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Abstract

A dynamic programming method for enumerating hamiltonian cycles in arbi-
trary graphs is presented. The method is applied to grid graphs, king’s graphs,
triangular grids, and three-dimensional grid graphs, and results are obtained for
larger cases than previously published. The approach can easily be modified to
enumerate hamiltonian paths and other similar structures.
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1 Introduction

A hamiltonian cycle in a graph G is a cycle that visits each vertex exactly once. Hamilto-
nian cycles have been studied extensively in graph theory [21, Section 7]; popular research
topics include existence and enumeration. The problem of determining whether a given
graph contains a hamiltonian cycle and the problem of enumerating hamiltonian cycles
are known to be NP-complete [3, p. 199] and #P-complete [20] respectively for general
graphs.

Given a graph, it can be difficult to obtain a closed form solution to the problem of
enumerating hamiltonian cycles. Many of the recent results on enumerating hamiltonian
cycles rely on algorithmic approaches instead. Examples of such approaches include [5]
and [7] which enumerate hamiltonian cycles in the n-cube (for n 6 6) and in the n × n
grid graph (for n 6 20) respectively.

The algorithms used in [5, 7] are based on dynamic programming, where large compu-
tational problems are solved by breaking them down to small reoccurring subproblems.

∗The work was supported in part by the Academy of Finland under Grant No. 132122, the GETA
Graduate School, the Nokia Foundation, and the Finnish Foundation for Technology Promotion.
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Figure 1: A hamiltonian cycle in the 4× 4 grid graph

Dynamic programming has recently been used to enumerate other combinatorial struc-
tures as well, such as paths, latin squares, and perfect matchings [6, 10, 13]. Examples
of other methods for enumerating hamiltonian cycles include backtrack search and ZDD
trees by Knuth [8, pp. 254–255].

We present a method based on dynamic programming to enumerate hamiltonian cy-
cles in arbitrary graphs. We apply the method to grid graphs, king’s graphs, triangular
grids, and three-dimensional grid graphs, and obtain results for larger cases than pre-
viously published. Notable sources of ideas for our method include [5], which considers
enumerating hamiltonian cycles in bipartite graphs, and [6], which considers enumerating
certain paths in the grid graph.

Some of the progress in computational methods for enumerating hamiltonian cycles
can be illustrated conveniently using the the n×n grid graph as an example. Hamiltonian
cycles in the n × n grid graph have received a lot of research attention over the years,
partly due to applications in physics. The grid graph is the cartesian product of paths

Pn1 × Pn2 × · · · × Pnk
,

and the n× n grid graph is the special case Pn × Pn. Figure 1 shows a hamiltonian cycle
in the 4× 4 grid graph.

One early paper on enumerating hamiltonian cycles in the n × n grid graph is [16]
from 1984, where the authors use a transfer matrix method to obtain the values for
n 6 10. Several articles were published in the following years, in particular on determining
exact formulas for n × m grids with fixed small n [19]. However, for square grids the
next case n = 12 was resolved as late as 2006 [11] along with n = 14. Soon after,
in 2007 the cases n 6 20 were resolved [7]. This large jump was made possible not
only by improvements in computing hardware, but by using a more advanced dynamic
programming method. In 2010 the case n = 22 was resolved [15]. Compared with [7],
the method used in [15] contains a few modifications that trade running time for memory
requirements. Unfortunately, this tradeoff makes the method too slow to be practical for
larger cases. In the current work we compute the cases up to n = 26 by introducing
several improvements to the method, all of which are generalized to arbitrary graphs.

Our method can be easily modified to solve the existence problem of hamiltonian
cycles. It may be particularly useful for graphs which are almost nonhamiltonian in the
sense that normal constructive methods do not find a cycle in reasonable time.
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Figure 2: A partial hamiltonian cycle

In the current work we focus on hamiltonian cycles. It should be noted that there are
many structures that are closely related to hamiltonian cycles, and some of the compu-
tational methods that work for hamiltonian cycles can be applied to these closely related
structures with few modifications. A hamiltonian path in a graph G is a path that visits
each vertex exactly once. A bent hamiltonian path is a hamiltonian path in the grid graph
that changes direction at each step [12].

The article is organized as follows. In Section 2 we present our method for enumerating
hamiltonian cycles. In Section 3 we describe the graphs to which we apply the method,
and finally, in Section 4 we show the results for each graph and discuss how to gain
confidence in the the correctness of the results.

