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Abstract

Let Γ denote a bipartite Q-polynomial distance-regular graph with diameter D >
4, valency k > 3 and intersection number c2 6 2. We show that Γ is either the D-
dimensional hypercube, or the antipodal quotient of the 2D-dimensional hypercube,
or D = 5.

Keywords: bipartite distance-regular graph; Q-polynomial property; equitable
partition

1 Introduction

Let Γ denote a bipartite Q-polynomial distance-regular graph with diameter D > 4,
valency k > 3 and intersection numbers bi, ci (see Sections 2 and 3 for formal definitions).
The present paper is a part of an effort to classify the examples with c2 6 2. In order to
motivate our results we give some comments on this case.

∗Supported in part by ARRS - Javna agencija za raziskovalno dejavnost Republike Slovenija, program
no. P1-0285 and project no. J1-4010-1669.
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Caughman proved in [3] that if D > 12 then Γ is either the D-dimensional hypercube,
or the antipodal quotient of the 2D-dimensional hypercube, or the intersection numbers
of Γ satisfy ci = (qi − 1)/(q − 1) (0 6 i 6 D) for some integer q at least 2. Note that if
c2 6 2, then the last of the above possibilities cannot occur. It is the aim of the present
paper to further investigate these graphs. Our main result is the following theorem.

Theorem 1. Let Γ denote a bipartite Q-polynomial distance-regular graph with diameter
D > 4, valency k > 3, and intersection number c2 6 2. Then one of the following holds:

(i) Γ is the D-dimensional hypercube;

(ii) Γ is the antipodal quotient of the 2D-dimensional hypercube;

(iii) Γ is a graph with D = 5 not listed above.

To prove the above theorem we use the results of Caughman [3] and, in case when
c2 = 2, a certain equitable partition of the vertex set of Γ which involves 4(D − 1) + 2`
cells for some integer ` with 0 6 ` 6 D − 2.

Our paper is organized as follows. In Sections 2 and 3 we review some definitions and
basic concepts and set up some necessary tools for the proof of our main results. We
consider the case D > 6 in Section 4. In Section 5 we describe a partition of the vertex
set of Γ and in Section 6 we show that this partition is equitable. In Section 7 we consider
the case D = 4.

For the current status of the classification of the Q-polynomial distance-regular graphs
see a recent survey by E. R. Van Dam, J. H. Koolen and H. Tanaka [5].

2 Preliminaries

In this section, we review some definitions and basic concepts. See the book of Brouwer,
Cohen and Neumaier [2] for more background information.

Let X denote a nonempty finite set. Let MatX(R) denote the R-algebra consisting
of the matrices with entries in R, and rows and columns indexed by X. Let V = RX

denote the vector space over R consisting of the column vectors with entries in R and
rows indexed by X. Observe that MatX(R) acts on V by left multiplication. We refer to
V as the standard module of MatX(R). For x ∈ X let x̂ denote the vector in V that has
x-coordinate 1 and all other coordinates 0. We endow V with the standard dot product
〈 , 〉, where 〈u, v〉 = utv (u, v ∈ V ).

Throughout the paper let Γ = (X,R) denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X, edge set R, path-length distance
function ∂, and diameter D := max{∂(x, y)| x, y ∈ X}. For x ∈ X and an integer i let
Γi(x) = {y ∈ X | ∂(x, y) = i}. We abbreviate Γ(x) = Γ1(x). For an integer k > 0 we
say Γ is regular with valency k whenever |Γ(x)| = k for all x ∈ X. We say Γ is distance-
regular whenever for all integers 0 6 h, i, j 6 D and all x, y ∈ X with ∂(x, y) = h the
number phij := |Γi(x) ∩ Γj(y)| is independent of x, y. The constants phij are known as
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the intersection numbers of Γ. Observe that for h, i, j (0 6 h, i, j 6 D), phij = 0 (resp.
phij 6= 0) if one of h, i, j is greater than (resp. equal to) the sum of the other two. Note that
phij = phji for 0 6 h, i, j 6 D. For the rest of this paper we assume Γ is distance-regular
with diameter D > 3 and valency k > 3. For convenience set ci := pi1,i−1 (1 6 i 6 D),
ai := pi1i (0 6 i 6 D), bi := pi1,i+1 (0 6 i 6 D − 1), ki := p0ii (0 6 i 6 D), and c0 = 0,
bD = 0. Observe that Γ is regular with valency k = b0 = k1 = p011. Moreover, for
0 6 i 6 D

ci + ai + bi = k, (1)

where k := k1. Observe also that Γ is bipartite if and only if ai = 0 for 0 6 i 6 D. In
this case bi + ci = k for 0 6 i 6 D and phij = 0 unless i+ j + h is even.

By [2, page 127] we have

k0 = 1 and ki = (b0b1 · · · bi−1)/(c1c2 · · · ci) (1 6 i 6 D). (2)

The following formulae will be useful.

Lemma 2. ([2, Lemma 4.1.7]) Let Γ denote a distance-regular graph with diameter D > 3.
Then the following (i), (ii) hold.

(i) p202 = 1 and p2i−1,i+1 = (b2b3 · · · bi)/(c1c2 · · · ci−1) (2 6 i 6 D − 1);

(ii) p222 = (c2b1 + a22 + c3b2 − k − a1a2)/c2 and
p2ii = (b2b3 · · · bi−1)(cibi−1 + a2i + ci+1bi − k − a1ai)/(c1c2 · · · ci) (3 6 i 6 D − 1).

