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Abstract

Let ped(n) denote the number of partitions of an integer n wherein even parts
are distinct. Recently, Andrews, Hirschhorn and Sellers, Chen, and Cui and Gu
have derived a number of interesting congruences modulo 2, 3 and 4 for ped(n). In
this paper we prove several new infinite families of congruences modulo 8 for ped(n).
For example, we prove that for α > 0 and n > 0,

ped

(
34α+4n+

11× 34α+3 − 1

8

)
≡ 0 (mod 8).
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1 Introduction

Let ped(n) denote the function which enumerates the number of partitions of n wherein
even parts are distinct (and odd parts are unrestricted). For a positive integer t we say
that a partition is t-regular if no part is divisible by t. Andrews, Hirschhorn and Sellers
[1] found the generating function for ped(n):

∞∑
n=0

ped(n)qn =
∞∏
n=1

1 + q2n

1− q2n−1
=
f4
f1
, (1)
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where here and throughout this paper, and for any positive integer k, fk is defined by

fk :=
∞∏
n=1

(1− qkn). (2)

From (1) it is easy to see that ped(n) equals the number of 4-regular partitions of n. In
recent years many congruences for the number of regular partitions have been discovered
(see for example, Cui and Gu [3, 4], Dandurand and Penniston [5], Furcy and Penniston
[7], Gordon and Ono [8], Keith [10], Lin and Wang [11], Lovejoy and Penniston [12],
Penniston [13, 14], Webb [15], Xia and Yao [16, 17], and Yao[18]).

Numerous congruence properties are known for the function ped(n). For example,
Andrews, Hirschhorn and Sellers [1] proved that for α > 1 and n > 0,

ped(3n+ 2) ≡ 0 (mod 2), (3)

ped(9n+ 4) ≡ 0 (mod 4), (4)

ped(9n+ 7) ≡ 0 (mod 12), (5)

ped

(
32α+2n+

11× 32α+1 − 1

8

)
≡ 0 (mod 2), (6)

ped

(
32α+1n+

17× 32α − 1

8

)
≡ 0 (mod 6), (7)

ped

(
32α+2n+

19× 32α+1 − 1

8

)
≡ 0 (mod 6). (8)

Recently, Chen [2] obtained many interesting congruences modulo 2 and 4 for ped(n) using
the theory of Hecke eigenforms and Cui and Gu [3] found infinite families of wonderful
congruences modulo 2 for the function ped(n).

The aim of this paper is to establish several new infinite families of congruences modulo
8 for ped(n) by employing some results of Andrews, Hirschhorn and Sellers [1], and Cui
and Gu [3]. The main results of this paper can be stated as the following theorems.

Theorem 1. For α > 0 and n > 0,

ped

(
32αn+

32α − 1

8

)
≡ ped(n) (mod 4), (9)

ped

(
34αn+

34α − 1

8

)
≡ 5αped(n) (mod 8), (10)

ped

(
34α+4n+

11× 34α+3 − 1

8

)
≡ 0 (mod 8), (11)

ped

(
34α+4n+

19× 34α+3 − 1

8

)
≡ 0 (mod 8). (12)
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In view of (9) and the facts ped(1) = 1, ped(2) = 2, ped(3) = 3, ped(4) = 4, we obtain
the following corollary.

Corollary 2. For α > 0 and i = 0, 1, 2, 3 we have that

ped

(
ti × 32α − 1

8

)
≡ i (mod 4), (13)

where t0 = 33, t1 = 9, t2 = 17 and t3 = 25.

Replacing α by 2α in (10), we find that for α > 0,

ped

(
38αn+

38α − 1

8

)
≡ ped(n) (mod 8). (14)

Employing (14) and the facts ped(1) = 1, ped(2) = 2, ped(3) = 3, ped(4) = 4, ped(10) =
29, ped(5) = 6, ped(253) = 5178754681431 and ped(8) = 16, we obtain the following
congruences modulo 8.