2 Enumerating Hamiltonian Cycles

The method presented in the current work builds hamiltonian cycles by extending incom-
plete cycles one vertex at a time. With this in mind, we begin with some definitions. Let
G be a graph and H a hamiltonian cycle in G.

Definition 1. For any U ⊂ V (G), the border of U , denoted by BG(U), is the set of
vertices in U that are adjacent to a vertex in V (G) \ U .

The subgraph of H induced by U , denoted by H(U), is a collection of (possibly trivial)
paths, the endpoints of which are in BG(U).

Definition 2. For U ⊂ V (G), a partial hamiltonian cycle on U is a collection of (possibly
trivial) paths in the subgraph of G induced by U such that every vertex in U is contained
in exactly one path and every endpoint of a path is in BG(U).

Figure 2 illustrates these definitions. Vertices belonging to U are in bold, and edges
belonging to the partial hamiltonian cycle C are thick. Here

U = {1, 2, 3, 4, 5, 6},
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and the border of U is
BG(U) = {3, 4, 5, 6}.

One way to complete the partial hamiltonian cycle in Figure 2 is to add the edges
between vertices 3 and 7, vertices 7 and 6, vertices 6 and 8, and finally vertices 8 and
5. Note that a partial hamiltonian cycle as defined in Definition 2 is not necessarily a
subgraph of any complete hamiltonian cycle.

Definition 3. For U ⊂ V (G), a border structure on U is a partition of a subset of BG(U)
such that each part contains one or two vertices.

Definition 4. For U ⊂ V (G), SG(U) is the set of all possible border structures on U .

We denote the set of endpoints of a path p by e(p). If p is a trivial path, e(p) contains
just one vertex.

Definition 5. For U ⊂ V (G) and a partial hamiltonian cycle C on U , S(C) is the border
structure {e(p) : p is a maximal path in C}.

Note that S(C) ∈ SG(U). Intuitively, S(C) is the border structure that corresponds
to C. In Figure 2, we have

S(C) = {{3, 5}, {6}}.

Similar definitions appear under many different names in the literature concerning
dynamic programming algorithms for graphs. For example, [6] uses the terms frontier
and frontier state that correspond to border and border structure respectively.

Definition 6. For s ∈ SG(U), the function representation of s is the function f :
BG(U) → B ∪ {∞} such that f(b) = b if {b} ∈ s, f(b) = a if {a, b} ∈ s, and f(b) = ∞
otherwise.

Definition 7. For s ∈ SG(U), and π = (π0, π1, . . . , πm−1) the vertices in BG(U) in some
order, and f the function representation of s, the string representation of s ordered by π
is the string (π−1f(π0), π

−1f(π1), . . . , π
−1f(πm−1)), where π−1v is the index of v in π if

v 6=∞, and ∞ otherwise.

In Figure 2 the function representation of S(C) has values

f(3) = 5, f(4) =∞, f(5) = 3, f(6) = 6,

and the string representation of S(C) ordered by, say, (3, 4, 5, 6), is

(2,∞, 0, 3).

Definition 8. For U ⊂ V (G), a partial hamiltonian cycle C on U , and v ∈ V (G) \ U ,
the extension of C with v, N ′(C, v) is the set of all a partial hamiltonian cycles on U ∪ v
that can be obtained by adding such edges to C that are incident to v and a vertex in U .
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Definition 9. For U ⊂ V (G), a partial hamiltonian cycle C on U , s = S(C), and
v ∈ V (G) \ U , the extension of s with v, N(s, v), is the multiset {S(C ′) : C ′ ∈ N ′(C, v)},
where the multiplicity of s′ ∈ N(s, v) is the number of different C ′ ∈ N ′(C, v) for which
s′ = S(C ′).

Intuitively, N(s, v) is the set of border structures that can be obtained from s by
adding edges between v and U . For brevity of definition, in Definition 9 we define the
extension only for border structures that have a corresponding partial hamiltonian cycle.
It would be possible to define the extension analogously for all border structures, but this
is not necessary for our purposes.

In Figure 2 the extension of S(C) with, say, vertex 7, is the multiset

N(S(C), 7) = {{{7, 5}, {6}}, {{5, 6}}},

where the multiplicity is 1 for both border structures.

Definition 10. For U ⊂ V (G), the set of all hamiltonian border structures on U , HG(U),
is {S(U(Γ)) : Γ is a hamiltonian cycle on G}.