We recall the Bose-Mesner algebra of Γ. For 0 6 i 6 D let Ai denote the matrix in
MatX(R) with (y, z)-entry

(Ai)yz =

{
1 if ∂(y, z) = i,
0 if ∂(y, z) 6= i

(y, z ∈ X). (3)

We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the adjacency
matrix of Γ. We observe (ai) A0 = I; (aii) J =

∑D
i=0Ai; (aiii) At

i = Ai (0 6 i 6 D);

(aiv) AiAj =
∑D

h=0 p
h
ijAh (0 6 i, j 6 D), where I (resp. J) denotes the identity matrix

(resp. all 1’s matrix) in MatX(R). Using these facts we find {Ai}Di=0 is a basis for a
commutative subalgebra M of MatX(R). We call M the Bose-Mesner algebra of Γ. It
turns out that A generates M [1, p. 190]. By [2, p. 45], M has a second basis {Ei}Di=0

such that (ei) E0 = |X|−1J ; (eii) I =
∑D

i=0Ei; (eiii) Et
i = Ei (0 6 i 6 D); (eiv)

EiEj = δijEi (0 6 i, j 6 D). We call {Ei}Di=0 the primitive idempotents of Γ. We call E0

the trivial primitive idempotent of Γ. By (eii)–(eiv) above,

V = E0V + E1V + · · ·+ EDV (orthogonal direct sum). (4)

We recall the eigenvalues of Γ. Since {Ei}Di=0 form a basis for M , there exist real scalars
{θi}Di=0 such that A =

∑D
i=0 θiEi. Combining this with (eiv) we find

AEi = EiA = θiEi (0 6 i 6 D).
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We call θi the eigenvalue of Γ associated with Ei. For 0 6 i 6 D the space EiV is the
eigenspace of A associated with θi. Let mi denote the rank of Ei (0 6 i 6 D). Observe
that mi is the dimension of the eigenspace EiV (0 6 i 6 D). We call mi the multiplicity
of θi. Observe that {θi}Di=0 are mutually distinct since A generates M . By (ei) we have
θ0 = k.

Let θ denote an eigenvalue of Γ, and let E denote the associated primitive idempotent.
For 0 6 i 6 D define a real number θ∗i by

E = |X|−1

D∑
i=0

θ∗iAi.

We call the sequence θ∗0, θ
∗
1, . . . , θ

∗
D the dual eigenvalue sequence associated with θ, E. We

say the sequence is trivial whenever E = E0 (in which case θ∗0 = θ∗1 = · · · = θ∗D = 1). In
the following lemma, we cite a well known result about primitive idempotents.

Lemma 3. ([7, Lemma 1.1]) Let Γ denote a distance-regular graph with diameter D > 3,
let E denote a primitive idempotent of Γ, and let θ∗0, θ

∗
1, . . . , θ

∗
D denote the corresponding

dual eigenvalue sequence. Then for 0 6 i 6 D and for all x, y ∈ X with ∂(x, y) = i we
have 〈Ex̂, Eŷ〉 = |X|−1θ∗i .

An equitable partition of a graph is a partition π = {C1, C2, . . . , Cs} of its vertex
set into nonempty cells such that for all integers i, j (1 6 i, j 6 s) the number cij of
neighbours, which a vertex in the cell Ci has in the cell Cj, is independent of the choice
of the vertex in Ci. We call the cij the corresponding parameters.

3 The Q-polynomial property

We continue to discuss the distance-regular graph Γ = (X,R) from Section 2. In this
section we recall the Q-polynomial property of Γ. We first recall the Krein parameters
of Γ. Let ◦ denote the entrywise product in MatX(R). Observe Ai ◦ Aj = δijAi for
0 6 i, j 6 D, so M is closed under ◦. Thus there exist qhij ∈ R (0 6 h, i, j 6 D) such that

Ei ◦ Ej = |X|−1

D∑
h=0

qhijEh (0 6 i, j 6 D).

The parameters qhij are called the Krein parameters of Γ. By [2, Proposition 4.1.5] the
Krein parameters of Γ are nonnegative.
We recall the Q-polynomial property of Γ. Let {Ei}Di=0 denote an ordering of the primitive
idempotents of Γ. This ordering is said to be Q-polynomial whenever for 0 6 h, i, j 6 D
the Krein parameter qhij = 0 (resp. qhij 6= 0) whenever one of h, i, j is greater than (resp.
equal to) the sum of the other two. Let E denote a nontrivial primitive idempotent of
Γ and let θ denote the corresponding eigenvalue. We say Γ is Q-polynomial with respect
to E (or Q-polynomial with respect to θ) whenever there exists a Q-polynomial ordering
{Ei}Di=0 of the primitive idempotents such that E1 = E. We have the following useful
lemmas about the Q-polynomial property.
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Lemma 4. ([2, Thm. 8.1.1]) Let Γ denote a distance-regular graph with diameter D > 3.
Let E denote a nontrivial primitive idempotent of Γ and let {θ∗i }Di=0 denote the corre-
sponding dual eigenvalue sequence. Suppose Γ is Q-polynomial with respect to E. Then
θ∗0, θ

∗
1, . . . , θ

∗
D are mutually distinct.

Lemma 5. ([7, Thm. 3.3]) Let Γ denote a distance-regular graph with diameter D > 3.
Let E denote a nontrivial primitive idempotent of Γ and let {θ∗i }Di=0 denote the correspond-
ing dual eigenvalue sequence. Then the following (i), (ii) are equivalent.

(i) Γ is Q-polynomial with respect to E.

(ii) θ∗0 6= θ∗i for 1 6 i 6 D; for all integers h, i, j (1 6 h 6 D), (0 6 i, j 6 D) and for
all vertices x, y ∈ X with ∂(x, y) = h the following hold:∑

z∈X
∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ ∈ span {Ex̂− Eŷ}.

Suppose (i), (ii) hold. Then for all integers h, i, j (1 6 h 6 D), (0 6 i, j 6 D) and for all
x, y ∈ X such that ∂(x, y) = h,∑

z∈X
∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ = phij
θ∗i − θ∗j
θ∗0 − θ∗h

(Ex̂− Eŷ). (5)

We have the following important result about bipartite Q-polynomial distance-regular
graphs, see [3, Lemma 3.2, Lemma 3.3].

