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Abstract

We define an analog of David Little’s algorithm for reduced words in type B,
and investigate its main properties. In particular, we show that our algorithm
preserves the recording tableaux of Kraśkiewicz insertion, and that it provides a
bijective realization of the type B transition equations in Schubert calculus. Many
other aspects of type A theory carry over to this new setting. Our primary tool
is a shifted version of the dual equivalence graphs defined by Assaf and further
developed by Roberts. We provide an axiomatic characterization of shifted dual
equivalence graphs, and use them to prove a structure theorem for the graph of
type B Coxeter-Knuth relations.

Keywords: Stanley symmetric functions, Coxeter groups, reduced decompositions,
shifted tableaux, dual equivalence graphs, Little map, Kraśkiewicz insertion, qua-
sisymmetric functions, Schur P -functions

1 Introduction

Stanley symmetric functions Fw appear in the study of reduced words of permutations
[32], the representation theory of generalized Specht modules [19], and the geometry
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of positroid varieties [17]. The Fw are known to have a Schur positive expansion with
coefficients determined by the Edelman-Greene correspondence. This correspondence
associates to each reduced word a pair of tableaux (P,Q) of the same shape where the
second tableau is standard. These symmetric functions Fw can be defined as the sum of
certain fundamental quasisymmetric functions where the sum is over all reduced words
for w ∈ Sn, denoted R(w). In particular, the coefficient of x1x2 · · ·x`(w) in Fw equals
|R(w)|. There is a recurrence relation for Fw derived from Lascoux and Schützenberger’s
transition equation for Schubert polynomials [23] of the form

Fw =
∑

w′∈T (w)

Fw′ ,

along with the base cases that Fw is a single Schur function if w has at most one descent;
in this case we say w is Grassmannian. By taking the coefficient of x1x2 · · ·x`(w) on both
sides of the recurrence, we see that the sets R(w) and ∪w′∈T (w)R(w′) are equinumerous.

David Little gave a remarkable bijection between R(w) and ∪w′∈T (w)R(w′) [25] inspired
by the lectures of Adriano Garsia, which are published as a book [12]. This algorithm is
a finite sequence of steps, each of which decrements one letter in the word. If ever a 1
is decremented to a 0, then instead the whole reduced word is lifted up by one to make
space for one extra generator. This bijection is an instance of a more general phenomenon
known as Little bumps.

Recently, Hamaker and Young [16] have shown that Little bumps preserve the record-
ing tableaux under the Edelman-Greene correspondence. This proved a conjecture of
Thomas Lam [20, Conj. 2.5]. They further show that all reduced words with a given
recording tableau Q under the Edelman-Greene correspondence are connected via Little
bumps. Edelman and Greene gave a refinement on the Coxeter relations in type A, which
they call Coxeter-Knuth relations. These relations preserve the insertion tableaux under
the Edelman-Greene correspondence, and the set of reduced words which have a fixed
insertion tableau P is connected by elementary Coxeter-Knuth relations. Hamaker and
Young further showed that two reduced words that differ by an elementary Coxeter-Knuth
relation give rise to Q tableaux that differ in exactly two positions. This can be made
more precise. Consider the graph CKA(w) on all reduced words for w with an edge la-
beled i between two reduced words a = a1a2 · · · ap and b = b1b2 · · · bp whenever a and b
differ by an elementary Coxeter-Knuth relation in positions i, i+ 1, i+ 2. Call CKA(w) a
Coxeter-Knuth graph. Using the theory of dual equivalence graphs due to Assaf [3] and
the equivalent axioms given by Roberts [27], one can easily show that CKA(w) is a dual
equivalence graph and the Q tableaux for two reduced words differing by an elementary
Coxeter-Knuth move differ by one of Haiman’s dual equivalence moves [15].

In this paper, we define the analog of the Little bump Bδ
(i,j) on reduced words for the

signed permutations Bn, and show that these maps satisfy many of the same properties
as in the original case. The superscript δ ∈ {+,−} denotes the direction of the bump,
and the subscript (i, j) indicates the crossing where the bump begins. In particular, there
is a close connection to the Stanley symmetric functions for types B and C defined in [6],
see also [11, 22]. These Stanley symmetric functions again satisfy a transition equation
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[5], which proves that R(w) is equinumerous with a certain union of R(w′)’s.
To concretely state our first main result, we need to establish some notation. A signed

permutation w ∈ Bn is a bijection from {−n, · · ·−1, 1, 2, . . . , n} to itself such that w(i) =
−w(−i). One could represent w in one-line notation either by listing [w(−n), w(−n +
1), . . . , w(−1), w(1), . . . , w(n)] in long form or simply [w(1), . . . , w(n)] in short form. For
example, [1, 2̄, 4̄, 3, 3̄, 4, 2, 1̄] and [3̄, 4, 2, 1̄] represent the same element in B4 where −i is
denoted ī. For our purposes, we identify v ∈ Bn with the element w ∈ Bn+1 such that
v(i) = w(i) for 1 6 i 6 n and w(n + 1) = n + 1. Set B∞ = ∪Bn in this identification.
For i < j ∈ Z \ {0}, let tij be the (signed) transposition such that tij(i) = j, tij(j) = i,
tij(−i) = −j, tij(−j) = −i and for every integer k 6∈ {±i,±j, 0} we have tij(k) = k.
If w ∈ B∞ has w(1) < w(2) < . . . , we say w is increasing. If w is not increasing, let
(r < s) be the lexicographically largest pair of positive integers such that wr > ws. Set
v = wtrs. Let T (w) be the set of all signed permutations w′ = vtir for i < r, i 6= 0 such
that `(w′) = `(w).

Theorem 1.1. Using the notation above, if w ∈ B∞ is not increasing, then the particular
Little bump B−(r,s) : R(w) −→

⋃
w′∈T (w) R(w′) is the bijection predicted by the transition

equation for type C Stanley symmetric functions.

The analog of Edelman-Greene insertion and elementary Coxeter-Knuth relations for
signed permutations were given by Kraśkiewicz [18]. Kraśkiewicz insertion inputs a re-
duced word a and outputs two shifted tableaux (P ′(a), Q′(a)) of the same shifted shape
where the recording tableau Q′(a) is standard. We develop some properties of the signed
Little bumps and the recording tableaux as maps on reduced words summarized in the
next theorem.

Theorem 1.2. Suppose w and wtij are signed permutations such that `(w) = `(wtij) + 1.

1. The Little bump Bδ
(i,j) maps R(w) to reduced words for some signed permutation

w′ = wtijtkl with `(w) = `(w′).

2. Two reduced words a and b are connected via Little bumps if and only if Q′(a) = Q′(b)
under Kraśkiewicz insertion.

3. For each standard shifted tableau Q′, there exists a unique reduced word a for an
increasing signed permutation such that Q′(a) = Q′.

The Coxeter-Knuth relations given by Kraśkiewicz lead to a type B Coxeter-Knuth
graph CKB(w) for each w ∈ B∞. An important step in proving Theorem 1.2 is showing
that two reduced words for signed permutations that differ by an elementary Coxeter-
Knuth relation give rise to two Q′ tableaux that differ by one of Haiman’s shifted dual
equivalence moves [15]. In fact, shifted dual equivalence completely determines the graph
structure for type B Coxeter-Knuth graphs and vice versa. Thus, we define shifted dual
equivalence graphs in analogy with the work of Assaf and Roberts on dual equivalence
graphs.
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Theorem 1.3. Every type B Coxeter-Knuth graph CKB(w) is a shifted dual equivalence
graph with signature function given via peak sets of reduced words. The isomorphism is
given by Q′ in Kraśkiewicz insertion. Conversely, every connected shifted dual equivalence
graph is isomorphic to the Coxeter-Knuth graph for some increasing signed permutation.

Putting Theorem 1.2 and Theorem 1.3 together, one can see that Little bumps in
both type A and type B play a similar role for Stanley symmetric functions as jeu de
taquin plays in the study of Littlewood-Richardson coefficients for skew-Schur functions.
In particular, let us say that words a, a′ communicate if there is a sequence of Little bumps
which transforms a into a′. We will show that there is exactly one reduced word for a
unique increasing signed permutation in each communication class under Little bumps.

We give local axioms characterizing graphs isomorphic to shifted dual equivalence
graphs or equivalently Coxeter-Knuth graphs of type B. We state the theorem here using
some terminology that is developed in Section 5.

Theorem 1.4. A signed colored graph G = (V, σ, E) of shifted degree [n] is a shifted dual
equivalence graph if and only if the following local properties hold.

1. If I is any interval of integers with |I| 6 9, then each component of G|I is isomorphic
to the standard shifted dual equivalence graph of a shifted shape of size up to |I|.

2. If i, j ∈ N with |i − j| > 3, (u, v) ∈ Ei and (u,w) ∈ Ej, then there exists a vertex
y ∈ V (G) such that (v, y) ∈ Ej and (w, y) ∈ Ei.

We propose that the study of Coxeter-Knuth graphs initiated in this paper is an
interesting way to generalize dual equivalence graphs to other Coxeter group types. For
example, in type A, dual equivalence graphs have been shown to be related to crystal
graphs [2]. Furthermore, the transition equation due to Lascoux and Schützenberger
follows from Monk’s formula for multiplying a special Schubert class of codimension 1
with an arbitrary Schubert class in the flag manifold of type A. The elementary Coxeter-
Knuth relations could have been derived from the Little bijection provided one understood
the Coxeter-Knuth relations for the base case of the transition equations in terms of
Grassmannian permutations. The transition equations for the other classical groups follow
from Chevalley’s generalization for Monk’s formula on Schubert classes [8]. In fact, there
is a very general Chevalley Formula for all Kac-Moody groups [24].

We comment on one generalization which did not work as hoped. In type A, Chmutov
showed that the molecules defined by Stembridge’s axioms can be given edge labels in
such a way that the graphs are dual equivalence graphs [9]. Alas, in type B, this does not
appear to be possible. The Kazhdan-Lusztig graph for B3 has a connected component
with an isomorphism type that does not occur for dual equivalence graphs or shifted dual
equivalence graphs. Namely, the component of [2, 1, 3̄] is a tree with 4 vertices and 3
leaves [1, 2̄, 3̄], [2̄, 3̄, 1], [2, 1, 3̄].

The paper proceeds as follows. In Section 2, we review the necessary background on
permutations and signed permutations as Coxeter groups. In Section 3, we formally define
the signed Little bumps and pushes. The key tool we use to visualize the algorithms is the
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wiring diagram of a reduced word. The conclusion of the proof of Theorem 1.1 is given in
Corollary 3.9, and Theorem 1.2(1) follows directly from Theorem 3.7. The relationships
between Little bumps, the recording tableaux under the Kraśkiewicz insertion, Coxeter-
Knuth moves of type B and shifted dual equivalence moves are discussed in Section 4.
The main results of this section prove Theorem 1.2, parts (2) and (3). In Section 5, the
shifted dual equivalence graphs are equivalently defined in terms of either shifted dual
equivalence moves or Coxeter-Knuth moves proving Theorem 1.3. Theorem 1.3 is an easy
consequence of this definition and the machinary built up in Sections 2 and 4. We go on
to prove many lemmas leading up to the axiomatization of shifted dual equivalence graphs
proving Theorem 1.4. We conclude with some interesting open problems in Section 6.

We recently learned that Assaf has independently considered shifted dual equivalence
graphs in connection to a new Schur positive expansion of the Schur P -polynomials [1].
In particular, the connection between shifted dual equivalence graphs and Little bumps
is new to this article.

2 Background

Let W be a Coxeter group with generators S = {s1, . . . , sn} and elementary relations

(sisj)
m(i,j) = 1. For w ∈ W , let `(w) be the minimal length of any expression sa1 · · · saq =

w. If `(w) = p, we say sa1 · · · sap is a reduced expression and the list of subscripts a1a2 · · · ap
is a reduced word for w = sa1sa2 · · · sap . Let R(w) be the set of reduced words for w.

