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Abstract

This paper considers the degree-diameter problem for undirected circulant graphs.
The focus is on extremal graphs of given (small) degree and arbitrary diameter. The
published literature only covers graphs of up to degree 7. The approach used to
establish the results for degree 6 and 7 has been extended successfully to degree 8
and 9. Candidate graphs are defined as functions of the diameter for both degree 8
and degree 9. They are proven to be extremal for small diameters. They establish
new lower bounds for all greater diameters, and are conjectured to be extremal.
The existence of the degree 8 solution is proved for all diameters. Finally some
conjectures are made about solutions for circulant graphs of higher degree.
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1 Introduction

The degree-diameter problem is to identify extremal graphs, having the largest possible
number of vertices for a given maximum degree and diameter. There is an extensive
body of work on the degree-diameter problem in the literature, but relatively few papers
consider the specific case of undirected circulant graphs. For circulant graphs there are
two main areas of research: largest graphs of given (small) degree and arbitrary diameter,
and of given (small) diameter and arbitrary degree. This paper will focus on the first,
where the goal for circulant graphs of any given degree, considered as Cayley graphs of
cyclic groups, is to determine the order and generator sets for extremal graphs as functions
of their diameter.

So far this has only been achieved for graphs of degree d < 5. For degree 2 and 3, the
solutions are straightforward. Chen and Jia included a proof for degree 4 in their 1993
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paper [1], and Dougherty and Faber presented a proof for degree 5 in 2004 [2]. Chen and
Jia also constructed a family of graphs of even degree d > 4 and all diameters k > d/2.
This family establishes a useful lower bound for extremal graphs of all unresolved degrees.
For both degree 6 and degree 7, Dougherty and Faber [2] constructed families of graphs,
defined as functions of the diameter, which improved on Chen and Jia’s lower bound.
These graphs have been proved by computer search to be extremal for small diameters
and are conjectured to remain extremal for all greater diameters. Dougherty and Faber
also proved an upper bound for Abelian Cayley graphs valid for all degrees and diameters.
Since then it appears that nothing further has been published on extremal circulant graphs
of given degree and arbitrary diameter. Miller and Sirdi’s comprehensive 2013 survey of
the state of the art of the degree-diameter problem [7] includes only a relatively brief
section on Abelian Cayley graphs, mostly relating to Dougherty and Faber’s results for
circulant graphs. Therefore the Dougherty and Faber constructions remain the best known
solutions of degree 6 and 7 for arbitrary diameter. For all higher degrees no solutions have
been published which improve on the Chen and Jia constructions. In this paper we will
review these upper and lower bounds and the extremal and best known solutions up to
degree 7.

The main result of this paper is the construction of families of circulant graphs of both
degree 8 and 9, defined as functions of the diameter. These graphs improve on Chen and
Jia’s lower bounds. They have been proved by computer search to be extremal for small
diameters above a threshold value. A proof of the existence of these graphs is given for
the case of degree 8 for arbitrarily large diameters. This proof closely follows the approach
taken by Dougherty and Faber for their proof of the existence of the degree 6 construction
[2]. The full proof, covering the separate cases of even and odd diameter and handling
the exceptions for all combinations of generator elements, extends to 20 pages. Therefore
in this paper the details are included only for a representative subcase. The full proof is
available on ArXiv [5]. These new families of graphs are conjectured to be extremal for
all diameters above a defined threshold.

2 Properties of circulant graphs

A circulant graph X (Z,,C) of order n may be defined as a Cayley graph whose vertices
are the elements of the cyclic group 7Z, where two vertices 7, j are connected by an arc
(1, 7) if and only if j —1 is an element of C, a subset of Z,, \ 0, called the connection set. If
C is closed under additive inverses then X is an undirected graph. This paper will only
consider undirected connected circulant graphs.

In common with all Cayley graphs, circulant graphs are vertex transitive. With ap-
propriate vertex labelling, the adjacency matrix of a circulant graph is a circulant matrix.
By definition such a graph is regular, with the degree d of each vertex equal to the order
of C. If n is odd then Z, \ 0 has no elements of order 2. Therefore C' has even order, say
d = 2f, and comprises f complementary pairs of elements with one of each pair strictly
between 0 and n/2. The set of f elements of C' between 0 and n/2 is defined to be the
generator set G for X. If n is even then Z, \ 0 has just one element of order 2, namely
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n/2. In this case C' is comprised of f complementary pairs of elements, as for odd n,
with or without the addition of the self-inverse element n/2. If C' has odd order, so that
d = 2f + 1, then the value of the self-inverse element n/2 is fixed by n. Therefore for a
circulant graph of given order and degree, its connection set C' is completely defined by
specifying its generator set G. The order of the connection set is equal to the degree d
of the graph, and the order of the generator set f is defined to be the dimension of the
graph. In summary, undirected circulant graphs of odd degree d must have even order.
They have dimension f = (d—1)/2. Graphs of even degree d may have odd or even order.
They have dimension f = d/2.

In the literature the symbol d is variously used to define the degree or the diameter
or the dimension of the graph. Adopting the terminology of Macbeth, Siagiové and Sirdn
6], we will use d for degree and k for diameter, and also CC(d, k) for the order of an
extremal circulant graph. In addition we use f for the dimension of the graph.

3 Upper and lower bounds

The most widely known upper bounds for graph order for the degree-diameter problem are
the Moore bounds for arbitrary graphs of given degree and diameter. However circulant
graphs of degree 3 or more have girth of only 3 or 4 and so are significantly smaller
than their Moore bound. Therefore this is not a useful upper bound in practice for
extremal circulant graphs. Much more useful for circulant graphs is the upper bound
for the order of the Cayley graph of any Abelian group given by Dougherty and Faber
[2]. For any dimension f we consider Z/ with the canonical generators e;,1 < i < f.
For any Abelian group G generated by gi,..., g there is a unique homomorphism from
7! onto G which sends e; to g; for all . If N is its kernel, then G is isomorphic to
7/ /N, and the Cayley graph of G with the given generators is isomorphic to the Cayley
graph of Z/ /N with the canonical generators for Z/. For any given diameter k, Sy, is
defined to be the set of elements of Z/ which can be expressed as a word of length at
most k in the generators e; of Z/, taken positive or negative. Equivalently, S 7k is the
set of points in Z/ distant at most k from the origin under the ¢! (Manhattan) metric:
Ser = {(21,...,v5) € ZF ¢ |z1| + ... + 4] < k}. Within the literature on coding theory
and tiling problems it is usually called the f-dimensional Lee sphere of radius k. This
leads to the following theorem.