Note that usually HG(U) 6= SG(U).

Definition 11. For S ⊂ SG(U), s ∈ S, and some ordering (S, <), the rank of s in S,
rank(s,S, <), is |{s′ ∈ S : s′ < s}|.

The method presented in the current work relies on the following observations. Given
a graph G and a vertex v ∈ V (G), the set of all hamiltonian cycles in G can be generated
from the set of partial hamiltonian cycles on V (G) \ v by adding edges between v and
V (G)\v in all possible ways. These partial hamiltonian cycles can in turn be generated by
adding edges to smaller partial hamiltonian cycles. Furthermore, when determining how
edges can be added between a vertex and a partial hamiltonian cycle, the internal structure
of the cycle is irrelevant and only the border structure matters. These observations lead
to the approach shown in Algorithm 1.

In Algorithm 1, we iterate over the vertices of G one by one, and at every point we
keep track of all the partial hamiltonian cycles on the iterated vertices. These partial
hamiltonian cycles are grouped based on their border structure, in the sense that we do
not store the individual partial cycles in memory, we only store their total number for
each border structure in the counters Ck.

The efficiency of the method depends on how each part is implemented. There are
several alternatives for implementing different parts of the method, which are discussed
in the following subsections.

2.1 Ordering vertices

The order of vertices vi is crucial for the performance of the method. One possible criterion
for choosing the order is that the maximum border size

max
k
|BG(

k⋃
i=1

vi)|
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Algorithm 1 Enumerate hamiltonian cycles in G

Input: Graph G, where V (G) = {v1, v2, . . . , vn}
Output: Returns the number of hamiltonian cycles in G
S0 ← {∅}
C0(∅)← 1
for k = 1, 2, . . . , n− 1 do
U ←

⋃k
i=1 vi

Sk ← any subset of SG(U) such that HG(U) ⊂ Sk

Initialize counter Ck : Sk → N to zero
for s ∈ Sk−1 do

for s′ ∈ N(s, vk) ∩ Sk do
Ck(s′)← Ck(s′) + Ck−1(s)

end for
end for

end for
return

∑
s∈Sn−1

Cn−1(s) · (Number of ways to complete s)

should be as small as possible. The motivation behind this criterion is that the running
time and memory requirements for one step of the method depend strongly on the size of
the corresponding border. Finding such an order of vertices that minimizes the maximum
border size is known as determining the vertex separation number, or equivalently path-
width. Determining the pathwidth is NP-complete for general graphs, but many results
exist for specific graph families [2, 4, 14].

Instead of extending partial hamiltonian cycles one vertex at a time, one could extend
several vertices at a time. Some examples of this approach include [5, 15]. Extending
several vertices at a time can help reduce the maximum border size. Additionally, it
allows the use of symmetries in some cases. The downside is that the running time for
the extension step depends strongly on the number of vertices being added at one time.

2.2 Storing counters

2.2.1 Data structure

In Algorithm 1, the values of the counters Ck need to be stored in memory. As done in
[6], we store the values in a vector u, which has the advantage that we need not store
representations of border structures. Vector u has size |Sk| and the index corresponding
to a border structure s is

rank(s,Sk, <),

for some (arbitrary) ordering <. Furthermore, various compression techniques can be
used for storing u.

The choice of Sk is important from the point of view of running time and memory
efficiency. We will discuss how Sk can be chosen for various classes of graphs in Section 2.3.
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Here we described how the value of counters Ck can be stored in a vector. Another
alternative would be storing the counters in a hash table that has representations of border
structures as keys and the corresponding counters as values. This works reasonably well
in many cases. One example of this approach is [7].

2.2.2 Chinese remainder theorem

The memory efficiency of our method can be improved by computing the number of hamil-
tonian cycles modulo a prime power for several small prime powers, i.e., prime numbers
raised to a positive integer power. The algorithm needs to be run several times, once
for each prime power. The total number of hamiltonian cycles can then be reconstructed
with the Chinese remainder theorem. This results in a tradeoff, as memory requirements
will be roughly inversely proportional to running time. A similar approach was used in
[7].

Note that we can store the values of counters Ck modulo a prime power throughout
the algorithm, because the only operations performed on the counters are multiplication
and addition.