Lemma 6. Let Γ denote a bipartite distance-regular graph with diameter D > 4, valency
k > 3, and intersection numbers bi, ci. Let {Ei}Di=0 be a Q-polynomial ordering of primitive
idempotents of Γ, and let {θ∗i }Di=0 denote the dual eigenvalue sequence associated with E1.
For 0 6 i 6 D let θi denote the eigenvalue associated with Ei. Assume Γ is not the
D-cube or the antipodal quotient of the 2D-cube. Then there exist scalars q, s∗ ∈ R such
that (i)–(iii) hold below.

(i) |q| > 1, s∗qi 6= 1 (2 6 i 6 2D + 1);

(ii) θi = h(qD−i − qi), θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i for 0 6 i 6 D, where

h =
1− s∗q3

(q − 1)(1− s∗qD+2)
, h∗ =

(qD + q2)(qD + q)

q(q2 − 1)(1− s∗q2D)
, θ∗0 =

h∗(qD − 1)(1− s∗q2)
q(qD−1 + 1)

;

(iii) k = cD = h(qD − 1), and

ci =
h(qi − 1)(1− s∗qD+i+1)

1− s∗q2i+1
, bi =

h(qD − qi)(1− s∗qi+1)

1− s∗q2i+1
(1 6 i 6 D − 1).
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4 Case D > 6

Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D > 6,
valency k > 3, and intersection numbers bi, ci. In this section we show that if c2 6 2, then
Γ is either the D-dimensional hypercube, or the antipodal quotient of the 2D-dimensional
hypercube.

Theorem 7. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D > 6 and valency k > 3. If c2 6 2, then Γ is either the D-dimensional hypercube, or the
antipodal quotient of the 2D-dimensional hypercube.

Proof. Assume that Γ is not the D-dimensional hypercube or the antipodal quotient of
the 2D-dimensional hypercube. Let scalars s∗, q be as in Lemma 6.

By [3, Lemma 4.1 and Lemma 5.1], scalars s∗ and q satisfy

q > 1, and − q−D−1 6 s∗ < q−2D−1. (6)

Assume first c2 = 1. Abbreviate α = 1 + q − q2 − qD−1 + qD + qD+1 and observe α > 2.
By Lemma 6(iii) we find

s∗ =
α±

√
α2 − 4qD+1

2qD+3
.

Note that α2 − 4qD+1 > 0, and so we have

s∗ >
α−

√
α2 − 4qD+1

2qD+3
.

We claim
α−

√
α2 − 4qD+1

2qD+3
> q−2D−1.

First observe that (αqD−2−2)2− q2D−4(α2−4qD+1) = 4(qD + 1)(qD−1−1)(qD−2−1) > 0.
Therefore,

(αqD−2 − 2)2 > q2D−4(α2 − 4qD+1).

Furthermore, αqD−2 − 2 > 0 implies

αqD−2 − 2 > qD−2
√
α2 − 4qD+1,

and the claim follows. Therefore,

s∗ >
α−

√
α2 − 4qD+1

2qD+3
> q−2D−1,

contradicting (6).

Next assume c2 = 2. Abbreviate β = 1 + 2q − 2qD−1 − qD and observe β < 0. By
Lemma 6(iii) we find

s∗ =
β ±

√
β2 + 4qD

2qD+3
.
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Assume first s∗ = (β −
√
β2 + 4qD)/(2qD+3). If β + 2q2 < 0, then clearly β + 2q2 <√

β2 + 4qD. On the other hand, if β + 2q2 > 0, then (β + 2q2)2 < β2 + 4qD again implies

β + 2q2 <
√
β2 + 4qD. Therefore, in both cases we find β + 2q2 <

√
β2 + 4qD. But now

− 1

qD+1
=
β − (β + 2q2)

2qD+3
>
β −

√
β2 + 4qD

2qD+3
= s∗,

contradicting (6).

Finally, assume s∗ = (β +
√
β2 + 4qD)/(2qD+3). We observe that q3D−4 + βqD−2 − 1 =

(qD−1 − 1)2(qD−2 − 1) > 0. Therefore q3D−4 > 1− βqD−2, implying

β2q2D−4 + 4q3D−4 > 4− 4βqD−2 + β2q2D−4 = (2− βqD−2)2.

Taking the square root of the above inequality and dividing by qD−2 we obtain√
β2 + 4qD >

2

qD−2
− β.

But now we have

s∗ =
β +

√
β2 + 4qD

2qD+3
>

1

q2D+1
,

contradicting (6). This finishes the proof.

5 The partition - part I

We continue to discuss the distance-regular graph Γ = (X,R) from Section 2. Up to
Section 7 we will assume that Γ is bipartite with diameter D > 4, valency k > 3 and
intersection number c2 = 2. In this section we describe certain partition of the vertex set
X.

Definition 8. Let Γ denote a bipartite distance-regular graph with diameter D > 4,
valency k > 3 and intersection number c2 = 2. Fix vertices x, y ∈ X such that ∂(x, y) = 2.
For all integers i, j we define Di

j = Di
j(x, y) by

Di
j = {w ∈ X | ∂(x,w) = i and ∂(y, w) = j}.

We observe Di
j = ∅ unless 0 6 i, j 6 D. Moreover |Di

j| = p2ij for 0 6 i, j 6 D.

Lemma 9. ([6, Lemma 3.2]) With reference to Definition 8, the following (i), (ii) hold
for 0 6 i, j 6 D.

(i) If |i− j| > 2 then Di
j = ∅.

(ii) If i+ j is odd then Di
j = ∅.