Theorem 1. (Dougherty and Faber). Let G,N and gi,...,g5 be as above. Then the
undirected Cayley graph for an Abelian group G and g, ..., g5 has diameter at most k if
and only if Sgr.+ N =77,

For any given dimension f, let S(f, k) = |Sfx|. Then S(f, k) gives an upper bound for
the order of an Abelian Cayley graph of even degree d = 2f and diameter k, and therefore
in particular of a circulant graph. In order for a graph to achieve this upper bound it is
necessary that different combinations of multiples of the generators create paths of length
up to k from an arbitrary root vertex that lead to different vertices. This is equivalent to

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.50 3



achieving an exact tiling of Z/ with Lee spheres S; . Golomb and Welch [3] proved such
a tiling is possible for 1 and 2 dimensions for any radius and for any dimension for radius
1. They conjectured that this is not possible for any graph of dimension f > 3 and radius
k > 2. This conjecture is still open, although various authors have presented proofs of
non-existence for 3, 4 and 5 dimensions. The paper by Horak [4] covers all three of these
dimensions.

From the definition it is easily shown that S(f,k) satisfies the ‘square’ recurrence
relation S(f, k) = S(f,k—1)+S(f —1,k) +S(f — 1,k — 1) which, along with boundary
values S(1,k) =1+ 2k for k > 1 and S(f,1) =1+ 2f, for f > 1 enables the value to be
calculated for any f and k. Stanton and Cowan [9] derived an explicit formula for this

relation: ;
wn-£4()()
i=0

We also have an asymptotic form: S(f, k) = (2//f)k/ + O(k'1).

For a circulant graph of odd degree d = 2f+1, having a single self-inverse generator, we
note, following Dougherty and Faber [2], that the set of elements which can be written as
a word of length at most k in the generators of the group Z/ x Zsy is (Syx x 0)U(Sfx_1 x 1),
giving an upper bound for the order of the graph of S(f, k) + S(f,k—1). For an Abelian
Cayley graph of given degree a higher number of self-inverse generators would reduce the
number of non self-inverse generators, thereby reducing the order of the polynomial in k.
Thus this circulant graph upper bound is also the upper bound for any Abelian Cayley
graph of the same degree and diameter.

We therefore define the upper bound Mac(d, k) for the order of an Abelian Cayley
graph of degree d and diameter k as follows:

S(f, k) for even d, where f =d/2

Myc(d, k) = { S(f,k)+ S(f,k—1) for odd d, where f = (d—1)/2.

Thus we have the asymptotic form:

{ 27/ kS + O(k/=1) for even d, where f = d/2
Mac(d, k) = :

2/ YK + O(kf=1)  for odd d, where f = (d —1)/2.
Table 1 gives formulae for Mo (d, k) in terms of k for d < 9.

As the Golomb-Welch conjecture has been confirmed for dimensions 3, 4 and 5, this
means that no circulant graph of degree 6, 8 or 10 can achieve the upper bound M4¢(d, k).
Furthermore, as the upper bound for odd degree d = 2f + 1 also depends on S(f, k), nor
can any circulant graph of degree 7, 9 or 11 achieve its upper bound. The Golomb-Welch
conjecture implies this also to be true for all higher dimensions.

Lower bounds on the order of extremal circulant graphs of even degree d > 6 were
established by Chen and Jia in 1993 [1]. For any dimension f = d/2 and diameter k such

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.50 4



Table 1: Formulae for upper bounds Mac(d, k) in terms of diameter k for degree d < 9

Degree,d Upper bound, Msc(d, k)

2k +1

4k

2k% + 2k + 1

4k* + 2

(4k* + 6k* + 8k + 3)/3

(8k3 + 16k) /3

(2k* + 4k + 10k* + 8k + 3)/3
(4k* 4 20k* + 6)/3

© 00 ~J O Tk W N

that k> f > 3let a = [(k— f+3)/f]. Then the lower bound of [1] is given by

f—1
CJ(d, k) = 2a2(4a)i = % (%)f k' + O(kh).

A graph of this order is constructed from the generator set {1, 4a, (4a)?, ..., (4a)’~1}.
For degrees d = 6 and d = 8 we have the following expressions:

CJ(6,k) =32k /27 + O(k?)
CJ(8,k) =k*/2 + O(K*).

4 Extremal and largest known circulant graphs up to
dimension 3

The upper bounds for Abelian Cayley graphs, Mac(d, k), are achieved for degree 2, 3 and
4 by circulant graphs. For degree 2, taking Zox. 1 and generator 1 (so that the connection
set C' = {£1}), the resultant graph is the cycle graph on 2k+1 vertices which has diameter
k, so that CC(2,k) = 2k + 1. For degree 3, taking Z4; and generator 1, connection set
C = {#£1,2k}, the graph is a cycle graph on 4k vertices with 2k edges added to join
opposite pairs of vertices. Starting from vertex 0 and taking a path defined by edges +1
we can reach vertices 1,2, ..., k with paths of length < k. By first taking edge 2k followed
by edges +1 we reach vertices 2k, 2k +1, ..., 3k — 1 with length < k. By taking these paths
with edges —1 instead of +1 we can reach all the other vertices with a path of length
< k. Hence the diameter is less than or equal to k. However we have My (3, k) = 4k.
Therefore the specified graph is extremal and CC(3, k) = 4k.

For degree 4, Chen and Jia [1] proved that Zog2or 1 with generator set {1,2k+1} has
diameter k for all k. As Mac(4, k) = 2k* 4+ 2k + 1, this proves the graph is extremal and
CC(4,k) = 2k* + 2k + 1. For degree 5, Dougherty and Faber [2] proved that the extremal
solution for k& > 1 is Zy2 with generator set {1,2k — 1} (connection set {£1,4+(2k —
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1),2k?*}) and order that is 2 less than Mac(5, k), giving CC(5, k) = 4k?. For degree 2, 3,
4 and 5 these extremal circulant graphs are also the largest Abelian Cayley graphs.

