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Abstract

Given a prime number p, we deduce from a formula of Barsky and Benzaghou
and from a result of Coulter and Henderson on trinomials over finite fields, a sim-
ple necessary and sufficient condition β(n) = kβ(0) in Fpp in order to resolve the
congruence B(n) ≡ k (mod p), where B(n) is the n-th Bell number, and k is any
fixed integer. Several applications of the formula and of the condition are included,
in particular we give equivalent forms of the conjecture of Kurepa that B(p− 1) is
6= 1 modulo p.
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1 Introduction

Definition 1. The Bell numbers B(n) are defined by B(0) := 1, and B(n + 1) :=∑n
k=0

(
n
k

)
B(k).

The Bell numbers B(n) are positive integers that arise in combinatorics. Besides the
definition 1 that appears in [40], other definitions, or characterizations, exist (see, e.g.
[49], [44], [17, page 371], [1]). Williams [34] proved that, for each prime number p, the
sequence B(n) (mod p) is periodic. In all the paper we keep the following notations. We
denote by p an odd prime number. We call an integer d a period of B(n) (mod p) if
for all nonnegative integers n one has B(n + d) ≡ B(n) (mod p). We set q := pp; Fp
is the finite field with p elements, and Fq is the finite field with q elements, the Artin-
Schreier extension of degree p of Fp generated by an element r, a root of the irreducible
trinomial xp − x − 1 in some fixed algebraic closure of Fp. We denote by Tr the trace
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function from Fq onto Fp, we denote by N the norm function from Fq onto Fp. We put
c(p) := 1 + 2p+ 3p2 + · · ·+ (p− 1)pp−2.

In all the paper we use also the following definition, that is a variant of the definition
in (see, e.g., [45, pages 248–250]), of the falling and rising powers.

Definition 2. Set ε(i) := (r + i + 1) · · · (r + p − 1) in Fq for i = 0, . . . , p − 2, and
ε(p−1) := 1, ε(p) := ε(0). Set δ(0) := r, δ(i) := r(r+1) · · · (r+ i) in Fq for i = 1, . . . , p−2
and δ(p − 1) := N(r) = 1. More generally, we extend the definition to any integer n by
putting ε(n) := ε(n (mod p)), and δ(n) := δ(n (mod p)).

The main new idea in the paper ([38], [39]) of Barsky and Benzaghou, consists of
the observation that the Bell number B(n) modulo p is related to the trace of a special
element in Fq (see [38, Théorème 2]). More precisely one has

B(n) ≡ −Tr(rc(p))Tr(rn−c(p)−1) (mod p). (1)

Since Tr(rc(p)) 6≡ 0 (mod p) (see Lemma 8) one sees immediately by using the Additive
Hilbert’s Theorem 90 that B(n) ≡ 0 (mod p) is equivalent to the existence of some λ ∈ Fq
such that

rn−c(p)−1 = λp − λ.

By the change of variable γ = rc(p)λ, we are reduced (see the details in Theorem 9) to
study the trinomial equation

γp − rγ − rn = 0

over Fq. But Coulter and Henderson ([43], Lemma 10) have given an explicit condition
for the solvability of the more general trinomial equation

xp
s − ax− b = 0 (2)

over the finite field Fpk .
Hence we can give a necessary and sufficient condition in order that B(n) ≡ 0 (mod p),

namely:

Theorem 3. Let p > 2 be a prime number, and let n be a positive integer. Set β(n) :=∑p−1
i=0 (r + i)nε(i). Then B(n) ≡ 0 (mod p) has a positive integer solution n if and only if

β(n) = 0. Moreover β(n)p = rβ(n).

The special case s = 1 of ( 2) had already been considered, but in a less detailed form,
by Segre (see [25, page 200]) and also by Svarc (see [29]).

The following lemma is a result of Touchard (see [31]).

Lemma 4 (Touchard’s Congruence). Let p be an odd prime number. Then for any
nonnegative number n one has

B(n) +B(n+ 1) ≡ B(n+ p) (mod p).

The following result will be used extensively.
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Lemma 5. Let d be any period of the sequence B(n) (mod p). Then B(p − 1) ≡ 1
(mod p) is equivalent to B(d− 1) ≡ 0 (mod p).

Proof. By Touchard’s congruence (see Lemma 4) one has B(d− 1) +B(d) ≡ B(d− 1 + p)
(mod p), but B(d − 1 + p) ≡ B(p − 1) (mod p) and B(d) ≡ B(0) ≡ 1 (mod p). Thus,
B(p− 1) ≡ B(d− 1) + 1 (mod p). This proves the result.

Moreover, it is interesting to observe that the minimal period of B(n) (mod p) is
conjectured, but not proved, (see [49], [42], [48], [22], [4], [44], [40]), to be equal to g(p),
where g(p) := 1 + p+ p2 + · · ·+ pp−1.

Now, we discuss a little some applications (see Sections 4 and 5) of the formula (1)
and of Theorem 3.

Recall that a Stirling number S(n, k) of the second kind (see [40]), count the number of
ways to partition a set of n elements into k nonempty subsets. We will show (see Section
4) that the numbers Sp,r(n, k) := (r + k)nε(k) ∈ Fq, appearing as additive components of
β(n), are good Fq analogues of the Stirling numbers of the second kind S(n, k), modulo
p, since Tr(Sp,r(n, k)) satisfies the same main recurrence as the S(n, k) in Fp, but with
different initial conditions, (see the details in Theorem 17).

Moreover, in Theorem 38 we show an interesting relation between the dimension of
the Fp vectorial space generated by these generalized Stirling numbers and the zeros of β
in Fq.

But, (see Theorem 14) the β(n)’s themselves, are good generalizations of the Bell
numbers, modulo p, since in Fp one has

B(n) = −Tr(β(n)). (3)

We can then characterize the n’s such that B(n) ≡ k (mod p) for any k (see Theorem
15) that generalizes Theorem 3.

More relations between B(n) and β(n) are shown in Section 4, including (see Theorem
24) the computation of the norm of β(n).

Moreover, (see Section 5) we can then extend to Fq a formula of Sun and Zagier (see
[54]) relating Bell numbers and derangement numbers. Furthermore, by combining both
forms (1) and (3) of B(n) several new equivalents of Kurepa’s conjecture (see Theorem
28) are proposed. In particular a special case of Theorem 38 holds, (see condition (q)
inTheorem 28), so that the conjecture is equivalent to the numbers Sp,r(d − 1, k) being
linearly independent over Fp for k = 0, . . . , p− 1.

Finally, for completeness, (see Subsection 5.3) we explain how formula (1) simplifies
some known results.

We recall that Kurepa’s conjecture (see [10]) is a long-standing conjecture (see also
[11, 12, 46, 9, 16, 20, 50, 28, 53, 5, 6, 32, 35, 24, 51]) that states that

K(p) := 0! + 1! + · · ·+ (p− 1)! 6≡ 0 (mod p) (4)

for any odd prime number p. Kurepa’s conjecture may be stated with Bell numbers [38,
page 2], since K(p) = 0 ⇐⇒ B(p− 1) = 1 in Fp. We are then able (see condition (r) in
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Theorem 28) to present a set of new formulae, that together are equivalent to K(p) = 0.
One of them is

L(p) :=
1

1 · 1!
+

1

2 · 2!
+ · · ·+ 1

(p− 1) · (p− 1)!
≡ 1 (mod p). (5)

1.1 Notation used in the paper

We denote by σ−1(x) := xp
p−1

the inverse of the Frobenius σ(x) := xp in the Galois group
of Fq over Fp. Observe that σ(r) = r+1 and σ−1(r) = r−1. As usual, for an integer s > 0,

σ−1
(s)

(x) is defined by σ−1
(0)

(x) := σ−1(x) and for s > 0, σ−1
(s)

(x) := σ−1(σ−1
(s−1)

(x)).
The same holds also when σ−1 is replaced by σ.

