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Abstract

A graph G is said to be 2-distinguishable if there is a labeling of the vertices
with two labels such that only the trivial automorphism preserves the labels. Call
the minimum size of a label class in such a labeling of G the cost of 2-distinguishing
G.

Within the class of connected, locally finite, infinite graphs, we show that those
with finite 2-distinguishing cost are precisely the graphs with countable automor-
phism group. Further we show that, for such graphs, the cost is less than three times
the size of a smallest determining set (a set which only the trivial automorphism
fixes pointwise). Finally we show that graphs with linear growth rate c have the
even smaller upper bound of c + 1 on their cost of 2-distinguishing.

Key words: Distinguishing number, Distinguishability, Automorphism, Determin-
ing set, Determining number, Infinite graph

1 Introduction

A labeling of the vertices of a graph G with the integers 1, . . . , d is called d-distinguishing if
no nontrivial automorphism of G preserves the labels. A graph is called d-distinguishable if
it has a d-distinguishing labeling. This concept was introduced by Albertson and Collins
in [2] and has spawned a wealth of results, in particular for finite graphs, but also for
infinite ones.

For finite graphs it was shown that many infinite families of graphs have the property
that all but finitely many members are 2-distinguishable; see [9]. Interestingly, in such
cases the size of the smaller color class can be extremely small. For example the hypercube
Q2k of dimension 2k can be 2-distinguished by coloring k+ 2 vertices black and the others
white; see [5].
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There are also large classes of 2-distinguishable infinite graphs. In this paper, we
consider the question of whether one of the two color classes can be finite, and how to
obtain good bounds for the size of such a class.

To aid in addressing this question, we will call a label class in a 2-distinguishing
labeling a distinguishing class. Following [4] we call the minimum size of a distinguishing
class for a 2-distinguishable graph G the cost of 2-distinguishing G and denote it by ρ(G).

In the finite case it is natural to restrict the investigation to connected graphs. Thus
the first natural extension to the infinite is to connected, locally finite, infinite graphs.
That is, connected graphs that are infinite, and whose vertices have finite, but possibly
arbitrarily large degrees. We show that such graphs G have finite ρ(G) if and only if
Aut(G) is countable. Further we provide two general bounds for ρ(G) and a sharper one
for graphs of linear growth.

2 Preliminaries

Recall that the set stabilizer of S ⊆ V (G), denoted SetStab(S), is the set of all ϕ ∈ Aut(G)
for which ϕ(x) ∈ S for all x ∈ S. In this case we say that S is invariant under ϕ, or ϕ
preserves S, and we write ϕ(S) = S. The point stabilizer of S, denoted PtStab(S) is the
set of all ϕ ∈ Aut(G) for which ϕ(x) = x for all x ∈ S.

A labeling of the vertices of a graph G with the integers 1, . . . , d is called a d-
distinguishing labeling if no non-trivial automorphism of G preserves the labels. A graph is
called d-distinguishable if it has a d-distinguishing labeling. If a graph is 2-distinguishable,
call a color class in a 2-distinguishing labeling a distinguishing class for G. The mini-
mum size of a distinguishing class for a 2-distinguishable graph G is called the cost of
2-distinguishing G and is denoted by ρ(G).

A significant tool used in this work is a determining set [3] (or equivalently, a base of
the automorphism group action). A determining set S has the property that whenever
ϕ, ψ ∈ Aut(G) so that ϕ(x) = ψ(x) for all x ∈ S, then ϕ = ψ. Thus every automorphism
of G is uniquely determined by its action on the vertices of a determining set. Equivalently,
a determining set is a set of vertices S with PtStab(S) = {id}. The determining number
of the graph G, denoted by Det(G), is the minimum size of a determining set of G.

Note that for F ⊆ V (G), an automorphisms ϕ ∈ SetStab(F ) can be thought of
as a permutation in Sym(F ) by restricting the action of ϕ to F , denoted ϕ|F . Thus
we have a natural map Ψ : SetStab(F ) → Aut(G)|F 6 Sym(F ). Note that this map
is injective if and only if F is a determining set for G. In such a case, we get that
SetStab(F ) ∼= Aut(G)|F .