After degree 5 the situation becomes more difficult. Regarding graphs of three di-
mensions, Dougherty and Faber [2] discovered families of circulant graphs of degree 6
and 7 which were proved by computer search to be extremal Abelian Cayley graphs for
diameter k£ < 18 for degree 6, and for diameter k£ < 10 for degree 7. For both degree
6 and 7, the formula for the order of the solution, DF(d, k), depends on the value of k
(mod 3). Tables 2 and 3 present these solutions alongside the corresponding expressions
for the lower and upper bounds, CJ(d, k) and Msc(d, k).

Table 2: Order of largest known solutions of degree 6, DF(6, k), for arbitrary diameter k > 2,
compared with lower bound CJ(6, k) and upper bound M4 (6, k).

Diameter, k order, DF'(6, k) Lower bound, C'J(6, k)
k=0 (mod 3) (32k3+48k*+54k+27) /27 (32k3 + 24K% + 18k) /27
k=1 (mod 3) 32k3+48k2+78k+31) /27 32k3 — 72k% + 66k — 26)/27

( (
k=2 (mod 3) (32k3+48k?+54k+11) /27 (32k3 — 168Kk? + 306k — 196) /27
Upper bound, Mac(6,k)  (4k® + 6k% + 8k +3)/3 = (36k> + 54k + T2k + 27)/27

Table 3: Order of largest known solutions for degree 7, DF(7, k), for arbitrary diameter k > 3,
compared with upper bound Mac(7, k).

Diameter, k order, DF(7,k)
k=0 (mod 3) (64k3 + 108k) /27
k=1 (mod 3) (64K + 60k — 16) /27
k=2 (mod 3) (64Kk3 + 60k + 16) /27
Upper bound, Mac(7,k) (8k3 +16k)/3 = (72k3 + 144k)/27

Note: The lower bound CJ(d, k) is only defined for even d.

Dougherty and Faber [2] proved the existence of the degree 6 graphs of order DF'(6, k)
for all greater values of k, and they remain the largest Abelian Cayley graphs of three
dimensions so far discovered. For the degree 6 graphs there is a unique solution up to
isomorphism for diameter £ = 1 (mod 3), and for degree 7 there is a unique solution for
k =0 (mod 3). For other values of k there are two distinct isomorphism classes of graphs
for both degree 6 and 7, where k > 3 for degree 7 as DF(7,2) is not extremal. Generator
sets for these solutions are shown in Table 4.

5 Largest known circulant graphs of degree 8 and 9

Graphs of dimension 4 have degree 8 or 9. As with Dougherty and Faber’s approach
for dimension 3, an exhaustive computer search was conducted for potential solutions
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Table 4: Generator sets for degree 6 and 7 graphs of order DF'(6, k) and DF(7,k), for diameter
k.

Isomorphism Diameter Generator set

class (mod 3) g1 ¢ g3

Degree 6

1 k=1 1 (8k*+2k+38)/9 (8k2 + 14k + 14)/9

2a k= 1 (4k+1)/3 (16k2 + 20k +13)/9

2b k= 1 (8k*—2k+8)/9 (8k2 + 10k + 2)/9

3a k= 1 (4k+3)/3 (16k2 + 12k +9)/9

3b k=0 1 (8k*+6k)/9 (8k2% 4+ 18k + 18)/9

Degree 7

la k=1 1 (4k—1)/3 (16k% + 4k 4 7)/9

1b k= 1 (32k3 — 24k + 24k — 5)/27  (32k3 — 24Kk% + 60k — 41)/27
2a k= 1 (4k+1)/3 (16k? — 4k +17)/9

2b k=2 1 (32k3 — 24k2% — 25)/27 (32k3 — 24Kk* + 36k + 11) /27
3 k=0 1 (32k3 — 24k2 4 36k — 27)/27  (32k3 — 24Kk% + 72k — 27)/27

using all feasible generator sets within relevant ranges. For small diameter this process
worked well and enabled the discovery of a family of graphs of degree 8 which are larger
than the lower bound C'J(8, k) for any diameter k, and similarly for degree 9. However
the order of graphs on generator sets of dimension 4 increases with diameter much more
quickly than for dimension 3, as well as the number of possible permutations for each
order. This means that the calculations to prove the extremality of a candidate graph
by continuing the search up to the relevant upper bound, Mc(d, k), quickly exceed the
available computing power. Therefore the discovered candidate families of dimension 4
graphs have only been proven to be extremal for a rather limited range of diameters,
k < 7 for degree 8 and k < 6 for degree 9. The results for degree 8 are shown in Table 5.

For degree 8 the following quartic polynomials in k determine the order of these
solutions for diameter £ > 3:

L(8.K) = (k* + 2k + 6k* + 4k) /2 for k=0 (mod 2)
] (B 42k 4 6k24+6k+1)/2 fork=1 (mod 2)

Over the range of diameters checked there is just one unique graph up to isomorphism
for each k& > 3. The leading coefficient of 1/2 equals the lower bound value in the formula
for C'J(8, k) and is below the upper bound value of 2/3 in M4 (8, k). See Table 6.

For k = 2 the formula gives a graph of order 32 whereas the optimal order is 35 with
two non-isomorphic solutions. For 3 < k& < 7 the resulting graphs have been proven
extremal by exhaustive computer search up to the upper bound Mac(8, k). The existence
of these graphs for all k is proved in the next section. They are the best degree 8 solutions
so far discovered for any k£ > 3 and are conjectured to be extremal. The results for degree
9 are shown in Table 7.
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Table 5: Largest known circulant graphs of degree 8.

Diameter Order Iso- Generator set Upper Status

k L(8,k)  morphism bound

class Muc(8, k)
2 35 a 1,6,7,10 41 Extremal

b 1,7,11,16
3 104 1 1,16, 20, 27 129 Extremal
4 248 2 1,61,72,76 321  Extremal
5 528 1 1,89,156, 162 681 Extremal
6 984 2 1,163, 348, 354 1289 Extremal
7 1712 1 1,215,608,616 2241 Extremal
8 2768 2 1,345,1072,1080 3649 Largest known
9 4280 1 1,429,1660, 1670 5641 Largest known
10 6320 2 1,631, 2580, 2590 8361 Largest known
11 9048 1 1,755, 3696, 3708 11969 Largest known
12 12552 2 1,1045, 5304, 5316 16641 Largest known
13 17024 1 1,1217,7196, 7210 22569 Largest known
14 22568 2 1,1611,9772,9786 29961 Largest known
15 29408 1 1,1839, 12736, 12752 39041 Largest known
16 37664 2 1,2353, 16608, 16624 50049 Largest known

Table 6: Order and generator sets of largest known circulant graphs of degree 8 for diameter
k > 3.