For w ∈ W , one can define a graph G(w) with vertices given by the reduced words
of w using the Coxeter relations. In this graph, any two reduced words are connected by
an edge if they differ only by an elementary relation of the form sisjsi · · · = sjsisj · · ·
where each side is a product of m(i, j) generators. It is a well known theorem, sometimes
attributed to Tits, that this graph is connected [7, Thm. 3.3.1].

2.1 Type A

The symmetric group Sn is the Coxeter group of type An−1. For our purposes, we can
think of w ∈ Sn in one-line notation as w = [w1, w2, . . . , wn] or as w = [w1, w2, . . . ] ∈ S∞
with wi = i for all i > n. Let tij be the transposition interchanging i and j and fixing all
other values. Then right multiplication by tij interchanges the values in positions i and j
in w.

The group Sn is minimally generated by the adjacent transpositions s1, . . . , sn−1, where
si = ti,i+1, with elementary Coxeter relations

1. Commutation: sisj = sjsi provided |i− j| > 1,

2. Braid: sisi+1si = si+1sisi+1.

For example, if w = [2, 1, 5, 4, 3], then

R(w) = {1343, 3143, 3413, 3431, 4341, 4314, 4134, 1434}
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and G(w) is a cycle on these 8 vertices.
In [10], Edelman-Greene (EG) gave an insertion algorithm much like the famous

Robinson-Schensted-Knuth (RSK) algorithm for inserting a reduced word into a tableau
for some partition λ = (λ1 > λ2 > . . . > λk > 0). The one difference in EG in-
sertion is that when inserting an i into a row that already contains an i and i + 1,
we skip that row and insert i + 1 into the next row. If one keeps track of the
recording tableau of the insertion, then the process is invertible. Let P (a) be the
EG insertion tableau for a = a1 . . . ap and let Q(a) be the recording tableau. Define
EG(w) = {P : P = P (a) for some a ∈ R(w)}.

For example, using EG insertion, the reduced word 1343 inserts to give

1 → 1 3 → 1 3 4 →
4
1 3 4 .

So
P (1343) = 4

1 3 4
and Q(1343) = 4

1 2 3

in French notation.
The EG recording tableau Q(a) is a standard Young tableau of partition shape λ,

denoted SY T (λ). These are bijective fillings of the Ferrers diagram for the partition λ
with rows and columns increasing. The row reading word of a standard tableau T is the
permutation in one-line notation obtained by reading along the rows of T in the French
way, left to right and top to bottom. The ascent set of T is the set of all i such that i
precedes i+ 1 in the row reading word of T . Similarly, define the ascent set of a reduced
word a = a1 · · · ap to be {j : aj < aj+1}. If a position is not an ascent, it is called a
descent.

Theorem 2.1. [10, Theorems 6.25 and 6.27] Fix w ∈ S∞ and P ∈ EG(w). Then, the
recording tableau for EG insertion gives a bijection between {a ∈ R(w) : P (a) = P} and
the set of standard Young tableaux of the same shape as P . Furthermore, this bijection
preserves ascent sets.

Definition 2.2. Let aλ,w be the number of distinct tableaux P ∈ EG(w) such that P
has shape λ. We call these numbers the Edelman-Greene coefficients.

Definition 2.3. [32] For w ∈ S∞ and a = a1 · · · ap ∈ R(w), let I(a) be the set of
all increasing integer sequences 1 6 i1 6 i2 6 · · · 6 ip such that ij < ij+1 whenever
aj < aj+1. The Stanley symmetric function Fw = FA

w is defined by

FA
w =

∑
a∈R(w)

∑
i1i2···ip∈I(a)

xi1xi2 · · ·xip .

Here, the inner summation
∑

i1i2···ip∈I(a) xi1xi2 · · ·xip is the fundamental quasisymmet-

ric function indexed by the ascent set of a [31, Ch. 7.19]. Edelman-Greene showed that
the ascent set of a ∈ R(w) agrees with the ascent set of Q(a). Furthermore, Ira Gessel
[13] showed that the Schur function sλ is the sum over all standard tableaux T of shape λ
of the fundamental quasisymmetric function by the ascent set of T . Putting this together
gives the following theorem.
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Theorem 2.4. [10, Theorem 6.27] Fix w ∈ S∞. Then

FA
w =

∑
λ

aλ′,wsλ,

where sλ is the Schur function indexed by the partition λ, λ′ is the conjugate partition
obtained from λ by counting the length of the columns in the Ferrers diagram, and each
aλ′,w is a nonnegative integer given in Definition 2.2.

Edelman-Greene also characterized when two reduced expressions give rise to the same
P tableau by restricting the elementary Coxeter relations. For this characterization, they
define the elementary Coxeter-Knuth relations to be either a braid move or a witnessed
commutation move:

1. ikj ↔ kij for all i < j < k,

2. jik ↔ jki for all i < j < k,

3. i(i+ 1)i↔ (i+ 1)i(i+ 1).

Two words which are connected via a sequence of Coxeter-Knuth relations are said to be
in the same Coxeter-Knuth class.

Theorem 2.5. [10, Theorem 6.24] Let a, b ∈ R(w). Then P (a) = P (b) if and only if a
and b are in the same Coxeter-Knuth class.

In the example w = [2, 1, 5, 4, 3], there are three Coxeter-Knuth classes {3143, 3413},
{3431, 4341, 4314}, and {1343, 4134, 1434}, which respectively insert to the three P
tableaux:

3 4
1 3

4
3
1 4

4
1 3 4 .

Let CKA(w) be the Coxeter-Knuth graph for w ∈ S∞ with vertices R(w) and colored
(labeled) edges constructed using Coxeter-Knuth relations. An edge between a and b is
labeled i if aj = bj for all j 6∈ {i, i + 1, i + 2} and aiai+1ai+2 and bibi+1bi+2 differ by
an elementary Coxeter-Knuth relation. To each vertex a ∈ R(w) associate a signature
determined by its ascent set, σ(a) = {j : aj < aj+1}. If `(w) = p, we denote a subset
S ⊂ {1, . . . , p− 1} by a sequence in {+,−}p−1 where + in the jth position means j ∈ S.
Here σj(a) = + if aj < aj+1 and σj(a) = − if aj > aj+1. See Figure 1 for an example and
compare to G(21543), which is a cycle with eight vertices, as mentioned above.

3143
−+−

2

1
3413
+−+

3431
+−−

1 4341
−+−

2 4314
−−+

4134
−++

1 1434
+−+

2 1343
++−

Figure 1: The Coxeter-Knuth graph of w = [2, 1, 5, 4, 3].
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Let αi be the involution defined by the edges of CKA(w), namely αi(a) = b provided
a and b are connected by an edge colored i, or equivalently an elementary Coxeter-Knuth
relation on positions i, i+1, i+2. If a is not contained in an i-edge, then define αi(a) = a.

The type A Coxeter-Knuth graphs are closely related to dual equivalence graphs on
standard tableaux as defined by Assaf [3]. For a partition λ, one defines a standard dual
equivalence graph Gλ to be the graph with vertex set given by SY T (λ), and an edge
colored i between any two tableaux that differ by an elementary dual equivalence defined
as follows.

Definition 2.6. [15] Given a permutation π ∈ Sn, define the elementary dual equivalence
operator di for all 1 6 i 6 n−2 as follows. Say {i, i+1, i+2} occur in positions a < b < c
in π, then di(π) = πtac provided π(b) 6= i + 1 and di(π) = π otherwise. Dual equivalence
operators also act on standard tableaux by acting on their row reading word.

It was observed by the first author that the following theorem holds by combining the
work in the original version of [16] and [27]. This was the start of our collaboration.

Theorem 2.7. [16, Thm. 1.3] The graph CKA(w) is isomorphic to a disjoint union of
standard dual equivalence graphs for each w ∈ Sn. The isomorphism preserves ascent sets
on vertices. On each connected component, the Edelman-Green Q function provides the
necessary isomorphism. Furthermore, ascent sets are preserved.

2.2 Type B/C

The hyperoctahedral group, or signed permutation group Bn is also a finite Coxeter
group. This group is the Weyl group of both the root systems of types B and C of
rank n. Recall from Section ?? that we have defined the (signed) transposition tij to
be the signed permutation interchanging i with j and −i with −j for all i, j 6= 0. The
group Bn is generated as a Coxeter group by the adjacent transpositions s1, . . . , sn−1 with
si = ti,i+1 plus an additional generator s0 = t−1,1. Thus, if w = [w1, . . . , wn] ∈ Bn, then
ws0 = [−w1, w2, . . . , wn]. For example, [3̄, 2, 1] = s1s2s1s0 ∈ B3. Again, let R(w) denote
the set of all reduced words for w. Note that if w ∈ Sn, then it can also be considered as an
element in Bn with the same reduced words. The elementary relations on the generators
are given by

1. Commutation: sisj = sjsi provided |i− j| > 1,

2. Short Braid: sisi+1si = si+1sisi+1 for all i > 0,

3. Long Braid: s0s1s0s1 = s1s0s1s0.

Shifted tableaux play the same role in types B/C as the usual tableaux play in type
A. Given a strict partition λ = (λ1 > λ2 > · · · > λk > 0), the shifted shape λ is the set
of squares in positions {(i, j) : 1 6 i 6 k, i 6 j 6 λi + i− 1}. A standard shifted tableau
T is a bijective filling of a shifted shape with positive integers with rows and columns
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S=

7
5 6 8
1 2 3 4 9 , T=

7
3 6 8

1 2 4 5 9 , U =

0
2 1 0

3 2 1 0 1

Figure 2: A standard tableau S, standard shifted tableau T and unimodal tableau U
respectively of shape λ = (5, 3, 1).

increasing. For example, see T in Figure 2. Let SST (λ) be the set of standard shifted
tableaux of shifted shape λ.

We will also need to consider another type of tableaux on shifted shapes. We say a
list r = r1 . . . rl is unimodal if there exists an index j, referred to as the middle, such
that r1 . . . rj is decreasing and rj . . . rl is increasing. A unimodal tableau T is a filling of
a shifted shape with nonnegative integers such that the reading word along each row is
unimodal.

In 1989, Kraśkiewicz[18] gave an analog of Edelman-Greene insertion for reduced words
of signed permutations. Kraśkiewicz insertion is a variant of the mixed shifted insertion
of [14] that maps a reduced word b of a signed permutation to the pair of shifted tableaux
(P ′(b), Q′(b)) where Q′(b) is a standard shifted tableau and P ′(b) is a unimodal tableau
of the same shape such that the reading word given by reading rows left to right from
top to bottom is a reduced word for w. Once again, there is an analog of the Coxeter-
Knuth relations. We will need the details of this insertion map and relations for our main
theorems. Our description of this map is based on an equivalent algorithm in Tao Kai
Lam’s Ph.D. thesis [22].

First, there is an algorithm to insert a non-negative integer into a unimodal sequence.
Given a number k and a (potentially empty) unimodal sequence r = r1 . . . rl with middle
index j, we insert k into r and obtain another unimodal sequence as follows:

1. If k 6= 0 or rj 6= 0, perform Edelman-Greene insertion of k into rj+1 . . . rl. Call the
bumped entry k−, if it exists. Call the resulting string after insertion v1 . . . vq. Note,
q may be l − j or l − j + 1.

2. If k = 0 and rj = 0, set k− = 1. Set v1 . . . vq = rj+1 . . . rl.

3. If k− exists, perform Edelman-Greene insertion of −k− into −r1 · · · − rj. This time
a bumped entry −ri will exist, as k− > rj. Set k′ = ri. Set u1 . . . uj to be the result
of negating every entry in the resulting string after insertion and reversing it.