Definition 6. We put for every integer n and every integer k

Sp,r(n, k) = ε(k)(r + k)n (6)

and we put for every integer n

β(n) =

p−1∑
i=0

Sp,r(n, i). (7)

2 Some tools

Lemma 7. The set of solutions of the equation yp = ry in Fq equals {krc(p) | k ∈ Fp}.

Proof. See [38, Lemme 3].

Lemma 8. Let C := Tr(y) where y is any nonzero solution of the equation yp = ry in
Fq. We put A := Tr(rc(p)) and B := Tr(r−c(p)). Then

(a) A and B satisfy
AB ≡ −1 (mod p)

so that they are both nonzero in Fp.

(b) C is nonzero.

Proof. The proof of (a) follows from (1) and from 1 = B(1). By Lemma 7 y = λrc(p) for
some λ ∈ Fp. But y and rc(p) are both nonzero so that λ is nonzero. By (a) A is nonzero,
the result follows then from C = λA.

The following theorem explains the relation between zeros of Bell numbers modulo p,
and roots of some trinomials over Fp.

Theorem 9. Given a prime number p, there exists a positive integer n such that B(n) ≡ 0
(mod p) if and only if the trinomial xp − rx− rn has a root γ ∈ Fq.

the electronic journal of combinatorics 21(4) (2014), #P4.49 4



Proof. By Lemma 8 Tr(rc(p)) 6= 0 in Fp so that (1) implies that the congruence is equivalent
to Tr(r−c(p)−n) = 0 in Fp. By the Additive Hilbert’s Theorem 90 this is equivalent to the
existence of some λ ∈ Fq with r−c(p)−n = λp−λ.Observe that rg(p) = r(r+1) · · · (r+p−1) =

1. Observe also that c(p) = pp−g(p)
p−1 . Set γ := rc(p)λ; since c(p)(p− 1) = g(p)(p− 2) + 1 one

sees that rc(p)(p−1) = r so that rc(p)p = r1+c(p). This implies that λp = r−c(p)−1γp. Dividing
by r−c(p) one gets r−1γp − γ = rn−1. This proves the result.

Here below the special case of [43, Theorem 3] that we need.

Lemma 10. Let p be a prime number. Let a, b be elements of Fq with a 6= 0. Let U(x) :=
xp − ax − b ∈ Fq[x]. For i = 0, . . . , p − 2 define si :=

∑p−2
j=i p

j+1 and define sp−1 := 0.

Let α := a1+p+···+p
p−1

and β :=
∑p−1

i=0 a
sibp

i
. Then the trinomial U(x) has no roots in Fq

if and only if α = 1 and β 6= 0. Moreover βp = aβ − bα + b.

3 Proof of Theorem 3

By Theorem 9 it suffices to determine when the trinomial xp − rx − rn has a root in
Fq. We apply Lemma 10 with a = r and b = rn. We get α = rg(p) = 1 in Fq. This
implies βp = rβ. We claim that β = β(n). In order to compute β set ti := si + npi for
i = 0, . . . , p − 2 and set tp−1 := npp−1. Since rp

i
= r + i in Fq for any i = 1, . . . , p − 1,

we get rtp−1 = (r + p − 1)n; we have also t0 = p + · · · + pp−1 + n = g(p) + n − 1 so that

rt0 = rn−1; and t1 = p2 + · · · + pp−1 + np = g(p) + (n − 1)p − 1 so that rt1 = (r+1)n−1

r
.

Set ρ := r(r + 1) · · · (r + p − 1). Since, ρ = rp − r = 1, we get rt0 = rn−1ρ = rnε(0);
analogously rt1 = rt1ρ = (r+ 1)nε(1). If p = 3 we are done. Assume then that p > 3. Now
for all i = 2, . . . , p− 2 we have rti = (r+ i+ 1) · · · (r+ p− 1)(r+ i)n = (r+ i)nε(i). Thus,
β = β(n). By Lemma 10 this proves the result since α = 1.

4 Some applications I

First of all we need two lemmas that require some definitions.

Definition 11. Let α be an element of Fq.

(a) We say that α has ε-property if either α = 0 or αp−1 = 1
r
.

(b) We say that α has δ-property if either α = 0 or αp−1 = r.

Lemma 12. Let S :=
∑p−1

i=0 ε(i). Let ε ∈ Fq be such that ε has ε−property, for example,
ε = r−c(p). Then

Tr(ε) = εS.

In particular Tr(S) = −1 so that S 6= 0, and Sp = Sr. Thus, S has δ−property.
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Proof. Since σ(ε) = εp = εp−1ε = ε/r we get σ−1(ε) = ε(r − 1). It follows that σ−1
(k)

(ε) =

ε(r − 1)(r − 2) · · · (r − k) for k = 1, . . . , p − 1. But Tr(ε) = ε +
∑p−1

k=1 σ
−1(k)(ε). Thus,

Tr(ε) = ε+ε(r+p−1)+ε(r+p−1)(r+p−2)+· · ·+ε((r+p−1)(r+p−2) · · · (r+p−(p−1))
= εS. Assume that ε 6= 0. Since ε has ε−property, Lemma 8 implies that Tr(ε) 6= 0 in
Fp. Thus, S = Tr(ε)/ε is nonzero. With ε = r−c(p) we have Tr(S) = Tr(r−c(p))Tr(rc(p)) =
−B(0) = −1 by (1). Observe that εS = Tr(ε) = Tr(ε)p = εpSp so that we get Sp = rS.
When ε = 0 the result is obvious.

The proof of the following lemma is omitted since it is similar (just use σ(x) instead
of σ−1(x) in the argument) to the proof of Lemma 12.

Lemma 13. Let T :=
∑p−1

i=0 δ(i). Let δ ∈ Fq be such that δ has δ−property, for example,
δ = rc(p). Then

Tr(δ) = δT.

In particular Tr(T ) = −1 so that T 6= 0, and T p = T/r. Thus, T has ε−property.

Now we give some details about the β(n) (7) defined in Theorem 3. The following
theorem proves that these β(n)’s are good generalizations of the Bell numbers modulo p,
to Fq.

Theorem 14. Let n be any nonnegative integer. With the same notations as before we
have

(a) In Fq,

β(n+ 1) =
n∑
k=0

(
n

k

)
β(k).

(b) In Fp,
Tr(β(n)) = −B(n).

Proof. Set bn = Tr(β(n)). We have β(0) =
∑p−1

i=0 ε(i) = S where S is defined in Lemma
12. It follows from Lemma 12 that Tr(β(0)) = Tr(S) = −1 = −B(0). Thus b0 =
−B(0). Assume then that n > 0. We compute now Θ :=

∑n
k=0

(
n
k

)
β(k). We have Θ =∑n

k=0

(
n
k

)∑p−1
i=0 (r + i)kε(i) =

∑p−1
i=0

∑n
k=0

(
n
k

)
(r + i)k1n−kε(i) =

∑p−1
i=0 (r + i + 1)nε(i) =∑p−1

i=0 (r + i + 1)n+1ε(i + 1), since ε(i) = (r + i + 1)ε(i + 1). Put j = i + 1, to get Θ =∑p
j=1(r + j)n+1ε(j) = β(n + 1) since ε(p) = ε(0). Thus, β(n + 1) =

∑n
k=0

(
n
k

)
β(k). This

proves (a). Taking the trace in both sides of (a) we get

bn+1 =
n∑
k=0

(
n

k

)
bk. (8)

Set R := −
∑n

k=0

(
n
k

)
B(k). Observe that b0 = −B(0). Assume that bk = −B(k) for all

k = 1, . . . , n. Then from (8) it follows that bn+1 = R, but by definition (see definition 1)
R = −B(n+ 1) so that bn+1 = −B(n+ 1). This proves that bn = −B(n) for all n, thereby
finishing the proof of the theorem.
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We can then give a necessary and sufficient condition to solve the congruence B(n) ≡ k
for any integer k.

Theorem 15. Let p > 3 be a prime number, and let k be an integer. Then B(n) ≡ k
(mod p) has a positive integer solution n if and only if β(n) = kβ(0).