Isomorphism class 1 Isomorphism class 2
k=1 (mod 2) k=0 (mod 2)
Order, L(8,k)  (k* + 2k3 + 6k + 6k +1)/2 (k% + 2k3 + 6k* + 4k) /2
Generator g¢; 1 1
set g (B®+ K24+ 5k+3)/2 (k3 + 2k + 6k +2)/2
g3 (k*+2k? —8k—11)/4 (k* + 4Kk% — 8K) /4
g1 (K*42k% —4k —7)/4 (K* + 4Kk% — 4K) /4
Lower bound
CJ(8,k) (k* — 3k3 + 4k% — 2k)/2 (k* — 15k3 + 85k2 — 215k + 204) /2
for k=1 (mod 4) for k=0 (mod 4)
(k* — 11k3 4 46k? — 86k +60)/2  (k* — Tk3 + 19k% — 23k + 10)/2
for k=3 (mod 4) for k=2 (mod 4)
Upper bound
Mac(8, k) (2k* 4+ 4k3 + 10k? + 8k +3)/3  (2k* + 4k® + 10k? + 8k + 3)/3
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Table 7: Largest known circulant graphs of degree 9.

Diameter Order Iso- Generator set™ Upper Status
k L(9,k) morphism bound
class Mac(9, k)
2 42 a 1,5,14,17 50 Extremal
b 2,7,8,10
3 130 ¢ 1,8,14,47 170 Extremal
d 1,8,20,35
e 1,26,49,61
f 2,8,13,32
4 320 - 1,15,25,83 450 Extremal
5 700 la 1,5,197,223 1002 Extremal
1b 1,45,225,231
6 1416 2 1,7,575,611 1970 Extremal
7 2548 la 1,7,521,571 3530 Largest known
1b 1,581,1021,1029
8 4304 2 1,9,1855,1919 5890 Largest known
9 6804 la 1,9,1849,1931 9290 Largest known
1b 1,1305, 1855, 1863
10 10320 2 1,11,4599, 4699 14002 Largest known
11 15004 la 1,11, 3349, 3471 20330 Largest known
1b 1,4851, 6655, 6667
12 21192 2 1,13,9647,9791 28610 Largest known
13 29068 la 1,13,7741,7911 39210 Largest known
1b 1,5083, 7929, 7943
14 39032 2 1,15,18031, 18227 52530 Largest known
15 51300 la 1,15,11857,12083 69002 Largest known
1b 1,5835, 15075, 15089
16 66336 2 1,17,30975, 31231 89090 Largest known

* for each isomorphism class of graphs just one of the generator sets is listed

For degree 9 the following quartic polynomials in k determine the order of the largest
known solutions for diameter k£ > 5:

L(9, k) =
5.%) k* + 3k? for k=1 (mod 2)

{ K14+ 3k2+2k fork=0 (mod 2)
This may be compared with the upper bound Mac(9, k) = (4k* + 20k? + 6)/3.

Over the range of diameters k > 5 checked there is a unique solution up to isomorphism
for each even diameter (isomorphism class 2) and two for each odd diameter (classes la
and 1b). For isomorphism class la there are three generator sets which include the element
1 for each diameter, and four sets for class 2. For their formulae see Table 8.

Factors establishing isomorphisms between the graphs generated by the various gen-
erator sets of isomorphism class 1 are listed in Table 9.
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Table 8: Order of largest known degree 9 circulant graphs for diameter & > 5, and generator
sets for isomorphism classes 1a and 2 .

Isomorphism class la, k =1 (mod 2)

Order, L(9,k) = k* + 3k?

Generator

set 1: k=1 (mod 4) k=3 (mod 4)

g1 1 1

92 k k

g3 (*+ k> +k2+3k—2)/4  (K* -k +k?>-3k—-2)/4

g4 (k* + k> +5k> + 3k +2)/4  (k* — k3 +5k* — 3k +2)/4
Generator set 2 Generator set 3

g1 1 1

g2 k3 + 2k k2 — k2 +3k—2

g3 k3 43k +1 k3 + 2k

g4 k3 + k% + 3k +2 k3 4+3k—1

Isomorphism class 2, £ =0 (mod 2)

Order, L(9,k) = k* + 3k* + 2k

Generator set 1

Generator set 2

Generator set 3

o 1 1 1

92 k+1 k*—k*+3k—1 (k3 + 2k +2)/2

g3 (k* — k% + 2k* — 2) /2 k3 —k*+4k -1 (k* — k3 4 4k% — 2k +2)/2
gs (k* — k® + 4k* — 2) /2 3k3 — 2k% + 10k — 1 (k* 4+ 2k% + 2k — 2) /2
Generator

set 4: k=0 (mod 6) k =2 (mod 6) k=4 (mod 6)

g1 1 1 No solution

go (k* 4+ k3 4+ k2 4+6k—3)/3  (k* — k> +2k*> -2k —3)/3

g3 (k* + k% +4k2 + 3k +3)/3  (k*— K> +2k* +k—3)/3

ga (k* + k% + 4k* + 6k + 3)/3  (k* — K + 5k* — 2k + 3)/3

Table 9: Factors transforming generator set 1 into the other generator sets for degree 9 graphs
of isomorphism classes 1a and 2, for any diameter k.

Diameter, k

For generator set 2

For generator set 3

k=0 (mod 2)
k=1 (mod 2)

ga = 3k® — 2k + 10k — 1
g1 = k3 + k? + 3k + 2

g3 = (k* — k3 + 4k% — 2k +2)/2
g2:k3—k2+3k—2

Diameter, k

For generator set 4

k=0 (mod 6)
k=2 (mod 6)

g = (K*+ k3 + k% +6k—3)/3
gs = (kK* — k3 + 5k — 2k +3)/3

For isomorphism class 1b the formulae for the generator sets were more difficult to
discover. It emerges that the solution depends on the diameter k£ (mod 14). This is a
most surprising result for a system with dimension 4 and degree 9, neither value having a
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common factor with 7. For each odd diameter there are one or two generator sets which
include the element 1. One sequence omits the case £ = 9 (mod 14) with each solution
having a pair of generators differing by k£ + 1. The other omits the case k =5 (mod 14)
with each having a pair differing by £ — 1. The formulae for these generator sets are listed
in Table 10.

