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Abstract

Geometric grid classes of permutations have proven to be key in investigations of
classical permutation pattern classes. By considering the representation of gridded
permutations as words in a trace monoid, we prove that every geometric grid class
has a growth rate which is given by the square of the largest root of the matching
polynomial of a related graph. As a consequence, we characterise the set of growth
rates of geometric grid classes in terms of the spectral radii of trees, explore the
influence of “cycle parity” on the growth rate, compare the growth rates of geometric
grid classes against those of the corresponding monotone grid classes, and present
new results concerning the effect of edge subdivision on the largest root of the
matching polynomial.

1 Introduction

Following the proof by Marcus & Tardos [21] of the Stanley–Wilf conjecture, there has
been particular interest in the growth rates of permutation classes. Kaiser & Klazar [18]
determined the possible growth rates less than 2, and then Vatter [27] characterised all the
(countably many) permutation classes with growth rates below κ ≈ 2.20557 and estab-
lished that there are uncountably many permutation classes with growth rate κ. Critical
to these results has been the consideration of grid classes of permutations, and partic-
ularly of geometric grid classes. Geometric grid classes have also been used to achieve
the enumeration of some specific permutation classes [1, 3, 24]. Following initial work on
particular geometric grid classes by Waton [30], Vatter & Waton [29], and Elizalde [8],
their general structural properties have been investigated in articles by Albert, Atkinson,
Bouvel, Ruškuc & Vatter [2] and Albert, Ruškuc & Vatter [4]. We build on their work
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Figure 1: At left: The standard figure for Geom
(
1 0 −1
1 −1 1

)
, showing two plots of the

permutation 1527634 with distinct griddings. At right: Its row-column graph; positive
edges are shown as solid lines, negative edges are dashed.

to establish the growth rate of any given geometric grid class. Before we can state our
result, we need a number of definitions.

A geometric grid class is specified by a 0/±1 matrix which represents the shape of
plots of permutations in the class. To match the Cartesian coordinate system, we index
these matrices from the lower left, by column and then by row. If M is such a matrix,
then we say that the standard figure of M , denoted ΛM , is the subset of R2 consisting
of the union of oblique open line segments Li,j with slope Mi,j for each i, j for which
Mi,j is nonzero, where Li,j extends from (i − 1, j − 1) to (i, j) if Mi,j = 1, and from
(i − 1, j) to (i, j − 1) if Mi,j = −1. The geometric grid class Geom(M) is then defined
to be the set of permutations σ1σ2 . . . σn that can be plotted as a subset of the standard
figure, i.e. for which there exists a sequence of points (x1, y1), . . . , (xn, yn) ∈ ΛM such that
x1 < x2 < . . . < xn and the sequence y1, . . . , yn is order-isomorphic to σ1, . . . , σn. See
Figure 1 for an example.

If gn is the number of permutations of length n in Geom(M), then the growth rate of

the class is given by gr(Geom(M)) = lim
n→∞

g
1/n
n . We will demonstrate that this limit exists

for geometric grid classes1 and determine its value for any given 0/±1 matrix M .
Much of the structure of a geometric grid class is reflected in a graph that we associate

with the underlying matrix. If M is a 0/±1 matrix of dimensions t×u, the row-column
graph G(M) of M is the bipartite graph with vertices r1, . . . , rt, c1, . . . , cu and an edge
between ri and cj if and only if Mi,j 6= 0. We label each edge ricj with the value of Mi,j.
Edges labelled +1 are called positive; edges labelled −1 are called negative. See Figure 1
for an example.

We need one final definition related to geometric grid classes. If M is a 0/±1 matrix
of dimensions t×u, we define the double refinement M×2 of M to be the 0/±1 matrix
of dimensions 2t× 2u obtained from M by replacing each 0 with (0 0

0 0), each 1 with (0 1
1 0),

and each −1 with
(−1 0

0 −1
)
. See Figure 2 for an example. Note that the standard figure of

M×2 is essentially a scaled copy of the standard figure of M , so we have:

Observation 1. Geom(M×2) = Geom(M) for any 0/±1 matrix M .

We will demonstrate a connection between the growth rate of Geom(M) and the match-
ing polynomial of the graphG(M×2), the row-column graph of the double refinement ofM .