Proof. If β(n) = kβ(0) then it follows from Theorem 14 (b), by taking the trace, that
B(n) = k in Fp. Assume now that B(n) = k in Fp. By Theorem 3 we have that β(n)
has δ−property, and by Lemma 12 we have that β(0) has δ−property. By Lemma 13 we
deduce that Tr(β(n)) = β(n)T and that Tr(β(0)) = β(0)T. But, by Theorem 14 (b) we
have also B(n) = −Tr(β(n)) and k = kB(0) = −kTr(β(0)), with T 6= 0. Thus, the result
follows from

β(n)T = kβ(0)T.

Remark 16. We know that d is a divisor of g(p) so that d 6 g(p). We also know that B(n)
modulo p is periodic of minimal period d. It follows that that the least positive integer n
with B(n) ≡ k (mod p) satisfies n 6 d, so that n is bounded above by a polynomial in
p, namely by g(p). A big improvement of this simple upper bound is in [26], where it is
proved that indeed n < 1

2

(
2p
p

)
. Moreover, in [33] it is proved that 22.54p < d. Both results

are non-trivial. In other words one has

n <
1

2

(
2p

p

)
< 22.54p < d.

Furthermore, (see [42, Lemma 1.1]) d ≡ 1 (mod 2p) and d ≡ 1 (mod 4p) when p ≡ 3
(mod 4) since d is a divisor of g(p).

Now we show that the traces of the additive components of β(n), namely the terms
Tr((r+ i)nε(i)), satisfy the same recurrence that the Stirling numbers of the second kind.

Theorem 17. Let p > 3 be a prime number, and let n, k be nonnegative integers. Re-
call that by definition 2 ε(k) := ε(k (mod p)). Set T (n, k) := Tr(Sp,r(n, k)) = Tr((r +
k)nε(k)). Then

T (n+ 1, k) = kT (n, k) + T (n, k − 1).

Proof.

kT (n, k) + T (n, k − 1)

=kTr((r + k)nε(k)) + Tr((r + k − 1)nε(k − 1))

=Tr(k(r + k)nε(k)) + Tr(σ((r + k − 1)nε(k − 1)))

=Tr(k(r + k)nε(k) + (r + k)nrε(k))

=Tr((r + k)n+1ε(k)) = T (n+ 1, k).
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Remark 18. The initial conditions satisfied by the T (n, k) differ from those of the Stirling
numbers S(n, k) of the second kind modulo p, namely one has T (0, 0) = Tr(1/r) = −1,
instead of S(0, 0) = 0. Moreover, T (n, 0) = Tr(rn−1) that depends on n and it is difficult
to compute for general n, while S(n, 0) = 0; also T (0, n) = Tr(ε(n)) = −1 if n ≡ 0
(mod p) and T (0, n) = 0 otherwise, while S(0, n) = 0 for all n.

Now we show that B(n) and β(n) differ only by a fixed nonzero element of Fq.

Corollary 19. (a) β(n) = −(1/T )B(n)

(b) β(n) = Tr(rn−c(p)−1)rc(p).

(c) Let d be any period of the sequence (B(n)). Then d is also a period of the sequence
(β(n)). More precisely, we have for all integers n

β(n+ d) = β(n).

Proof. By Theorem 3 β(n) has δ−property so that we may apply Lemma 13 to get
Tr(β(n)) = β(n)T and also T 6= 0. Now from Theorem 14 (b) we get Tr(β(n)) = −B(n).
Combining both results we get (a). Since β(n) and rc(p) are both solutions of the equation
yp = ry in Fq, by Lemma 7 one has β(n) = crc(p) for some c ∈ Fp. But, by Theorem 14
(b) −B(n) = Tr(β(n)) = cTr(rc(p)); and by (1) B(n) = −Tr(rc(p))Tr(rn−c(p)−1), so that
c = Tr(rn−c(p)−1). This proves (b). The latter assertion (c) follows from (a).

This has the following non-trivial consequence:

Remark 20. We have in Fp, for any odd prime number p and any nonnegative integer n.

B(n) = 0 ⇐⇒ β(n) = 0.

Proof. Just apply part (a) of Corollary 19 above. The condition T 6= 0 is satisfied by
Lemma 13.

The corollary implies that β(n) satisfies the same relations that B(n). More precisely,
(see Corollary 21 below), a) generalizes Touchard’s Congruence in Lemma 4, (b) general-
izes [8], Formula (6), (c) generalizes [8], Formula (5), (d) generalizes [8], Formula (4), and
(e) generalizes [8], Formula (10).

See also [21]). The formulae below also follow directly from the definition of β(n).

Corollary 21. For all nonnegative integers n, q we have

(a) β(n+ p) = β(n) + β(n+ 1),

(b) β(n+ pm) = mβ(n) + β(n+ 1),

(c) β((n− 1)p) = β(n),

(d) β(n+ kp) =
∑k

i=0

(
k
i

)
β(n+ i),
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(e) β(npq + pq) = qβ(npq) + β(npq+1).

In order to compute the norm of β(n) we need

Lemma 22. One has in Fq

(a) 1 =
∏p−1

i=0 δ(i)ε(i).

(b)
∏p−2

i=0 δ(i) = r−c(p)−1.

Proof. From Definition 2 every term in the product is actually equal to 1 since δ(i)ε(i) =
rp − r = 1. This proves (a). Observe that rc(p) = r(r + 1)2(r + 2)3 · · · (r + p− 2)p−1. Let
M = (Mi,j) be the p by p matrix with with p equal lines [r, r + 1, r + 2, . . . , r + p − 1].
Namely,

M :=


r r + 1 r + 2 · · · r + p− 2 r + p− 1
r r + 1 r + 2 · · · r + p− 2 r + p− 1
...

...
...

...
...

...
r r + 1 r + 2 · · · r + p− 2 r + p− 1
r r + 1 r + 2 · · · r + p− 2 r + p− 1

 . (9)

Consider the product π of all pp entries of M. By (a), π = 1. On the other hand,
puttting α =

∏p−2
i=0 δ(i) and γ = rc(p)(r + p − 1)p one sees that α is the product of all

entries in the lower triangular part of M without the last row and the last column. But,
δ(p−1) = r(r+1) · · · (r+p−1) = 1 is the product of all entries in the last row of M., so α
is equal to the product of all entries in the lower triangular part of M , i.e., α =

∏
i>jMi,j

Similarly, one sees also that γ is the product of all entries in the upper triangular part of
M , i.e., γ =

∏
i6jMi,j. Since only diagonal entries in M overlap, and the product of all

diagonal entries of M is equal to N(r) = 1, one has

1 = π = αγ (10)

But the product of the elements in the last column of M equals (r+p−1)p = σ(r+p−1) =
r, so that

γ = rc(p)+1.

Thus, from 10 it follows
∏p−2

i=0 δ(i) = r−c(p)−1 that proves (b).

The following result of Kahale [8, formula (3)] is useful, (see also [23]).

Lemma 23. let p be an odd prime number. One has B(c(p)) = (−1)
(p−1)(p−3)

8

(
p−1
2

)
! in

Fp.

Theorem 24. Let p > 2 be a prime number. Let n be a nonnegative integer. Then

(a) N(β(n)) = β(n)r−c(p).

(b) N(β(n)) =
(−1)

(p+1)(p−5)
8(

p−1
2

)
!

B(n).
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Proof. Since, by Theorem 1, σ(β(n)) = rβ(n) we have by induction σ(k)(β(n)) = r(r +
1) · · · (r+k−1)β(n) = δ(k−1)β(n), so that N(β(n)) = β(n)p

∏p−1
k=0 δ(k). But δ(p−1) = 1

and β(n)p = rβ(n), so by Lemma 22 (b) we get N(β(n)) = β(n)rr−c(p)−1 = β(n)r−c(p).
This proves (a). From (a) and Corollary 19 (b) we have N(β(n)) = Tr(rn−c(p)−1). From (1)
we deduce that N(β(n)) = −B(n)/Tr(rc(p)). From (1) with n = c(p) we get Tr(rc(p)) =

B(c(p)) since Tr(r−1) = −1. Thus N(β(n)) = − B(n)
B(c(p))

. Observing that −B(c(p)) =

(−1)−1B(c(p)), the result (b) follows then from Lemma 23.