Lemma 10. ([6, Lemma 3.3]) With reference to Definition 8, the following (i), (ii) hold.
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(i) |D2
0| = |D0

2| = 1 and |Di+1
i−1| = |Di−1

i+1| = (b2b3 · · · bi)/(c1c2 · · · ci−1) (2 6 i 6 D − 1);

(ii) Di+1
i−1 6= ∅, Di−1

i+1 6= ∅ (1 6 i 6 D − 1).

Lemma 11. ([6, Lemma 3.4]) With reference to Definition 8, there are no edges inside
the set Di

j for 0 6 i, j 6 D.

Lemma 12. With reference to Definition 8, let z, v denote the common neighbours of x
and y. For 1 6 i 6 D and for w ∈ Di

i we have ∂(w, z) ∈ {i − 1, i + 1} and ∂(w, v) ∈
{i− 1, i+ 1}.

Proof. Let u ∈ {z, v}. From the triangle inequality we find i− 1 6 ∂(w, u) 6 i+ 1. Now
if ∂(w, u) = i, then we have a cycle of an odd length in Γ, a contradiction.

Definition 13. Let Γ denote a bipartite distance-regular graph with diameter D > 4,
valency k > 3 and intersection number c2 = 2. Fix vertices x, y ∈ X such that ∂(x, y) = 2
and let z, v denote the common neighbours of x, y. For 0 6 i, j 6 D let the sets Di

j

be as defined in Definition 8. For 1 6 i 6 D we define Ai = Ai(x, y), Ci = Ci(x, y),
Bi(z) = Bi(z)(x, y), Bi(v) = Bi(v)(x, y) by

Ai = {w ∈ Di
i | ∂(w, z) = i+ 1 and ∂(w, v) = i+ 1},

Ci = {w ∈ Di
i | ∂(w, z) = i− 1 and ∂(w, v) = i− 1},

Bi(z) = {w ∈ Di
i | ∂(w, z) = i− 1 and ∂(w, v) = i+ 1},

Bi(v) = {w ∈ Di
i | ∂(w, z) = i+ 1 and ∂(w, v) = i− 1}.

We observe Di
i is a disjoint union of Ai,Bi(z),Bi(v), Ci.

Remark 14. With reference to Definition 13, note that ∂(z, v) = 2 and that x, y are the
common neighbours of z, v. Consequently, if we have a result that holds for x, y (and z, v
as their common neighbours), then an analogous result for z, v (and x, y as their common
neighbours) also holds. We will be using this fact extensively throughout the paper.

Lemma 15. With reference to Definition 13, the following (i)–(iii) hold.

(i) A1 = ∅, C1 = ∅, B1(z) = {z}, B1(v) = {v}.

(ii) C2 = ∅.

(iii) CD = DD
D and AD = BD(z) = BD(v) = ∅.

Proof. (i) and (iii) follows immediately from Definition 13. (ii) follows from the fact that
c2 = 2.

Lemma 16. With reference to Definition 13, the following (i)–(vi) hold.

(i) Di−1
i+1(x, y) = Bi(x)(z, v) for 1 6 i 6 D − 1.
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(ii) Di+1
i−1(x, y) = Bi(y)(z, v) for 1 6 i 6 D − 1.

(iii) Ai(x, y) = Ci+1(z, v) for 1 6 i 6 D − 1.

(iv) Ci(x, y) = Ai−1(z, v) for 2 6 i 6 D.

(v) Bi(z)(x, y) = Di−1
i+1(z, v) for 1 6 i 6 D − 1.

(vi) Bi(v)(x, y) = Di+1
i−1(z, v) for 1 6 i 6 D − 1.

Proof. (i) Pick w ∈ Di−1
i+1(x, y) and note that ∂(w, x) = i − 1, ∂(w, y) = i + 1 and

∂(w, z) = ∂(w, v) = i. Therefore w ∈ Bi(x)(z, v), implying Di−1
i+1(x, y) ⊆ Bi(x)(z, v).

Similarly, if w ∈ Bi(x)(z, v), then ∂(w, z) = ∂(w, v) = i, ∂(w, x) = i−1 and ∂(w, y) = i+1.
Therefore w ∈ Di−1

i+1(x, y), implying Bi(x)(z, v) ⊆ Di−1
i+1(x, y). The result follows.

(ii)-(vi) Similarly as the proof of (i) above.

To compute the cardinalities of the sets Ai,Bi(z),Bi(v) and Ci we make the following
definition. For 2 6 i 6 D − 1 define

Mi = p2ii − p2i−1,i−1 + p2i−2,i−2 − · · · ± p222

and
Ni = p2i−1,i+1 − p2i−2,i + p2i−3,i−1 − · · · ± p213.

Lemma 17. With reference to Definition 13, the following (i)–(iv) hold.

(i) |Bi(z)| = p2i−1,i+1 (1 6 i 6 D − 1);

(ii) |Bi(v)| = p2i−1,i+1 (1 6 i 6 D − 1);

(iii) |Ai| = Mi − 2Ni (2 6 i 6 D − 1);

(iv) |Ci| = Mi−1 − 2Ni−1 (3 6 i 6 D);

Proof. (i), (ii) This follows from Lemma 16(v),(vi) and Lemma 10.

(iii) As |B2(z)∪B2(v)∪A2| = p222, the result is true for i = 2. Now assume that the result
is true for some i (2 6 i 6 D − 2). We will show that it is true also for i + 1. Note that
Di+1

i+1 is a disjoint union of Ai+1, Bi+1(z), Bi+1(v) and Ci+1. It follows from (i), (ii) above,
Lemma 16(iv) and the induction hypothesis that |Ai+1| = p2i+1,i+1 − 2p2i,i+2 −Mi + 2Ni.
The result follows.

(iv) The result follows from (iii) above and Lemma 16(iv).

Corollary 18. With reference to Definition 13, the following (i), (ii) hold.

(i) Bi(z) 6= ∅ (1 6 i 6 D − 1);

(ii) Bi(v) 6= ∅ (1 6 i 6 D − 1);
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Proof. Immediate from Lemma 17(i),(ii).