4. If k− does not exist, set u1 . . . uj = r1 . . . rj.

5. Output the unimodal sequence u1 . . . ujv1 . . . vq and k′ if it exists.

The Kraśkiewicz insertion of a non-negative integer k into a shifted unimodal tableau
P ′ starts by inserting k into the first row of P ′ using the algorithm above. Replace the
first row of P ′ by u1 . . . upv1 . . . vq. If k− exists and k′ is the output, then insert k′ in the
second row of P ′, etc. Continue until no output exists or no further rows of P ′ exist. In
that case, add k′ in a new final row along the diagonal so the result is again a shifted
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unimodal tableau. Call the final tableau P ′ ← k. For w ∈ B∞ and a = a1 · · · ap ∈ R(w),
let P ′(w) be the result of inserting ∅ ← a1 · · · ap consecutively into the empty shifted
unimodal tableau denoted ∅.

For example, using Kraśkiewicz insertion, on the same reduced word 1343 as before
inserts to give

1 → 1 3 → 1 3 4 →
1

4 3 4 .

So

P ′(1343) =
1

4 3 4 and Q′(1343) =
4

1 2 3 .

Also, 021032101 ∈ R([3̄, 4̄, 1̄, 2]) gives P ′ = U,Q′ = T from Figure 2.

Kraśkiewicz insertion behaves well with respect to the peaks of a reduced word. Given
any word a1 . . . ap, we say a has an ascent in position 0 < i < p if ai < ai+1 and a descent
if ai > ai+1. Similarly, we say a has a peak in position 1 < i < p if ai−1 < ai > ai+1.
Define the peak set of a ∈ R(w) to be peaks(a) = {1 < i < p : ai−1 < ai > ai+1}. For
example, peaks(4565) = {3} and peaks(7267) = ∅. Recall that standard tableaux have
associated ascent sets and descent sets as well as defined just before Theorem ??. Given
a standard (shifted) tableau T , we say j is a peak of T provided j appears after j− 1 and
j + 1 in the row reading word of T , so there is an ascent from j − 1 to j and a descent
from j to j + 1. The peak set of T , denoted again peaks(T ), is defined similarly.

Theorem 2.8. [22, Theorem 2.10] Given a signed permutation w and a reduced word
a ∈ R(w), peaks(a) = peaks(Q′(a)).

One important tool for studying Kraśkiewicz insertion is a family of local transfor-
mations on words known as the type B Coxeter-Knuth moves. These moves are based on
certain type B elementary Coxeter relations that depend on exactly four adjacent entries
of a word.

Definition 2.9. [18] The elementary Coxeter-Knuth moves of type B are given by the
following rules on any reduced word i1i2i3i4. If i1i2i3i4 has no peak then β(i1i2i3i4) =
i1i2i3i4. If i1i2i3i4 has a peak in position 3, β(i1i2i3i4) is given by reversing β(i4i3i2i1). If
i1i2i3i4 has a peak in position 2, then we have three cases:

1. Long braid: If i1i2i3i4 = 0101, then define β(0101) = 1010. Note 1010 is another
reduced word for the same signed permutation, and it has a peak in position 3.

2. Short braid witnessed by smaller value: If there are 3 distinct letters among
i1i2i3i4 and there is a corresponding short braid relation specifically of the form
i1i2i3i4 = a b+ 1 b b+ 1 or b b+ 1 b a for some a < b. Define

β(a b+ 1 b b+ 1) = a b b+ 1 b and (2.1)

β(b b+ 1 b a) = b+ 1 b b+ 1 a. (2.2)
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Again the sequence β(i1i2i3i4) has a peak in position 3 since a < b. Also, this word
is another reduced word for the same signed permutation which differs by a short
braid move.

3. Peak moving commutation: In all other cases,

β(i1i2i3i4) = (i1i2i3i4)sj

for the smallest j such that (i1i2i3i4)sj is related to i1i2i3i4 by a commuting move
and has peak in position 3. Here sj is the operator acting on the right by swapping
positions j and j + 1.

Observe that i1i2i3i4 is fixed by β if and only if i1i2i3i4 has no peak. Furthermore,
the map β is an involution on R(w) for w a signed permutation with `(w) = 4. Define
a family of involutions βi acting on reduced words a1a2 · · · ap by replacing aiai+1ai+2ai+3

by β(aiai+1ai+2ai+3),provided 0 < i 6 p− 3.

Theorem 2.10. [18] Let a and b be reduced words of signed permutations. Then P ′(a) =
P ′(b) if and only if there exist Coxeter-Knuth moves of type B relating a to b. Furthermore,
for each standard shifted tableau Q of the same shape as P ′(a), there exists a reduced word
c for the same signed permutation such that P ′(c) = P ′(a) and Q′(c) = Q.

Using the Coxeter-Knuth moves of type B, we can define an analogous graph CKB(w)
on the reduced words for w ∈ Bn with edges defined by the involutions βi. Each connected
component of CKB(w) has vertex set given by a Coxeter-Knuth equivalence class {a ∈
R(w) : P ′(a) = P ′}, and assuming this set is nonempty, Q′ gives a bijection between
this set and the standard shifted tableaux of the same shape as P ′. In Section 4, we will
show that every connected component of CKB(w) is isomorphic to some CKB(v) where
v is increasing. In Section 5, we will show that Q′ gives an isomorphism of signed colored
graphs with a graph on standard shifted tableaux of the same shape with edges given by
shifted dual equivalence.

2.3 Stanley symmetric functions revisited

For signed permutations, there are two forms of Stanley symmetric functions and their
related Schubert polynomials, see [6, 11, 22]. The distinct forms correspond to the root
systems of type B and C, which both have signed permutations as their Weyl group. The
definition we will give is the type C version, from which the type B version can be readily
obtained. First, we introduce an auxiliary family of quasisymmetric functions.

In type A, ascent sets of reduced words can be used to define the Stanley symmetric
functions. In type B/C, the peak set of a reduced word plays a similar role.

Definition 2.11. [6, Eq. (3.2)] Let X = {x1, x2, . . . } be an alphabet of variables. The
peak fundamental quasisymmetric function of degree d on a possible peak set P is defined
by

Θd
P (X) =

∑
(i16...6id)∈Ad(P )

2|{i1,i2,...,id}|xi1xi2 · · ·xid
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and Ad(P ) is the set of all admissible sequences (1 6 i1 6 . . . 6 id) such that ik−1 = ik =
ik+1 only occurs if k 6∈ P .

The peak fundamental quasisymmetric functions also arise in Stembridge’s enumera-
tion of P -partitions [33] and are a basis for the peak subalgebra of the quasisymmetric
functions as studied by [4, 30] and many others. They are also related to the Schur Q-
functions Qµ(X) which are specializations of Hall-Littlewood polynomials Qµ(X; t) with
t = −1, see [26, III]. By [6, Prop. 3.2], the following is an equivalent definition of Schur
Q-functions.

Definition 2.12. For a shifted shape µ, the Schur Q-function Qµ(X) is

Qµ(X) =
∑
T

Θ
|µ|
peaks(T )(X)

where the sum is over all standard shifted tableaux T of shape µ.

Remark 2.13. In this way, the peak fundamental quasisymmetric functions play the
role of the original fundamental quasisymmetric functions in Gessel’s expansion of Schur
functions [13].

Let gµw be the number of distinct shifted tableaux of shape µ that occur as P ′(a)
for some a ∈ R(w) under Kraśkiewicz insertion. The numbers gµw can equivalently be
defined as the number of reduced words in R(w) mapping to any fixed standard tableaux
of shape µ by Haiman’s promotion operator [15, Prop. 6.1 and Thm. 6.3 ]. Haiman’s
promotion operator on a ∈ R(w) in type B is equivalent to Kraśkiewicz’s Q′(a). Recall
from Theorem 2.8 that Q′(a) and a have the same peak set which implies the equivalence
in the following definition.

Definition 2.14. [6, Prop. 3.4] For w ∈ B∞ with d = `(w), define the type C Stanley
symmetric function to be

FC
w (X) =

∑
µ

gµwQµ(X)

=
∑

a∈R(w)

Θ
`(w)
peaks(a)(X)

=
∑

a∈R(w)

∑
(i16...6id)∈Ad(P )

2|{i1,i2,...,ip}|xi1xi2 · · ·xid .

Every Schur Q-function is itself a type C Stanley symmetric function. In particular, for
the shifted partition µ = (µ1 > µ2 > · · · > µk > 0), we can construct an increasing signed
permutation w(µ) in one-line notation starting with the negative values µ̄1, µ̄2, . . . , µ̄k and
ending with the positive integers in the complement of the set {µ1, µ2, . . . , µk} in [µ1]. For
example, if µ = (5, 3, 1) then w(µ) = (5̄, 3̄, 1̄, 2, 4). Then by [6, Thm.3],

FC
w(µ)(X) = Qµ(X). (2.3)

Conversely, every increasing signed permutation w gives rise to an FC
w which is a single

Schur Q-function defined by the negative numbers in [w(1), . . . , w(n)].
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Figure 3: A wiring diagram of a = 0120312 ∈ R(342̄1̄).
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Theorem 2.15. [5, Cor. 9] Let w be a signed permutation which is not increasing. Then
we have the following transition equation

FC
w (X) =

∑
w′∈T (w)

FC
w′(X). (2.4)

This expansion terminates in a finite number of steps as a sum with all terms indexed by
increasing signed permutations.

Note that the index set T (w) is defined in the remarks before Theorem 1.1.

Corollary 2.16. Let w be a signed permutation that is not increasing. Then

|R(w)| =
∑

w′∈T (w)

|R(w′)|.

Proof. Consider the coefficient of x1x2 · · · x`(w) in FC
w (x) and the right hand side of (2.4).

3 Pushes, Bumps and the Signed Little Bijection

In this section, we define the signed Little map on reduced words via two other algorithms
called push and bump. A key tool is the wiring diagrams for reduced words of signed
permutations. The main theorem proved in this section is Theorem 1.1, which says that
the Little bumps determine a bijection on reduced words that realizes the transition
equation for type C Stanley symmetric functions.

The wiring diagram of a = a1a2 · · · ap is the array [p]×[−n, n] in Cartesian coordinates.
Each ordered pair in the array indexes a square cell, which may or may not contain
a cross, denoted ×: specifically, the crosses are located at (j, aj), and (j,−aj) for all
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1 6 j 6 p (thus if aj = 0, there will be just one cross in column j). The boundaries
between cells (u, v) and (u, v + 1), as well as the top and bottom edges of the diagram,
contain a horizontal line denoted unless there is a cross in the cell immediately above
or below. The line segments connect with the crosses to form “wires” with labels [−n] =
{−1,−2, . . . ,−n} and [n] = {1, 2, . . . , n} starting on the right hand edge of the diagram.
So, specifically in the rightmost column, if ap > 0 then wires ap and ap+1 cross in column
p, and also wires −ap and −ap − 1 cross. If ap = 0, then wires 1 and −1 cross in column
p. For each 0 6 k < p, define wk = sap . . . sak+1

, so that w0 = w−1 and define wp to be the
identity. The sequence of wire labels reading up along the left edge from bottom to top
gives the long form of the signed permutation w−1. More generally, the sequence of labels
on the wires of the wiring diagram just to the right of column k is the signed permutation
wk. Every wiring diagram should be considered as a subdiagram of the diagram with wires
labeled by all of Z \ {0} where all constant trajectories above and below the diagram are
suppressed in keeping with the notion that every signed permutation in Bn can be thought
of as an element of B∞. See Figure 3 for an illustration of these definitions.

The inversion set InvB(w) of a signed permutation w is

InvB(w) = {(i, j) ∈ ([−n] ∪ [n])× [n] : |i| 6 j and w(i) > w(j)}.

We have defined the wiring diagrams so that the inversion (i, j) corresponds with the
crossing of wires i and j in any wiring diagram of a reduced word for w. Note, the wires
−j and −i also cross in the same column in such a diagram. Thus, it is equivalent to refer
to the inversion (i, j) by (−j,−i). If a ∈ R(w), then the wiring diagram for a is reduced
and every crossing corresponds to an inversion for w.

For a word a = a1 . . . ap and δ ∈ {−1, 1}, we define a push P δ
i at index i to be the map

that adds δ to ai while fixing the rest of the word provided ai. If ai = 0, then regardless
of δ, the ith entry is set to 1 in the resulting word e.g. P−1 (0) = P+

1 (0) = 1. We will write
P−k and P+

k for δ = −1 and δ = 1 respectively. The effect pushes have on wiring diagrams
can be observed in Figure 4.

