vivi+1) > 2k. (24)

Therefore by (7),

2k > 2γ̄`̀ > dG(vi) + 1
2
(d(vi+1 − µHA

(vivi+1)) + dG(vi+2) (25)

+1
2
(d(vi+1 − µHA

(vi+1vi+2)) (26)

> dG(vi) + 1
2
µG(vi+1vi+2) + dG(vi+2) + 1

2
µG(vivi+1) (27)

> 2k, (28)

a contradiction. So we can indeed find a k-edge-colouring of G. This contradicts the
assertion that G is a minimum counterexample and completes the proof.

5 Colouring quasi-line graphs with γ`̀ (G) colours

In this section we extend our bound on the chromatic number to quasi-line graphs. A
graph is quasi-line if every vertex is bisimplicial, i.e. its neighbours can be covered by two
cliques. This class contains all circular interval graphs and all line graphs, and just like
those two classes, the fractional and integer chromatic numbers agree asymptotically for
quasi-line graphs [11].

Quasi-line graphs are essentially constructed as a combination of line graphs and
circular interval graphs. We forgo a lengthy description of their structure and instead
direct the unfamiliar reader to [2], [3], and [10]. Here we present the bare minimum of
what we need.

To proceed we must define linear interval graphs, which are also known as proper
interval graphs1 [4]. A graph G = (V,E) is a linear interval graph precisely if it has a
linear interval representation. A linear interval representation consists of a point on the
real line for each vertex, and a set of intervals such that vertices u and v are adjacent in G
precisely if there is an interval containing both corresponding points on the real line. If X
and Y are specified cliques in G consisting of the |X| leftmost and |Y | rightmost vertices
(with respect to the real line) of G respectively, we say that X and Y are end-cliques of
G. These cliques may be empty. We now describe how we might isolate a linear interval
graph within a quasi-line graph.

Given four cliques X1, Y1, X2, and Y2, we say that ((V1, X1, Y1), (V2, X2, Y2)) is a
canonical interval 2-join if it satisfies the following conditions (see Figure 3):

• V (G) can be partitioned into nonempty V1 and V2 withX1∪Y1 ⊆ V1 andX2∪Y2 ⊆ V2

such that for v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge precisely if {v1, v2} is in X1 ∪X2

or Y1 ∪ Y2.

• G|V2 is a linear interval graph with disjoint end-cliques X2 and Y2.

1The divergence of terminology is an unfortunate consequence of two possible definitions: one in which
intervals represent cliques, and one, the original, in which intervals represent vertices.
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G1

... ...

X1

X2

Y1

Y2

G2

Figure 3: A canonical interval 2-join

We now say that a quasi-line graph G is a minimum counterexample if χ(G) > γ`̀ (G),
but no smaller quasi-line graph has the same property. Note that any induced subgraph of
a quasi-line graph is quasi-line. Theorems 7 and 9, combined with well-known structural
results (e.g. Theorem 16 and the discussion in Sections 3.3-3.5 of [2]), imply:

Proposition 14. If G is a minimum counterexample then G admits a canonical interval
2-join.

The main result of this section is:

Theorem 15. Let G be a quasi-line graph. Then χ(G) 6 γ`̀ (G).

Remark: As with Theorem 9, here we implicitly prove that the algorithm from [2] uses
at most γ`̀ (G) colours. This gives us a time complexity bound of O(n2m2), which we
believe can be improved to O(m2).

To prove Theorem 15 it only remains to prove that a minimum counterexample can-
not contain a canonical interval 2-join. Given a canonical interval 2-join ((V1, X1, Y1),
(V2, X2, Y2)) in G with an appropriate partitioning V1 and V2, let G1 denote G|V1, let
G2 denote G|V2 and let H2 denote G|(V2 ∪ X1 ∪ Y1). For v ∈ H2 we define ω′(v) as
the size of the largest clique in H2 containing v and not intersecting both X1 \ Y1 and
Y1 \ X1. For uv ∈ E(H2) we define γj`̀ (uv) as d1

4
(dG(u) + dG(v) + 2 + ω′(u) + ω′(v))e,

and we define γj`̀ (H2) as maxuv∈E(H2) γ
j
`̀ (uv) (here the superscript j denotes join). Ob-

serve that γj`̀ (H2) 6 γ`̀ (G). If v ∈ X1 ∪ Y1, then ω′(v) is |X1| + |X2|, |Y1| + |Y2|, or
|X1∩Y1|+ω(G|(X2∪Y2)). So rather than bounding χ by γ`̀ , we bound χ by a refinement
of γ`̀ derived from our decomposition.