Table 10: Generator sets for isomorphism class 1b of degree 9 circulant graphs of order L(9, k)
for odd diameter k£ > 5.

Diameter, k Generator set 1 Generator set 2

k=1 (mod 14) ¢; 1 1
g2 (k*+ k3 +5k2)/7 (k* — 3k3 + 22 — Tk) /7
g3 (K*+ K3 +5k>+ Tk +17)/7 (2k* + K3 + 4k2) /7
gs  (3K* + 3K3 + 8k +Tk)/7 (2k* + k3 + 4k2 4+ Tk —7)/7
k=3 (mod 14) ¢ 1 1
g (K*—K+ K2 —Tk-1)/7 (2k* — 3k3 + 5k* — k) /7
g3 (K* — K3 +k2)/7 (3k* — k> + 11k — Tk +7)/7
gs  (3k* — 3Kk3 + 10k* — Tk) /7 (3k* — k3 + 11k%) /7
k=5 (mod 14) ¢; 1 *
g2 (K* =3k +4k? —7)/7
g3 (2k* + K3+ 8Kk?) /7
g1 (2k* 4+ k> +8k* + Tk +7)/7
k=7 (mod 14) g1 1
go  (2k* — 3K3 + Tk —Tk)/7 (2k4 + 3k% + Tk + Tk) )7
g3 (Bk*— K>+ Tk? - Tk —17)/7 (3K + K3+ 7k?) /7
gs (Bk* — K>+ TK%) /7 (Bk* + k3 + T2+ Tk —7)/7
k=9 (mod 14) g¢; * 1
go (k* + 3k3 + 4k? + Tk) /7
g3 (2k* — k3 + 8k? — Tk +7)/7
ga (2k* — k® 4+ 8k2) /7
k=11 (mod 14) g¢; 1 1
ga  (2k* + 3Kk3 + 5k +Tk)/7 (K* + k3 + k) /7
g3 (3k*+ K>+ 11k%)/7 (K* + k3 + k2 + Tk —17)/7
gs (BK*+ K+ 11K+ Tk +17)/7 (3k* + 3K3 + 10k2 + Tk) /7
k=13 (mod 14) g¢1 1 1
g2 (K*+3k>+2k2+7)/7 (K* — k3 +5K2 — Tk +17)/7
g3 (2k*— K>+ 4k* —Tk—7)/7 (k* — k3 + 5k%) /7
g1 (2k* — k3 + 4K )7 (3k* — 3k3 + 8k* — Tk) /7

* No solutions for k =9 (mod 14) for generator set 1 or for k =5 (mod 14) for generator set 2

Factors establishing isomorphisms between the graphs generated by the generator sets
of isomorphism class 1b are listed in Table 11.

In order to establish that the graphs of isomorphism class 1b are not isomorphic to
class la, at least for the diameters checked, spectral analysis is used. The spectrum of a
circulant graph may be determined straightforwardly using the following presentation by
Nguyen, [8], of the standard formula for the eigenvalues.
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Table 11: Factors transforming generator set 1 into generator set 2 for degree 9 graphs of
isomorphism class 1b, for any odd diameter k.

Diameter, k Factor (elements from generator set 2)
k=1 (mod 14) g1 = (2k* + K3+ 4k2 + Tk - 7)/7
k=3 (mod 14) g3 = (3k* — K3+ 11k% = Tk +7)/7
k=5 (mod 14)

k=7 (mod 14) g1 = (3k* + K> + Tk* + Tk — 7)/7
k=9 (mod 14) *

k=11 (mod 14) g3=(K*+ K3+ k> +7k—17)/7
k=13 (mod 14) go = (k* — K3+ 5K —Tk+T7)/7

*k

Z,

o solutions for k =9 (mod 14) for generator set 1 or for k =5 (mod 14) for generator set 2

Theorem 2 (Nguyen). Let A be the adjacency matriz of a circulant graph on n vertices,
where ¢; = ¢,—; = 1 if vertices i and n-i are adjacent and 0 otherwise, and let Sp(A) be
its spectrum. If n is odd then

()2 Ui
Sp(A) = { Z 2cicos— 11 <1 < n}

If n is even then

n—2)/2
{ Z 201cos—+cn/gcosl7r 1< lén}.

Some differences in the spectral analysis between the two classes are listed in Table
12, proving that the two isomorphism classes are distinct. The same approach can be
used to confirm the two isomorphism classes for degree 6 and 7.

Table 12: Spectral analysis of graphs of isomorphism classes 1a and 1b for odd diameters 5 to
11.

Diameter order Positive eigenvalues Zero eigenvalues Negative eigenvalues
k L(9,k) Class 1la  Class 1b Class 1la  Class 1b Class 1la  Class 1b
5 700 315 319 0 0 385 381
7 2548 1215 1211 0 0 1333 1337
9 6804 3343 3347 2 0 3459 3457
11 15004 7539 7529 0 0 7465 7475

For diameter k < 4 the graphs determined by the formulae are not optimal. For k =5
and k = 6 the resulting graphs have been proven extremal by checking up to the upper
bound Mac(9,k). The existence of these graphs has also been confirmed by computer
for all diameters k < 80. They are the largest circulant graphs so far discovered for any
diameter k£ > 5 and are conjectured to be extremal.
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6 Existence proof for the degree 8 graph of order
L(8,k) for all diameters

In this section we prove the existence of the degree 8 circulant graph of order L(8, k) for all
diameters £ > 2. This proof closely follows the approach taken by Dougherty and Faber
in their proof of the existence of the degree 6 graph of order DF(6, k) for all diameters
k>2][2].

Theorem 3. For all k > 2, there is an undirected Cayley graph on four generators of a
cyclic group which has diameter k and order L(8,k), where

L(8.K) = {(k4+2k3+6k2+4k:)/2 Fh=0 (mod2)
(' + 2k% + 6k + 6k +1)/2 ifk=1 (mod 2)
Moreover for k=0 (mod 2) a generator set is
{1, (K* 4 2k* + 6k + 2)/2, (k* + 4k — 8k) /4, (kK* + 4k* — 4k) /4},
and for k=1 (mod 2),

{1, (k* + k* + 5k + 3) /2, (k* + 2k* — 8k — 11) /4, (k* + 2k* — 4k — 7)/4}.