If a = a1 . . . ap is a word that is not reduced, we say a defect is caused by ai and aj
with i 6= j if the removal of either leaves a reduced word. The following lemma can be
deduced for signed permutations from the wiring diagrams, but it holds more generally
for Coxeter groups.

Lemma 3.1. [21, Lemma 21] For W a Coxeter group and w ∈ W , let a = a1 . . . âi . . . ap ∈
R(w) such that a1 . . . ap is not reduced. Then there exists a unique j 6= i such that
a1 . . . âj . . . ap is reduced. Moreover, a1 . . . âj . . . ap ∈ R(w).

Definition 3.2 (Little Bump Algorithm). Let a = a1 . . . ap be a reduced word of the
signed permutation w and (i, j) ∈ InvB(w) such that `(wtij) = `(w)− 1. Fix δ ∈ {−1, 1}.
We define the Little bump for w at the inversion (i, j) in the direction δ, denoted Bδ

(i,j),
as follows.

Step 1: Identify the column k and row r containing the wire crossing (i, j) with i < j.
If ak = 0, set b := P 1

k (a) and δ := −δ. If ak > 0, then either wk(ak) = i or
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wk(ak) = −j. If wk(ak) = i, set b := P δ
k (a). Otherwise wk(ak) = −j, and we set

δ := −δ and b := P δ
k (a). Next, set r := r + δ. Note that the order in which the

variables are updated matters. Let (x < y) be the new wires crossing in column k
and row r.

Step 2: If b is reduced, return b. Otherwise, by Lemma 3.1 there is a unique defect
caused by bk and some bl with l 6= k. If bl > 0, then either wl(bl + 1) ∈ {x, y} or
wl(bl + 1) ∈ {−x,−y}. If bl = 0, then x = −y and wl(1) ∈ {−x, x}.

• If bl > 0 and wl(bl + 1) ∈ {x, y}, set r := r + δ, k := l, and b := P δ
k (b). After

updating the variables, let (x < y) be the wires crossing in the diagram for b
in column k and row r. Repeat Step 2.

• Otherwise, bl = 0 or wl(bl + 1) ∈ {−x,−y}. Set δ := −δ, r := r+ δ, k := l and
b := P δ

k (b). Again, the order matters. After updating the variables, let (x < y)
be the wires crossing in column k and row r. Repeat Step 2.

Figure 4 shows each step of a Little bump in terms of wiring diagrams. The corre-
sponding effect on reduced words can be read off the diagrams by noting the row numbers
of the wire crossings in the upper half plane including the x-axis.

Remark 3.3. The Little bump algorithm is best thought of as acting on wiring diagrams.
At every step, the pushes move the (x, y)-crossings consistently in the initial direction of
δ. In the first step, we move the (i, j)-crossing in the wiring diagram up if δ = +1 and
down if δ = −1. If wires i and j cross in the upper half plane then the swap ak is replaced
with ak+δ. However, if wires i, j cross in the lower half plane then the swap ak is replaced
with ak − δ and the sign of δ is switched. If a new defect crossing is later found on the
other side of the x-axis from the last crossing, then the sign of δ will switch again so that
the crossing continues to move in the same direction. Thus, if the initial push moved (i, j)
down, each subsequent iteration will continue to move a crossing down, but the effect on
the word from the corresponding push can vary.

Remark 3.4. Observe that in each iteration of Step 2, the word b has the property that
its subword b1b2 · · · b̂k · · · bp is reduced.

When analyzing Little bumps and pushes, we will need to track where the next defect
can occur. Given the wiring diagram for a word b = b1 · · · bp, not necessarily reduced,
and a crossing (x, y) in column k in the diagram, define the (lower) boundary of b for the
crossing (x, y), denoted ∂k(x,y)(b), to be the union of the trajectory of y from columns 0 to
k and the trajectory of x from columns k to p. Note using the notation of Step 2 above,
if a defect is caused by bk in this iteration it will occur along ∂k(x,y)(b). In Figure 4, the
boundary of each crossing that will be pushed is dashed. A similar concept of an upper
boundary could be defined if the initial step pushes the (i, j) cross up.
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Figure 4: The sequence of pushes corresponding to the Little bump B−
(2,1)

as applied to

a = 1021201 ∈ R([1, 3, 2]). The boundary of each crossing about to be moved is dashed.
Here, red is negative and blue is positive. The thin dashed line through the center row is
row 0 and the row numbers increase going up.
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Lemma 3.5. Let a ∈ R(w) and Bδ
(i,j) be a Little bump for w consisting of the sequence

of pushes P δ1
t1 , P

δ2
t2 , . . . acting on a. Then, for all k and δ ∈ {−1, 1}, the push P δ

k appears
at most once in this sequence. Hence, the Little bump algorithm terminates in at most
2`(w) pushes.

This proof is a slight extension of the proof of Lemma 5 in [25].

Proof. Let a = a1a2 . . . ap ∈ R(w) and ak denote the swap introducing the inversion
(i, j), with i < j. Since B−(i,j) = B+

(−j,−i), we need only demonstrate the result when the

algorithm starts with a push that moves the (i, j)-crossing down.
In Step 1 of the Little bump algorithm, either b = P δ

k (a) is reduced or there is some
l 6= k such that bk and bl cause a defect. Suppose the latter case holds. Then bk and
bl swap the wire i with some wire h 6= i, j. By considering the reverse of the word if
necessary, we may assume k < l. The defect in column l must occur on the boundary
of ∂k(x,y)(b). Observe that ∂k(i,j)(a) and ∂l(i,h)(b) coincide from 1 to k and from l to p.
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Moreover, between k and l, the boundary ∂l(i,h)(b) is strictly lower in the wiring diagram

than ∂k(i,j)(a). This can be seen in the first two diagrams shown in Figure 4. Observe that

the trajectories of −i and −j will not interact with ∂l(i,h)(b) unless j = −i. Therefore the

boundary ∂l(i,h)(b) is weakly below the boundary ∂k(i,j)(a). Similar reasoning shows that
on each iteration of Step 2 in the algorithm, the boundary always moves weakly down
provided the initial push moves a crossing down.

Now we can verify that no push occurs twice in the Little bump algorithm. In particu-
lar, we claim that both P−k and P+

k can occur, but they are never repeated. For example,
P−5 and P+

5 both occur in Figure 4. To do this, we need to examine the argument above
more closely. Assume that Step 2 starts with a push P δ

k moving a crossing into position
(k, r) in the wiring diagram of b. Assume this wiring diagram has a defect in columns k
and l and k < l. Then the boundary before and after the push P δ

k agree weakly to the
left of column k. If successive pushes occur strictly to the right of column k, then none
of these pushes will repeat P δ

k . Furthermore, the boundary to the left of column k will
be constant. The first time another iteration of Step 2 finds a defect weakly to the left of
column k, we claim it must occur in a column strictly to the left of column k, thus the
boundary moves strictly below (k, r). The reason column k cannot be part of the defect
this time is that the boundary has negative slope just to the right of the crossing in row
r column k, but to create a defect with a string passing below (k, r) the boundary must
have positive slope where the two strings meet to the right of column k. Furthermore, if
another push in column k occurs later in the algorithm, it must be on the other side of the
x-axis so it must be P−δk since the boundary moves monotonically. Once the boundary
has moved beyond both crossings in column k, neither crossing will be pushed again, so
P δ
k occurs at most once in the Little Bump algorithm.

Lemma 3.6. Let w be a signed permutation, a = a1 . . . ap ∈ R(w), and Bδ
(i,j) be a Little

bump for w. Then
peaks(a) = peaks(Bδ

(i,j)(a)).

Proof. Say i ∈ peaks(a), so ai−1 < ai > ai+1. The statement holds unless a push applied
to one of these entries during the algorithm leaves an equality in the resulting word b,
say bi−1 = bi. In this case, there is a defect caused by bi−1 and bi, so we push the other
next. The direction of the new push for defects caused by adjacent entries will be the
same unless bi−1 = bi = 0. This cannot occur since ai > ai−1 > 0 and if ai = 1, then
ai−1 = 0 = ai+1. Hence, a1 . . . âi . . . ap would not be reduced, which is not possible by
Remark 3.4.

Theorem 3.7 (Restatement of Theorem 1.2, part 1). Let x ∈ B∞, and let a ∈ R(x). Say
j < k.

1. If B−(j,k) is a Little bump for x, then B−(j,k)(a) ∈ R(xtjktij) for some i < j.

2. If B+
(j,k) is a Little bump for x, then B+

(j,k)(a) ∈ R(xtjktkl) for some k < l.
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Proof. When applying B−(j,k) on a, the initial push is some P δ1
l1

with a1 · · · âl1 · · · ap ∈ R(v)

for some v ∈ B∞. Let b = P δ1
l1

(a). Then, one can observe from the wiring diagrams that
sb1 · · · sbp = vtji1 for some i1 6= j, k.

If b is reduced, the bump is done. Otherwise, by the Little bump algorithm, there
is some unique defect between bl1 and bl2 so we push next in column l2. We know

b1 · · · b̂l2 · · · bp ∈ R(v) by construction and Remark 3.4. So when the next push occurs
in column l2 the new crossing will be between j and another string i2. Continuing the
algorithm, we see recursively that B−(j,k)(a) ∈ R(vtji) for some i 6= j, k.

Assume for the sake of contradiction that i > j, and say the (i, j)-crossing in the
wiring diagram of c = B−(j,k)(a) occurs in column l. By removing the lth swap from c

we get a wiring diagram for v that does not have (j, i) as an inversion. Thus, the i-wire
must stay entirely above the j-wire. Hence, the i wire is above the boundary of the last
push. Thus, it cannot be a part of the last push since the boundary moves monotonically
according to the proof of Lemma 3.5. We can then conclude that c ∈ R(vtij) for some
i < j.

A similar proof holds for the second statement.

We recall the notation of transition equations from Section ??. If w is not increasing,
let r be the largest value such that wr > wr+1. Define s so that (r < s) is the lexico-
graphically largest pair of positive integers such that wr > ws. Set v = wtrs. Let T (w)
be the set of all signed permutations w′ = vtir for i < r, i 6= 0 such that `(w′) = `(w).

Next, we show that the canonical Little bump B−(r,s) for w respects the transition
equations in Theorem 2.15. This is best done by describing the domain and range of
Little bumps in greater generality. For v ∈ B∞ and j ∈ Z− {0}, we define

D(v, j) = {vtij : i < j, i 6= 0 and `(vtij) = `(v) + 1}
U(v, j) = {vtjk : j < k, k 6= 0 and `(vtjk) = `(v) + 1}.

Observe that we have D(v,−j) = U(v, j). We now prove the analog of [25, Theorem 3],
from which we can deduce Theorem 1.1.

Lemma 3.8. Let v ∈ B∞ and j 6= 0. Then∑
x∈U(v,j)

|R(x)| =
∑

y∈D(v,j)

|R(y)|.

Proof. We will prove the equality bijectively by using a collection of Little bumps. Define
a map Mv,j on ∪x∈U(v,j)R(x) as follows. Say a = a1 . . . ap ∈ R(x) for some x ∈ U(v, j).
Then x = vtjk for some unique k > j. Furthermore, B−(j,k) is a Little bump for x. By

Theorem 3.7, we know that B−(j,k)(a) ∈ R(vtij) for some i < j and `(vtij) = `(vtjk). Thus,

vtij ∈ D(v, j). Set Mv,j(a) := B−(j,k)(a) for all a ∈ R(x). In this way, we construct a map

Mv,j : ∪x∈U(v,j)R(x) −→ ∪y∈D(y,j)R(y).
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Since the Little bump algorithm is reversible with B+
(i,j)(c) = a in the notation above, we

know Mv,j is injective.
The bijective proof is completed by observing that D(v, j) = U(v,−j), U(v, j) =

D(v,−j), and that B−(−j,−i) = B+
(i,j) is a Little bump for vtij ∈ D(v, j) whose image, by

the above argument, is a reduced word of some x ∈ U(v, j).