1It is widely believed that all permutation classes have growth rates. The proof of the Stanley–Wilf

conjecture by Marcus & Tardos [21] establishes only that each has an upper growth rate (lim sup g
1/n
n ).
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Figure 2: At left: The standard figure of
(
1 0 −1
1 −1 1

)×2
, with a consistent orientation marked.

At right: Its row-column graph.

A k-matching of a graph is a set of k edges, no pair of which have a vertex in common. For
example, the negative (dashed) edges in the graph in Figure 2 constitute a 4-matching.
If, for each k, mk(G) denotes the number of distinct k-matchings of a graph G with n
vertices, then the matching polynomial µG(z) of G is defined to be

µG(z) =
∑
k>0

(−1)kmk(G)zn−2k. (1)

Note that this is a polynomial since mk(G) = 0 for k > bn/2c. Observe also that the
exponents of the variable z enumerate defects in k-matchings: the number of vertices
which are not endvertices of an edge in such a matching. If n is even, µG(z) is an even
function; if n is odd, µG(z) is an odd function.

With the relevant definitions complete, we can now state our theorem:

Theorem 2. The growth rate of geometric grid class Geom(M) exists and is equal to the
square of the largest root of the matching polynomial µG(M×2)(z), where G(M×2) is the
row-column graph of the double refinement of M .

In the next section, we prove this theorem by utilizing the link between geometric
grid classes and trace monoids, and their connection to rook numbers and the matching
polynomial. Then, in Section 3 we investigate a number of implications of this result
by utilizing properties of the matching polynomial, especially the fact that the moments
of µG(z) enumerate certain closed walks on G. Firstly, we characterise the growth rates
of geometric grid classes in terms of the spectral radii of trees. Then, we explore the
influence of cycle parity on growth rates and relate the growth rates of geometric grid
classes to those of monotone grid classes. Finally, we consider the effect of subdividing
edges in the row-column graph, proving some new results regarding how edge subdivision
affects the largest root of the matching polynomial.

2 Proof of Theorem 2

In order to prove our result, we make use of the connection between geometric grid classes
and trace monoids. This relationship was first used by Vatter & Waton [28] to establish
certain structural properties of grid classes, and was developed further in [2] from where
we use a number of results. To begin with, we need to consider griddings of permutations.
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If M has dimensions t×u, then an M -gridding of a permutation σ1 . . . σn of length n
in Geom(M) consists of two sequences c1, . . . , ct and r1, . . . , ru such that there is some plot
(x1, y1), . . . , (xn, yn) of σ for which ci is the number of points (xk, yk) in column i (with
i− 1 < xk < i), and rj is the number of points in row j (with j− 1 < yk < j).2 Note that
a permutation may have multiple distinct griddings in a given geometric grid class; see
Figure 1 for an example. We call a permutation together with one of itsM -griddings anM -
gridded permutation. We use Geom#(M) to denote the set of all M -gridded permutations.

From an enumerative perspective, it can be much easier working with M -gridded
permutations than directly with the permutations themselves. The following observation
means that we can, in fact, restrict our considerations to M -gridded permutations:

Lemma 3 (see Vatter [27] Proposition 2.1). If it exists, the growth rate of Geom(M) is
equal to the growth rate of the corresponding class of M-gridded permutations Geom#(M).

Proof. Suppose that M has dimensions t×u. Each permutation in Geom(M) has at
least one gridding in Geom#(M), but no permutation of length n in Geom(M) can have
more than

(
n+t−1
t−1

)(
n+u−1
u−1

)
griddings in Geom#(M) because that is the number of ways

of choosing the number of points in each column and row. Thus the number of M -
gridded permutations of length n is no more than a polynomial multiple of the number
of n-permutations in Geom(M); the result follows immediately from the definition of the
growth rate.

To determine the growth rate of Geom#(M), we relate M -gridded permutations to
words in a trace monoid. To achieve this, one additional concept is required, that of a
consistent orientation of a standard figure. If ΛM =

⋃
{Li,j : Mi,j 6= 0} is the standard

figure of a 0/±1 matrix M , then a consistent orientation of ΛM consists of an orientation
of each oblique line Li,j such that in each column either all the lines are oriented leftwards
or all are oriented rightwards, and in each row either all the lines are oriented downwards
or all are oriented upwards.3 See Figures 2 and 3 for examples.