5 Some applications II

5.1 Related to derangement numbers

We recall that the derangement number D(n) may be defined by D(0) = 1 and D(n) =
nD(n − 1) + (−1)n for any positive integer n. An explicit formula that holds for any
nonnegative integer n is

D(n) = n!
n∑
k=0

(−1)k

k!
. (11)

The main result of Sun and Zagier [54, Theorem 1] is that for any positive integer m not
multiple of a prime number p one has in Fp

(−1)m−1D(m− 1) =

p−1∑
k=1

B(k)

(−m)k
. (12)

We will extend this formula to Fq in such a manner that is also valid for any m. The ∆
below should play the role, in Fq, of the derangement number, modulo p.

Definition 25. For any nonnegative integer m let

∆(m− 1) :=

p−1∑
i=0

ε(i)

r + i+m
.

Theorem 26. For any nonnegative integer m one has

(a) If m = ps, for a nonnegative integer s, we have ∆(m − 1) = β(d − 1), where d is
any period of B(n).

(b) ∆(m− 1) =
∑p−1

k=0(−m)kβ(p− 1− k)− β(0).

(c) When p - m we have ∆(m− 1) =
∑p−1

k=1
β(k)

(−m)k
.

(d) Tr(∆(m− 1)) = (−1)mD(m− 1).

(e) 1 + (−1)m−1D(m− 1) =
∑p−1

k=0(−m)kB(p− 1− k), in Fp.
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(f) When p - m we recover (12), by taking traces in both sides of (c).

(g) 1+(−1)ps−1D(ps−1) = B(p−1) in Fp. In particular we have 1+D(p−1) = B(p−1).

(h) (−1)m−1D(m− 1) = − Tr(rc(p)) Tr( 1
r+m

r−c(p)−1).

Proof. From Definition 25 with m = ps we have

∆(m− 1) =

p−1∑
k=0

ε(k)(r + k)−1 = β(−1).

But β is periodic of period d so that it follows from Corollary 19 (c) with n = −1 that

∆(m− 1) = β(d− 1).

This proves (a). Set ρ(m) the right hand side of (b). We have

ρ(m) =

p−1∑
i=0

(
p−1∑
k=0

(−1)kmk(r + i)p−1−k

)
ε(i)−

p−1∑
i=0

ε(i).

But (−1)k =
(
p−1
k

)
in Fp, and (r + i+m)p−1 − 1 = 1

r+i+m
. So,

ρ(m) =

p−1∑
i=0

((r + i+m)p−1 − 1)ε(i) = ∆(m− 1).

This proves (b). Set ψ(m) the right hand side of (c). We have

ψ(m) =

p−1∑
i=0

ε(i)(a+ a2 + · · ·+ ap−1)

where a = r+i
−m . Since

1 + a+ a2 + · · ·+ ap−1 =
ap − 1

a− 1

we get by using (r + i)p = r + i+ 1 and (−m)p = −m the formula

ψ(m) =

p−1∑
i=0

ε(i)

(
r + i+ 1 +m

r + i+m
− 1

)
= ∆(m− 1).

This proves (c). Observe that by Theorem 14 (b) one has Tr(β(k)) = −B(k) for all
k = 1, . . . , p − 1. Assume that p - m. By taking the trace in both sides of (c) and by
using (12) multiplied in both sides by −1, in other words, the sign (−1)m−1 in formula
(12) is transformed in a sign (−1)m, we get then (d). If p | m then by (a) we get
∆(m − 1) = β(d − 1) where d is any period of B(n). From (b) we get ∆(m − 1) =
β(p−1)−β(0). So, proceeding as before, i.e., by taking traces, we see that (d) is equivalent
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to B(d − 1) = B(p − 1) − 1. But this holds by Touchard’s congruence Lemma 4 with
n = d− 1. This proves (d). In order to prove (e) take traces in both sides of (b), by using
again Tr(β(k)) = −B(k) and B(0) = 1. This together with (d) proves (e). The same
argument proves (f). Substitute m = ps in both sides of (e). This proves (g). In order
to prove (h), observe that by (1) one has B(p− 1− k) = −Tr(rc(p))Tr(rp−1−k−c(p)−1). Set
µ(m) = (−1)m−1D(m− 1)Tr(rc(p))−1. So, by (e) one has

µ(m) = −

(
p−1∑
k=0

(−1)kmkTr(rp−1−k · r−c(p)−1)

)

but (−1)k =
(
p−1
k

)
in Fp so

µ(m) = −Tr

(
r−c(p)−1

(
p−1∑
k=0

(
p− 1

k

)
mkrp−1−k − 1

))

= −Tr
(
r−c(p)−1

(
(r +m)p−1 − 1

))
= −Tr

(
r−c(p)−1

1

r +m

)
.

This proves (h).

Corollary 27. The minimal period of D(m) modulo p is 2p. I.e., for all m one has
D(m+ 2p) = D(m) in Fp and D(m+ h) = D(m), in Fp, for all m implies h > 2p.

Proof. By changing m by m+ p in Theorem 26 (h) we get

−D(m+ p− 1) = D(m− 1) (13)

in Fp. Repeating the change we get D(m− 1 + 2p) = D(m− 1). Since the minimal period
h divides 2p, it is unequal to 1 or 2 and h 6= p by (13), it follows that h = 2p.

5.2 Related to Kurepa’s conjecture

We can retrieve the most basic relation between Bell numbers and Kurepa’s conjecture as
follows. All computations are in Fp. A precise relation is B(d−1) = K(p) (see Proposition
33). Moreover, from Theorem 26 (a) and (d) D(p−1) = B(d−1) for any period d of B(n).
So K(p) = 0 ⇐⇒ D(p− 1) = 0. Alternatively, we may obtain the same result observing
that K(p) = 0 ⇐⇒ B(p − 1) = 1 by Theorem 26 (g). This, together with (11), gives
us the explicit equivalence (that can be checked also directly using the Bouniakowsky
formula (k − 1)!(p− k)! = (−1)k in Fp).

p−1∑
k=0

k! = 0 ⇐⇒
p−1∑
k=0

(−1)k

k!
= 0. (14)
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Observe that K(p) = det(G(p)) as seen by developing by the last line the determinant
where G(p) = (gi,j) is a (p− 1)× (p− 1) matrix defined by g1,1 = −2, gi,i = −1 for i 6= 1,
gi,i+1 = i+ 1, gi,1 = −1 for i 6= 1, and gi,j = 0 for all other i, j, namely

G(p) :=



−2 2 0 · · · · · · · · · 0
−1 −1 3 0 · · · · · · 0
−1 0 −1 4 0 · · · 0
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . 0

−1 0 · · · · · · 0 −1 p− 1
−1 0 · · · · · · · · · 0 −1


. (15)

It is not difficult to see that the columns 2 to p − 1 are Fp-linear independent so that
rank(G(p)) ∈ {p − 2, p − 1}. Thus K(p) = 0 is equivalent to the first column C1 =∑p−1

j=2 xjCj beeing an Fp-linear combination of the other columns. This leads to the
recurrence xn−1 = nxn + 1 in Fp so that

K(p) = 0 ⇐⇒ (xp−1 = 1 =⇒ x2 = −1). (16)

The few first terms are: xp−1 = 1, xp−2 = 0, xp−3 = 1, xp−4 = −2, xp−5 = 9, xp−6 =
−44, xp−7 = 265, xp−8 = −1854, xp−9 = 14833; see also [20].