The least common multiple of prime powers of size at most 256 is approximately
1.7 ·10109, which is larger than the number of hamiltonian cycles in the graphs considered
in this article, so here only one byte is needed to store the value of a counter. We do
not use all prime powers up to 256 for each graph, we only use as many as necessary to
accurately reconstruct the total number of hamiltonian cycles. To determine how many
prime powers we need for a graph, it is sufficient that the least common multiple of the
prime powers is larger than an upper bound for the number of hamiltonian cycles in the
graph.

2.3 Choosing Sk

In Algorithm 1, we use Sk as the set of border structures for which we store the values of
counters. Recall that in the algorithm the value of Sk is any set of border structures such
that

HG(U) ⊂ Sk ⊂ SG(U).

The choice of Sk is important from the point of view of performance and memory efficiency.
Since the running time and memory requirements of our method are proportional to |Sk|,
we would like |Sk| to be as small as possible. The only limitations on the choice of Sk are
that Sk should contain HG(U) and we should be able to compute

rank(s,Sk, <)

for any s ∈ Sk, for some ordering <.
Those border structures in Sk that are not in HG(U) are unnecessary for enumerating

hamiltonian cycles, since they cannot be extended to any complete hamiltonian cycle.
Ideally, we would want Sk = HG(U), but HG(U) is difficult to determine. Instead, we
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approximate HG(U) as accurately as we can for each graph family, so that Sk is as small
as possible while still containing HG(U).

For general graphs, we can simply choose Sk = SG(U). In the following subsections
we show possible choices of Sk for planar graphs and grid graphs.

2.3.1 Planar graphs

Consider a planar graph G, with U ⊂ V (G), and C a partial hamiltonian cycle on U .
Assume there is a planar embedding of G such that the vertices in BG(U) are on a line,
the vertices in V (G) \U are above the line, and all other vertices are below the line. This
is the case in Figure 2. Now the paths in C cannot cross in this embedding. Let the order
of vertices along the line be

π = (π1, π2, . . . , πm).

The condition of paths not crossing is equivalent to the property that the endpoints of
paths in the string representation of s ordered by π be properly nested. Thus, we can
choose Sk = Sp

G(U), where Sp
G(U) is defined as follows. Here v′ is the index of vertex v in

π.
Sp
G(U) = {s ∈ SG(U) : a′1 < b′1 < a′2 ⇒ a′1 < b′2 < a′2,∀{a1, a2}, {b1, b2} ∈ s}

The string representations of the border structures in Sp
G(U) ordered by π are equiv-

alent to 2-colored Motzkin words [17], which are strings with the character set

{α1, α2, opening bracket ‘(’, closing bracket ‘)’},

and the property that the brackets be properly nested. The string representation of a
border structure can be mapped to the corresponding 2-colored Motzkin word by replacing
endpoints of paths with opening and closing brackets, vertices forming a trivial path with
α1, and vertices with degree two with α2.

2.3.2 Grid graphs

The n × n grid graph is planar, but it has some additional structure that allows us to
choose an Sk smaller than Sp

G(U). Given a border structure s, the following theorem gives
a sufficient condition for s 6∈ HG(U).

Theorem 12. A border structure s on U , where a vertex v with |{{v, a} ∈ E(G) : a ∈
V (G) \ U}| 6 1 forms a trivial path, cannot be extended to a complete cycle.

Proof. Assume that C is a partial hamiltonian cycle such that S(C) = s, and assume
that C can be extended to a complete hamiltonian cycle Γ.

The degree of v in Γ is |{{v, a} ∈ E(Γ)}|, which can be divided into two parts |{{v, a} ∈
E(Γ) : a ∈ U}| + |{{v, a} ∈ E(Γ) : a ∈ V (G) \ U}|. Since v forms a trivial path in s,
we have |{{v, a} ∈ E(Γ) : a ∈ U}| = |{{v, a} ∈ E(C) : a ∈ U}| = 0. Furthermore,
|{{v, a} ∈ E(Γ) : a ∈ V (G) \ U}| 6 |{{v, a} ∈ E(G) : a ∈ V (G) \ U}| 6 1. By combining
these two results we obtain that the degree of v in Γ is at most 1, a contradiction.
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Some of the borders BG(U) we use in the computations for grid graphs have the
property that |{{v, a} ∈ E(G) : a ∈ V (G) \ U}| 6 1 holds for every vertex v ∈ BG(U).
For such borders, we can choose Sk = Sg

G(U), where Sg
G(U) is defined as follows.