Lemma 16. Let G be a minimum counterexample admitting a canonical interval 2-join
((V1, X1, Y1), (V2, X2, Y2)). Then given a proper l-colouring of G1 for any l > γj`̀ (H2), we
can find a proper l-colouring of G.

Since χ(G1) 6 γ`̀ (G1) 6 γ`̀ (G) and γj`̀ (H2) 6 γ`̀ (G), this lemma immediately implies
Theorem 15. Also since a minimum counterexample cannot contain a clique cutset (this
is a straightforward observation since no graph with a clique cutset is vertex-critical), all
four cliques X1, Y1, X2, and Y2 must be nonempty.
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Proof. We proceed by induction on l, observing that the case l = 1 is trivial. We begin
by modifying the colouring so that the number k of colours used in both X1 and Y1 in
the l-colouring of G1 is maximal. That is, if a vertex v ∈ X1 gets a colour that does not
appear in Y1, then every colour appearing in Y1 appears in N(v). If l exceeds γj`̀ (H2) we
can just remove a colour class in G1 and apply induction on what remains. Thus we can
assume that l = γj`̀ (H2) and so if we apply induction we must remove a stable set whose
removal lowers both l and γj`̀ (H2).

We use case analysis; when considering a case we may assume no previous case applies.
In some cases we extend the colouring of G1 to an l-colouring of G in one step. In other
cases we remove a colour class in G1 together with vertices in G2 such that everything we
remove is a stable set, and when we remove it we reduce γj`̀ (uv) for every uv ∈ E(H2);
after doing this we apply induction on l. Notice that if X1 ∩ Y1 6= ∅ and there are edges
between X2 and Y2 we may have a large clique in H2 which contains some but not all of
X1 and some but not all of Y1; this is a subtlety that we deal with in every applicable
case.

Case 1. Y1 ⊆ X1.

Since G cannot contain a clique cutset, H2 = G and furthermore H2 is a circular
interval graph, contradicting the assumption that G is a minimum counterexample.

Case 2. k = 0 and l > |X1|+ |Y1|.
Here X1 and Y1 are disjoint since k = 0. Take a stable set S greedily from left to
right in G2. By this we mean that we start with S = {v1} (the leftmost vertex
of X2) and we move along the vertices of G2 in linear order, adding a vertex to S
whenever doing so will leave S a stable set. So S hits X2. If it hits Y2, remove
S along with a colour class in G1 not intersecting X1 ∪ Y1; these vertices together
make a stable set. If v ∈ G2 it is easy to see that ω′(v) will drop: S intersects every
maximal clique containing v. If v ∈ X1 ∪Y1 then since X1 and Y1 are disjoint, ω′(v)
is either |X1| + |X2| or |Y1| + |Y2|; in either case ω′(v) drops. Therefore since S is
maximal in H2, γj`̀ (uv) drops for each edge uv ∈ E(H2) when S and the colour class
are removed. Therefore γj`̀ (H2) and l drop, and we can proceed by induction.

If S does not hit Y2 we remove S along with a colour class from G1 that hits Y1

(and therefore not X1). Since S ∩ Y2 = ∅ the vertices together make a stable set.
Using the same argument as before we can see that removing these vertices drops
both l and γj`̀ (H2), so we can proceed by induction.

Case 3. k = 0 and l = |X1|+ |Y1|.
Again, X1 and Y1 are disjoint. Since G cannot contain a clique cutset, G2 is con-
nected. Therefore every vertex in X2 must have a neighbour outside X1. Conse-
quently γj`̀ (H2) > |X1∪X2| > |X1|+1. Since l > γj`̀ (H2), this implies that |Y1| > 1.
The symmetric argument tells us that |X1| > 1.