Albertson and Boutin showed in [1] that a graph is d-distinguishable if and only if it
has a determining set that is (d−1)-distinguishable. In particular, such a determining set
is a distinguishing class for a 2-distinguishable graph G. Thus, a graph is 2-distinguishable
if and only if it has a determining set S for which SetStab(S) = PtStab(S) = {id}. In such
a case, the determining set and its complement provide the two necessary label classes for
a 2-distinguishing labeling. Thus in particular, the cost of 2-distinguishing a graph G is
bounded below by the size of a smallest determining set.
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The motion of an automorphism ϕ ∈ Aut(G), denoted m(ϕ), is the number of vertices
moved by ϕ. The motion of the automorphism group, denoted m(G), is the minimum
motion of the non-trivial elements of Aut(G).

Throughout this paper let Γ denote the class of infinite, connected, locally finite graphs.
For such graphs Halin proved the following result, which is foundational for the work that
follows.

Theorem 2.1 [8] (Halin, 1973) A connected, locally finite infinite graph G has uncount-
able Aut(G) if and only if for every finite F ⊂ V (G) there exists a non-trivial automor-
phism ϕ of G such that ϕ(v) = v for each v ∈ F .

In other words, G ∈ Γ has uncountable automorphism group if and only if it does
not have a finite determining set. Therefore, a 2-distinguishable graph G with uncount-
able automorphism group has infinite ρ(G). We are thus interested in graphs G of Γ
whose automorphism group is not uncountable. We first consider those that have infinite
automorphism group. For them we have the following extension of Theorem 2.1.

Theorem 2.2 [9] (Imrich, Smith, Tucker, Watkins, 2014) If G ∈ Γ so that ℵ0 6 |Aut(G)|
< 2ℵ0, then Det(G) < ℵ0, |Aut(G)| = ℵ0, m(G) = ℵ0, and G is 2-distinguishable. This
holds independently of the Continuum Hypothesis.

There is yet another consequence of Theorem 2.1 that is folklore. It says that the
vertex stabilizers of graphs G ∈ Γ are finite if Aut(G) is countably infinite. This follows,
for example, from the slightly more general Corollary 3.10 from [9]. Below we state and
prove a related result that invokes neither Theorem 2.1 nor Theorem 2.2, but needs the
following definition: The set of vertices u ∈ V (G) for which d(u, v) 6 n is called ball of
radius n centered at v, and denoted Bv(n). For later reference we also define the sphere
Sv(n)of radius n centered at v as the set of vertices u ∈ V (G) for which d(u, v) = n.

Lemma 2.3 If G ∈ Γ has finite determining set, then the vertex stabilizers of G are
finite.

Proof Suppose B is a finite determining set for G and PtStab(v) is infinite. Since B
is finite, we may choose k so that B ⊆ Bv(k). Hence, the orbit C = PtStab(v)(B) of
B under PtStab(v) is a subset of Bv(k) and thus is finite. Because the infinite group
PtStab(v) stabilizes the finite set C setwise, there must be at least two different elements
of PtStab(v) whose actions are identical on C, and thus also on B. This contradicts the
choice of B as a determining set. �

3 Countable Automorphism Group

By Theorem 2.2 the automorphism groups of graphs G in Γ that satisfy ℵ0 6 |Aut(G)| <
2ℵ0 are countable. Moreover, such graphs have infinite motion, are 2-distinguishable,
and have finite determining sets. Below we show that such graphs G have finite 2-
distinguishing cost and give two bounds for ρ(G).
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Lemma 3.1 If G ∈ Γ with infinite automorphism group and Det(G) = n < ℵ0, then
ρ(G) is finite and satisfies the inequality

ρ(G) 6 n+ n!− 1 .

Proof Let F be a minimum determining set for G. Since F is a determining set, as
discussed in Section 2, SetStab(F ) ∼= Aut(G)|F 6 Sym(F ). Since F is finite, so is
Sym(F ), and hence so is SetStab(F ). Let SetStab(F ) = {id = α0, α1, α2, . . . , αk}. If
|F | = 1, then k = 0. We can thus assume that |F | > 1.

Color all elements of F black and consider α1. By Theorem 2.2, G has infinite motion.
In other words, every nontrivial automorphism moves infinitely many vertices. Since α1

moves infinitely many vertices, there is a vertex v1, moved by α1, whose distance d(v1, F )
from F is larger than the diameter of F . Color it black. Similarly there is a vertex
v2, moved by α2, with d(v2, F ) > d(v1, F ) + diam(F ). Color it black as well. Similarly
construct the vertices v3 to vk and color them black.