It is not always possible to consistently orient a standard figure. The ability to do
so depends on the cycles in the row-column graph. We say that the parity of a cycle in
G(M) is the product of the labels of its edges, a positive cycle is one which has parity
+1, and a negative cycle is one with parity −1. The following result relates cycle parity
to consistent orientations:

Lemma 4 (see Vatter & Waton [28] Proposition 2.1). The standard figure ΛM has a
consistent orientation if and only if its row-column graph G(M) contains no negative
cycles.

For example, G
(
1 0 −1
1 −1 1

)
contains a negative cycle so its standard figure has no consis-

tent orientation (see Figure 1), whereas G
(−1 0 −1

1 −1 1

)
has no negative cycles so its standard

figure has a consistent orientation (see Figure 3).

2This definition of an M -gridding is equivalent to the traditional one given in terms of the positions
of the cell dividers relative to the points (k, σk).

3For ease of exposition, we use the concept of a consistent orientation rather than the approach used
previously involving partial multiplication matrices; results from [2] follow mutatis mutandis.
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On the other hand, we can always consistently orient the standard figure of the double
refinement of a matrix by orienting each oblique line towards the centre of its 2× 2 block
(as in Figure 2). So we have the following:

Lemma 5 (see [2] Proposition 4.1). If M is any 0/±1 matrix, then ΛM×2 has a consistent
orientation.

Thus, by Lemma 4, the row-column graph of the double refinement of a matrix never
contains a negative cycle. Figure 2 shows a consistent orientation of the standard figure
of the double refinement of a matrix whose standard figure (shown in Figure 1) doesn’t
itself have a consistent orientation.

1
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2

3

4
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Figure 3: The plots of permutation 1527634 in Geom
(−1 0 −1

1 −1 1

)
associated with the words

a32a32a11a12a21a31a32 and a11a32a21a32a31a12a32. Both plots correspond to the same grid-
ding.

We are now in a position to describe the association between words and M -gridded
permutations. If M is a 0/±1 matrix, then we let ΣM = {aij : Mi,j 6= 0} be an alphabet of
symbols, one for each nonzero cell in M . If we have a consistent orientation for ΛM , then
we can associate to each finite word w1 . . . wn over ΣM a specific plot of a permutation in
Geom(M) as follows: If wk = aij, include the point at distance k

√
2/(n + 1) along line

segment Li,j according to its orientation. See Figure 3 for two examples. Clearly, this
induces a mapping from the set of all finite words over ΣM to Geom#(M). In fact, it can
readily be shown that this map is surjective, every M -gridded permutation corresponding
to some word over ΣM ([2] Proposition 5.3).

As can be seen in Figure 3, distinct words may be mapped to the same gridded
permutation. This occurs because the order in which two consecutive points are included
is immaterial if they occur in cells that are neither in the same column nor in the same
row. From the perspective of the words, adjacent symbols corresponding to such cells
may be interchanged without changing the gridded permutation. This corresponds to a
structure known as a trace monoid.

If we have a consistent orientation for standard figure ΛM , then we define the trace
monoid of M , which we denote by M(M), to be the set of equivalence classes of words
over ΣM in which aij and ak` commute (i.e. aijak` = ak`aij) whenever i 6= k and j 6= `. It
is then relatively straightforward to show equivalence between gridded permutations and
elements of the trace monoid:
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Lemma 6 (see [2] Proposition 7.1). If the standard figure ΛM has a consistent orientation,
then gridded n-permutations in Geom#(M) are in bijection with equivalence classes of
words of length n in M(M).

Hence, by combining Lemmas 3, 5 and 6 with Observation 1, we know that the growth
rate of Geom(M) is equal to the growth rate of M(M×2) if it exists. All that remains is
to determine the growth rate of the trace monoid of a matrix.

Trace monoids were first studied by Cartier & Foata [6]. Using extended Möbius
inversion, they determined the general form of the generating function, as follows:

Lemma 7 ([6]; see also Flajolet & Sedgewick [10] Note V.10). The ordinary generating
function for M(M) is given by

fM(z) =
1∑

k>0(−1)krk(M)zk

where rk(M) is the number of k-subsets of ΣM whose elements commute pairwise.

Since symbols in M(M) commute if and only if they correspond to cells that are neither
in the same column nor in the same row, it is easy to see that rk(M) is the number of
distinct ways of placing k chess rooks on the nonzero entries of M in such a way that no
two rooks attack each other by being in the same column or row. The numbers rk(M)
are known as the rook numbers for M (see Riordan [25]). Moreover, a matching in the
row-column graph G(M) also corresponds to a set of cells no pair of which share a column
or row. So the rook numbers for M are the same as the numbers of matchings in G(M):

Observation 8. For all k > 0, rk(M) = mk(G(M)).