By maximality of k, every vertex in X1 ∪ Y1 has at least l − 1 neighbours in G1.
Since l = |X1|+ |Y1| and γj`̀ (X1 ∪ Y1) 6 l, we know that ω′(X1) 6 |X1|+ |Y1| − |X2|
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and ω′(Y1) 6 |X1| + |Y1| − |Y2|. Thus |Y1| > 2|X2| and similarly |X1| > 2|Y2|. For
the remainder of this case we assume without loss of generality that |Y2| 6 |X2|.
We first attempt to l-colour H2−Y1, which we denote by H3, such that every colour
in Y2 appears in X1 – this is clearly sufficient to prove the lemma since we can
permute the colour classes and paste this colouring onto the colouring of G1 to get
a proper l-colouring of G. If ω(H3) 6 l − |Y2| then this is easy: since H3 is a linear
interval graph we can ω(H3)-colour the vertices of H3, then use |Y2| new colours to
recolour Y2 and |Y2| vertices of X1. This is possible since Y2 and X1 have no edges
between them. Defining b as l − ω(H3), we can now assume that b < |Y2|.
It now suffices to find an ω(H3)-colouring of H3 such that at most b colours appear in
Y2 but not X1. This is because if we take such a colouring and permute the colours
so that they agree with our l-colouring of G1 on X1, we can use the colours which
don’t yet appear on H3 to recolour b vertices in Y2 to obtain a proper colouring.
There is some clique C = {vi, . . . , vi+ω(H3)−1} in H3; this clique does not intersect
X1 because |X1∪X2| 6 l−|X2| 6 l−|Y2| < l−b = ω(H3), where the first inequality
follows from l = |X1| + |Y1| and |Y1| > 2|X2|. Since γj`̀ (vivi+1) 6 l, it is clear that
either vi or vi+1 has at most 2b neighbours outside C. Let vi′ ∈ {vi, vi+1} be the
vertex with this property. Since b < |Y2| 6 1

2
|X1| we can be assured that vi′ /∈ X2.

Since ω(H3) > |X1|+ |X2| > |Y2|, we deduce vi′ /∈ Y2.

We now colour H3 greedily from left to right, modulo ω(H3). If at most b colours
appear in Y2 but notX1 then we are done, otherwise we will “roll back” the colouring,
starting at vi′ . That is, for every p > i′, we modify the colouring of H3 by giving vp
the colour after the one that it currently has, modulo ω(H3). Since vi′ has at most
2b neighbours behind it, we can roll back the colouring at least ω(H3)−2b−1 times
for a total of ω(H3)− 2b proper colourings of H3.

Since vi′ /∈ Y2 the colours on Y2 will appear in order modulo ω(H3) in all of the
rolled back colourings. The colours on X1 will also be in order. Thus the colouring
of Y2 is one of at most ω(H3) possibilities in each rolled back colouring, and in 2b+1
of them there are at most b colours appearing in Y2 but not X1. It follows that one
of the rolled back colourings of H3 will be acceptable.

Henceforth we drop the assumption that |X2| > |Y2|, and assume without loss of
generality that |X1| > |Y1|.

Case 4. 0 < k < |X1|.
Take a stable set S in G2 −X2 greedily from left to right. If S hits Y2, we remove
S from G, along with a colour class from G1 intersecting X1 but not Y1. Otherwise,
we remove S along with a colour class from G1 intersecting both X1 and Y1. In
either case it is a simple matter to confirm that γj`̀ (uv) drops for every uv ∈ E(H2)
as we did in Case 2. We proceed by induction.
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Case 5. k = |Y1| = |X1| = 1.

In this case |X1| = k = 1. If G2 is not connected then X1 and Y1 are both clique
cutsets and we can proceed as in Case 1. If G2 is connected and contains an l-clique,
then there is some v ∈ V2 of degree at least l in the l-clique. Thus γj`̀ (H2) > l,
contradicting our assumption that l > γj`̀ (H2). So ω(G2) < l. We can ω(G2)-colour
G2 in linear time using only colours not appearing in X1 ∪ Y1, thus extending the
l-colouring of G1 to a proper l-colouring of G.