Sg
G(U) = {s ∈ Sp

G(U) : s contains no trivial paths}
Other borders BG(U) we use in the computations for grid graphs have the property

that |{{v, a} ∈ E(G) : a ∈ V (G) \ U}| 6 1 holds for every vertex v ∈ BG(U) except one,
v1. For these borders, we can choose Sk = Sg,v1

G (U), where Sg,v1
G (U) is defined as follows.

Sg,v1
G (U) = {s ∈ Sp

G(U) : s contains no trivial paths other than {v1}}
Let π be defined as in Section 2.3.1. The string representation of Sg

G(U) ordered by π
corresponds to Motzkin words [1], which are strings with the character set

{α1, opening bracket ‘(’, closing bracket ‘)’},

and the property that the brackets be properly nested.

2.3.3 The size of Sk

To understand the memory requirements of our method, it is useful to know |Sk| for each of
the four choices of Sk discussed in the previous subsections, namely, SG(U),Sp

G(U),Sg
G(U),

and Sg,v1
G (U). The following theorem gives |SG(U)|.

Theorem 13. For a graph G and U ⊂ V (G), we have |SG(U)| = T|BG(U)|, where T0 =
1, T1 = 2, and Tn = 2Tn−1 + (n− 1)Tn−2 for n > 2.

Proof. For any border structure in SG(U), the corresponding function representation f
fulfills the following property: (i) f(f(v)) = v for every such v ∈ BG(U) where f(v) 6=∞.
Conversely, every function with property (i) corresponds to a unique border structure on
BG(U). Thus, |SG(U)| is the same as the number of functions f : BG(U)→ BG(U)∪{∞}
with property (i). This number depends only on the size of BG(U), and is denoted by
T|BG(U)|.

Clearly, T0 = 1 and T1 = 2. Assume |BG(U)| = n > 2, and choose some v ∈ BG(U).
If f(v) ∈ {∞, v}, then f restricted on BG(U) \ v is a function that fulfills (i), so the
number of functions where f(v) ∈ {∞, v} is 2Tn−1. If f(v) 6∈ {∞, v}, then f restricted
on BG(U) \ {v, f(v)} is again a function that fulfills (i). The number of possible choices
of f(v) 6∈ {∞, v} is n− 1, so the number of functions where f(v) 6∈ {∞, v} is (n− 1)Tn−2.
The result follows by taking the sum of both cases.

Denote n = |BG(U)|. Now |Sp
G(U)| is the number of 2-colored Motzkin words of length

n, which is known to be the (n + 1)th Catalan number Cn+1 [17]. Similarly, |Sg
G(U)| is

the number of Motzkin words of length n, i.e., the nth Motzkin number Mn [1]. Lastly,
|Sg,v1

G (U)| = Mn−1 +Mn, which can be easily seen by dividing Sg,v1
G (U) in two parts

Sg,v1
G (U) = {s ∈ Sg,v1

G (U) : {v1} ∈ s} ∪ {s ∈ Sg,v1
G (U) : {v1} 6∈ s}.
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The size of the first part is Mn−1 and the size of the second part is Mn.
In the Open Encyclopedia of Integer Sequences [18], Tn, Cn, and Mn are the sequences

A005425, A000108, and A001006 respectively. Table 1 shows the approximate sizes of
SG(U),Sp

G(U),Sg
G(U), and Sg,v1

G (U) for small n.

Table 1: Approximate size of Sk

n |SG(U)| |Sp
G(U)| |Sg

G(U)| |Sg,v1
G (U)|

10 1.2 · 105 5.9 · 104 2.2 · 103 3.0 · 103

15 2.7 · 108 3.5 · 107 3.1 · 105 4.2 · 105

16 1.3 · 109 1.3 · 108 8.5 · 105 1.2 · 106

17 7.0 · 109 4.8 · 108 2.4 · 106 3.2 · 106

18 3.7 · 1010 1.8 · 109 6.5 · 106 8.9 · 106

19 2.0 · 1011 6.6 · 109 1.8 · 107 2.5 · 107

20 1.1 · 1012 2.4 · 1010 5.1 · 107 6.9 · 107

21 6.2 · 1012 9.1 · 1010 1.4 · 108 1.9 · 108

22 3.5 · 1013 3.4 · 1011 4.0 · 108 5.4 · 108

23 2.1 · 1014 1.3 · 1012 1.1 · 109 1.5 · 109

24 1.2 · 1015 4.9 · 1012 3.2 · 109 4.3 · 109

25 7.4 · 1015 1.8 · 1013 9.0 · 109 1.2 · 1010

26 4.6 · 1016 7.0 · 1013 2.6 · 1010 3.5 · 1010

27 2.8 · 1017 2.6 · 1014 7.3 · 1010 9.9 · 1010

It turns out that in the computations for the king’s graph almost all border structures
in SG(U) are encountered at any given step of the algorithm. In the computations for the
grid graph, approximately half of the border structures in Sg,v1

G (U) are encountered.