Suppose that ϕ preserves the set of black vertices. Since each of v1, . . . , vk is farther
from F than any pair of vertices in F is, ϕ must preserve F . Thus ϕ ∈ SetStab(F ). Thus
either ϕ = id or ϕ = αi for some i ∈ [k]. Recall that, for each i ∈ [k], since vi is the only
black vertex of distance d(vi, F ) from F , we have that ϕ(vi) = vi. Since vi is moved by
αi, we infer ϕ 6= αi. Thus ϕ = id and the set of black vertices is a distinguishing class.
Clearly its size is |SetStab(F )| − 1 + |F | 6 n! + n− 1. Hence, ρ(G) < ℵ0. �

Interestingly this crude bound is sharp for the 2-sided infinite path Pℵ0 . To see this,
observe that no single vertex of Pℵ0 can be a determining set, but that the set of end-
points of any edge is a determining set. By the lemma, ρ(Pℵ0) 6 3. It is easy to see that
ρ(Pℵ0) cannot be 1 or 2. Hence ρ(Pℵ0) = 3 and the bound is sharp.

A better bound is the following, which we formulate as theorem. It uses a strong result
of Cameron, Solomon and Turull [6], which asserts that the largest length of a chain of
subgroups of the symmetric group on n elements is

⌈
3n
2

⌉
− b(n) − 1, where b(n) denotes

the number of 1s in the base-2 representation of n.

Theorem 3.2 If G ∈ Γ with infinite automorphism group and Det(G) = n < ℵ0, then
ρ(G) 6

⌈
5n
2

⌉
− b(n)− 1, where b(n) denotes the number of 1s in the base-2 representation

of n.

Proof Let F be a minimum determining set for G. Then n = |F | = Det(G). Let k, αi, vi
for i ∈ [k] be as in the proof of Lemma 3.1. As shown above, coloring all elements of F
black breaks all automorphisms of G that do not preserve F . The automorphisms that
preserve F form a (not necessarily proper) subgroup A0 of Sym(F ). Coloring v1 black
leaves a subgroup A1 < A0 of still unbroken elements of Aut(G). Using the notation Ai

for the group that preserves the set F ∪{v1, . . . , vi} we thus arrive at a chain of subgroups

{id} = Ak < Ak−1 < · · · < A0

of length k. By [6], k 6
⌈
3n
2

⌉
− b(n) − 1. Because we colored k + n vertices black the

result follows. �
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Again, this bound is sharp for Pℵ0 . From Det(Pℵ0) = 2 we infer ρ(Pℵ0) 6 d5 · |F |/2e−
b(|F |)− 1 = 5− 1− 1 = 3, which we know is the cost of 2-distinguishing Pℵ0 .

We now combine some of the above results for our main theorem.

Theorem 3.3 Let G ∈ Γ with infinite automorphism group. Then ρ(G) is finite if and
only if Aut(G) is countable.

Proof Let G be a graph in Γ with finite ρ(G). Since a distinguishing class is necessarily a
determining set, we can conclude that G has a finite determining set. Then, by Theorem
2.1, Aut(G) cannot be uncountable. Thus it is countable.

Suppose G ∈ Γ has countable automorphism group. By Theorem 2.2, G is both 2-
distinguishable and has a finite determining set. By using either Lemma 3.1 or Theorem
3.2 we conclude that ρ(G) is finite. �

4 Linear Growth

For graphs of linear growth we can obtain an even better bound for the cost of 2-
distinguishing. We begin with a few remarks about graphs of linear growth.

A connected, locally finite, infinite graph G is said to have linear growth if there exists
a vertex v and a constant c, such that |Bv(n)| 6 cn, for all n ∈ N. The definition is
independent of the choice of v, but c may have to be replaced by a different constant if v
is changed.

Notice that Bv(n) = ∪ni=0Sv(i) and that the growth is obviously linear if |Sv(n)| 6 c for
all n. Nonetheless, it is possible that infinitely many spheres have more than c elements.
Moreover, the size of the spheres need not even be bounded. We leave it to the reader to
construct examples.