Lemma 19. With reference to Definition 13, the following (i)–(iv) hold.

(i) For 1 6 i 6 D − 1, there is no edge between any of the sets Ai,Bi(z),Bi(v), Ci.

(ii) For 2 6 i 6 D − 1, there is no edge between Ai and Bi−1(z) ∪ Bi−1(v) ∪ Ci−1.

(iii) For 2 6 i 6 D − 1, there is no edge between Bi(z) and Bi−1(v) ∪ Ci−1.

(iv) For 2 6 i 6 D − 1, there is no edge between Bi(v) and Bi−1(z) ∪ Ci−1.

Proof. (i) Immediate from Lemma 11.
(ii), (iii), (iv) By the definition of the sets Ai,Bi(z),Bi(v), Ci.

With reference to Definition 13, we visualize Di−1
i+1, D

i+1
i−1,Ai,Bi(z),Bi(v), Ci and edges

between these sets in Figure 1.

Figure 1: The partition of graph Γ.

Lemma 20. With reference to Definition 13, the following holds. For each integer i (1 6
i 6 D − 1), each w ∈ Di+1

i−1 (resp. Di−1
i+1) is adjacent to

(a) precisely ci−1 vertices in Di
i−2 (resp. Di−2

i ),
(b) precisely bi+1 vertices in Di+2

i (resp. Di
i+2),

(c) precisely ci − ci−1 − |Γ(w) ∩ Ci| vertices in Bi(z),
(d) precisely ci − ci−1 − |Γ(w) ∩ Ci| vertices in Bi(v),
(e) precisely bi − bi+1 − ci + ci−1 + |Γ(w) ∩ Ci| vertices in Ai,
(f) precisely |Γ(w) ∩ Ci| vertices in Ci,

and no other vertices in X.
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Proof. The proof of (a), (b) and (f) is a routine. We now prove (c). We prove (c)
for the case w ∈ Di+1

i−1. The case w ∈ Di−1
i+1 is treated similarly. First note that w is

at distance i from z, and so w must have ci neighbours in Γi−1(z). Observe also that
Γi−1(z) = Di

i−2 ∪ Di−2
i ∪ Bi(z) ∪ Ci ∪ Ai−2 ∪ Bi−2(v). As w only can have neighbours in

Di
i−2 ∪ Bi(z) ∪ Ci, the result follows from (a) above. The proof of (d) is similar, and the

proof of (e) is clear as w must have k neighbours.

Lemma 21. With reference to Definition 13, the following (i), (ii) hold.

(i) Vertex v (resp. z) is adjacent to precisely one neighbour in D0
2, precisely one neigh-

bour in D2
0, precisely b2 = k − 2 neighbours in B2(v) (resp. B2(z)), and no other

vertices in X.

(ii) For each integer i (2 6 i 6 D − 1), each w ∈ Bi(v) (resp. Bi(z)) is adjacent to

(a) precisely ci−1
vertices in Bi−1(v)
(resp. Bi−1(z)),

(b) precisely bi+1
vertices in Bi+1(v)
(resp. Bi+1(z)),

(c) precisely ci − ci−1 − |Γ(w) ∩ Ai−1| vertices in Di−1
i+1,

(d) precisely ci − ci−1 − |Γ(w) ∩ Ai−1| vertices in Di+1
i−1,

(e) precisely bi − bi+1 − ci + ci−1 + |Γ(w) ∩ Ai−1| vertices in Ci+1,
(f) precisely |Γ(w) ∩ Ai−1| vertices in Ai−1,

and no other vertices in X.

Proof. (i) This is clear.
(ii) This follows from Lemma 16 and Lemma 20.

Lemma 22. With reference to Definition 13, the following holds. For each integer i (2 6
i 6 D − 1), each w ∈ Ai is adjacent to
(a) precisely |Γ(w) ∩ Ai−1| vertices in Ai−1,
(b) precisely ci − |Γ(w) ∩ Ai−1| vertices in Di+1

i−1,
(c) precisely ci − |Γ(w) ∩ Ai−1| vertices in Di−1

i+1,
(d) precisely |Γ(w) ∩ Ai+1| vertices in Ai+1,
(e) precisely bi+1 − |Γ(w) ∩ Ai+1| vertices in Bi+1(v),
(f) precisely bi+1 − |Γ(w) ∩ Ai+1| vertices in Bi+1(z),

(g) precisely
k − 2ci − 2bi+1+

|Γ(w) ∩ Ai−1|+ |Γ(w) ∩ Ai+1|
vertices in Ci+1,

and no other vertices in X.

Proof. The proof of (a) and (d) is a routine. The proof of (b) (resp. (c)) follows from
the fact that ∂(w, x) = ∂(w, y) = i, and so w must have ci neighbours in Γi−1(x) (resp.
Γi−1(y)). We now prove (e). First note that w is at distance i+ 1 from v, and so w must
have bi+1 neighbours in Γi+2(v). As Γi+2(v) ∩ Γ(w) ⊆ Ai+1 ∪ Bi+1(z), the result follows
from (d) above. The proof of (f) is similar, and the proof of (g) is clear as w must have
k neighbours.
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Lemma 23. With reference to Definition 13, the following holds. For each integer i (3 6
i 6 D), each w ∈ Ci is adjacent to
(a) precisely |Γ(w) ∩ Ci−1| vertices in Ci−1,
(b) precisely ci−1 − |Γ(w) ∩ Ci−1| vertices in Bi−1(v),
(c) precisely ci−1 − |Γ(w) ∩ Ci−1| vertices in Bi−1(z),
(d) precisely |Γ(w) ∩ Ci+1| vertices in Ci+1,
(e) precisely bi − |Γ(w) ∩ Ci+1| vertices in Di+1

i−1,
(f) precisely bi − |Γ(w) ∩ Ci+1| vertices in Di−1

i+1,

(g) precisely
k − 2bi − 2ci−1+

|Γ(w) ∩ Ci+1|+ |Γ(w) ∩ Ci−1|
vertices in Ai−1,

and no other vertices in X.