Corollary 3.9 (Restatement of Theorem 1.1). Let a ∈ R(w) and B−(r,s) be the canonical

Little bump for w. Recall that (r, s) is the lexicographically last inversion in w. Then
B−(r,s)(a) is a reduced word for w′ where

w′ ∈ T (w) = {wtrstlr | l < r and `(w) = `(wtrstrl)}.

Proof. Observe U(wtrs, r) = {w} and

D(wtrs, r) = {wtrstlr | l < r, l 6= 0, and `(w) = `(wtrstrl)} = T (w).

The result now follows from Lemma 3.8 with v = wtrs since `(wtrs) = `(w)− 1 by choice
of (r, s).

4 Kraśkiewicz Insertion and the Signed Little Bijec-

tion

In this section, we show that Coxeter-Knuth moves act on Q′(a) by shifted dual equiv-
alence, as defined in [15]. We then prove the remainder of Theorem 1.2 by applying
properties of shifted dual equivalence and showing that Little bumps and Coxeter-Knuth
moves commute on reduced words of signed permutations.

For a permutation π ∈ Sn, let π|I be the subword consisting of values in the interval
I. Let fl(π|I) ∈ S|I| be the permutation with the same relative order as π|I . Here fl is the
flattening operator. Similarly, for Q a standard shifted tableau Q|I denotes the shifted
skew tableau obtained by restricting the tableau to the cells with values in the interval I.

Definition 4.1. [15] Given a permutation π ∈ Sn, define the elementary shifted dual
equivalence hi for all 1 6 i 6 n − 3 as follows. If n 6 3, then h1(π) = π. If n = 4, then
h1(π) acts by swapping x and y in the cases below,

1x2y x12y 1x4y x14y 4x1y x41y 4x3y x43y, (4.1)

and h1(π) = π otherwise. If n > 4, then hi is the involution that fixes values not in
I = {i, i+ 1, i+ 2, i+ 3} and permutes the values in I via fl(hi(π)|I) = h1(fl(π|I)).

As an example, h1(24531) = 14532, h2(25134) = 24135, and h3(314526) = 314526.
Recall from Definition 2.9 that a type B Coxeter-Knuth move starting at position i is

denoted by βi. One can verify that this definition is equivalent to defining hi as

hi(π) = (βi(π
−1))−1.
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Given a standard shifted tableau T , we define hi(T ) as the result of letting hi act on
the row reading word of T . Observe hi(T ) is also a standard shifted tableau. We can
define an equivalence relation on standard shifted tableaux by saying T and hi(T ) are
shifted dual equivalent for all i.

Theorem 4.2. [15, Prop. 2.4] Two standard shifted tableaux are shifted dual equivalent
if and only if they have the same shape.

Recall the notion of jeu de taquin is an algorithm for sliding one cell at a time in a
standard tableau on a skew shape in such a way that the result is still a standard tableau
[28]. The analogous notion for shifted tableaux was introduced independently in [29]
and [34].

Lemma 4.3. [15, Lemma 2.3] Given two standard shifted tableaux T and U with T =
hi(U), let T ′ and U ′ be the result of applying any fixed sequence of jeu de taquin slides to
T and U , respectively. Then T ′ = hi(U

′).

Definition 4.4. Given a standard shifted tableau Q′, define ∆(Q′) as the result of re-
moving the cell containing 1, performing jeu de taquin into this now empty cell, and
subtracting 1 from the value of each of the cells in the resulting tableau.

Lemma 4.5. [22, Theorem 3.24] Let w be a signed permutation and a = a1 · · · ap ∈ R(w).
Then under Kraśkiewicz insertion

Q′(a2 · · · ap) = ∆(Q′(a1 · · · ap)). (4.2)

Lemma 4.6. Let w be a signed permutation, and let a = a1 . . . ap ∈ R(w). Then
Q′(βi(a)) = hi(Q

′(a)) for all integers 1 6 i 6 p− 3.

Proof. Recall that βi acts trivially on a if and only if both i+1, i+2 /∈ peaks(a). Similarly,
hi acts trivially on Q′(a) if and only if both i+ 1, i+ 2 /∈ peaks(Q′(a)). By Theorem 2.8,
we then see βi acts trivially if and only if hi acts trivially. Thus, the lemma holds if both
hi and βi act trivially so we will assume that this is not the case.

Since type B Coxeter-Knuth moves preserve Kraśkiewicz insertion tableaux, we see
Q′(a)|[1,i−1] = Q′(βi(a))|[1,i−1], Q′(a)|[i+4,p] = Q′(βi(a))|[i+4,p] and that the shape of
Q′(a)|[i,i+3] and Q′(βi(a))|[i,i+3] are the same. In particular, Q′(a) differs from Q′(βi(a)) by
some rearrangement of the values in [i, i + 3]. We need to show that this rearrangement
is the elementary shifted dual equivalence hi. The following proof of this fact is presented
as a commuting diagram in Figure 5.

By omitting any extra values at the end of a, we may assume that p = i + 3. Now
consider the tableaux T and U obtained by adding i − 1 to each entry in ∆i−1(Q′(a))
and ∆i−1(Q′(βi(a)). Because Q′(a)|[1,i−1] = Q′(βi(a))|[1,i−1], it follows from the definition
of ∆ that there is some fixed set of jeu de taquin slides that relates both Q′(a)|[i,i+3] to
T and Q′(βi(a))|[i,i+3] to U . Applying Lemma 4.3, we need only show that T = hi(U) to
complete the proof.
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By Lemma 4.5, we see

∆i−1(Q′(a)) = Q′(aiai+1ai+2ai+3)

and
∆i−1(Q′(βi(a))) = Q′(β1(aiai+1ai+2ai+3)).

Since Q′(β1(aiai+1ai+2ai+3)) and Q′(aiai+1ai+2ai+3) are distinct by assumption and are
necessarily standard tableaux of the same shifted shape with four cells, the shape must
be (3, 1). Furthermore, there are only two standard tableaux of shifted shape (3, 1), so
the two tableaux must be related by Q′(β1(a1a2a3a4)) = h1(Q′(a1a2a3a4)). Adding i− 1
to each entry of the two tableaux in this equation changes h1 to hi and yields the desired
result, T = hi(U).

Q′(a)|[i,i+3]
oo hi //

OO

j.d.t.

��

∆i−1

zz

Q′(βi(a))|[i,i+3]OO

j.d.t.

��

∆i−1

&&
Q′(ai · · · ai+3)

+(i−1) //
ll

h1
22

T oo
hi // U oo

+(i−1)
Q′(β1(ai · · · ai+3))

i i+1 i+3

i+2

oo hi //

OO

j.d.t.

��

∆i−1

��

i i+2 i+3

i+1
OO

j.d.t.

��

∆i−1

��
4

1 2 3 +(i−1) //
kk

h1

33

i+3

i i+1 i+2 oo hi //

i+2

i i+1 i+3 oo+(i−1)

3

1 2 4

Figure 5: The commuting relationships in the proof of Proposition 4.6 on top and a
generic example on bottom.

Next, we show that Coxeter-Knuth moves commute with Little bumps.

Lemma 4.7. Let a = a1 . . . ap be a reduced word of the signed permutation w, βk a
Coxeter-Knuth move for a and Bδ

(i,j) a Little bump for w. Then

Bδ
(i,j)(βk(a)) = βk(B

δ
(i,j)(a)).

Proof. First, observe that a Little bump and the Coxeter-Knuth move βk will only interact
if one of the pushes in the bump is applied to an entry in the window [k, k + 3]. The
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Figure 6: B−(1,2)(1010) compared to B−(1,2)(0101). The results differ by a Coxeter-Knuth
move and the final pushes introduce the same transposition.

β

inversions introduced by ai and βk(a)i are the same when i 6∈ [k, k + 3]. Therefore, since
a and βk(a) are reduced words of the same permutation, we see the inversions introduced
by akak+1ak+2ak+3 in a and βk(akak+1ak+2ak+3) in βk(a) are the same as well. Therefore if
a crossing with index in [k, k+ 3] is pushed when a Little bump Bδ

(i,j) is applied to a, such

a crossing will also be pushed when Bδ
(i,j) is applied to βk(a), though not necessarily the

same position. Our argument relies on showing commutation can be reduced to a local
check of how βk interacts with Bδ

(i,j). In particular, the result will follow from establishing
two properties:

1. Bδ
(i,j)(a) and Bδ

(i,j)(βk(a)) also differ by a Coxeter-Knuth move at position k.

2. The final push to a swap acted on by the Coxeter-Knuth move has the same effect
on w for both a and βk(a), hence would introduce the same defect should the bump
continue.

When the entries acted on by a Coxeter-Knuth move differ by two or more, these
properties are trivial to confirm. For entries that are closer, the features can be checked
for each type of Coxeter-Knuth move either by hand or by computer program. There
are as many as four checks for each type of Coxeter-Knuth move, depending on the
initial inversion and whether 0 appears in the word. These can be performed by verifying
the result for all possible bumps on reduced words in B5 of length 4. See Figure 6 for
example.

Notice that if we weakly order all shifted standard tableaux of shape λ by their peak
sets in lexicographical order, then the unique maximal element Uλ is obtained by placing
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1 through λ1 in the first row, λ1 +1 through λ1 +λ2 in the second row, and so on. Further
notice that peaks(Uλ) = {λ1, λ1 + λ2, λ1 + λ2 + λ3, . . .}.

Lemma 4.8. Let w be a signed permutation, a ∈ R(w), Bδ
(i,j) be a Little bump for w and

b = Bδ
(i,j)(a). Then Q′(a) = Q′(b).

Proof. We first show that Q′(a) and Q′(b) have the same shape. By Lemma 2.8 and
Lemma 3.6,

peaks(Q′(a)) = peaks(a) = peaks(b) = peaks(Q′(b)).

Let a′ and b′ be the reduced words with maximal peak sets in the Coxeter-Knuth class
of a and b, respectively. Applying Lemma 4.7, we may assume that a = a′. The shape
of Q′(a′) = Uλ is determined by its peak set. Hence, the shape of Q′(b) must be at least
as large as the shape of Q′(a) in dominance order. By assuming that b = b′, we can
conclude the converse. Hence, Q′(a) and Q′(b) have the same shape λ. Furthermore,
Q′(a′) = Uλ = Q′(b′).

We now proceed to showing that Q′(a) = Q′(b). By Theorem 2.10, there exists a
sequence of Coxeter-Knuth moves β = βi1 ◦ βi2 ◦ · · · ◦ βik such that β(a′) = a. From
Lemma 4.6, we see

Q′(a) = Q′(β(a′)) = hi1 . . . hik(Uλ).

Applying Lemma 4.7, β(b′) = b, so

Q′(b) = Q′(β(b′)) = hi1 . . . hik(Uλ),

from which we conclude that Q′(a) = Q′(b) = Q′(Bδ
(i,j)(a)).

As a consequence of Lemma 4.8, we prove an analog of Thomas Lam’s conjecture for
signed permutations. Two reduced words a and b communicate if there exists a sequence
of Little bumps Bδ1

1 , B
δ2
2 , . . . , B

δn
n such that b = Bδn

n (. . . Bδ1
1 (a)). Since Little bumps are

invertible, this defines an equivalence relation.

Theorem 4.9 (Restatement of Theorem 1.2, part 2). Let a and b be reduced words. Then
Q′(a) = Q′(b) if and only if they communicate via Little bumps.

Proof. If a and b communicate, then we see Q′(a) = Q′(b) by Lemma 4.8. Therefore we
only need to prove the converse.