2.4 Computing rank

2.4.1 General graphs

We can compute the rank of border structures in SG(U) with standard methods as follows.
We order the border structures lexicographically based on their string representation

ordered by π, for some arbitrary π. Denote the size of the border BG(U) by n. Conse-
quently, the length of each string representation is n. Consider some s ∈ SG(U), and let
s′ be the string representation of s ordered by π. It is easy to see that the lexicographic
rank of s is rank(s, SG(U), <) =

∑n−1
i=0 F (i, s′), where F (i, s′) is the number of border

structures in SG(U) whose string agrees with s′ on indices smaller than i and is strictly
smaller on index i.

The value of F (i, s′) can in turn be computed as follows. We call the indices from 0 to
i− 1 the left part of the string, and from i+ 1 to n− 1 the right part of the string. Let N
be the number of indices in the right part of the string for which the value is already fixed
in the left part, i.e., the number of indices k such that k > i > s′(k). Let L be the number
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of values that could be at index i in a lexicographically smaller string without conflicting
with the left part of s′, i.e., the number of indices k such that i 6 k < s′(i) and s′(k) > i.
Note that if the values at m different indices are fixed in a string representation, then
there are Tn−m ways to fill the remaining values. We now have

F (i, s′) =


0 if s′(i) < i+ 1
Tn−i−N−1 if s′(i) = i+ 1
Tn−i−N−1 + Tn−i−N−2(L− 1) if s′(i) > i+ 1.

Unranking can be done by performing the above operations in reverse one index at a
time.

2.4.2 Planar graphs and grid graphs

Computing the rank of border structures in Sg
G(U) corresponds to computing the rank of

Motzkin words. One method for this is shown in [9]. The same method can be used with
minor modifications for border structures in Sp

G(U).
The rank of border structures in Sg,v1

G (U) can be computed as follows. We divide
Sg,v1
G (U) in two parts,

Sg,v1
G (U) = {s ∈ Sg,v1

G (U) : {v1} ∈ s} ∪ {s ∈ Sg,v1
G (U) : {v1} 6∈ s}.

Note that {s ∈ Sg,v1
G (U) : {v1} 6∈ s} = Sg

G(U). The rank is now defined as

rank(s,Sg,v1
G (U), <′′) =

{
rank(s,Sg

G(U), <′) if {v1} 6∈ s
rank(s \ {v1},Sg

G(U \ v1), <′) +Mn otherwise,

where <′ is the ordering used in the method in [9].

3 Graphs

We apply our enumeration method to the following graph families. The n×m grid graph
is the cartesian product of two paths, Pn × Pm, and the three-dimensional grid graph is
the cartesian product of three paths Pn × Pm × Pk. The n× n king’s graph is the strong
product of two paths of length n; its vertices correspond to squares on an n×n chessboard
and the edges correspond to to king’s moves on the chessboard. In the triangular grid
the set of vertices is {(i, j) : 1 6 j 6 i 6 n}, and the set of edges is

{{(i, j), (i′, j′)} : (i− i′, j − j′) ∈ {(0, 1), (1, 0), (1, 1)}}.
Figure 3 shows the grid graph, the king’s graph and the triangular grid for n = 4.

Figure 3: The grid graph, the king’s graph, and the triangular grid
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The number of hamiltonian cycles in an n× n grid is sequence A003763 in the Open
Encyclopedia of Integer Sequences [18]. Note that this sequence only shows the values for
even n, since the number of hamiltonian cycles in the n× n grid graph is zero for odd n.
For n × n king’s graphs and triangular grids with n vertices on one side the numbers of
hamiltonian cycles are in sequences A140519 and A112676 respectively.

In the dynamic programming method, we order the vertices of these graphs as follows.
For the grid graph and the king’s graph we order the vertices lexicographically, i.e., from
left to right, and from top to bottom. For the triangular grid we use reverse lexicographic
ordering. For the three-dimensional grid graph we order the vertices based on the distance
to one of the corners, with ties broken lexicographically.