Corollary 3. For α > 0 and 0 6 j 6 7 we have that

ped

(
sj × 38α − 1

8

)
≡ j (mod 8), (15)

where s0 = 65, s1 = 9, s2 = 17, s3 = 25, s4 = 33, s5 = 81, s6 = 41 and s7 = 2025.

Utilizing the generating functions of ped(9n+ 4), ped(9n+ 7) discovered by Andrews,
Hirschhorn and Sellers [1] and the p-dissection identities of two Ramanujan’s theta func-
tions due to Cui and Gu [3], we will prove the following theorem.

Theorem 4. Let p be a prime such that p ≡ 5, 7 (mod 8) and 1 6 i 6 p− 1. Then for
n > 0 and α > 1,

ped

(
9p2αn+

(72i+ 33p)p2α−1 − 1

8

)
≡ 0 (mod 8) (16)

and

ped

(
9p2αn+

(72i+ 57p)p2α−1 − 1

8

)
≡ 0 (mod 8). (17)

2 Proof of Theorem 1

Andrews, Hirschhorn and Sellers [1] established the following results for ped(3n+ 1):

∞∑
n=0

ped(9n+ 1)qn =
f 2
2 f

4
3 f4

f 5
1 f

2
6

+ 24q
f 3
2 f

3
3 f4f

3
6

f 10
1

, (18)

∞∑
n=0

ped(9n+ 4)qn = 4
f2f3f4f6
f 4
1

+ 48q
f 2
2 f4f

6
6

f 9
1

(19)
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and
∞∑
n=0

ped(9n+ 7)qn = 12
f 4
2 f

6
3 f4

f 11
1

. (20)

By the binomial theorem it is easy to see that for all positive integers m and k,

f 2m
k ≡ fm2k (mod 2). (21)

By (21) we see that

f 2
1

f2
≡ f2
f 2
1

≡ 1 (mod 2), (22)

which yields

f 2
2

f 4
1

≡ f 4
3

f 2
6

≡ 1 (mod 4). (23)

It follows from (18) and (23) that
∞∑
n=0

ped(9n+ 1)qn ≡ f4
f1

(mod 4). (24)

In view of (1) and (24) we see that for n > 0,

ped(9n+ 1) ≡ ped(n) (mod 4). (25)

Congruence (9) follows from (25) and mathematical induction.
Andrews, Hirschhorn and Sellers [1] also established the following 3-dissection formula

of the generating function of ped(n):
∞∑
n=0

ped(n)qn =
f12f

4
18

f 3
3 f

2
36

+ q
f 2
6 f

3
9 f36

f 4
3 f

2
18

+ 2q2
f6f18f36
f 3
3

. (26)

Fortin, Jacob and Mathieu [6], and Hirschhorn and Sellers [9] independently derived the
following 3-dissection formula of the generating function of overpartitions:

f2
f 2
1

=
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

. (27)

Combining (1), (18), (26), (27) we deduced that
∞∑
n=0

ped(9n+ 1)qn ≡ f 4
3

f 2
6

f 2
2

f 4
1

f4
f1

≡ f 4
3

f 2
6

(
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

)2(
f12f

4
18

f 3
3 f

2
36

+ q
f 2
6 f

3
9 f36

f 4
3 f

2
18

+ 2q2
f6f18f36
f 3
3

)
≡ f 6

6 f
12
9 f12

f 15
3 f

2
18f

2
36

+ q
f 8
6 f

15
9 f36

f 16
3 f

8
18

+ 4q
f 5
6 f

9
9 f12f18
f 14
3 f

2
36

+ 6q2
f 7
6 f

12
9 f36

f 15
3 f

5
18

+ 4q2
f 4
6 f

6
9 f12f

4
18

f 13
3 f

2
36

+ 4q3
f 6
6 f

9
9 f36

f 14
3 f

2
18

(mod 8). (28)
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Extracting those terms associated with powers q3n+1 on both sides of (28), then dividing
by q and replacing q3 by q, we find that

∞∑
n=0

ped(27n+ 10)qn ≡ f 8
2 f

15
3 f12

f 16
1 f

8
6

+ 4
f 5
2 f

9
3 f4f6

f 14
1 f

2
12

(mod 8). (29)