Let Q = Q′(a) = Q′(b). We show that a and b both communicate with some reduced
word c uniquely determined by Q. Since communication is an equivalence relation, this
will complete our proof. Recall from Theorem 2.15 that by repeated application of the
transition equations, we may express any C-Stanley symmetric function as the sum of
C-Stanley symmetric functions of increasing signed permutations. Since canonical Little
bumps follow the transition equations by Corollary 3.9, repeated applications of canonical
Little bumps will transform any reduced word a into some reduced word c of an increasing
permutation u. Since a and c communicate, Q′(a) = Q′(c). By Equation (2.3) and the fact
that u is increasing, Fu(X) = Qµ(X) for some µ and the reduced expressions for u are in
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bijection with the standard tableaux of shifted shape µ under Kraśkiewicz insertion. This
implies that c is uniquely determined by Q′(a), and hence for Q′(b) as well. Therefore,
every reduced word a with Q′(a) = Q communicates with the same word c ∈ R(u).

Corollary 4.10. [Restatement of Theorem 1.2, part 3] Every communication class under
signed Little bumps has a unique reduced word for an increasing signed permutation.

For permutations, Theorem 3.32 in [22] shows that Kraśkiewicz insertion coincides
with Haiman’s shifted mixed insertion. From this, we can conclude the following.

Corollary 4.11. Let {j1 < j2 < · · · < jp} be an increasing sequence of p distinct non-
negative integers. Every communication class containing words of length p under signed
Little bumps contains a reduced word that is a permutation of {j1, j2, . . . , jp}.

This result can also be proved using Little bumps.

5 Axioms for Shifted Dual Equivalence Graphs

In this section, we build on the connection between shifted dual equivalence operators hi
and type B Coxeter-Knuth moves βi as stated in Lemma 4.6. In particular, we define and
classify the shifted dual equivalence graphs associated to these operators via two local
properties. Along the way, we also demonstrate several important properties of these
graphs. The approach is analogous to the axiomatization of dual equivalence graphs by
Assaf [3], which was later refined by Roberts [27].

Definition 5.1. Fix a strict partition λ ` n. By definition, hi acts as an involution on
the standard shifted tableaux of shape λ, denoted SST (λ). Given λ, define the standard
shifted dual equivalence graph of degree n for λ, denoted

SGλ = (V, σ, E1 ∪ . . . ∪ En−3)

as follows. The vertex set V is SST (λ), and the labeled edge sets Ei for 1 6 i 6 n − 3
are given by the nontrivial orbits of hi on SST (λ). To define the signature σ, recall from
Section 2 that every tableau T ∈ SST (λ) has a peak set, denoted peaks(T ). We encode a
peak set by a sequence of pluses and minuses denoted σ(T ) ∈ {+,−}n, where σi(T ) = +
if and only if i is a peak in T . We refer to σ(T ) as the signature of T . Note that peaks
never occur in positions 1 or n and that they never occur consecutively. Conversely, any
subset of [n] that satisfies these properties is the peak set of some tableau, hence we will
call it an admissible peak set.

In Figure 7, all of the standard shifted dual equivalence graphs of degree 6 are drawn
and labeled by their signatures omitting σ1 and σ6 since 1 and 6 can never be in an
admissible peak set. Already from this figure we can see that standard shifted dual
equivalence graphs are not always dual equivalence graphs because they can have two
vertices connected by 3 edges labeled i, i + 1, i + 2. Also, observe that if vertices v and
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Figure 7: The standard shifted dual equivalence graphs of degree 6 omitting σ1 and σ6.

w are contained in an i-edge, then σ[i+1,i+2](v) = −σ[i+1,i+2](w). Furthermore, notice that
the label i of the edge and whether or not it is a double or triple edge can be determined
entirely from the peak sets. This fact will be used often in the proofs that follow. From
this figure, we also can determine all of the possible standard shifted dual equivalence
graphs for n = 1, 2, 3, 4, 5 by fixing the values higher than n.

The standard shifted dual equivalence graphs have several nice properties on par with
the dual equivalence graphs or equivalently Coxeter-Knuth graphs of type A. By The-
orem 4.2, each SGλ is connected. Observe that by Definition 2.12, a Schur Q-function
Qλ is the generating function for the sum of peak quasisymmetric functions associated to
the labels on the vertices of SGλ. Recall from Section 4 that the lexicographically largest
peak set for all standard shifted tableaux of a fixed shape λ is given by the unique tableau
Uλ. Thus, the shape λ can be recovered from the multiset of signatures on the vertices.

Each standard shifted dual equivalence graph is an example of the following more
general type of graph.

Definition 5.2. Let C and S be two finite ordered lists. An S-signed, C-colored graph
consists of the following data:

1. a finite vertex set V ,

2. a signature function σ : V → {+,−}|S| associating a subset of S to each vertex,

3. a collection Ei of unordered pairs of distinct vertices in V for each i ∈ C.

A signed colored graph is denoted G = (V, σ, E) where E = ∪i∈CEi. We say that G
has shifted degree n if C = [n − 3], S = [n] and σ(v) is an admissible peak set for an
integer sequence of length n for all v ∈ V . The signature σ(v) is encoded by a sequence
in {+,−}n where σi(v) = + if and only if i ∈ σ(v). We use the notation σ[i,j](v) to mean
the subset σ(v) ∩ [i, j] which can be encoded by +’s and −’s as well.

Definition 5.3. Given two S-signed C-colored graphs G = (V, σ, E) and G ′ = (V ′, σ′, E ′),
a morphism of signed colored graphs φ : G→ G′ is a map from V to V ′ that preserves the
signature function and induces a map from Ei into E ′i for all i ∈ C. An isomorphism is a
morphism that is a bijection on the vertices such that the inverse is also a morphism.
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Definition 5.4. A signed colored graph G is a shifted dual equivalence graph (SDEG) if
it is isomorphic to a disjoint union of standard shifted dual equivalence graphs.

The next lemma allows us to classify the isomorphism type of any connected SDEG
by a unique standard shifted dual equivalence graph.

Lemma 5.5. Let SGλ and SGµ be any two standard shifted dual equivalence graphs. If
φ : SGλ → SGµ is an isomorphism, then λ = µ and φ is the identity map.

Proof. Suppose that φ : SGλ → SGµ is an isomorphism. Then the vertices of SGλ and
SGµ must have the same multisets of associated peak sets. By looking at the unique
lexicographically maximal peak set in both, it follows that Uλ = Uµ. In particular, λ = µ.
Thus, φ is an automorphism that sends Uλ to itself. Since hi defines the i-edges in both
SGλ and SGµ and both graphs are connected, we see that φ acts as the identity map.

The connection between shifted dual equivalence graphs and the type B Coxeter-Knuth
graphs stated in Theorem 1.3 is now readily apparent. Recall, Theorem 1.3 states that
every type B Coxeter-Knuth graph CKB(w) with signature function given by peak sets is
a shifted dual equivalence graph, where the isomorphism is given by the Kraśkiewicz Q′

function. It further states that every shifted dual equivalence graph is also isomorphic to
some CKB(w). We give the proof of this theorem now.

Proof of Theorem 1.3. We show that the map Q′ sending vertices in CKB(w) to their
recording tableaux is the desired isomorphism. This follows immediately from the defini-
tion of the Kraśkiewicz insertion algorithm, Lemma 2.8 and Lemma 4.6.

To see the converse statement, observe that SGµ is isomorphic to the Coxeter-Knuth
graph CKB(w) for the increasing signed permutation w = w(µ) as defined just before
Equation 2.3.

Definition 5.6. Given a signed colored graph G = (V, σ, E) of shifted degree n and an
interval of nonnegative integers I = [a, b] ⊂ [n], let

GI = (V, σ, Ea ∪ Ea+1 ∪ · · · ∪ Eb−3)

denote the subgraph of G using only the i-edges for a 6 i 6 b − 3. Also define the
restriction of G to I, to be the signed colored graph

G|I = (V, σ′, E ′)

1. σ′(v) = {s− a+ 1 | s ∈ σ(v) ∩ (a, b)},

2. E ′i = Ea+i−1 when i ∈ [|I| − 3].

Notice that the vertex sets of G, GI and G|I are the same. If G is a signed colored graph
with shifted degree n and I = [a, b] then G|I will have shifted degree, but the degree will
be at most |I|. It could be strictly less than |I| if n < b.

Recall the two desirable properties of a signed colored graph G stated in Theorem 1.4.
We name them here so we can refer to them easily.
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1. Locally Standard: If I is an interval of positive integers with |I| 6 9, then each
component of G|I is isomorphic to a standard shifted dual equivalence graph of
degree up to |I|.

2. Commuting: If (u, v) ∈ Ei and (u,w) ∈ Ej then there exists a vertex y ∈ V such
that (v, y) ∈ Ej and (w, y) ∈ Ei. Thus the components of (V,Ei∪Ej) for |i− j| > 3
are commuting diamonds.

Lemma 5.7. For any standard shifted dual equivalence graph SGλ, both the Locally Stan-
dard Property and the Commuting Property hold. In fact, SGλ|I is an SDEG for all
intervals I.

Proof. Consider a standard shifted dual equivalence graph SGλ for λ ` n. The Commuting
Property must hold because hi acts according to the positions of the values in [i, i + 4]
only. Hence, hi and hj commute provided |i− j| > 4.

To demonstrate the Locally Standard Property for a given interval I, observe that
we can restrict any T ∈ SST (λ) to the values in I which form a skew shifted tableau
and all the data for SGλ|I will still be determined. By Lemma 4.3, jeu de taquin slides
commute with the hi’s. So the isomorphism from SGλ|I to a union of standard shifted
dual equivalence graph is given by restriction and repeated application of the jeu de taquin
operator ∆ defined in Definition 4.4.

We note that it is also straightforward to prove Lemma 5.7 by appealing to the fact
that SGλ is isomorphic to the Coxeter-Knuth graph CKB(w) for the increasing signed
permutation w = w(λ). We know the βi’s satisfy the Commuting Property. Furthermore,
restriction on a Coxeter-Knuth graph gives rise to an isomorphism with another Coxeter-
Knuth graph since every consecutive subword of a reduced word is again reduced. It is
instructive for the reader to consider the alternative proof for the lemmas below using
Coxeter-Knuth graphs if that language is more familiar.

Lemma 5.8. Given a strict partition λ of size n, any two distinct components A and B
of SG [n−1]

λ are connected by an (n − 3)-edge in SGλ. In particular, any two vertices in
SGλ are connected by a path containing at most one (n − 3)-edge that is not doubled by
an (n− 4)-edge.

Proof. It follows from Theorem 4.2 that A and B are characterized by the position of n
in their respective shifted tableaux. Suppose A and B have n in corner cells c and d,
respectively, with c in a lower row than d. Then there exist tableaux S ∈ A and T ∈ B
that agree everywhere except in the cells containing n − 1 and n such that n − 2 lies
between n and n − 1 in the reading word of S and n − 3 comes before n − 2. Thus, by
definition of hn−3, we have hn−3(S) = T , so A and B are connected by an (n − 3)-edge.

This edge cannot be an (n− 4)-edge since A and B are not connected in SG [n−1]
λ .

Lemma 5.9. Let G = (V, σ, E) be a signed colored graph of shifted degree n satisfying the
Commuting Property and the local condition that G|[j,j+5] is a shifted dual equivalence graph
for all 1 6 j 6 n − 5. If v, w ∈ V are connected by an i-edge in G, then σk(v) = σk(w)
for all k 6∈ [i− 1, i+ 4].
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Proof. The lemma clearly holds for standard SDEGs by the definition of the shifted dual
equivalence moves hi which determine the i-edges. For k = i + 5, the lemma holds since
G|[i,i+5] is a shifted dual equivalence graph. Now assume that i+ 5 < k 6 n. Say v, w ∈ V
are connected by an i-edge in G, and assume σj(v) = σj(w) for all i + 5 6 j < k by
induction. By the local condition, the vertex v admits an (k − 2)-edge if and only if
σk−1(v) = + or σk(v) = +. These possibilities are exclusive since the signature encodes
an admissible peak set. Thus, σk(v) is determined by σk−1(v) and the presence or absence
of an adjacent (k − 1)-edge. Since i-edges and (k − 2)-edges commute for k − 2 − i > 4
by the Commuting Property, we know that v admits a (k − 2)-edge if and only if w
admits a (k − 2)-edge. Since σk−1(v) = σk−1(w) we obtain σk(v) = σk(w) by the same
considerations. Therefore, recursively σk(v) = σk(w) for all i+ 4 < k 6 n.