Another simple equivalence consists of using B(p− 1) = 1 in Fp, the double sum (17)
that holds over the integers Z (see [19, formula (21)])

B(n) =
n∑
k=1

n−k∑
i=0

(−1)ikn

k!i!
, (17)

and (14) to get in Fp

p−1∑
k=0

k! = 0 ⇐⇒
p−3∑
k=3

p−1−k∑
i=0

(−1)i

k!i!
= 0. (18)

Using again the fact: K(p) = 0 ⇐⇒ B(p− 1) = 1, and [52, Proposition 3.1] we get

p−1∑
k=0

k! = 0 ⇐⇒ det(A(p)) = 1, (19)

where the (p− 2)× (p− 2) matrix A(p) = (ai,j) is defined by ai,i = 2, ai+1,i = 1, ai,j = 0
for i > j + 1, and ai,j = (−1)i+j

(
j−1
i−1

)
for j > i, namely

A(p) =



2 −1 1 −1 · · · (−1)p−3

1 2 −
(
2
1

) (
3
1

)
· · · (−1)p−4

(
p−3
1

)
0 1 2 −

(
3
2

)
· · · (−1)p−5

(
p−3
2

)
0 0 1 2 · · · ·
0 0 0 1 · · · ·
...

...
...

... · · · −
(
p−3
p−4

)
0 0 0 0 · · · 2
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Below, several other equivalences.

Theorem 28. Each of the conditions below is equivalent to the condition K(p) = 0 in
Fp.

(a) β(d− 1) = 0.

(b) β(p− 1) = β(0).

(c) Tr(r−c(p)−2) = 0.

(d) The vector s ∈ Fq defined by s2 = r−c(p)−2 is an isotropic vector of the quadratic
form Q(x) = Tr(x2).

(e) B(d− 2p+ 2) + 2B(d− 2p+ 1) = 1.

(f) Tr
(
r−c(p)−1 1

(r+1)2

)
= 0.

(g) Tr(β(d− 1)r) = 0.

(h) Tr
(

ε
r−1

)
= 0 = B(2) + · · ·+B(p), where ε ∈ Fq is defined by rσ(ε) = ε.

(i) Tr
(
ε
r2

)
= 0 for the same ε of (h).

(j) D(p− 2) = 1.

(k) D(d− 2) = 0.

(l) B(0) +B(1) + · · ·+B(p− 1) = 0.

(m) Tr
(
r−c(p)−2 r2

r−1

)
= 0.

(n) Tr
(
r−c(p)−2 1

r−1

)
= (−1) · 1

B(c(p))
.

(o) B(0) +B(2) + · · ·+B(p− 1) = 1 and B(1) +B(3) + · · ·+B(p− 2) = −1.

(p)
∑p−3

m=0(−1)mD(m) = 0.

(q) The vector space V (p), over Fp, generated by the vectors

{Sp,r(d− 1, k), k = 0, · · · , p− 1}

has dimension less than p.
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(r) In Fp one has β0 = · · · = βp−2 = 0 where

β0 :=

p−1∑
k=1

1

k · k!
− 1,

β1 :=

p−2∑
k=1

(−1)k

k · (k + 1)!
+ 2,

β2 :=

p−3∑
k=1

(−1)k+1

k · (k + 2)!
− 3

2
,

and for j = 3, . . . , p− 2

βj :=

p−1∑
k=0

Ak,j + sj(k)Bk,kFk,j, (20)

where Fk,j are some elements in Fp,, sj(k) := −1 when k = j and sj(k) := 1
otherwise; and where for 0 6 j 6 i− 1

Ai,j :=
(−1)j

j!(i− j)!(i− j)
,

for j > i we have Ai,j = 0, and

Ai,i := (−1)
i−1∑
j=0

Ai,j,

while for all i

Bi,i :=
(−1)i

i!
.

In order to prove the theorem, we present some useful lemmas; some of them may
have an interest in their own.

First of all we recall the definition of the trace that is useful in several computations
below.

Remark 29. Let K be a field that is a Galois extension of the field k with Galois group
G(K/k). Let a ∈ K. Then

Tr(a) =
∑

σ∈G(K/k)

σ(a).

Then we have:

the electronic journal of combinatorics 21(4) (2014), #P4.49 15



(a) If the degree d := [K : k] of the extension K over k, is a multiple of the characteristic
p > 0 of k and a ∈ k is an element of k, then since σ(a) = a for all σ ∈ G(K/k) we
have:

Tr(a) = a+ a+ · · ·+ a = d · a = 0.

In particular this works when a = 1, namely:

Tr(1) = 0.

However, if the extension is the trivial extension, i.e. K = k so that G(K/k) =
G(k/k) = {id} so that d = 1, one has instead for any a ∈ k:

(b)
Tr(a) = id(a) = a.

In particular this gives for the trivial extension k/k and for 1 ∈ k:

Tr(1) = 1.

We will use the fields k = Fp and K = Fq where q = pp and p is an odd prime number,
and the trace Tr(a) defined above, in all computations below.

Our first two lemmas are well known but they are key to prove the next important
proposition (see Proposition 33 below) that links the generalized Bell number β(d− 1) in
Fq with the classical left-factorial sum K(p) in Fp.

Lemma 30. The trace Tr : Fq → Fp restricted to Fp is the zero function.

Proof. Let a ∈ Fp ⊆ Fq. Since Tr(a) = aTr(1) it suffices to prove that Tr(1) = 0. But
Tr(1) = 1+σ(1)+ · · ·+σ(p−1)(1) = 1+ · · ·+1 = p ·1 = 0. Thus Tr(a) = 0 thereby proving
the lemma.

Remark 31. However, if tr : Fp → Fp denotes the trace, one has tr(1) 6= 0 since the
Galois group G of the extension field Fp over itself, i.e., over Fp is reduced to the identity
function id : x→ x, i.e., G = {id} so that

tr(1) = id(1) = 1.

Lemma 32. (a) The trace of any root of the polynomial Tp(x) := xp− x− 1 is equal to
0. In other words, Tr(r) = 0,

(b) Tr

(
1

r

)
= −1.

Proof. Observe that Tr(r) is the coefficients of xp−1 in the polynomial Tp(x). This proves
(a). The minimal polynomial of 1

r
is Up(x) = xp + xp−1 − 1 = −xpTp(1/x) the reciprocal

polynomial of Tp(x) multiplied by −1. As before Tr(1
r
) is the coefficient of xp−1 in Up(x).

This proves (b).

the electronic journal of combinatorics 21(4) (2014), #P4.49 16



Proposition 33. We have
Tr(β(d− 1)) = −K(p).

Proof. Observe that vk := ε(k)(r+k)−1 = (r+k+1)···(r+p−1)
r+k

for all k = 0, . . . , p−1 and that

β(d− 1) =
∑p−1

k=0 vk. With the change of variable s = r + p− k the trace becomes

Tr(vp−k) = Tr

(
(s+ 1)(s+ 2) · · · (s+ k)

s

)
= −k!

since Tr(sh) = Tr(1) = 1 for h = 0, (see Lemma 30), Tr(sh) = 0 for h = 1, . . . , p− 2, and
Tr(s−1) = −1 (see Lemma 32 part (b)).

The following lemma is a special case of [47, Corollary 2.38].

Lemma 34. Let v1, . . . , vp ∈ Fq. Then {v1, . . . , vp} is a basis of Fq over Fp if and only if
det(V ) 6= 0 where V is the following p× p matrix:

V =


v1 v2 · · · vp

σ(v1) σ(v2) · · · σ(vp)
...

...
...

σ(p−1)(v1) σ(p−1)(v2) · · · σ(p−1)(vp)


Definition 35. The circulant matrix C with first row c1, . . . , cn, namely

C =


c1 c2 · · · cn
cn c1 · · · cn−1
...

...
...

c2 c3 · · · c1


is denoted circ(c1, . . . , cn).

The following is [2, Proposition 10, page A VII. 36].