Proof. We will show the existence of four-dimensional lattices L C Z* such that Z*/L,
is cyclic, Spy + Ly = Z*, where Sy, is the set of points in Z* at a distance of at most k
from the origin under the ¢! (Manhattan) metric, and |Z* : Li| = L(8, k) as specified in
the theorem. Then, by Theorem 1, the resultant Cayley graph has diameter at most k.
Let

) k/2 for k=0 (mod 2)
Sl (k+1)/2 fork=1 (mod 2).

For k =0 (mod 2), let Ly be defined by four generating vectors as follows:

vi = (—a—1l,a+1,a,—a+1)
vy = (a—1l,a+1l,a+1,—a)
vy = (—a—1,—a+1l,a+1,—a)
vy = (—a,—a,a,a+1)

Then the following vectors are in Ly:

—(2a% +2a + 1)vy + (2a* + a + 2)vy — (a + 2)vs + v4 = (4a® + 4a* + 6a + 1,—1,0,0),
—(2a® = 1)vi+(2a®> —a*+2a—2)vo— (a*+a—1)v3+ (a—1)vy = (da* +4a® — 4a,0,—1,0),
—2a%vy + (2a® —a* +2a — 1)vy — (a* + a — 1)v3 + (a — 1)vy = (4a* + 4a® — 2a,0,0, —1).
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Hence we have e; = (4a® + 4a® + 6a + 1)e;,e3 = (4a + 4a® — 4a)e; and e; =
(4a* + 4a® — 2a)e; in Z*/ Ly, and so e; generates Z*/L;. Also

Vi S8a*+8a®+12a*°+4a 0 0 0
3 2
d | = e e T o
V4 4a* + 4a® — 2a 0 0 -1
— (8a* + 8a® 4 12a” + 4a)
— (K" + 2K + 6k* + 4k) /2
=— L(8,k),

as in the statement of the theorem.

Thus Z*/Ly is isomorphic to Zp sk via an isomorphism taking e, es, es,eq to 1,
4a® +4a* 4 6a+ 1, 4a* + 4a® — 4a, 4a* + 4a® — 2a. As a = k/2 this gives the first generator
set specified in the theorem: {1, (k3 +2k?+6k+2)/2, (k' +4k? —8k) /4, (k* +4k* —4k) /4}.

Similarly for £ =1 (mod 2) let Ly be defined by four generating vectors as follows:

vi = (—a+1l,a+1,—a+1,a)
vy = (a+1l,a+1,-a+2,a—1)
vy = (—a—1l,a—1,a—1,—a)
vy = (—a,a,a,a—1)

In this case the following vectors are in Ly:
—(2a® + a+ 2)vy + (2a*> + 2a + 1)vy — avsz — vy = (4a® — 4a* + 6a — 1, —1,0,0),
—(2a® —a* — 2a — 2)vy + (2a® —4a — 1)vy — (a®* —a — 1)vz — (a — 1)vy = (4a* — 8a® +
8a? — 8a,0,—1,0),
—(2a® — a* —2a — 1)vy + (2a® — 4a)vy — (a®> —a — 1)vs — (a — 1)vy = (4a* — 8a® + 8a® —
6a,0,0,—1).
Hence we have e; = (4a® + 4a® + 6a — 1)e;, e3 = (4a* — 8a® + 8a®> — 8a)e; and
= (4a* — 8a® + 8a® — 6a)ey, in Z*/ Ly, and so e, generates Z*/L;.

\2] 8a* — 8a® + 12a* — 4a 0 0 0
ve | 4a® —4a®+6a—-1 -1 0 0
Also det v | = det 4a* — 8a3 + 8a2 — 8a 0 -1 0
\Z 4a* —8a® +8a* —=6a 0 0 -1

—(8a* —8a®+12a*> —4a) = —(k* +2k3+6k*+6k+1)/2 = —L(8, k), as in the statement
of the theorem.

Thus Z*/ Ly, is isomorphic to Zy,s ) With generators 1, 4a3—4a*+6a—1,4a*—8a3+8a*—
8a,4a* — 8a3 +8a* — 6a. As a = (k+1)/2 in this case, this gives the second generator set
specified in the theorem: {1, (k*+k?+5k+3)/2, (k*+2k*—8k—11)/4, (k*+2k>—4k—T7)/4}.

It remains to show that Sy + Ly = Z*. First we consider the case k = 0 (mod 2).
For k = 2, it is straightforward to show directly that Zs, with generators 1,4,6, 15 has
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diameter 2. So we assume k > 4, so that a > 2. Now let

vy =vi—v3+vy= (—a,a,a—1a+2)

Ve =V —Vy—Vvy= (—a,a,—a—1,—a)

v =vi—Vvy—v3= (—a+1l,a—1,—a—2a+1)
v =vy—v3+vy= (a,a,a,a+1)

with vy, va, vs, vy as defined for £ = 0 (mod 2). Then the 16 vectors +v; for i = 1,...,8
provide one element of L;, lying strictly within each of the 16 orthants of Z*. Most of the
coordinates of these vectors have absolute value at most a + 1. Only £v5 and +v; each
have one coordinate with absolute value equal to a + 2.

Now we consider the case Kk = 1 (mod 2). For k& = 3 it may be shown directly that
74 with generators 1,16, 20,27 has diameter 3. So we assume k > 5, so that a > 3, and
let

Vs =vi—Vvy—vy= (—a,—a,—a—1,—a+2)
ve =Vat+vy—vy= (a,a,—a+1,—a)
V7 =V + V3 —Vy= (_aa a, —a,—a+ 1)

vg =vi—vy—v3= (—a+1,—a+1,—a,a+1)

with vi,vy,v3, vy as defined for & = 1 (mod 2), so that the 16 vectors +v; provide
one element of L lying strictly within each of the orthants of Z*. In this case all the
coordinates of these vectors have absolute value at most a + 1.

We must show that each x € Z* is in S +k + L, which means that for any x € Z*
we need to find a w € L such that x —w € Sy;. However x — w € Sy if and only
if 5(x,w) < k, where § is the [' metric on Z*. If x,y,z € Z* and each coordinate of y
lies between the corresponding coordinate of x and z or is equal to one of them, then
d(x,y) +0(y,z) = d(x,2z). In such a case we say that “y lies between x and z”.