Proof. This follows from Lemma 16 and Lemma 22.

6 The partition - part II

We continue to discuss the distance-regular graph Γ = (X,R) from Section 5. In this
section we further assume Γ is Q-polynomial. We show the partition from Section 5 is
equitable, and that the corresponding parameters are independent of x, y.

Lemma 24. With reference to Definition 13, let E denote a nontrivial primitive idem-
potent of Γ and let {θ∗i }Di=0 denote the corresponding dual eigenvalue sequence. Assume Γ
is Q-polynomial with respect to E. Then for 1 6 i 6 D − 1 and for w ∈ Di+1

i−1 ∪Di−1
i+1,

|Γ(w) ∩ Ci| = ci
(θ∗0 − θ∗i )(θ∗3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i−1 − θ∗i+1)
− ci−1 +

θ∗1 − θ∗3
θ∗i−1 − θ∗i+1

.

Proof. Assume w ∈ Di+1
i−1. If w ∈ Di−1

i+1, then the proof is similar. We abbreviate τ =
|Γ(w) ∩ Ci|. By Lemma 5 we find∑

u∈X
∂(u,v)=i−1
∂(u,w)=1

Eû−
∑
u∈X

∂(u,v)=1
∂(u,w)=i−1

Eû = ci
θ∗i−1 − θ∗1
θ∗0 − θ∗i

(Ev̂ − Eŵ). (7)

Observe that beside y, all vertices of the set {u ∈ X | ∂(u, v) = 1, ∂(u,w) = i − 1}
are contained in B2(v). On the other hand, vertices of the set {u ∈ X | ∂(u, v) =
i − 1, ∂(u,w) = 1} are contained in Di

i−2 (there is ci−1 of these vertices and all are at
distance i− 1 from z), in Ci (there is τ of these vertices and all are at distance i− 1 from
z), and in Bi(v) (there is ci − ci−1 − τ of these vertices and all are at distance i+ 1 from
z). Taking the inner product of (7) with Eẑ, using Lemma 3 and the above comments,
we get (after multiplying by |V Γ|)

ci−1θ
∗
i−1 + τθ∗i−1 + (ci − ci−1 − τ)θ∗i+1 − θ∗1 − (ci − 1)θ∗3 = ci

θ∗i−1 − θ∗1
θ∗0 − θ∗i

(θ∗2 − θ∗i ).
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Evaluating the above line using θ∗i−1 6= θ∗i+1 we obtain

τ = ci
(θ∗0 − θ∗i )(θ∗3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i−1 − θ∗i+1)
− ci−1 +

θ∗1 − θ∗3
θ∗i−1 − θ∗i+1

.

The assertion now follows.

Lemma 25. With reference to Definition 13, let E denote a nontrivial primitive idem-
potent of Γ and let {θ∗i }Di=0 denote the corresponding dual eigenvalue sequence. Assume Γ
is Q-polynomial with respect to E. Then for 2 6 i 6 D − 1 and for w ∈ Bi(z) ∪ Bi(v),

|Γ(w) ∩ Ai−1| = ci
(θ∗0 − θ∗i )(θ∗3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i−1 − θ∗i+1)
− ci−1 +

θ∗1 − θ∗3
θ∗i−1 − θ∗i+1

.

Proof. This follows from Lemma 16 and Lemma 24.

Lemma 26. With reference to Definition 13, let E denote a nontrivial primitive idem-
potent of Γ and let {θ∗i }Di=0 denote the corresponding dual eigenvalue sequence. Assume Γ
is Q-polynomial with respect to E. Then for 2 6 i 6 D − 1 and for w ∈ Ai the following
(i), (ii) hold.

(i)

|Γ(w) ∩ Ai−1| = ci
(θ∗0 − θ∗i )(θ∗3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i−1 − θ∗i+1)
.

(ii)

|Γ(w) ∩ Ai+1| = bi+1

(θ∗0 − θ∗i+1)(θ
∗
3 − θ∗i )− (θ∗1 − θ∗i+2)(θ

∗
2 − θ∗i+1)

(θ∗0 − θ∗i+1)(θ
∗
i+2 − θ∗i )

.

Proof. (i) We abbreviate τ = |Γ(w) ∩ Ai−1|. By Lemma 5 we find∑
u∈X

∂(u,x)=i−1
∂(u,w)=1

Eû−
∑
u∈X

∂(u,x)=1
∂(u,w)=i−1

Eû = ci
θ∗i−1 − θ∗1
θ∗0 − θ∗i

(Ex̂− Eŵ). (8)

Observe that all vertices of the set {u ∈ X | ∂(u, x) = 1, ∂(u,w) = i − 1} are contained
in D1

3. On the other hand, vertices of the set {u ∈ X | ∂(u, x) = i− 1, ∂(u,w) = 1} are
contained in Ai−1 (there is τ of these vertices and all are at distance i − 1 from y), and
in Di−1

i+1 (there is ci − τ of these vertices and all are at distance i + 1 from y). Taking
the inner product of (8) with Eŷ, using Lemma 3 and the above comments, we get (after
multiplying by |V Γ|)

τθ∗i−1 + (ci − τ)θ∗i+1 − ciθ∗3 = ci
θ∗i−1 − θ∗1
θ∗0 − θ∗i

(θ∗2 − θ∗i ).
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Evaluating the above line using θ∗i−1 6= θ∗i+1 we obtain

τ = ci
(θ∗0 − θ∗i )(θ∗3 − θ∗i+1)− (θ∗1 − θ∗i−1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i−1 − θ∗i+1)
.

The assertion now follows.