Now, by elementary analytic combinatorics, we know that the growth rate of M(M) is
given by the reciprocal of the root of the denominator of fM(z) that has least magnitude
(see [10] Theorem IV.7). The fact that this polynomial has a unique root of smallest
modulus was proved by Goldwurm & Santini in [14]. It is real and positive by Pringsheim’s
Theorem.

But the reciprocal of the smallest root of a polynomial is the same as the largest root
of the reciprocal polynomial (obtained by reversing the order of the coefficients). Hence,
if M has dimensions t×u and n = t + u, then the growth rate of M(M) is the largest
(positive real) root of the polynomial

gM(z) =
1

zbn/2cfM
(
1
z

) =

bn/2c∑
k=0

(−1)krk(M)zbn/2c−k. (2)

Here, gM(z) is the reciprocal polynomial of (fM(z))−1 multiplied by some nonnegative
power of z, since rk(M) = 0 for all k > bn/2c. Note also that n is the number of vertices
in G(M).
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If we now compare the definition of gM(z) in (2) with that of the matching polynomial
µG(z) in (1) and use Observation 8, then we see that:

gM(z2) =

{
µG(M)(z), if n is even;

z−1µG(M)(z), if n is odd.

Hence, the largest root of gM(z) is the square of the largest root of µG(M)(z).
We now have all we need to prove Theorem 2: The growth rate of Geom(M) is equal

to the growth rate of M(M×2) which equals the square of the largest root of µG(M×2)(z).
In the above argument, we only employ the double refinement M×2 to ensure that a

consistent orientation is possible. By Lemma 4, we know that if G(M) is free of negative
cycles then ΛM can be consistently oriented. Thus, we have the following special case of
Theorem 2:

Corollary 9. If G(M) contains no negative cycles, then the growth rate of Geom(M) is
equal to the square of the largest root of µG(M)(z).

3 Consequences

In this final section, we investigate some of the implications of Theorem 2. By considering
properties of the matching polynomial, we characterise the growth rates of geometric grid
classes in terms of the spectral radii of trees, prove a monotonicity result, and explore
the influence of cycle parity on growth rates. We then compare the growth rates of
geometric grid classes with those of monotone grid classes. Finally, we consider the effect
of subdividing edges in the row-column graph.

Let’s begin by introducing some notation. We use G+H to denote the graph composed
of two disjoint subgraphs G and H. The graph resulting from deleting the vertex v (and
all edges incident to v) from a graph G is denoted G − v. Generalising this, if H is a
subgraph of G, then G −H is the graph obtained by deleting the vertices of H from G.
In contrast, we use G \e to denote the graph resulting from deleting the edge e from G.
The number of connected components of G is represented by comp(G). The characteristic
polynomial of a graph G is denoted ΦG(z). We use ρ(G) to denote the spectral radius of
G, the largest root of ΦG(z). Finally, we use λ(G) for the largest root of the matching
polynomial µG(z).

The matching polynomial was independently discovered a number of times, begin-
ning with Heilmann & Lieb [16] when investigating monomer-dimer systems in statis-
tical physics. It was first studied from a combinatorial perspective by Farrell [9] and
Gutman [15]. The theory was then further developed by Godsil & Gutman [13] and
Godsil [11]. An introduction can be found in the books by Godsil [12] and Lovász &
Plummer [20].

The facts concerning the matching polynomial that we use are covered by three lem-
mas. As a consequence of the first, we only need to consider connected graphs:
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Lemma 10 (Farrell [9], Gutman [15]). The matching polynomial of a graph is the product
of the matching polynomials of its connected components.

Thus, in particular:

Corollary 11. For any graphs G and H, we have λ(G+H) = max(λ(G), λ(H)).

The second lemma relates the matching polynomial to the characteristic polynomial.

Lemma 12 (Godsil & Gutman [13]). If CG consists of all nontrivial subgraphs of G which
are unions of vertex-disjoint cycles (i.e., all subgraphs of G which are regular of degree 2),
then

µG(z) = ΦG(z) +
∑
C∈CG

2comp(C)ΦG−C(z),

where ΦG−C(z) = 1 if C = G.