Lemma 36. Let E be a vectorial space of finite dimension n over a commutative field
K. Let u be an endomorphism of E. Let charu(x) =

∏n
i=1(x − αi) be a decomposition in

linear factors over a suitable extension field of K of the characteristic polynomial of u.
Let q(x) be a polynomial with coefficients in K. Then

(a) The characteristic polynomial of q(u) is

charq(u)(x) =
n∏
i=1

(x− q(αi)).

(b) Its trace is

Tr(q(u)) =
n∑
i=1

q(αi).
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(c) Its determinant is

det(q(u)) =
n∏
i=1

q(αi).

The following lemma computes the determinant of a p by p circulant C over Fq. The
formula obtained is the same that in the case of a n by n circulant with gcd(n, p) = 1,
but we require a special proof since C is not necessarily diagonalizable. This was first
observed by Ore [18, Theorem 7], three more proofs are in Silva [27, Theorem 1], Brenner
[3, Theorem 1], and Lehmer [15, Theorem 1]. For completeness we provide a short proof
based in Lemma 36.

Lemma 37. Let v1, . . . , vp ∈ Fq. Let V = circ(v1, . . . , vp). Then

det(V ) = (v1 + · · ·+ vp)
p.

Proof. Let π = circ(0, 1, 0, . . . , 0) be the p by p circulant that generates polynomially all p
by p circulants. Clearly charπ(x) = xp−1 = (x−1)p is the characteristic polynomial of π.
Observe that V = R(π) where R(x) = v1+v2x+ · · ·+vpxp−1 is the representer polynomial
of V. Thus, by Lemma 36 det(V ) = det(R(π)) = R(1)p. But R(1) = v1 + · · · + vp. The
result follows.

Taking now the vi’s as our generalization of the Stirling numbers modulo p we get.

Theorem 38. Let n be an integer and k ∈ {1, . . . , p}. Take vk := Sp,r(n, k). Then the
vector space V (p), over Fp, generated by the vectors

{v1, . . . , vp}

has dimension less than p if and only if

β(n) = 0.

Proof. We see that σ(vk) = rvk+1 so that σ(s)(vk) = r(r+ 1) · · · (r+ s− 1)vk+s. Applying
Lemma 34 to the vi’s we get

V =


v1 v2 · · · vp
rv2 rv3 · · · rv1
...

...
...

rpvp rpv1 · · · rpvp−1


where rp := r(r + 1) · · · (r + p− 2) and the indices i of the vi’s are defined modulo p. We
see that d = det(V ) is up to a nonzero constant in Fp the same as d1 = det(V1) where V1
is the left-circulant matrix

V1 =


v1 v2 · · · vp
v2 v3 · · · v1
...

...
...

vp v1 · · · vp−1
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But d1 differs by ±1 from the determinant d2 = det(V2) where V2 is the circulant matrix
V2 := circ(v1, . . . , vp).

Using Lemma 37 we obtain

det(V2) = (v1 + · · ·+ vp)
p = (β(n))p.

The result follows from this.

The following is well known.

Lemma 39. For any period d of B(n), one has

(a) rd = 1.

(b) d ≡ 1 (mod 2p).

Proof. The first assertion follows from [42, Proposition 1.2 a)]. The second assertion
follows from part b) of the same proposition, precisely follows from [42, Proposition 1.2
b)], and from [42, Lemma 1.1].

Lemma 40. We have

(a) β(p− 1)− β(0) = β(d− 1).

(b) β(d− 1) = Tr(r−c(p)−2)rc(p)

Proof. Observe that (r + i)p−1 − 1 = (r + i)−1 for all i = 0, . . . , p − 1. Multiplying both
sides by ε(i) and summing over i we get β(p− 1)− β(0) = β(−1). But by Lemma 39 (a)
one has

(r + k)−1 = (r + k)d−1

for any k = 0, . . . , p− 1 so that

β(−1) =

p−1∑
k=0

ε(k)(r + k)−1 =

p−1∑
k=0

ε(k)(r + k)d−1 = β(d− 1).

This proves (a). By Corollary 19 (b) we get (b). An alternative proof of (a) is as follows.
By Corollary 19 (c) β(d − 1) = β(−1) and by Corollary 21 (a), with n = −1 we get
β(−1) = β(p− 1)− β(0).

We recall some known but useful properties of the trace.

Lemma 41. For x, y ∈ Fq set
〈x, y〉 := Tr(xy),

and Q(x) := 〈x, x〉 = Tr(x2). Define wj := 1
r+j
∈ Fq for all j = 0, . . . , p− 1. Then

(a) < ·, · >: Fq → Fp is a Fp-bilinear form with associate quadratic form Q : Fq → Fp.
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(b) {w0, . . . wp−1} is a self-dual normal basis of Fq over Fp relative to the bilinear form
< ·, · > . In other words, we have < wi, wj >= 0 if i 6= j and Q(wi) = 1 for all i.
Moreover, wj+1 = σ(wj) for all j.

In the following lemma we get the explicit values of the constants A,B of Lemma 8.

Lemma 42. We have

(a) Tr(rc(p)) = B(c(p)).

(b) Tr(r−c(p)−2) = −B(d− 1)

B(c(p))
.

(c) Tr(r−c(p)−1) =
1

B(c(p))
.

Proof. By (1)
B(c(p)) = −Tr(rc(p))(−1). (21)

By (1) again and by (21) B(d − 1) = −B(c(p))Tr(r−c(p)−2). Since 1 = B(0), we get (c)
from (1) and part (a).

Lemma 43. One has

r−c(p)−2 = s2,where s =

{
r

−c(p)−2
2 if p ≡ 1 (mod 4)

rc(p)
p−1
2

(−c(p)−2) if p ≡ 3 (mod 4).

Proof. From c(p)(p−1) = g(p)(p−2)+1 we see that rc(p)(p−1) = r and that p ≡ 1 (mod 4)
if and only if c(p) is even, so that s is well defined and satisfies the equation.

Lemma 44. One has

(r−c(p)−2)p = r−1−c(p)
1

(r + 1)2
.

Proof. From c(p)(p− 1) = g(p)(p− 2) + 1 we got r−pc(p) = r−1−c(p) so that

(r−c(p)−2)p = r−1−c(p)(
1

rp
)2 = r−1−c(p)

1

(r + 1)2
.

Lemma 45. Let x(r) ∈ Fq be such that x(r)p = 1
r
x(r). One has

(a) Tr

(
x(r)

r − 1

)
= x(r)β(d− 1).

(b) B(d− 1) = −Tr(rc(p))Tr

(
x(r)

r − 1

)
=

p∑
j=2

B(j).
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Proof. Set a := x(r)
r−1 . Set σ(0)(a) = a. By induction one has

σ(i)(a) =
1

(r + i− 1)2
1

r + i− 2
· · · 1

r
x(r)

for all i = 0, . . . p− 1. So Tr(a) = x(r)γ(r) where

γ(r) =
1

r − 1
+

1

r2
+

1

(r + 1)2r
+

1

(r + 2)2(r + 1)r
+ · · ·+ 1

(r + p− 2)2(r + p− 3) · · · r
.

But by using the definition of β(d− 1) and the identity r(r+ 1)(r+ 2) · · · (r+ p− 1) = 1
it is easy to check that (

β(d− 1)− 1

r + p− 1

)
+

1

r − 1
= γ(r)

i.e., that γ(r) = β(d − 1), so that we get (a). In order to obtain (b), we may take x(r)
nonzero, i.e., by using Lemma 7, we take x(r) = r−c(p). Observe also that by Lemma 40
(b) we have β(d − 1) = Tr(r−c(p)−2)rc(p) so that by using (a) together with (1) we get

−Tr(rc(p))Tr
(
x(r)
r−1

)
= B(d−1). From the equalities 1

r−1 = (r−1)p−1−1 and x(r) = r−c(p)

we obtain Tr
(
x(r)
r−1

)
=
∑p−1

k=1 Tr(r−c(p)−1+(k+1)) from which, by multiplying both sides by

−Tr(rc(p)) and using again (1) it follows readily the latter equality of (b).

Lemma 46. One has
B(d− 2p) = B(d− 1).