For any x € Z*, we reduce x by adding appropriate elements of L; until the resulting
vector lies within [!-distance k of 0 or some other element of L. The first stage is to
reduce x to a vector whose coordinates all have absolute value at most a + 1. If x has a
coordinate with absolute value above a+1, then let v be one of the vectors £v;(1 < i < 8)
such that the coordinates of v have the same sign as the corresponding coordinates of x.
If a coordinate of x is 0 then either sign is allowed for v as long as the corresponding
coordinate of v has absolute value < a + 1. So in the case £k = 0 (mod 2) if the e
coordinate of x is 0 then we avoid v; and take vy instead. Also if the e4 coordinate of x
is 0 (or both ez and e4 coordinates are 0) then instead of v; we take v;.

Now consider x’ = x —v. If a coordinate of x has absolute value s,1 < s < a+1, then
the corresponding coordinate of x” will have absolute value s’ < a + 1 because of the sign
matching and the fact that the coordinates of v have absolute value < a+2. If a coordinate
of x has absolute value s = 0, then as indicated above, the corresponding value of x’" will
have absolute value s’ < a+ 1 because v is chosen such that the corresponding coordinate
has absolute value < a + 1. If a coordinate of x has absolute value s > a + 1, then
the corresponding coordinate of x’ will be strictly smaller in absolute value. Therefore
repeating this procedure will result in a vector whose coordinates all have absolute value
at most a + 1.
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If the resulting vector x’ lies between 0 and v, where v = +v; for some i, then
we have §(0,x) + 0(x/,v) = §(0,v). For & = 0 (mod 2) all of the vectors v satisfy
5(0,v) =4a+1, and for k =1 (mod 2) they all satisfy §(0,v) = 4a — 1. So in either case
we have §(0,v) = 2k + 1. Since §(0,x’) and §(x’,v) are both non-negative integers, one
of them must be at most k, so that x’ € Sy + Li. Hence we also have x € Sy + Ly, as
required.

Now we are left with the case where the absolute value of each coordinate of the
reduced x is at most a + 1, and x is in the orthant of v, where v = £v; for some ¢ < 8
but does not lie between 0 and v. Since Ly is centrosymmetric we only need to consider
the eight orthants containing vi,...,vs. For both cases £ = 0 and k£ = 1 (mod 2) the
exceptions need to be considered for each orthant in turn. To avoid this paper being
unduly long only the exceptions for the orthant of v; for £ = 0 (mod 2) and for £k = 1
(mod 2) are included here. The other orthants are handled similarly. A full proof including
all orthants for both cases is available on ArXiv [5].

So suppose that £ = 0 (mod 2) and x lies within the orthant of v, but not between
0 and vy. Then as vi = (—a — 1,a + 1,a, —a + 1), the third coordinate of x is equal to
a + 1 or the fourth coordinate equals —a or —a — 1. We now distinguish three cases.

Case 1: x = (—r,s,a+1,—u) where 0 < r,s <a+land a <u<a+1 Letx =
x—vy = (a+1—r,s—a—1,1,a—1—u), which lies between 0 and —v7 unless r < 1 or s < 1.
Let X" =x'+v; = (2—-r,s—2,—a—1,2a—u). If r < 1 and s < 1 then x” lies between 0
and —v; unless u = a, in which case let x” =x"+v; = (1—a—r,a—1+s,—1,a+1—u)
which lies between 0 and v;. If r < 1 and s > 2 then x” lies between 0 and —vs. If r > 2
and s < 1 then x” lies between 0 and —vs.

Case 2: x = (—r,s,a + 1, —u) where 0 r,s <a+1land 0 < u < a—1. Let
X =x—-vi=(a+1—-r,s—a—1,1,a — 1 — u), which lies between 0 and —vg unless
r=0ors=0. Let X" =x"+vg = (l—r,s—l,—a —u—1). If r =0 and s = 0 then x”
lies between 0 and —vs. If r = 0 and s > 1 then x” lies between 0 and —vy. If r > 1 and
s = 0 then x” lies between 0 and —vsg.

Case 3: x = (—r,s,t,—u) where 0 < r,s<a+land0<t<aanda<u<a+l.
Let X' =x—vi=(a+1—-r,s—a— 1,t a,a —1—u), Wthh hes between 0 and —vs5
unless 7 = 0or s =0ort =0. If r =0 and s = 0, then x lies between 0 and —vy.
Let X" =x'+vs=(1—-r,s—1,t—1,2a+1—wu). If r=0,s > 1 and t > 1 then x”
lies between 0 and vs. Let X" =x+vy = (—a—r,s—a,a+t,a+1—u). Ifr=20
and s > 1 and ¢ = 0, then x” lies between 0 and v, unless s = a + 1, in which case if
u = a then x lies between 0 and vo, and if v = a + 1 then x" lies between 0 and v,. Let
X" =x—vy = (a—i—l—ra—l—i—s t—a—1,a—u). Ifr >1,s =0and t > 1 then

x"" lies between 0 and —vy. If r > 1,5 =0 and ¢t = 0 then x"”” l1es between 0 and —v3 if
u = a, and between 0 and vg if u =a+ 1. If r > 1,5 > 1 and ¢ = 0 then x” lies between
Oand vy unlessr =a+1lors=a+1. Ifr=a+1,s>1and ¢t =0 then X’ lies between
Oand —vg. If r > 1, s=a+ 1 and t = 0 then x’ lies between 0 and —v;,.

This completes the cases for the orthant of v; for £k =0 (mod 2).

Now suppose that £ = 1 (mod 2) and x lies within the orthant of vy, but not between
0 and v;. Then the first coordinate of x is equal to —a or —a — 1, or the third coordinate

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(4) (2014), #P4.50 16



equals —a or —a — 1, or the fourth equals a + 1. We distinguish seven cases.

Case 1: x = (—r,s,—t,a+ 1) where a < rit < a+1land 0 < s < a+ 1. Let
xX=x—-vi=(a—1-r,s—a—1,a—1—1t,1), which lies between 0 and vg unless s < 1
in which case let x”" = x' — vg = (24 — 2 — r,s — 2,2a — 1 — t, —a) which lies between 0
and —v;.

Case 2: x = (—r,s,—t,u) wherea < nrt<a+land0<s<a+land 0<u<a.
Let X' =x—vi=(a—1—-r,s—a—1,a—1—t u— a), which lies between 0 and v;
unless s = 0 or w < 1, in which case let X" =x' —v5 = (2a — 1 —r,s — 1,2a — t,u — 2).
If s =0 and u < 1 then x” lies between 0 and —vy, unless ¢ = a, in which case let

x" =x"+vy = (a—r,a,1,u+ a— 2) which lies between 0 and v4. If s =0 and u > 2
then x” lies between 0 and —vy;. If s > 1 and v < 1 then x” lies between 0 and —vg
unless s = a + 1, in which case let X" = x" + vy = (a — r,1,a — t,a + u — 1) which lies

between 0 and v;.