By the binomial theorem and (22) we have

f 8
2

f 16
1

≡ f 16
3

f 8
6

≡ 1 (mod 8), (30)

which yields

f 8
2 f

15
3 f12

f 16
1 f

8
6

≡ f12
f3

(mod 8). (31)

It follows from (21) that

f 5
2 f

9
3 f4f6

f 14
1 f

2
12

≡ f12
f3

(mod 2). (32)

Substituting (31) and (32) into (29), we see that

∞∑
n=0

ped(27n+ 10)qn ≡ 5
f12
f3

(mod 8), (33)

which implies that

∞∑
n=0

ped(81n+ 10)qn ≡ 5
f4
f1

(mod 8) (34)

and for n > 0,

ped(81n+ 37) ≡ 0 (mod 8), (35)

ped(81n+ 64) ≡ 0 (mod 8). (36)

Thanks to (1) and (34), we see that for n > 0,

ped(81n+ 10) ≡ 5ped(n) (mod 8). (37)

Congruence (10) follows from (37) and mathematical induction. Replacing n by 81n+ 37
in (10) and employing (35), we obtain (11). Replacing n by 81n + 64 in (10) and using
(36), we deduce (12). The proof is complete.
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3 Proof of Theorem 4

Thanks to (19) and (21), we have

∞∑
n=0

ped(9n+ 4)qn ≡ 4f2ψ(q3) (mod 8), (38)

where ψ(q) is defined by

ψ(q) :=
f 2
2

f1
. (39)

In their nice paper [3], Cui and Gu established p-dissection formulas for f1 and ψ(q).
They proved that for any odd prime p,

ψ(q) =

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2

) (40)

and for any prime p > 5,

f1 =

p−1
2∑

k=
1−p
2 ,

k 6=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2 , (41)

where

±p− 1

6
: =


p− 1

6
if p ≡ 1 (mod 6),

−p− 1

6
if p ≡ −1 (mod 6)

(42)

and the Ramanujan theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, (43)

where |ab| < 1.
Let a(n) be defined by

∞∑
n=0

a(n)qn := f2ψ(q3). (44)

It follows from (38) and (44) that for n > 0,

ped(9n+ 4) ≡ 4a(n) (mod 8). (45)
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Substituting (40) and (41) into (44), we see that for any prime p ≡ 5, 7 (mod 8),

∞∑
n=0

a(n)qn (46)

=


p−1
2∑

m=
1−p
2 ,

m6=±p−1
6

(−1)mq3m
2+mf

(
−q3p2+(6m+1)p,−q3p2−(6m+1)p

)
+ (−1)

±p−1
6 q

p2−1
12 f2p2



×

 p−3
2∑

k=0

q
3(k2+k)

2 f

(
q

3(p2+(2k+1)p)
2 , q

3(p2−(2k+1)p)
2

)
+ q

3(p2−1)
8 ψ(q3p

2

)

 . (47)

Now, we consider the congruence

3m2 +m+
3(k2 + k)

2
≡ 11(p2 − 1)

24
(mod p), (48)

where −p−1
2

6 m 6 p−1
2

and 0 6 k 6 p−1
2

. Congruence (48) can be rewritten as follows

2(6m+ 1)2 + (6k + 3)2 ≡ 0 (mod p). (49)

Since p ≡ 5, 7 (mod 8), we have that −2 is a ratic nonresidue modulo p and hence (49)
is equivalent to

6m+ 1 ≡ 6k + 3 ≡ 0 (mod p). (50)

Thus, m = ±p−1
6

and k = p−1
2

. Extracting those terms associated with powers qpn+
11(p2−1)

24

on both sides of (46) and employing the fact that Congruence (48) holds if and only if
m = ±p−1

6
and k = p−1

2
, we have

∞∑
n=0

a

(
pn+

11(p2 − 1)

24

)
qpn+

11(p2−1)
24 = (−1)