4 Results

Results for all the graph families described in Section 3 are shown in Tables 2 to 5, and
new results are denoted with a star. In all of the cases studied here the computations were
bounded more by memory than CPU-time. Enumerating hamiltonian cycles in the grid
graph for n = 26 required the most resources, approximately 3 core-years of CPU-time
and 160 gigabytes of memory using four bytes per counter.

The following two observations give some confidence in the correctness of the results
and the implementation. First, the results agree with previously published work for small
parameter values. Second, the total number of hamiltonian cycles given by the Chinese

Table 2: Hamiltonian cycles in n× n grid graphs

n N
2 1
4 6
6 1 072
8 4 638 576
10 467 260 456 608
12 1 076 226 888 605 605 706
14 56 126 499 620 491 437 281 263 608
16 65 882 516 522 625 836 326 159 786 165 530 572
18 1 733 926 377 888 966 183 927 790 794 055 670 829 347 983 946
20 1 020 460 427 390 768 793 543 026 965 678 152 831 571 073 052 662 428 097 106
22 13 404 209 505 893 761 748 339 786 653 564 937 498 745 897 123 531 041 248 680

272 448 954 956
24∗ 3 924 231 694 060 647 894 532 092 926 553 286 517 550 515 989 932 148 978 428

996 623 179 638 255 782 936 503 022
26∗ 25 578 285 385 897 276 060 130 031 526 614 700 187 075 412 685 764 186 583 833

403 069 393 167 252 132 218 312 152 073 569 856 334 502
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remainder theorem always converges, in the sense that the final value remains the same
after computing the number of cycles for a few more prime powers than necessary.

Table 3: Hamiltonian cycles in n× n king’s graphs

n N
1 1
2 3
3 16
4 2 830
5 2 462 064
6 22 853 860 116
7 1 622 043 117 414 624
8 961 742 089 476 282 321 684
9∗ 4 601 667 243 759 511 495 116 347 104
10∗ 179 517 749 570 891 592 016 479 828 267 003 018
11∗ 56 735 527 086 758 553 613 684 823 040 730 404 215 973 136
12∗ 145 328 824 470 156 271 670 635 015 466 987 199 469 360 063 082 789 418
13∗ 3 013 072 757 042 748 407 212 267 203 778 429 049 866 618 090 427 057 156 382

635 712
14∗ 505 396 541 863 296 313 964 793 910 305 382 425 060 965 154 779 449 831 170

884 147 484 924 489 066
15∗ 685 457 393 589 353 762 730 302 985 699 040 971 223 260 321 251 614 789 007

892 889 891 954 959 485 049 448 085 648
16∗ 7 514 427 561 614 895 453 501 809 269 193 245 238 210 545 618 759 874 171 463

008 264 116 894 117 263 163 499 356 026 497 440 057 866
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[13] P.R.J. Österg̊ard, V. Pettersson: Enumerating perfect matchings in n-Cubes. Order,
30, 821–835 (2013)

[14] Y. Otachi, R. Suda: Bandwidth and pathwidth of three-dimensional grids. Discrete
Math., 311, 881–887 (2011)

[15] A.M. Karavaev: A dynamic programming method for counting the number of cycles
in a rectangular lattice (in Russian), 2010. http://habrahabr.ru/post/105705/

[16] T.G. Schmalz, G.E. Hite, D.J. Klein: Compact self-avoiding circuits on two-
dimensional lattices. J. Phys. A: Math. Gen., 17, 445–453 (1984)

[17] A. Sapounakis, P. Tsikouras: Counting peaks and valleys in k-colored Motzkin
paths. Electron. J. Combin., 12, R16 (2005)

[18] N.J.A. Sloane: The On-Line Encyclopedia of Integer Sequences, 2012.
http://oeis.org

[19] R. Stoyan, V. Strehl: Enumeration of hamiltonian circuits in rectangular grids. J.
of Combinatorial Mathematics and Combinatorial Computing, 21, 109–128 (1996)

[20] L.G. Valiant: The complexity of enumeration and reliability problems. SIAM J.
Comput., 8, 410–421 (1979)

[21] D.B. West: Introduction to Graph Theory, 2nd edition. Prentice Hall, Upper Saddle
River (2001)

the electronic journal of combinatorics 21(4) (2014), #P4.7 15