A similar argument works for all 1 6 k < i− 1. This completes the proof.

Lemma 5.10. Let λ be a strict partition of n and G = (V, σ, E) be a signed colored
graph of shifted degree n satisfying the Locally Standard and Commuting Properties. If
φ : G −→ SGλ is an injective morphism, then it is an isomorphism.

Proof. Let v ∈ V and say φ(v) = T ∈ SST (λ). Since φ is signature preserving and G
is Locally Standard, we can apply Lemma 5.9 to show that v has an i-neighbor in G if
and only if T has an i-neighbor in SGλ and a similar statement holds for each of their
neighbors. Furthermore, since φ is an injective morphism (v, w) ∈ Ei ∩ Ej if and only
if hi(T ) = hj(T ) = φ(w). Thus, φ induces a bijection from the neighbors of v to the
neighbors of T that preserves the presence or absence of i-neighbors. In particular, every
neighbor of T in SGλ is in the image of φ. Since SGλ is connected, there is a path from
T to any other vertex S in SGλ and by iteration of the argument above we see that φ
maps some vertex in V to S. Hence, φ is both injective and surjective on vertices, and the
inverse map is also a morphism of signed colored graphs. Thus, φ is an isomorphism.

With Lemma 5.10 in mind, our goal will be to demonstrate the existence of an injective
morphism from any connected signed colored graph satisfying the Locally Standard and
Commuting Properties to a standard SDEG. To do this, we will employ an induction on
the degree of the signed colored graphs in question. The next lemma is an important part
of that induction.

Lemma 5.11. Let G = (V, σ, E1 ∪ . . . ∪ En−2) be a signed colored graph of shifted degree
n+ 1 that satisfies the following hypotheses.

1. The Commuting Property holds on all of G.

2. Both G|[n] and G|[n−6,n+1] are shifted dual equivalence graphs.

Let C be a component of G [n]. Then the following properties hold:

1. There exists a unique strict partition µ of degree n + 1 and a signed colored graph
isomorphism φ mapping C to a component of SG [n]

µ .
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2. For every vertex v ∈ V (C), v has an (n − 2)-neighbor in G if and only if φ(v) has
an (n− 2)-neighbor in SGµ.

We refer to SGµ in this lemma as the unique extension of C in G. The outline of this
proof is based on the proof of Theorem 3.14 in [3], but it uses peak sets in addition to
ascent/descent sets for tableaux.

Proof. By hypothesis, C|[n] is isomorphic to SGλ for some strict partition λ ` n, so we
can bijectively label the vertices of C by standard shifted tableaux of shape λ in a way
that naturally preserves the signature functions σi for all 1 6 i < n. Since G|[n−6,n+1] is
an SDEG, the lemma is automatically true if n 6 7, so assume n > 7.

Partition the vertices of C or equivalently SST (λ) according to the placement of n−1
and n. Let Dij be the subgraph of C with n in row i and n − 1 in row j with edges in
E1∪ . . .∪En−5, then each Dij is connected since its restriction to [n−2] is also isomorphic
to a standard SDEG by hypothesis. Similarly, let Di be the connected subgraph of C with
vertex set labeled by tableaux with n in row i along with the corresponding edges in
E1 ∪ . . . ∪ En−4.

We first show that σn is constant on Dij. By Lemma 5.8, each pair S, T ∈ V (Dij) may
be connected by a path using only edges in E1∪· · ·∪En−5. By Lemma 5.9, σn is constant
on Dij. The same fact need not hold for the Di. We will show that there is a unique row
of λ where n + 1 can be placed that is simultaneously consistent with the signatures for
all vertices in all the Di’s. This placement must also be consistent with the existence of
n− 2-edges in G, completing the proof.

We proceed by partitioning the Dij for a fixed i into three types and describing how
to extend each type consistently. First, suppose that there is some nonempty Dij with
i > j. Then n is in a strictly higher row than n − 1 in all the tableaux labeling vertices
of Dij. Furthermore there is some tableau T labeling a vertex of Dij such that n − 2
lies in a row weakly above row j making position n− 1 a peak. This implies σn(T ) = −
since peaks cannot be adjacent. Since σn is constant on Dij, we see that i > j implies
σn(T ) = − for all tableaux labeling vertices in Dij. Furthermore, any placement of n+ 1
will be consistent with the fact that σn = −.

Second, suppose that i 6 j and that σn(T ) = + for all T ∈ V (Dij). We would like to
add n + 1 to a row strictly above i, but we must show this will be consistent with each
neighboring component Dij′ . By Lemma 5.8, the component Dij is connected to every
other Dij′ by an (n−4)-edge. Such an edge e = (T, U) ∈ V (Dij)×V (Dij′) could be part of
a triple edge with an (n−3), (n−2)-edge. In this case, we must have σ[n−2,n](T ) = +−+
and σ[n−2,n](U) = −+−, as demonstrated in Figure 7. Thus, if U is a vertex in Dij′ , then
position n − 1 must be a peak of U and i > j′. Therefore, if n + 1 is added in any row
to a tableau T ∈ V (Dij′) it will not create a peak in position n. On the other hand, if
Dij is connected to another nonempty Dij′ by an (n − 4)-edge that is not also a (n − 2)
edge, then again by Figure 7 one observes that σn(U) = + for all U ∈ V (Dij′). Thus, we
can consistently extend each vertex in Di by placing n + 1 in such a way that it creates
a descent from n to n + 1. Any row strictly above row i will work provided it results in
another shifted shape.
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Third, suppose that there exists a nonempty Dij such that i 6 j and σn(T ) = − for
all T ∈ V (Dij). The component Dij is connected to every other Dij′ by an (n− 4)-edge.
Assume such an edge e = (T, U) ∈ V (Dij) × V (Dij′) is part of a triple edge with an
(n − 3), (n − 2)-edge. In this case, we must have σ[n−2,n](T ) = − + − since G|[n−6,n+1] is
an SDEG. Thus, n − 1 is a peak of T , but this contradicts the assumption that i 6 j.
Therefore no (n− 4)-edge containing a vertex in Dij can be part of a triple edge with an
(n − 2)-edge. By observing Figure 7 again, we conclude that σn = − on all of Dij′ . In
this case, we can consistently extend all tableaux labeling vertices in Di by placing n+ 1
in any row weakly lower than n.

We complete the proof by placing n+1 in a unique row m consistent with the required
ascents and descents in all Di. Let X be the union of all nonempty Di containing a vertex
T with some σn(T ) = +, and let Y be the union of all nonempty Di with no vertex T such
that σn(T ) = +. Every vertex in X needs a descent from n to n + 1, and every vertex
in Y needs an ascent from n to n + 1. To do this, let m be the minimal positive integer
such that i < m for all Di ∈ X. We will show that Y consists of all Di with i > m.

If X is empty, then we may let m = 1 and extend λ to a strict partition µ by adding
one box to the first row of λ. Then C|[n] is isomorphic to the component of SGµ|[n] with
n+ 1 fixed in the first row and the conclusions of the lemma hold.

Assume X is nonempty and that i < j exist such that Di and Dj are nonempty with
Di ∈ Y . Since C is connected, there exists an (n − 3)-edge e = (S, T ) with S ∈ Di and
T ∈ Dj. By the definition of shifted dual equivalence moves on SGλ|[n], e must be an
(n − 3)-edge that acts as the transposition tn,n−1 on S and T . This implies S has n − 1
in row j and n in row i. In this configuration, n − 1 cannot be the position of a peak
in S. Thus S must have a peak in position n − 2 since it is a vertex of an (n − 3)-
edge. If σn(S) = +, then it would contradict the hypothesis that Di ∈ Y . Therefore
σ[n−2,n](S) = + − −, which implies σ[n−2,n](T ) = − + −. In particular, S and T are not
connected by an (n − 2)-edge. We then conclude that T must have an ascent from n to
n+ 1. Thus Dj ∈ Y for all j > i.

We conclude that Y consists of all the Di for all i > m and X consists of all Di for
i < m. Hence, n+1 may placed in row m, while no other choice of row can simultaneously
satisfy the required ascents and descents from n to n + 1 in all Di,j, completing the
proof.

We can also find a unique lower extension of a component of G|[2,n+1] provided similar
conditions hold. For the next lemma, recall ∆ from Definition 4.4.

Lemma 5.12. Given two shifted standard tableau T and U of shifted shape λ ` n, T and
U are in the same component of SGλ|[2,n] if and only if ∆(T ) and ∆(U) have the same
shape.

Proof. By definition, T and U are in the same component of SGλ|[2,n] if and only if they are
related by a sequence of shifted dual equivalence moves hi for 2 6 i 6 n− 3. Lemma 4.3
implies that ∆ ◦hi = hi−1 ◦∆, so T and U are in the same component if and only if ∆(T )
and ∆(U) are related by a sequence of shifted dual equivalence moves hi for 1 6 i 6 n−4.
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By Theorem 4.2, ∆(T ) and ∆(U) are related by a sequence of shifted dual equivalence
moves hi for 1 6 i 6 n− 4 if and only if they have the same shape.

Lemma 5.13. Let G = (V, σ, E1∪· · ·∪En−3) be a connected signed colored graph of shifted
degree n satisfying the Commuting Property such that G|[n−1] and G|[2,n] are SDEGs. Let C
be any component of G|[n−1], and let SGµ be the unique extension of C in G. Let v ∈ V (C),
and let C ′ be the component of v in G|[2,n]. Say SGλ ∼= C ′. If v is mapped to T ∈ SST (µ)
in SGµ, then v is mapped to ∆(T ) in SGλ.

Proof. The proof follows from Lemma 5.11 and Lemma 5.12.

Lemma 5.14. Let G = (V, σ, E1 ∪ · · · ∪ En−3) be a connected signed colored graph of
shifted degree n > 9 satisfying the Commuting Property such that G|[n−1] and G|[2,n] are
SDEGs. Let C be any component of G [n−1], and let SGµ be the unique extension of C in
G.

1. An (n− 3)-edge connects two vertices in C if and only if the corresponding vertices
are connected by an (n− 3)-edge in SGµ.

2. If two (n− 3)-edges connect the image of C to the same component in SG [n−1]
µ , then

corresponding edges in G must also connect C to the same component in G [n−1].

Proof. We begin by considering the case where (u, v) ∈ En−3 and u, v ∈ C. Since SGµ
is the unique extension of C, we can associate tableaux S, T with u, v respectively. We
want to show hn−3(S) = T . By hypothesis G|[2,n] is an SDEG. The component C ′ of G|[2,n]

containing u is isomorphic to the component of S in SGµ|[2,n] by Lemma 5.11. The vertex
u maps to ∆(S) under this isomorphism by Lemma 5.13. Since (u, v) ∈ En−3, they are
connected by an n−4-edge in C ′. By Lemma 5.13, the image of v in SGµ|[2,n] is ∆(T ) and
hn−4(∆(S)) = ∆(T ). Therefore, hn−3(S) = T since every edge in SGµ|[2,n] comes from an
edge in SGµ with one higher label.

The previous argument is reversible. That is, given S, T ∈ SST (µ) with n in the
same cell, if hn−3(S) = T then the vertices u, v in C mapping to S, T respectively must
be connected by an (n− 3)-edge in G. This proves (1).

Next we prove (2). By Lemma 5.11, we can label the vertices of C by standard tableaux
of shape µ. Let s, t ∈ C be labeled by the tableaux S and T , respectively. Assume that
(s, s′), (t, t′) ∈ En−3, but s′, t′ 6∈ C. Further assume that both S and T are connected to
the same component of SG [1,n−1]

µ by (n − 3)-edges, and that this component is distinct
from the component of T . Then, n− 1 and n must be in the same cells of S and T , with
n − 2 in some cell between the two in row reading order, and n − 3 in some cell before
that, by the definition of hn−3.