As an immediate consequence, we have the following:

Corollary 13 (Sachs [26], Mowshowitz [23], Lovász & Pelikán [19]). The matching poly-
nomial of a graph is identical to its characteristic polynomial if and only if the graph is
acyclic.

In particular, their largest roots are identical:

Corollary 14. If G is a forest, then λ(G) = ρ(G).

Thus, using Corollaries 9 and 11, we have the following alternative characterisation
for the growth rates of acyclic geometric grid classes:

Corollary 15. If G(M) is a forest, then gr(Geom(M)) = ρ(G(M))2.

The last, and most important, of the three lemmas allows us to determine the largest
root of the matching polynomial of a graph from the spectral radius of a related tree. It
is a consequence of the fact, determined by Godsil in [11], that the moments (sums of
the powers of the roots) of µG(z) enumerate certain closed walks on G, which he calls
tree-like. This is analogous to the fact that the moments of ΦG(z) count all closed walks
on G. On a tree, all closed walks are tree-like.

Lemma 16 (Godsil [11]; see also [12] and [20]). Let G be a graph and let u and v be
adjacent vertices in a cycle of G. Let H be the component of G− u that contains v. Now
let K be the graph constructed by taking a copy of G \uv and a copy of H and joining
the occurrence of u in the copy of G \uv to the occurrence of v in the copy of H (see
Figure 4). Then λ(G) = λ(K).

The process that is described in Lemma 16 we will call “expanding G at u along uv”.
Each such expansion of a graph G produces a graph with fewer cycles than G. Repeated
application of this process will thus eventually result in a forest F such that λ(F ) = λ(G).
We shall say that F results from fully expanding G. Hence, by Corollaries 11 and 14, the
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Figure 4: Expanding G at u along uv; H is the component of G− u that contains v

largest root of the matching polynomial of a graph equals the spectral radius of some tree:
for any graph G, there is a tree T such that λ(G) = ρ(T ).

It is readily observed that every tree is the row-column graph of some geometric grid
class. Thus we have the following characterisation of geometric grid class growth rates.

Corollary 17. The set of growth rates of geometric grid classes consists of the squares
of the spectral radii of trees.

The spectral radii of connected graphs satisfy the following strict monotonicity condi-
tion:

Lemma 18 ([7] Proposition 1.3.10). If G is connected and H is a proper subgraph of G,
then we have ρ(H) < ρ(G).

Lemma 16 enables us to prove the analogous fact for the largest roots of matching
polynomials, from which we can deduce a monotonicity result for geometric grid classes:

Corollary 19. If G is connected and H is a proper subgraph of G, then λ(H) < λ(G).

Proof. Suppose we fully expand H (at vertices u1, . . . , uk, say), then the result is a forest
F such that λ(H) = ρ(F ). Now suppose that we repeatedly expand G analogously at
u1, . . . , uk, and then continue to fully expand the resulting graph. The outcome is a tree
T (since G is connected) such that F is a proper subgraph of T and λ(G) = ρ(T ). The
result follows from Lemma 18.

Adding a non-zero cell to a 0/±1 matrix M adds an edge to G(M). Thus, geometric
grid classes satisfy the following monotonicity condition:

Corollary 20. If G(M) is connected and M ′ results from adding a non-zero cell to M in
such a way that G(M ′) is also connected, then gr(Geom(M ′)) > gr(Geom(M)).

3.1 Cycle parity

The growth rate of a geometric grid class depends on the parity of its cycles. Consider the
case of G(M) being a cycle graph Cn. If G(M) is a negative cycle, then G(M×2) = C2n.
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Now, by Lemma 16, we have λ(Cn) = ρ(P2n−1), where Pn is the path graph on n vertices.
The spectral radius of a graph on n vertices is 2 cos π

n+1
. So,

gr(Geom(M)) =

{
4 cos2 π

2n
, if G(M) is a positive cycle;

4 cos2 π
4n
, if G(M) is a negative cycle.

(3)

Thus the geometric grid class whose row-column graph is a negative cycle has a greater
growth rate than the class whose row-column graph is a positive cycle. As another exam-
ple,

gr
(
Geom

(
1 0 −1
1 −1 1

))
= 3 +

√
2 ≈ 4.41421, (4)

whereas
gr
(
Geom

(−1 0 −1
1 −1 1

))
= 4. (5)

The former, containing a negative cycle, has a greater growth rate than the latter, whose
cycle is positive. This is typical; we will prove the following result:

Corollary 21. If G(M) is connected and contains no negative cycles, and M1 results
from changing the sign of a single entry of M that is in a cycle (thus making one or more
cycles in G(M1) negative), then gr(Geom(M1)) > gr(Geom(M)).