More important for us is the fact that there must be infinitely many spheres of size
at most c. To see this, suppose only m < ℵ0 of the spheres around v contain at most c
vertices. Consider Bv(cm+ 1) = ∪cm+1

i=0 Sv(i). The m spheres of size at most c contain at
least one vertex each, and thus in total contain at least m vertices. The (c−1)m+1 spheres
with more than c vertices contain at least c + 1 vertices each, and thus contain at least
(c+1)(cm+1−m) in total. Thus |Bv(cm+1)| = ∪cm+1

i=0 |Sv(i)| > m+((c−1)m+1)(c+1) =
c(cm + 1) + 1 which contradicts the assumption on the growth of G. Thus there are an
infinite number of spheres of size at most c. Because c is finite, infinitely many of these
spheres must have the same size.

Interestingly, for graphs G ∈ Γ with linear growth and infinite automorphism group,
m(G) = ℵ0 if and only if |Aut(G)| = ℵ0. That |Aut(G)| = ℵ0 implies infinite motion
follows from Theorem 2.2. The reverse implication is not hard to show. In [7] it is
attributed to [9], but only the consequence that G is 2-distinguishable is mentioned there.
As that paper contains no proof of it, we include one here for the sake of completeness.
The proof uses the following lemma, which is similar to Lemma 2.4 in [7].
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Lemma 4.1 Suppose that G is a connected, locally finite graph and Aut(G) has infinite
motion. If α, β ∈ PtStab(v) and α|Sv(n) = β|Sv(n) for some n > 0, then α|Bv(n) =
β|Bv(n). Furthermore, if α, β ∈ PtStab(v) have distinct actions on Sv(n), then they have
distinct actions on all Sv(m) where m > n.

Proof Define the mapping γ on V (G) by γ(u) = u for all u with d(v, u) > n and
γ(u) = αβ−1(u) for all u with d(v, u) < n. Clearly, γ is one-to-one and onto and preserves
adjacency, so γ is an automorphism. Since Aut(G) has infinite motion, but γ moves at
most finitely many vertices (those inside Bv(n−1)), γ = id. This proves the first assertion.
The second assertion easily follows from the first. �

Lemma 4.2 Let G ∈ Γ be a graph of linear growth with infinite automorphism group.
Then Aut(G) is countable if and only if G has infinite motion.

Proof By Theorem 2.2 we only have to show that infinite motion implies that Aut(G) is
countable. For distinct α, β ∈ PtStab(v) there is some k so that α, β differ in their action
on Sv(k). If PtStab(v) is finite then there exists some k so that all pairs of automorphisms
in PtStab(v) differ in their actions on the finite set Bv(k). In such a case Det(G) is finite
and thus by Theorem 2.1, Aut(G) is countable. Thus it is sufficient to prove that point
stabilizers in G are finite. Suppose PtStab(v) is infinite. Since G has linear growth, by
our previous argument we know that there are infinitely many spheres with center v that
have size at most c. Since PtStab(v) is infinite, we may consider c! + 1 distinct elements
of PtStab(v). Any pair of these must act distinctly on some sphere Sv(n), and thus by
Lemma 4.1, on all spheres Sv(m) for m > n. Hence, there must be a sphere of size c on
which all c!+1 automorphisms have distinct action. But this is impossible since there are
at most c! distinct actions on a set of size c. Thus |PtStab(v)| < ℵ0. In particular, if G ∈ Γ
has infinite motion and linear growth rate c from vertex v, then then |PtStab(v)| 6 b!
where b 6 c is the minimum sphere size that occurs infinitely often. �

The part of the lemma which asserts that linear growth and infinite motion imply
countability of the automorphisms group is based on an observation by T. Tucker1.

Theorem 4.3 Let G be a graph with countably infinite automorphism group and linear
growth. If |Bv(n)| 6 cn for a fixed v ∈ V (G) and c ∈ R, then ρ(G) 6 c+ 1.

Proof Notice first that since G has a countable automorphism group, by Theorem 2.2, it
has infinite motion. By our previous argument, there are infinitely many spheres of size
at most c centered at v. Denote these by Si = Sv(ni), for n1 < n2 < · · · . Since c is finite,
infinitely many of these spheres must have the same size. Without loss of generality we
can assume that the Si already have the same size, say d.

Note that for j < i, the minimal distance between an arbitrary vertex in Si and one
in Sj is ni− nj and the maximal distance is ni + nj. Hence, if we choose the ni such that

ni > 2
∑
j<i

nj ,

1Private communication.
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then for j < i the distance between an arbitrary vertex in Si and one in Sj is larger than
the maximal distance of any two vertices in ∪j<iSj.