(ii) We abbreviate τ = |Γ(w) ∩ Ai+1|. By Lemma 5 we find∑
u∈X

∂(u,v)=i+2
∂(u,w)=1

Eû−
∑
u∈X

∂(u,v)=1
∂(u,w)=i+2

Eû = bi+1

θ∗i+2 − θ∗1
θ∗0 − θ∗i+1

(Ev̂ − Eŵ). (9)

Observe that all vertices of the set {u ∈ X | ∂(u, v) = 1, ∂(u,w) = i + 2} are contained
in B2(v). On the other hand, vertices of the set {u ∈ X | ∂(u, v) = i + 2, ∂(u,w) = 1}
are contained in Ai+1 (there is τ of these vertices and all are at distance i + 2 from z),
and in Bi+1(z) (there is bi+1− τ of these vertices and all are at distance i from z). Taking
the inner product of (9) with Eẑ, using Lemma 3 and the above comments, we get (after
multiplying by |V Γ|)

τθ∗i+2 + (bi+1 − τ)θ∗i − bi+1θ
∗
3 = bi+1

θ∗i+2 − θ∗1
θ∗0 − θ∗i+1

(θ∗2 − θ∗i+1).

Evaluating the above line using θ∗i 6= θ∗i+2 we obtain

τ = bi+1

(θ∗0 − θ∗i+1)(θ
∗
3 − θ∗i )− (θ∗1 − θ∗i+2)(θ

∗
2 − θ∗i+1)

(θ∗0 − θ∗i+1)(θ
∗
i+2 − θ∗i )

.

The assertion now follows.

Lemma 27. With reference to Definition 13, let E denote a nontrivial primitive idem-
potent of Γ and let {θ∗i }Di=0 denote the corresponding dual eigenvalue sequence. Assume Γ
is Q-polynomial with respect to E. Then for 3 6 i 6 D and for w ∈ Ci the following (i),
(ii) hold.

(i)

|Γ(w) ∩ Ci−1| = ci−1

(θ∗0 − θ∗i−1)(θ
∗
3 − θ∗i )− (θ∗1 − θ∗i−2)(θ

∗
2 − θ∗i−1)

(θ∗0 − θ∗i−1)(θ
∗
i−2 − θ∗i )

.

(ii)

|Γ(w) ∩ Ci+1| = bi
(θ∗0 − θ∗i )(θ∗3 − θ∗i−1)− (θ∗1 − θ∗i+1)(θ

∗
2 − θ∗i )

(θ∗0 − θ∗i )(θ∗i+1 − θ∗i−1)
,

where CD+1 = ∅.

Proof. This follows from Lemma 16 and Lemma 26.
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Theorem 28. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D > 3, valency k > 3 and intersection number c2 = 2. Then with reference to Definition
13, the partition of V Γ into nonempty sets Di−1

i+1, D
i+1
i−1 (1 6 i 6 D−1), Ai (2 6 i 6 D−1),

Bi(z),Bi(v) (1 6 i 6 D − 1) and Ci (3 6 i 6 D) is equitable. Moreover the corresponding
parameters are independent of x, y.

Proof. Immediate from Lemma 20, Lemma 21, Lemma 22, Lemma 23, Lemma 24, Lemma
25, Lemma 26, and Lemma 27.

7 Case D = 4

In this section we consider Q-polynomial bipartite distance-regular graph Γ with inter-
section number c2 6 2, valency k > 3 and diameter D = 4. We show that Γ is either the
4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube. For
the case c2 = 1 we have the following result.

Theorem 29. ([6, Theorem 6.1]) There does not exist a Q-polynomial bipartite distance-
regular graph with diameter D = 4, valency k > 3 and intersection number c2 = 1.

From now on we assume c2 = 2.

Lemma 30. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4, valency k > 3 and intersection number c2 = 2. With reference to Definition 13
the following (i), (ii) hold.

(i) |A2| = (k − 2)(c3 − 3)/2;

(ii) c3 > 4 if and only if A2 6= ∅.

Proof. (i) Immediately from Lemma 17(iii) and Lemma 2(ii).

(ii) Immediately from (i) above.

Lemma 31. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4 and intersection numbers c2 = 2, k > c3 > 4. Assume Γ is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. With reference to
Definition 13, pick w ∈ A2 and let λ denote the number of neighbours of w in A3. Then
the following (i), (ii) hold.

(i)

λ =
(k − 2)b3(b3 − 1)

(k − 2)(k − 3)− 2b3
.

(ii) (k − 2)(k − 3)− 2b3 divides (k − 2)b3(b3 − 1).
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Proof. (i) Let scalars s∗, q be as in Lemma 6. First note that by Lemma 6(iii) we have

c2 − 2 = −(q − 1)(q10(s∗)2 + s∗(q7 + 2q6 − 2q4 − q3)− 1)

(1− s∗q5)(1− s∗q6)
,

which implies
h(q, s∗) = q10(s∗)2 + s∗(q7 + 2q6 − 2q4 − q3)− 1 = 0. (10)

By Lemma 26 we have

λ = b3
(θ∗0 − θ∗3)(θ∗3 − θ∗2)− (θ∗1 − θ∗4)(θ∗2 − θ∗3)

(θ∗0 − θ∗3)(θ∗4 − θ∗2)
,

and by Lemma 6(ii),(iii) we find

λ =
q3(1− s∗q3)(1− s∗q5)

(1− s∗q7)2
. (11)

Consider now the number

λ(k2 − 5k + 4)

b3 − 1
− λ(k2 − 5k + 6)

b3
− k + 2. (12)

Note that b3 6= 1. Indeed, if b3 = 1, then by Lemma 6(i),(iii) we have s∗q5 = −1, and so
c2 = (q2 + 1)2/(2q2). But now c2 = 2 implies q = ±1, a contradiction. Using Lemma 6
we find that (12) is equal to

α · (q10(s∗)2 + s∗(q7 + 2q6 − 2q4 − q3)− 1) = α · h(q, s∗),

where

α =
(s∗)2(q12 − 2q11 − q10) + s∗(q9 + q8 + q7 − 2q6 + q5 + q4 + q3)− q2 − 2q + 1

(1− s∗q4)(1 + s∗q5)(1− s∗q6)(1− s∗q7)
.