If S and T are connected via edges in E1∪ . . .∪En−7 then the lemma holds since each
of these edges commutes with edges in En−4. If S and T are connected via edges labeled
2, 3, . . . , n− 4, then we can assume s and t are also connected by edges in E2 ∪ . . .∪En−4

by Lemma 5.13. It thus suffices to show that some S ′ in the same G [n−4]-component as S
and some T ′ in the same G [n−4]-component as T exist and satisfy the following properties:
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S =
8

4 5
1 2 3 6 7 9

T =
8

6 7
1 2 3 4 5 9

Figure 8: An example from the proof of Lemma 5.14 where n = 9 and ∆(S) does not
have the same shape as ∆(T ).

both S ′ and T ′ admit (n−3)-edges that interchange n−1 and n, and both are in the same
component of C[2,n−1]. By Lemma 5.12, it suffices to find S ′ and T ′ such that ∆(S ′),∆(T ′)
have the same shape.

If S|[n−2] contains i < n− 3 in a northeast boundary cell c, then we can rearrange the
entries of S smaller than i to get S ′ so that the cell c is moved in ∆(S ′) and the rest of
the jeu de taquin slides are independent of the filling. If T |[n−2] also contains an entry
j < n − 3 in cell c, then rearrange the entries of T to agree with S ′ in all cells weakly
southwest of c to obtain T ′. Then the jeu de taquin process ∆(T ′) passes through c and
by construction ∆(S ′) and ∆(T ′) have the same shape since S and T have the same shape
and that n − 1 and n are in the same cell in both. Thus, S ′ and T ′ are connected by
edges in E2 ∪ . . . ∪ En−4 by Lemma 5.12. If the shape of S|[n−2] has 5 or more northeast
boundary cells, then such a cell c exists and the lemma holds.

There are only a finite number of strict partitions µ with at most 4 northeast boundary
cells after removing 2 corner cells. For example, if µ has 6 or more rows or 9 or more
columns then even after removing 2 corner cells there must be at least 5 boundary cells
remaining. We only need to consider such shapes with at least 10 cells by hypothesis. In
each remaining case, one needs to check that no matter how n, n− 1 are placed in corner
cells {c, d} of µ the jeu de taquin argument above may still be applied. We leave the
remaining cases to the reader to check to complete the proof.

Lemma 5.15. Let G = (V, σ, E1∪. . .∪En−3) be a connected signed colored graph of shifted
degree n > 9 satisfying the Commuting Property such that G|[n−1] is an SDEG, and G|[2,n]

is an SDEG. Then there exists a morphism φ : G → SGλ for some strict partition λ ` n.

Proof. Let t and u be distinct vertices of G that are connected by an (n − 3)-edge. Let
C and D be the components in G [n−1] of these two vertices, with unique extensions SGλ
and SGµ. Label t and u with T and U , their tableaux in SGλ and SGµ, respectively. It
suffices to show that hn−3(T ) = U . In particular, this would guarantee that λ = µ, and
that there is a morphism from G to SGλ.

We first show that we can make three simplifying observations. If T and hn−3(T ) are

in the same component of SG [n−1]
λ , then the lemma follows from Lemmas 5.14 and 5.5.

Now assume that T and hn−3(T ) are in different components of SG [n−1]
λ . By symmetry,

we may also assume that U and hn−3(U) are in different components of SG [n−1]
µ . Thus,

we can assume hn−3 acts on both T and U by switching n− 1 and n.
Secondly, applying Lemma 5.5, the Commuting Property and the hypothesis that

G|[n−1] is an SDEG, it follows that T |[n−4] = U |[n−4]. We thus only need to show that
T |[n−3,n] = hn−3(U)|[n−3,n].
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For the third observation, note that the component of T in G|[2,n] is isomorphic to the
component of the image of T in SGµ|[2,n]. This follows from the fact that the component
of T in SGλ|[2,n] satisfies the definition of the unique extension of the component of T
in G|[2,n−1] in G|[2,n]. Because the component of T in G|[2,n] is an SDEG, it follows from
Lemma 5.5 that this component is isomorphic to the component of T in SGλ|[2,n]. Further-
more, T is taken to ∆(T ) via this isomorphism. Similarly, there is another isomorphism
on the component of U in SG [2,n] taking U to ∆(U). Applying Lemma 5.5 and the fact
that T, U are in the same component of SG [2,n], we see ∆(T ) = hn−4 ◦∆(U).

The next step is to replace the original pair of vertices connecting C and D by another
such pair for which we can determine the shape of T and U from ∆(T ) and ∆(U) via jeu de
taquin more explicitly. By Lemma 5.14, we can consider any T ′ ∈ V (C) that results from
moving the values [1, n− 2] in T such that hn−3 acts on T ′ by switching n− 1 and n. For
each such T ′, let U ′ be the tableau representing a vertex in D such that (T ′, U ′) ∈ En−3.
It suffices to show that hn−3(T ′) = U ′ for any pair (T ′, U ′) assuming that

1. T ′|[n−4] = U ′|[n−4].

2. ∆(T ′) = hn−4(∆(U ′)).

3. hn−3 acts on T ′ and U ′ by switching n− 1 and n.

We proceed by considering cases depending on the shape of T |[n−4]. First, consider
the case where T |[n−4] = U |[n−4] has at least two northeast corners c1 and c2. Assume c1

is in a higher row than c2. By rearranging the values in [n− 4], we may then find T ′1 and
T ′2 in V (C) satisfying the three assumptions above such that applying ∆ to each proceeds
through c1 and c2, respectively. In the jeu de taquin process on T1, all rows strictly below
c1 are fixed once the slide reaches c1. Similarly, all columns strictly to the left of c2 are
fixed once the slide reaches c2. These two regions cover the entire shape of T |[n−4], but it
might not cover the whole shape of T . By assumption (3), n − 1, n must be in different
corners of T . Thus, it can be observed that T |[n−3,n] = T1|[n−3,n] = T2|[n−3,n] is completely
determined by their placement in ∆(T1) and ∆(T2). Similarly, hn−3(U) satisfies the same
assumptions as T , which was uniquely determined, so T = hn−3(U).

Assume next that T |[n−4] has exactly one northeast corner c. In particular, the jeu
de taquin process of applying ∆ to T must proceed through this corner. If c is also a
corner of both λ and µ, then the jeu de taquin process does not affect the cells containing
[n− 3, n] in either T or U so ∆(T ) = hn−4(∆(U)) implies T = hn−3(U).

Say c is in row i, column j of T . If i > 3 or j − i > 3, then c is on the northeast
boundary of both T and U . Here we have used the fact that hn−3 swaps n − 1 and n
in T and U to ensure that the values in [n − 3, n] are not in a single row or column.
Now consider the jeu de taquin process for ∆, which must proceed through c. Since c
is on the northeast boundary, all remaining slides are either all to the left or all down
depending only on whether or not c is a northern boundary cell or an eastern boundary
cell, respectively. Thus, ∆(T ) determines T |[n−3,n] and ∆(U) determines U |[n−3,n] where
U . Hence, T = hn−3(U).
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There are a finite number of standard shifted tableaux T satisfying the assumptions
such that T |[n−4] has a unique corner cell in position (j, i) such that i 6 3 and j − i 6 3.
We leave it to the reader to check in each case that if T and U exist satisfying the three
assumptions plus they have at least 9 cells, then by rearranging the values [n−2] one can
find T and U of the same shape and satisfying the same assumptions such that T |[n−3,n]

and U |[n−3,n] are completely determined by those assumptions and T = hn−3(U). For
example, in Figure 9 we show two possible tableaux S and T with different shapes such
that ∆(S) = ∆(T ). We also show two tableaux S ′ and T ′ that also satisfy the three
assumptions, have the same shapes as S and T respectively, but the last jeu de taquin
slide ends in a different corner. Therefore, S[8,11] can be recovered from knowing both
∆(S) and ∆(S ′), and similarly for T[8,11].

S =

8
5 6 7 10

1 2 3 4 9 11 T =

8 10
5 6 7

1 2 3 4 9 11 S ′ =

6
4 5 8 10

1 2 3 7 9 11 T ′ =

8 10
6 7 9

1 2 3 4 5 11

Figure 9: Example of verification left to the reader.

Remark 5.16. For n = 8, we may not be able to uniquely determine U in the proof
above. See Figure 10.

T =

8
5 6 7

1 2 3 4 U =

7
5 6 8

1 2 3 4 ,

7
5 6

1 2 3 4 8

Figure 10: An example with n = 8 and two distinct possibilities of U from the proof of
Lemma 5.15.

The following lemma is equivalent to Axiom 6 in Assaf’s rules for dual equivalence
graphs.

Lemma 5.17. Let G = (V, σ, E1 ∪ . . . ∪ En−3) be a connected signed colored graph of
shifted degree n > 9 satisfying the Commuting Property such that G|[n−1] is an SDEG,
and G|[2,n] is an SDEG. Then each pair of distinct components of G [n−1] is connected by
an (n− 3)-edge.

This proof is similar to Theorem 3.17 in [27, p.413] and Lemma 5.15 so we only sketch
it here.

Proof. The statement in the lemma is equivalent to saying that if a component A is
connected by (n− 3)-edges to components B and C, then B and C are connected to each
other by an (n − 3)-edge. Using Lemma 5.12, we may apply properties of jeu de taquin
to show that this must be the case so long as λ is not a pyramid or λ has more than three
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northeast corners. The largest example of a shifted shape that violates these two rules
is the pyramid (5, 3, 1) with nine cells. By assumption, n > 9, and so the argument is
complete.

Proof of Theorem 1.4. The fact that SGλ satisfies the Commuting Property and the
Locally Standard property is proved in Lemma 5.7. To prove the converse, assume G is
a signed colored graph with shifted degree n satisfying both of these properties. Proceed
by induction on n. For n 6 9, the result is known by the Locally Standard Property. We
may then assume n > 9.

By Lemma 5.15, G admits a morphism onto SGλ. By Lemma 5.10, we need only show
that this morphism is injective. The morphism was constructed in such a way that it
is the unique extension on any component of G [n−1] so it is injective on each component
automatically. Furthermore, the location of n is constant on each component. Let C
and D be two distinct components of G [n−1], and let v ∈ V (C) and w ∈ V (D). By
Lemma 5.17, there exists an (n − 3)-edge connecting C to D which necessarily moves n
in the tableaux labeling its endpoints under the morphism. Thus, the morphism maps v
and w to tableaux with n in two different positions. Hence, the morphism is injective.

Remark 5.18. In Theorem 1.4, n > 9 is a sharp bound. In fact, if we consider the
n = 9 case, then there exists an infinite family of such signed colored graphs that are not
SDEGs, the smallest of which is represented in Figure 11.

SG [5,3]
6 SG [5,2,1]

6

SG [4,3,1]

6

6

SG [4,3,1]

SG [5,2,1]
6 SG [5,3]

6

Figure 11: A graph G represented by the isomorphism types of components in G|[8] and the
connection of these components via 6-edges. Here, G satisfies the Commuting Property,
G|[8] and G|[2,9] are SDEGs, but G is not an SDEG.

6 Open Problems

We conclude with some interesting open problems.

1. What are the Coxeter-Knuth relations, graphs and Little bumps in other Coxeter
group types? Tao Kai Lam described Coxeter-Knuth relations in type D [22]. We
have not found an analog of the Little bump algorithm that commutes with these
relations.
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2. In type A, the simple part of every Kazhdan-Lusztig graph is a Coxeter-Knuth graph
and vice versa as mentioned in the introduction. This is not true in type B. What
set of relations goes with the Kazhdan-Lusztig graphs in general? This would also
generalize the RSK algorithm and Knuth/DEG relations.

3. What is the significance of the Little bumps in Schubert calculus?

4. What interesting symmetric functions expand as a positive sum of Schur Q’s? Are
there natural expansions of certain symmetric functions first into peak quasisym-
metric functions?

5. What is the diameter of the largest connected component of a Coxeter-Knuth graph
for permutations or signed permutations of length n?
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