Proof. By (1) the result is equivalent to Tr(H) = 0, where H = r−c(p)−1(rd−2p − rd−1).
Using rp = r+1 we see that H = r−1−c(p) 1

(r+1)2
−r−c(p)−2. The result follows from Lemma

44.

Lemma 47. One has

B(d− 2p+ 2) + 2B(d− 2p+ 1) +B(d− 2p) = B(d).

Proof. Follows from (1) and from the identity obtained

r2 + 2r + 1 = r2p (22)

by multiplying both sides of (22) by r−1−c(p)−2p.

Lemma 48. (a) One has for n > s,

n∑
m=0

ms

(
n

m

)
D(m) = n!

s∑
j=0

(−1)j
(
s

j

)
ns−jB(j).
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(b) For n = 1, . . . , p− 1 one has

(−1)nB(n) ≡
p−1∑
m=1

(−1)mmnD(m− 1) (mod p).

Proof. Part (a) is the main result of [41]; part (b) is [54, Corollary 1].

Lemma 49. One has
p−1∑
j=0

β(j) = β(d− 1).

More generally we have for any i not exceeding p,

p+i−1∑
j=i

β(j) =
i∑

h=0

(
i

h

)
β(d+ h− 1).

Proof. One has S :=
∑p−1

j=0 β(j) =
∑p−1

i=0 ε(i)
∑p−1

j=0(r + i)j =
∑p−1

i=0 ε(i)
(

(r+i)p−1
r+i−1

)
so that,

by using ε(i)(r + i) = ε(i− 1) and with j = i− 1, we get

S =

p−2∑
j=−1

ε(j)

r + j
=

p−1∑
k=0

ε(k)

r + k
= β(d− 1).

The other formula has a similar proof.

Lemma 50. Let p be an odd prime number. In Fp one has

B(p) = 2.

Proof. Since B(0) = 1 and B(1) = 1, by Lemma 4 one has in Fp

1 + 1 = B(0) +B(1) = B(0 + p) = B(p).

This proves the result.

Lemma 51. One has

(a)

p−1∑
j=0

(−1)jβ(j) = β(p).

(b)

p−1∑
j=0

(−1)jB(j) = B(p) = 2.

Proof. Part (a) follows from Theorem 14 (b) with n = p − 1. Part (b) follows from (a),
from Theorem 14 and from Lemma 50.
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Lemma 52. For all i = 0, . . . , p− 1

1

r(r + 1) · · · (r + i− 1)(r + i)2
=
Ai,0
r

+
Ai,1
r + 1

+ · · ·+ Ai,i−1
r + i− 1

+
Ai,i
r + i

+
Bi,i

(r + i)2

where for 0 6 j 6 i− 1

Ai,j :=
(−1)j

j!(i− j)!(i− j)

Ai,i :=(−1)
i−1∑
j=0

Ai,j and

Bi,i :=
(−1)i

i!
.

Proof. Follows from computing the partial fraction decomposition (the partial fraction
decomposition procedure is described in, e.g., [13, pages 187–190]) of

R(x, i) :=
1

x(x+ 1) · · · (x+ i− 1)(x+ i)2

and then specializing x = r.

We give now more details in how R(r, k) is found:

Remark 53. We write the fraction R(x, k) = 1
x(x+1)···(x+k−1)(x+k)2 that when k = 0 becomes

1
x2
, in the form

R(x, k) =
Ai,0
x

+
Ai,1
x+ 1

+ · · ·+ Ak,k−1
x+ k − 1

+
Ak,k
x+ k

+
Bk,k

(x+ k)2
(23)

with unknown coefficients in Fp, and as denominators the irreducible linear divisors of
the denominator D(x) of R(x, k) raised to powers from 1 up to the multiplicity in which
they appear in D(x). Next we determine the coefficient Ak,j ∈ Fp where 0 6 j 6 k− 1 by
computing in Fp as follows:

Ak,j := [R(x, k) · (x+ j)]x=−j

=

[
1

x(x+ 1) · · · (x+ j − 1) · (x+ j + 1) · · · (x+ k − 1)(x+ k)2

]
x=−j

=
1

(−j)(−j + 1) · · · (−1) · 1 · · · (−j + k − 1)(−j + k)2

=
(−1)j

j!(k − j)!(k − j)
.
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The coefficients Bk,k are determined in the same manner, namely:

Bk,k :=
[
R(x, k) · (x+ k)2

]
x=−k

=

[
1

x(x+ 1) · · · (x+ k − 1)

]
x=−k

=
1

(−k) · (−k + 1) · · · (−k + k − 2) · (−k + k − 1)

=
1

(−1)k · k · (k − 1) · · · (k − (k − 2)) · (k − (k − 1))

=
(−1)k

k!
.

In order to compute Ak,k we multiply both sides of (23) by (x+ k) to get

1

x(x+ 1) · · · (x+ k − 1)(x+ k)
=

k−1∑
j=0

x+ k

x+ j
· Ak,j + Ak,k +

Bk,k

x+ k
. (24)

Now we work in the 1
t
-adic completion Fp(t) of Fp(t). We let x go to infinity in Fp(t)

in both sides of (24). This gives

0 =
k−1∑
j=0

Ak,j + Ak,k.

Finally, we observe that we can get an explicit expression for Ak,k by using the following.
Put Q(x) = x(x+ 1) · · · (x+ k− 1) so that R(x, k) = 1

Q(x)·(x+k)2 . We have the formula, as
for the classical partial fraction decompositions over the complex numbers,

Ak,k =
[
(R(x, k) · (x+ k)2)′

]
x=−k ,

in which the ′ denotes formal derivation relative to x, that becomes

Ak,k = (−1) · Q
′(−k)

Q(−k)2

since x = −k is a double root of the denominator of R(x, k). Here Q′(x) is the formal
derivative of Q(x) relative to x. After a short computation we obtain Q(−k)2 = k!2 and

Q′(−k) =
∑k−1

j=0
(−1)k−1·k!

k−j so that we obtain the explicit formula.

Ak,k =
(−1)k

k!
·
k−1∑
j=0

1

k − j
.

Lemma 54. Let w0 := ε(0), w1 := F (w0), . . . , wp−1 := F (p−1)(w0). Then {wi | i =
0, . . . , p− 1} is a self-dual normal basis of Fq over Fp relative to the bilinear form

〈x, y〉 = Tr(xy).
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Proof. We see immediately that wi = ε(i)
ε(i−1) = 1

r+i
. The result follows then from Lemma

41.

Lemma 55. For all i = 0, . . . , p− 1 one has

1

(r + i)2
= − 1

r + i
+

1

1

1

(r + i+ 1)
+

1

2

1

(r + i+ 2)
+ · · ·+ 1

p− 1

1

(r + i+ p− 1)
.

Proof. Write 1
(r+i)2

in the Fp–basis { 1
(r+j)

, j = 0, . . . , p − 1}. By Lemma 54 it suffices to

prove that Tr( 1
r2

1
r+j

) = 1
j

when j 6= 0 and that Tr( 1
r2

1
r
) = −1. Since r(r+1) · · · (r+p−1) =

1 we can write

1

r2
1

r + j
=

(r + 1) · · · (r + j − 1)(r + j + 1) · · · (r + p− 1)

r

when j 6= 0. Thus, Tr( 1
r2

1
r+j

) = (p−1)!
j

Tr(1
r
) = 1

j
. When j = 0 it is better to use the identity

1
r2

+ 1
r3

= rp−3 to conclude that Tr( 1
r3

) = −1.

Proof of Theorem 28: In what follows when we say that we get a condition, e.g., (a),
this means that we prove that the condition (a) is equivalent to the condition K(p) = 0.