By (10) we therefore have

λ =
(k − 2)b3(b3 − 1)

(k − 2)(k − 3)− 2b3
.

(ii) This follows immediately from (i) above.

Lemma 32. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4 and intersection numbers c2 = 2, k > c3 > 4. Assume Γ is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. With reference to
Definition 13, let λ be as in Lemma 31. Then the following (i), (ii) hold.

(i) Each vertex in B3(v) has exactly

(c3 − 3)(b3 − λ)

b3

neighbours in A2.
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(ii) (k − 2)(k − 3)− 2b3 divides (k − 4)b3(b3 − 1).

Proof. (i) By Lemma 17(ii),(iii) and Lemma 2 we find

|A2| =
(k − 2)(c3 − 3)

2
, |B3(v)| = b3(k − 2)

2
.

By Lemma 22(e), every vertex from A2 has b3−λ neighbours in B3(v). The result follows
from the above comments and by counting the edges betweenA2 and B3(v) in two different
ways.

(ii) Consider the number (c3 − 3)(b3 − λ)/b3. Observe that, by Lemma 31(i), we have

(c3 − 3)(b3 − λ)

b3
= k − 2b3 − 2 +

b3(b3 − 1)(k − 4)

(k − 2)(k − 3)− 2b3
.

As (c3 − 3)(b3 − λ)/b3 is integer by (i) above, the result follows.

Lemma 33. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4 and intersection numbers c2 = 2, k > c3 > 4. Assume Γ is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. Let λ be as in Lemma
31. Then the following (i)-(iii) hold.

(i) (k − 2)(k − 3)− 2b3 divides 2b3(b3 − 1);

(ii) (k − 2)(k − 3) = 2b23;

(iii) λ = (k − 2)/2.

Proof. (i) Immediately from Lemma 31(ii) and Lemma 32(ii).

(ii) It follows from (i) above that 2b3(b3−1) = `((k−2)(k−3)−2b3) for some nonnegative
integer `. We will show that ` = 1. If ` = 0, then b3 = 1. By Lemma 6(i),(iii) we
have s∗q5 = −1, and so c2 = (q2 + 1)2/(2q2). But now c2 = 2 implies q = ±1, a
contradiction. Therefore, ` > 1. Assume ` > 2. Then 2b3(b3−1) > 2((k−2)(k−3)−2b3),
which implies (k − 2)(k − 3) 6 b3(b3 + 1). Recall that c3 > 4, and so b3 6 k − 4.
But then (k − 2)(k − 3) 6 b3(b3 + 1) 6 (k − 4)(k − 3), a contradiction. Therefore
2b3(b3 − 1) = (k − 2)(k − 3)− 2b3 and the result follows.

(iii) Immediately from Lemma 31(i) and (ii) above.

Lemma 34. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4, and intersection numbers c2 = 2, k > c3 > 4. Assume Γ is not the 4-dimensional
hypercube or the antipodal quotient of the 8-dimensional hypercube. Then the following
(i), (ii) hold.

(i) q = −(
√

5 + 3)/2.

(ii) s∗ = 72
√

5− 161.
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Proof. (i) Let λ be as in Lemma 31. By (11) and by Lemma 33(iii) we find

k − 2

2
− q3(1− s∗q3)(1− s∗q5)

(1− s∗q7)2
= 0.

Observe that by Lemma 6(iii) we have

k − 2

2
− q3(1− s∗q3)(1− s∗q5)

(1− s∗q7)2
=

(q − 1)2(q + 1)f(q, s∗)

2(1− s∗q6)(1− s∗q7)2
,

where

f(q, s∗) = q17(s∗)3 + q10(s∗)2(q4 + 2q3 + 4q2 + 2q+ 2)− q3s∗(2q4 + 2q3 + 4q2 + 2q+ 1)− 1.

By Lemma 6 and comments above, we have f(q, s∗) = 0. Recall polynomial h(q, s∗) from
(10). Recall also that h(q, s∗) = 0. Note that

f(q, s∗) = h(q, s∗)(q7s∗+4q2+4q+3)−2(q3s∗(2q6+6q5+6q4−4q2−4q−1)−2q2−2q−1).

As f(q, s∗) = h(q, s∗) = 0, we also have q3s∗(2q6+6q5+6q4−4q2−4q−1)−2q2−2q−1 = 0,
and so

s∗ =
2q2 + 2q + 1

q3(2q6 + 6q5 + 6q4 − 4q2 − 4q − 1)
. (13)

Using (13) together with h(q, s∗) = 0 we get

−2(q − 1)q2(q + 1)(q2 + q + 1)2(q2 + 3q + 1)

(2q6 + 6q5 + 6q4 − 4q2 − 4q − 1)2
= 0.

As by Lemma 6 q is real and |q| > 1, we get q = −(
√

5 + 3)/2.

(ii) Immediately from (13) and (i) above.

Theorem 35. Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter
D = 4, valency k > 3 and intersection number c2 = 2. Then Γ is either the 4-dimensional
hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Proof. Assume first that c3 > 4. Then by Lemma 34 we have q = −(
√

5 + 3)/2 and
s∗ = 72

√
5 − 161. Lemma 6(iii) now implies k = −6, a contradiction. Therefore c3 = 3.

But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the
antipodal quotient of the 8-dimensional hypercube.

We finish the paper with the proof of our main theorem.

Proof of Theorem 1. Immediately from Theorem 7, Theorem 29 and Theorem 35.
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