In order to do this, we need to consider the structure of G(M×2). The graph G(M×2)
can be constructed from G(M) as follows: If G(M) has vertex set {v1, . . . , vn}, then we
let G(M×2) have vertices v1, . . . , vn and v′1, . . . , v

′
n. If vivj is a positive edge in G(M),

then in G(M×2) we add an edge between vi and vj and also between v′i and v′j. On the
other hand, if vivj is a negative edge in G(M), then in G(M×2) we join vi to v′j and v′i
to vj. The correctness of this construction follows directly from the definitions of double
refinement and of the row-column graph of a matrix. For an illustration, compare the
graph in Figure 2 against that in Figure 1.

Note that if v1, . . . , vk is a positive k-cycle in G(M), then G(M×2) contains two vertex-
disjoint positive k-cycles, the union of whose vertices is {v1, . . . , vk, v′1, . . . , v′k}. In contrast,
if v1, . . . , v` is a negative `-cycle in G(M), then G(M×2) contains a (positive) 2`-cycle on
{v1, . . . , v`, v′1, . . . , v′`} in which vi is opposite v′i (i.e. v′i is at distance ` from vi around the
cycle) for each i, 1 6 i 6 `. We make the following additional observations:

Observation 22. If G(M) has no odd cycles, then G(M×2) = G(M) +G(M).

Observation 23. If G(M) is connected and has an odd cycle, then G(M×2) is connected.

We now have all we require to prove our cycle parity result.

Proof of Corollary 21. Let G = G(M) and G1 = G(M1
×2), and let uv be the edge in

G corresponding to the entry in M that is negated to create M1. Since G contains no
negative cycles, by Observation 22, G(M×2) = G + G. Thus, since G is connected, it
has the form at the left of Figure 5, in which H is the component of G− u containing v.
Moreover, we have gr(Geom(M)) = λ(G). (This also follows from Corollary 9.) Now, if
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Figure 5: Graphs used in the proof of Corollary 21

we expand G at u along uv, by Lemma 16, λ(G) = λ(K), where K is the graph in the
centre of Figure 5.

On the other hand, G1 is obtained from G(M×2) by removing the edges uv and u′v′,
and adding uv′ and u′v, as shown at the right of Figure 5. It is readily observed that K
is a proper subgraph of G1 (see the shaded box in Figure 5), and hence, by Corollary 19,
λ(K) < λ(G1). Since gr(Geom(M1)) = λ(G1), the result follows.

Thus, making the first negative cycle increases the growth rate. We suspect, in fact,
that the following stronger statement is also true:

Conjecture 24. If G(M) is connected and M1 results from negating a single entry
of M that is in one or more positive cycles but in no negative cycle, then we have
gr(Geom(M1)) > gr(Geom(M)).

To prove this more general result seems to require some new ideas. If G(M) already
contains a negative cycle, then G(M×2) is connected, and, when this is the case, there
appears to be no obvious way to generate a subgraph of G(M1

×2) by expanding G(M×2).

3.2 Monotone grid classes

In a recent paper [5], we established the growth rates of monotone grid classes. If M
is a 0/±1 matrix, then the monotone grid class Grid(M) consists of those permutations
that can be plotted as a subset of some figure consisting of the union of any monotonic
curves Γi,j with the same endpoints as the Li,j in ΛM . This permits greater flexibility
in the positioning of points in the cells, so Geom(M) is a subset of Grid(M) and we
have gr(Geom(M)) 6 gr(Grid(M)). In fact, the geometric grid class Geom(M) and the
monotone grid class Grid(M) are identical if and only if G(M) is acyclic (Theorem 3.2
in [2]). Hence, if G(M) is a forest, gr(Geom(M)) = gr(Grid(M)). We determined in [5]
that the growth rate of monotone grid class Grid(M) is equal to the square of the spectral
radius of G(M). For acyclic G(M), this is consistent with the growth rate of the geometric
grid class as given by Corollary 15.