Case 3: x = (—r,s,—t,a+ 1) wherea<r<a+1,0<s<a+land0<t<a—1.
Let X’ =x—vi=(a—1—7r,s—a—1,a—1—t,1), which lies between 0 and —vg unless
s = 0, in which case let X" =x" 4+ vg = (2a — 1 —r,—1, —t, —a + 1) which lies between 0
and —vy.

Case 4: x = (—r,;s,—t,a+ 1) where 0 <r<a—1,0<s<a+landa<t<a+ 1l
Let X’ =x—vi=(a—1—7r,s—a—1,a—1—t,1), which lies between 0 and —v3 unless
s < 1, in which case let X" = x' +v3 = (=2 —r,s —2,2a — 2 — t,—a + 1) which lies
between 0 and —v,.

Case 5: x = (—r,s,—t,a+ 1) where 0 < it < a—1and 0 < s < a+ 1. Let
xX=x—vi=(a—1—-r,s—a—1,a—1—t1), which lies between 0 and —v; unless
s = 0, in which case let X" =x'4+v; = (—r —1,—1, -t — 1, —a + 2) which lies between 0
and vs.

Case 6: x = (—r,s,—t,u) where 0 < r<a—-1,0<s<a+1,a<t<a+1and
O0<u<a Letx'=x—vi=(a—1-r,s—a—1,a—1—t,u—a), which lies between 0 and
—vy unless s = 0 or u = 0, in which case let x" = x'+vy = (—r—1,s—1,2a—1—t,u—1).
If s=0and u =0 then let x” =x"+ vy = (a —r,a,a+1—t,a—2) which lies between
0 and —vs. If s =0 and u > 1 then x” lies between 0 and —vg. If s > 1 and v = 0 then
x” lies between 0 and vz unless s = a + 1, in which case X’ lies between 0 and vg.

Case 7: x = (—r,;s,—t,u) wherea <r<a+1,0<s<a+1,0<t<a—1and
O0<u<a Letx'=x—vi=(a—1—-r,s—a—1,a—1—t u—a), which lies between 0
and —vy unless ¢t = 0 or u = 0, in which case let X" = x'+vy = (2a—r,s,—t+1,u—1). If
t =0and u =0 then let X" =x"4+vg = (a+1—7r,s—a+1,—a+1,a) which lies between
0 and —v3 unless a < s < a+ 1, in which case let X" =x—v; = (a — 71,5 —a,a,a — 1)
which lies between 0 and v4. If ¢ = 0 and v > 1 then x” lies between 0 and —v5 unless
s =a+1or u=ain which case let x* = x"+v5=(a—7r,5s—a,—a,—a+u-+1). If
s = a + 1 then x’ lies between 0 and vs. If 1 < s < a and v = a then xV lies between 0
and vg. If s = 0 and v = a then x” lies between 0 and —vy. If £ > 1 and v = 0 then x”
lies between 0 and vg unless s = a + 1, in which case X’ lies between 0 and vs.

This completes the cases for the orthant of v; for k =1 (mod 2). [
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7 Conclusion

This paper has reviewed the proven extremal circulant graphs of dimension 1 and 2,
degree 2 to 5, and Dougherty and Faber’s largest known solutions for dimension 3, degree
6 and 7, in the context of relevant lower and upper bounds. It has also presented newly
discovered families of circulant graphs of dimension 4, degree 8 and 9, which are proven
to be extremal for small diameters above a threshold and are conjectured to remain so for
all diameters, along with a proof of the existence of the degree 8 graph for all diameters.

A question naturally arises whether there are any common relationships that are valid
across the graphs of all four dimensions. The formulae for the order of the extremal and
largest known graphs of degree d < 9 are compared with the lower bounds C'J(d, k). We
recall that CJ(d, k) = (1/2)(4/f) k! +O(k?'~1) for even d and f = d/2, and observe that
for degree d = 2,4,6 and 8 the coefficients of the leading term k/ in the formulae for
graph order are 2,2,32/27 and 1/2 respectively, and therefore equal to that of C'J(d, k)
in each case, see Table 13.

Table 13: Coefficients of the two leading terms in the formulae for the order of extremal and
largest known graphs of degree d < 9

Degree Dimension order Coefficient Coefficient  Coeflicient
d f CC/DF/L(d, k) of k' of k=1 of k¥ in CJ(d, k)
2 1 2k + 1 2 1 2
3 1 4k 4 0 -
4 2 2k? + 2k + 1 2 2 2
5 2 4k? 4 0 -
6 3 (32k3 + 48Kk2) /27 + O(k)  32/27 48/27 32/27
7 3 64k3 /27 + O(k) 64/27 0 -
8 4 (K* +2k3)/2 + O(k?) 1/2 1 1/2
9 4 E* + O(k?) 1 0 -

This supports a conjecture that for any even degree d, the leading term in the formula
for the order of an extremal graph is (1/2)(4/f) k! where f = d/2. We may also observe
from Table 13 that the second term in all four cases is equal to (4/f)/~'k/~!. For odd
degree d we see that the leading coefficient is double the coefficient for the even degree
of the same dimension in all four cases. Also the coefficient of k/~! in each case is zero.
This is summarised in Table 14.

If these terms were to remain valid for degree d > 10 then for dimension 5 and 6 this
would give the following formulae for extremal circulant graph order:

(512k° + 1280k*) /3125 + O(k®)  for d = 10

(. 1) 1024Kk° /3125 + O(k?) for d = 11
n\a, =

(32k5 + 96k5) /729 + O(k*) for d = 12

64k5 /729 + O(k*) for d = 13
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Table 14: Expressions for the first two terms in the formulae for the order of largest known
graphs of degree d < 9

Degree d Dimension f Leading Term Second Term
d=24,60r8 f=d/2 1 (é)fkf (é)f_lkf—l
- ’ - 2 f f
f
d=3,57or9 f=(d-1)/2 (%) k! 0

It is hoped that the results in this paper will provide a useful framework for further
research within this area to identify new families of circulant graphs, for degree d > 10
and arbitrary diameter k, that can be proven extremal for some range of k.
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