Proof. Assume that β(d − 1) = 0. From Proposition 33 we get K(p) = 0. Now assume
that K(p) = 0. From Proposition 33 we get Tr(β(d− 1) = 0. It follows from Theorem 14
(b) that B(d − 1) = 0. Now we use Corollary 19, part (a) to deduce that β(d − 1) = 0.
This depends on proving T 6= 0. This is guaranteed by Lemma 13. Thus, we get (a).
See also Remark 20. From Lemma 40 and from (a) we get (b). From Theorem 14 (b),
Lemma 42 (b) and (a) we get (c) since B(d− 1) = −Tr(β(d− 1)). From (c) and Lemma
43 we get (d). From Lemma 47, from Lemma 46 and from (a) we get that the left hand
side equals B(d) = B(0) = 1; this proves (e). From Lemma 44 and (c) follows (f). If
β(d− 1) = 0 then Tr(β((d− 1)r) = 0. For the other direction we argue as follows. Since
by Theorem 3 rβ(d − 1) = σ(β(d − 1)) the result (g) now follows by taking traces and
by using (a). From Lemma 7 we can take ε = r−c(p). It follows then from Lemma 42 (b)
that Tr

(
ε
r2

)
= Tr

(
ε

r−1

)
= β(d−1)ε since σ

(
ε

r−1

)
= ε

r2
. The equality Tr

(
ε

r−1

)
= β(d−1)ε

follows also from Lemma 45 (a) with x(r) = r−c(p). Thus, (h) and (i) follows from Lemma
45 (b). (X): One has B(p − 1) = 1 from (b) and Corollary 19 (a). (Y): We have
D(p− 1) = 0 from (X) and Theorem 26 (g). (Z): We obtain D(p− 2) = 1 from (Y) and
(11). Thus, we get (j). Since by Lemma 39 d − 1 = 0 in Fp, we get (k) by Theorem 26
(h) with m = d − 1, and from (c), since (r + d − 1)−1 = (r + pk + 1 − 1)−1 = r−1 for
some k ∈ Z. From Lemma 49, Theorem 14 and (a) it follows (l). From (h) with ε = r−c(p)

it follows (m) since r−c(p)−2 · r2 = r−c(p). While (n) follows from (m) and from Lemma
42, parts (c) and (b), together with (a) by using r2

r−1 = r + 1 + 1
r−1 . More precisely, (n)

is obtained by taking traces in both sides of this equality. From Lemma 51 (b) we got
2 = B(p) =

∑p−1
j=0(−1)jB(j) that combined with (l) proves (o). From Lemma 48 (b)

with n = p − 1 and using (j) we get (p). More precisely, the Lemma gives B(p − 1) =∑p−1
m=1(−1)mD(m− 1) since mp−1 = 1 for all m in this range. Multiply both sides of this
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equality by (−1), put h = m−1 as new variable and observe that (−1)·(−1)h+1 = (−1)h to
get −B(p−1) =

∑p−2
h=0(−1)hD(h) = −D(p−2)+

∑p−3
h=0(−1)hD(h). But by (j), D(p−2) = 1

and by taking traces in (b) and by using Theorem 14 part (b), we obtain also B(p−1) = 1.
This proves (p).

Alternatively we can also get (p) by taking s = p − 1 and n = p − 1 in Lemma 48
(a). This gives in the left hand side

∑p−1
m=1(−1)mD(m) since 0p−1 = 0, mp−1 = 1 and(

p−1
m

)
= (−1)m. But, D(p − 2) = 1 by (j) and D(p − 1) = B(p − 1) − 1 by Theorem 26

part (g), so that D(p− 1) = 0 since B(p− 1) = 1 as above in the first proof of (p). Thus
the left hand side becomes

∑p−3
m=1(−1)mD(m) + (−1).

The same procedure gives in the right hand side (−1) ·
∑p−1

j=0(−1)j(−1)p−1−jB(j) =

(−1) ·
∑p−1

j=0 B(j) since (p − 1)! = −1,
(
p−1
j

)
= (−1)j and (−1)p−1 = 1. But by using

Lemma 51 part (b), we obtain that the right hand side is equal to −2. Comparing both
sides we get

∑p−3
m=1(−1)mD(m) + (−1) = −2 so that

∑p−3
m=0(−1)mD(m) = 1 + (−1) = 0

since (−1)0 ·D(0) = 1. This completes the second proof of (p).
We get (q) by using Theorem 38 with n = d−1 and from (a). Observe that β(d−1) =∑p−1
k=0R(r, k) with the notations in the proof of Lemma 52 since r(r+1) · · · (r+p−1) = 1.

We get the values of Ai,j, Ai,i and Bi,i from Lemma 52. By using Lemma 55 we have then
for an appropriate βp−1 ∈ Fp

β(d− 1) =
β0
r

+
β1
r + 1

+ · · ·+ βp−2
r + p− 2

+
βp−1

r + p− 1
(25)

Thus (see Lemma 54) β(d − 1) = 0 is equivalent to βj = 0 for all j = 0, . . . , p − 1.
But β(d − 1) = 0 is also equivalent to βp−1 = 0 since from (25) and Lemma 54 βp−1 =

Tr(β(d−1)
r−1 ) = Tr(β(d−1)

p

r
) = Tr(β(d− 1)) = −B(d− 1). This proves (r). See details in how

R(r, k) is found in Remark 53 just after Lemma 52.

The conjecture has been worked out numerically (see, e.g.,[16], [37]). The latest avail-
able result (see [30]) is that it holds true for all odd prime numbers less than 109. This is a
non trivial computation since a straightforward GP-Pari computation took 7 minutes in a
relatively recent computer to get the single value K(109 +7) = 571737251. Using machine
idle time on our local computer we obtained (using [30]) that the conjecture is true when
2 < p 6 109 +785617. However, we are not aware of the existence of any infinite subset of
the odd prime numbers for which the conjecture holds. Set K(n) := 0!+1!+ · · ·+(n−1)!.
One of the equivalent forms of the conjecture is that for all n > 3 one has n - K(n). It
is easy to check that if for some n > 3 one has n - K(n) then kn - K(kn) for all positive
integers k (see also [10, Corollary 1.3.1]. So this form of the conjecture holds for an
infinity of n′s. Another equivalent form of the conjecture (see [10]) is that for all n > 1
one has gcd(K(n), n!) = 2. One can check that if this condition holds for an infinity of
n’s then it holds for all n’s since gcd(K(n), n!) = 2 ⇐⇒ for all odd primes p 6 n one
has p - K(p). By mistake, probably confounding these two forms of the conjecture, [46]
state that Kurepa proved in [10] that for an infinity of n’s we have gcd(K(n), n) = 2.

Recently Bencherif and Oesterlé (see [39]) discovered that the published proof of the
conjecture (see [38]) had a fatal gap. In a letter to Guy (see [7, B44]) Reg. Bond proposed
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(unpublished) a proof. Z̆ivcović (see [36, page 403]) says that he informed him that he
later discovered an error in the proof.

Finally, we discuss other applications of formula (1).

5.3 A short summary of previous results on string of consecutive
zeros of B(n) in Fp, simplified by (1)

Consider the maximal number m of consecutive zeros of B(n) in Fp. By Lemma (4)
m 6 p − 1. Radoux proved [21], assuming that the minimal period d of B(n) satisfies
d = g(p), that there exists one and only one string of p − 1 consecutive zeros by period.
This was extended by Layman [14] to any period d of B(n) modulo p. The exact location
of the string of zeros was only given modulo g(p). More precisely, let b denote the exact
beginning of the string of p− 1 consecutive zeros. Radoux give b(p− 1) ≡ p (mod g(p)),
Layman give b ≡ 1 − pp−p

(p−1)2 (mod g(p)), for the location of the first zero in the string.

Later Kahale [8] give b = c(p) + 1. We just observe here that Kahale’s result follows
immediately from formula (1). Indeed, since for all k = 0, . . . , p− 2 one has in Fp

Tr(rk) = 0, (26)

(see Lemma 32), i.e.,
Tr(rc(p)+k+1−(c(p)+1)) = 0, (27)

so that by (1) we get immediately

B(c(p) + k + 1) ≡ 0 (mod p) (28)

for all these k’s.
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