±p−1
6 q

11(p2−1)
24 f2p2ψ(q3p

2

). (51)

Dividing q
11(p2−1)

24 on both sides of (51) and then replacing qp by q, we get

∞∑
n=0

a

(
pn+

11(p2 − 1)

24

)
qn = (−1)

±p−1
6 f2pψ(q3p), (52)

which implies that

∞∑
n=0

a

(
p2n+

11(p2 − 1)

24

)
qn = (−1)

±p−1
6 f2ψ(q3) (53)
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and

a

(
p(pn+ i) +

11(p2 − 1)

24

)
= 0 (54)

for n > 0 and 1 6 i 6 p− 1. Combining (44) and (53), we have

a

(
p2n+

11(p2 − 1)

24

)
≡ a(n) (mod 2). (55)

By (55) and mathematical induction, we find that for n > 0 and α > 0,

a

(
p2αn+

11(p2α − 1)

24

)
≡ a(n) (mod 2). (56)

Replacing n by p(pn+ i) + 11(p2−1)
24

(1 6 i 6 p− 1) in (56) and using (54), we deduce that
for n > 0 and α > 1,

a

(
p2αn+

(24i+ 11p)p2α−1 − 11

24

)
≡ 0 (mod 2). (57)

Finally, replacing n by p2αn+ (24i+11p)p2α−1−11
24

(1 6 i 6 p− 1) in (45) and using (57), we
get (16).

We conclude the paper by proving (17). In view of (20) and (21), we find that

∞∑
n=0

ped(9n+ 7)qn ≡ 4f1ψ(q6) (mod 8), (58)

where ψ(q) is defined by (39). Let b(n) be defined by

∞∑
n=0

b(n)qn := f1ψ(q6). (59)

By (58) and (59), we find that for n > 0,

ped(9n+ 7) ≡ 4b(n) (mod 8). (60)

Substituting (40) and (41) into (59), we see that for any prime p ≡ 5, 7 (mod 8),

∞∑
n=0

b(n)qn =


p−1
2∑

m=
1−p
2 ,

m 6=±p−1
6

(−1)mq
3m2+m

2 f

(
−q

3p2+(6m+1)p
2 ,−q

3p2−(6m+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2



×

 p−3
2∑

k=0

q3(k
2+k)f

(
q3(p

2+(2k+1)p), q3(p
2−(2k+1)p)

)
+ q

3(p2−1)
4 ψ(q6p

2

)

 . (61)
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As above, for any prime p ≡ 5, 7 (mod 8), −p−1
2

6 m 6 p−1
2

and 0 6 k 6 p−1
2

, the
congruence relation

3m2 +m

2
+ 3(k2 + k) ≡ 19(p2 − 1)

24
(mod p) (62)

holds if and only if m = ±p−1
6

and k = p−1
2

. This implies that

∞∑
n=0

b

(
pn+

19(p2 − 1)

24

)
qn = (−1)

±p−1
6 fpψ(q6p). (63)

Thanks to (63), we find that

∞∑
n=0

b

(
p2n+

19(p2 − 1)

24

)
qn = (−1)

±p−1
6 f1ψ(q6) (64)

and

b

(
p(pn+ i) +

19(p2 − 1)

24

)
= 0 (65)

for n > 0 and 1 6 i 6 p− 1. It follows from (59) and (64) that for n > 0,

b

(
p2n+

19(p2 − 1)

24

)
≡ b(n) (mod 2). (66)

By (66) and mathematical induction, we deduce that for n > 0 and α > 0,

b

(
p2αn+

19(p2α − 1)

24

)
≡ b(n) (mod 2). (67)

Replacing n by p(pn + i) + 19(p2−1)
24

(1 6 i 6 p − 1) in (67) and employing (65), we find
that

b

(
p2αn+

(24i+ 19p)p2α−1 − 19

24

)
≡ 0 (mod 2) (68)

for n > 0, α > 1 and 1 6 i 6 p − 1. Congruence (17) follows from (60) and (68). This
completes the proof of Theorem 4.
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