Case 6. k = |Y1| = |X1| > 1.

Suppose that k is not minimal. That is, suppose there is a vertex v ∈ X1∪Y1 whose
closed neighbourhood does not contain all l colours in the colouring of G1. Then
we can change the colour of v and apply the argument of Case 4. So assume k is
minimal.

Therefore every vertex in X1 has degree at least l+|X2|−1. Since X1∪X2 is a clique
and X1 contains an edge, l > γj`̀ (H2) > 1

2
(l + |X2|+ |X1|+ |X2|), so 2|X2| 6 l − k.

Similarly, 2|Y2| 6 l − k, so |X2| + |Y2| 6 l − k. Since X1 and Y1 contain the same
k colours, there are l − k colours not appearing in X1 ∪ Y1 in the l-colouring of
G1, so we can ω(G2)-colour G2, then permute the colour classes so that no colour
appears in both X1 ∪ Y1 and X2 ∪ Y2. Thus we can extend the l-colouring of G1 to
an l-colouring of G.

These cases cover every possibility, so the lemma is proved.

This completes the proof of Theorem 15.

6 Conclusion

The local version of Reed’s Conjecture proposes that Reed’s two requirements for high
chromatic number, namely high degree and high clique number, must occur in the same
part of the graph. The superlocal version proposes that this must occur at least twice in
the same part of the graph. We believe that this requirement can be pushed further, at
least in the fractional setting. Let C(G) be the set of maximal cliques in a graph G.

Conjecture 4. Every graph G satisfies

χf (G) 6 max
C∈C(G)

1

|C|
∑
v∈C

γ′`(v).

We cannot hope to take the maximum average over a closed neighbourhood rather
than the maximum average over a maximal clique. To see this, take a clique C of size
k and attach k pendant vertices to every vertex of C. Each v in C has γ′`(v) = 3

2
k, and

each u /∈ C has γ′`(u) = 2. Therefore for any v,

1

d(v) + 1

∑
u∈Ñ(v)

γ′`(u) = 3
4
k + 1.
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For k > 4, this is less than the fractional chromatic number, i.e. k. However, we would
like to know if the condition holds when it is no longer possible to lower the bound by
adding vertices:

Question 1. Does every graph G satisfy

χf (G) 6 max
H⊆G

max
v∈V (H)

1

dH(v) + 1

∑
u∈ÑH(v)

γ′`H(u)?

If true, this would be very interesting, since it would require a different colouring
method than the one used in Section 2. To see this, consider the tree on six vertices,
four of which have degree 1 and two of which have degree 3. In this case the fractional
colouring process described in Section 2 gives a fractional 3-colouring, whereas the bound
in question is 5/2.

On the subject of integer colouring, proving Conjecture 3 for claw-free graphs does
not seem easier than proving Conjecture 2 for claw-free graphs. However, proofs of the
local version seem easy to extend to the superlocal version. In particular, we believe it
should be easy to prove Conjecture 3 for claw-free graphs with α 6 3, following the proof
in [10].

Acknowledgements

We thank the referee for a careful and helpful review, and the editors for their time and
contribution to the journal.

References

[1] N. R. Aravind, T. Karthick, and C. R. Subramanian. Bounding χ in terms of ω and
∆ for some classes of graphs. Discrete Math., 311(12):911 – 920, 2011.

[2] M. Chudnovsky, A. D. King, M. Plumettaz, and P. Seymour. A local strengthening
of Reed’s ω, ∆, χ conjecture for quasi-line graphs. SIAM J. Discrete Math., 27(1):95–
108, 2013.

[3] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In B. S. Webb,
editor, Surveys in Combinatorics, volume 327 of London Math. Soc. Lecture Note
Ser. Cambridge University Press, 2005.

[4] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput., 25:390–403, 1996.

[5] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[6] K. Edwards and A. D. King. Bounding the fractional chromatic number of K∆-free
graphs. SIAM J. Discrete Math., 27(2):1184–1208, 2013.
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