Typically, the growth rate of a monotone grid class will be greater than that of the
corresponding geometric grid class. For example, if G(M) is a cycle then gr(Grid(M)) = 4,
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whereas from (3) we have gr(Geom(M)) < 4. And we have

gr
(
Grid

(
1 0 −1
1 −1 1

))
= gr

(
Grid

(−1 0 −1
1 −1 1

))
= 1

2
(5 +

√
17) ≈ 4.56155,

which should be compared with (4) and (5).
The fact that the growth rate of the monotone grid class is strictly greater is a con-

sequence of the fact that, if G is connected and not acyclic, then λ(G) and ρ(G) are
distinct:

Lemma 25 (Godsil & Gutman [13]). If G is connected and contains a cycle, then we
have λ(G) < ρ(G).

Proof. By Lemma 18, if C is a nonempty subgraph of G, then ρ(G − C) < ρ(G). So we
have ΦG−C(z) > 0 for all z > ρ(G). Moreover, ΦG(z) > 0 for z > ρ(G). So, since G
contains a cycle, from Lemma 12 we can deduce that µG(z) > 0 if z > ρ(G), and thus
λ(G) < ρ(G).

Note that, analogously to Observation 1, Grid(M×2) = Grid(M). Hence it must be
the case that ρ(G(M×2)) = ρ(G(M)), the growth rate of a monotone grid class thus
being independent of the parity of its cycles. As a consequence, from Lemma 25 we can
deduce that in the non-acyclic case there is a strict inequality between the growth rate of
a geometric grid class and the growth rate of the corresponding monotone grid class:

Corollary 26. If G(M) is connected, then gr(Geom(M)) < gr(Grid(M)) if and only if
G(M) contains a cycle.

3.3 Subdivision of edges

One particularly surprising result in [5] concerning the growth rates of monotone grid
classes is the fact that classes whose row-column graphs have longer internal paths or
cycles exhibit lower growth rates. An edge e of a graph G is said to lie on an endpath of
G if G \e is disconnected and one of its components is a (possibly trivial) path. An edge
that does not lie on an endpath is said to be internal. The following result of Hoffman &
Smith states that the subdivision of an edge increases or decreases the spectral radius of
the graph depending on whether the edge lies on an endpath or is internal:

Lemma 27 (Hoffman & Smith [17]). Let G be a connected graph and G′ be obtained from
G by subdividing an edge e. If e lies on an endpath, then ρ(G′) > ρ(G). Otherwise (if
e is an internal edge), ρ(G′) 6 ρ(G), with equality if and only if G is a cycle or has the
following form (which we call an “H graph”:

Thus for monotone grid classes, if G(M) is connected, and G(M ′) is obtained from
G(M) by the subdivision of one or more internal edges, then gr(Grid(M ′)) 6 gr(Grid(M)).
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As we will see, the situation is not as simple for geometric grid classes. The effect of
edge subdivision on the largest root of the matching polynomial does not seem to have
been addressed previously. In fact, the subdivision of an edge that is in a cycle may
cause λ(G) to increase or decrease, or may leave it unchanged. See Figures 8–10 for
illustrations of the three cases. We investigate this further below. However, if the edge
being subdivided is not on a cycle in G, then the behaviour of λ(G) mirrors that of ρ(G),
as we now demonstrate:

Lemma 28. Let G be a connected graph and G′ be obtained from G by subdividing an
edge e. If e lies on an endpath, then λ(G′) > λ(G). However, if e is an internal edge and
not on a cycle, then λ(G′) 6 λ(G), with equality if and only if G is an H graph.

uG:

ev H1 H2

J
u

K:

e1

e2

v

H1

H1

H2

H2

J

Figure 6: Graphs used in the proof of Lemma 28

Proof. If e lies on an endpath, then G is a proper subgraph of G′ and so the result follows
from Corollary 19. On the other hand, if e is internal and G is acyclic, the conclusion is
a consequence of Corollary 14 and Lemma 27. Thus, we need only consider the situation
in which e is internal and G contains a cycle. We proceed by induction on the number of
cycles in G, acyclic graphs constituting the base case. Let uv be an edge in a cycle of G
such that u is not an endvertex of e. Now, let K be the result of expanding G at u along
uv, and let K ′, analogously, be the result of expanding G′ at u along uv.