By Lemma 4.1, since G has infinite motion, every non-identity element of PtStab(v)
acts non-trivially on all but finitely many spheres. As PtStab(v) is finite by Lemma 2.3,
without loss of generality, we can assume that PtStab(v) \ {id} acts non-trivially on all
spheres Si.

For the sequel we wish to remind the reader that we have chosen the notation such
that mappings act on the left.

For each i greater than 1, fix an arbitrary bijection φi from S1 to Si. Let φ1 = id on
S1. For each i, denote by Ai the group φ−1i (PtStab(v)|Si)φi. By definition, each of the Ai

is a subgroup of Sym(S1). Further, consider an arbitrarily chosen α ∈ PtStab(v) and the
infinite set of permutations {βi = φ−1i (α|Si)φi} ⊆ Sym(S1). As Sym(S1) has only finitely
many elements, infinitely many of the βi must identical. Let J be the set of indices for
which this is the case. Notice, that this set need not include 1. Let j0 be the smallest of
these indices. Clearly, for j ∈ J all

γj = φj0φ
−1
j (α|Sj)φjφ

−1
j0

are identical on Sj0 , and

γj0 = φj0φ
−1
j0

(α|Sj0)φj0φ
−1
j0

= α|Sj0 .

Notice that the φjφ
−1
j0

are bijections from Sj0 to Sj. Hence, we can assume without
loss of generality that J is N, in other words that all βi are identical and that β1 = α|S1.

Because PtStab(v) is finite, we can, proceeding successively, suppose that for any
element ψ ∈ PtStab(v) the equalities

ψ|S1 = φ−1i (ψ|Si)φi

hold.
Again we can assume without loss of generality that this is already the case for the

chosen Si.
Suppose α ∈ PtStab(v) fixes a vertex φi(u) in Si. Then α(u) = φ−11 αφ1(u) =

φ−1i αφi(u) = φ−1i (α(φi(u))) = φ−1i φi(u) = u. That is, if α ∈ PtStab(v) fixes φi(u) in
Si then α fixes u in S1.

Finally, let v1, v2, . . . vd be the vertices of S1. Color the vertices of X = {v, φ1(v1),
φ2(v2), . . . , φd(vd)} black. Color all other vertices in the graph white. Suppose α ∈ Aut(G)
preserves color classes. By our choice of distances between the spheres S1, . . . , Sd, within
the set X v is uniquely identified by its distances to the other vertices.

Thus α ∈ PtStab(v). Since α must preserve distance to v, again by the way distances
were chosen, α cannot interchange vertices of {φ1(v1), . . . , φd(vd)}. Thus PtStab(v) fixes
all φi(vi), and hence all vi. Recall that the spheres Si were chosen so that every non-trivial
automorphism in PtStab(v) acts non-trivially on each sphere. Thus if α is non-trivial, its
action on S1 must be nontrivial, but this is not possible, since it fixes all elements of S1.
So α is the identity. �
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To see that the bound is sharp, consider Pℵ0 . It has linear growth with c = 2. We
know that it can be distinguished by just three black vertices, but not by two. Hence
ρ(Pℵ0) = 3, which is the bound given by the theorem.

5 Finite Automorphism Group

Suppose the automorphism group of G ∈ Γ is finite. There are two types of automor-
phisms, those with finite motion and those with infinite motion. Clearly the ones with
finite motion form a subgroup of (the finite group) Aut(G), say B. Define W ⊆ V (G) to
be the orbits under B of all vertices moved by B. Since B is finite, and all motion in B is
finite, W is also finite. Further W is stabilized setwise by B while elements of V (G) \W
are fixed by B.

Consider a distinguishing 2-coloring of V (G) with the color classes X1 and X2 (white
and black). We set Y1 = X1∩W and Y2 = X2∩W . Since X1, X2 distinguished the action
of Aut(G), Y1, Y2 distinguish the action of B, independent of the colors of the elements
of V (G) \W .

Let {α1, α2, . . . , αk} be the elements of infinite motion in Aut(G). To break the sym-
metries of each of these, we first color all elements of V (G) \W white and then use the
methods of Lemma 3.1 to choose vertices v1, v2, . . . , vk to color black.

Clearly X2 ∪ {v1, v2, . . . , vk} is finite, and hence also ρ(G). We have thus proved the
following lemma.

Theorem 5.1 Let G be a 2-distinguishable graph in Γ. If Aut(G) is finite, then ρ(G) is
also finite.
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