We consider the effect of the expansion of G upon e and the effect of the expansion
of G′ upon the two edges resulting from the subdivision of e. If e is in the component of
G − u containing v, then e is duplicated in K, both copies of e remaining internal (see
Figure 6). Moreover, K ′ results from subdividing both copies of e in K. Conversely, if e
is in a component of G− u not containing v, then e is not duplicated in K (and remains
internal). In this case, K ′ results from subdividing e in K. In either case, K ′ is the result
of subdividing internal edges of K (a graph with fewer cycles than G), and so the result
follows from the induction hypothesis.

Now, the subdivision of an edge of a row-column graph that is not on a cycle has no
effect on the parity of the cycles. Hence, we have the following conclusion for the growth
rates of geometric grid classes:

Corollary 29. If G(M) is connected, and G(M ′) is obtained from G(M) by the subdivi-
sion of one or more internal edges not on a cycle, then gr(Geom(M ′)) 6 gr(Geom(M)),
with equality if and only if G(M) is an H graph.
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H1

H2

J
u

e

x1

x2

G:

H1 H2x2

H1 H2x2

H1 H2x2

H2 H1

J
u

x1

K:

Figure 7: Graphs used in Lemma 30

Let us now investigate the effect of subdividing an edge e that lies on a cycle. We
restrict our attention to graphs in which there is a vertex u such that the two endvertices
of e are in distinct components of (G \e)− u. See the graph at the left of Figure 7 for an
illustration. We leave the consideration of multiply-connected graphs that fail to satisfy
this condition for future study.

Lemma 30. Let G be a connected graph and e = x1x2 an edge on a cycle C of G. Let u
be a vertex on C, and let H1 and H2 be the distinct components of (G\e)−u that contain
x1 and x2 respectively. Finally, let G′ be the graph obtained from G by subdividing e.

(a) If, for i ∈ {1, 2}, Hi is a (possibly trivial) path of which xi is an endvertex, then
λ(G′) > λ(G).

(b) If, for i ∈ {1, 2}, Hi is not a path or is a path of which xi is not an endvertex, then
λ(G′) < λ(G).

Proof. Let K be the result of repeatedly expanding G at u along every edge joining u to
H1. K has the form shown at the right of Figure 7. Also let K ′ be the result of repeatedly
expanding G′ (G with edge e subdivided) in an analogous way at u. Clearly K ′ is the
same as the graph that results from subdividing the copies of e in K.

Now, for part (a), since H1 is a path with an end at x1, and also H2 is a path with an
end at x2, we see that K ′ is the result of subdividing edges of K that are on endpaths.
Hence, by the first part of Lemma 28, we have λ(G′) > λ(G) as required.

For part (b), since H1 is not a path with an end at x1, and nor is H2 a path with an
end at x2, we see that K ′ is the result of subdividing internal edges of K. Since K is not
an H graph, by Lemma 28, we have λ(G′) < λ(G) as required.

If the conditions for parts (a) and (b) of this lemma both fail to be satisfied (i.e. H1

is a suitable path and H2 isn’t, or vice versa), then the proof fails. This is due to the fact
that expansion leads to at least one copy of e in K being internal and to another copy of e
in K being on an endpath. Subdivision of the former decreases λ(G) whereas subdivision
of the latter causes it to increase. Sometimes, as in Figure 9, these effects balance exactly;
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Figure 8: Standard figures and row-column graphs of geometric grid classes whose growth
rates increase from left to right

Figure 9: Standard figures and row-column graphs of geometric grid classes whose growth
rates are all the same (equal to 5)

Figure 10: Standard figures and row-column graphs of geometric grid classes whose growth
rates decrease from left to right

on other occasions one or the other dominates. We leave a detailed analysis of such cases
for later study.

To conclude, we state the consequent result for the growth rates of geometric grid
classes. To simplify its statement and avoid having to concern ourselves directly with
cycle parities, we define G×(M) to be G(M) when G(M) has no odd cycles and G×(M)
to be G(M×2) otherwise.

Corollary 31. Suppose G×(M) is connected.

(a) If G×(M ′) is obtained from G×(M) by subdividing one or more edges that satisfy the
conditions of part (a) of Lemma 30, then gr(Geom(M ′)) > gr(Geom(M)).

(b) If G×(M ′) is obtained from G×(M) by subdividing one or more edges that satisfy the
conditions of part (b) of Lemma 30, then gr(Geom(M ′)) < gr(Geom(M)).

Figure 8 provides an illustration of part (a) and Figure 10 an illustration of part (b).
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