# New infinite families of congruences modulo 8 for partitions with even parts distinct 

Ernest X.W. Xia*<br>Department of Mathematics<br>Jiangsu University<br>Zhenjiang, Jiangsu 212013, P. R. China<br>ernestxwxia@163.com

Submitted: Jan 16, 2014; Accepted: Sep 28, 2014; Published: Oct 9, 2014
Mathematics Subject Classifications: 05A17, 11P83


#### Abstract

Let $\operatorname{ped}(n)$ denote the number of partitions of an integer $n$ wherein even parts are distinct. Recently, Andrews, Hirschhorn and Sellers, Chen, and Cui and Gu have derived a number of interesting congruences modulo 2,3 and 4 for $\operatorname{ped}(n)$. In this paper we prove several new infinite families of congruences modulo 8 for $\operatorname{ped}(n)$. For example, we prove that for $\alpha \geqslant 0$ and $n \geqslant 0$,


$$
\operatorname{ped}\left(3^{4 \alpha+4} n+\frac{11 \times 3^{4 \alpha+3}-1}{8}\right) \equiv 0(\bmod 8) .
$$

Keywords: partition; congruence; regular partition

## 1 Introduction

Let $\operatorname{ped}(n)$ denote the function which enumerates the number of partitions of $n$ wherein even parts are distinct (and odd parts are unrestricted). For a positive integer $t$ we say that a partition is $t$-regular if no part is divisible by $t$. Andrews, Hirschhorn and Sellers [1] found the generating function for $\operatorname{ped}(n)$ :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{2 n}}{1-q^{2 n-1}}=\frac{f_{4}}{f_{1}}, \tag{1}
\end{equation*}
$$

[^0]where here and throughout this paper, and for any positive integer $k, f_{k}$ is defined by
\[

$$
\begin{equation*}
f_{k}:=\prod_{n=1}^{\infty}\left(1-q^{k n}\right) \tag{2}
\end{equation*}
$$

\]

From (1) it is easy to see that $\operatorname{ped}(n)$ equals the number of 4 -regular partitions of $n$. In recent years many congruences for the number of regular partitions have been discovered (see for example, Cui and Gu [3, 4], Dandurand and Penniston [5], Furcy and Penniston [7], Gordon and Ono [8], Keith [10], Lin and Wang [11], Lovejoy and Penniston [12], Penniston [13, 14], Webb [15], Xia and Yao [16, 17], and Yao[18]).

Numerous congruence properties are known for the function $\operatorname{ped}(n)$. For example, Andrews, Hirschhorn and Sellers [1] proved that for $\alpha \geqslant 1$ and $n \geqslant 0$,

$$
\begin{align*}
\operatorname{ped}(3 n+2) & \equiv 0(\bmod 2),  \tag{3}\\
\operatorname{ped}(9 n+4) & \equiv 0(\bmod 4),  \tag{4}\\
\operatorname{ped}(9 n+7) & \equiv 0(\bmod 12),  \tag{5}\\
\text { ped }\left(3^{2 \alpha+2} n+\frac{11 \times 3^{2 \alpha+1}-1}{8}\right) & \equiv 0(\bmod 2),  \tag{6}\\
\operatorname{ped}\left(3^{2 \alpha+1} n+\frac{17 \times 3^{2 \alpha}-1}{8}\right) & \equiv 0(\bmod 6),  \tag{7}\\
\operatorname{ped}\left(3^{2 \alpha+2} n+\frac{19 \times 3^{2 \alpha+1}-1}{8}\right) & \equiv 0(\bmod 6) \tag{8}
\end{align*}
$$

Recently, Chen [2] obtained many interesting congruences modulo 2 and 4 for $\operatorname{ped}(n)$ using the theory of Hecke eigenforms and Cui and Gu [3] found infinite families of wonderful congruences modulo 2 for the function $\operatorname{ped}(n)$.

The aim of this paper is to establish several new infinite families of congruences modulo 8 for $\operatorname{ped}(n)$ by employing some results of Andrews, Hirschhorn and Sellers [1], and Cui and $\mathrm{Gu}[3]$. The main results of this paper can be stated as the following theorems.
Theorem 1. For $\alpha \geqslant 0$ and $n \geqslant 0$,

$$
\begin{align*}
\operatorname{ped}\left(3^{2 \alpha} n+\frac{3^{2 \alpha}-1}{8}\right) & \equiv \operatorname{ped}(n)(\bmod 4),  \tag{9}\\
\operatorname{ped}\left(3^{4 \alpha} n+\frac{3^{4 \alpha}-1}{8}\right) & \equiv 5^{\alpha} \operatorname{ped}(n)(\bmod 8),  \tag{10}\\
\operatorname{ped}\left(3^{4 \alpha+4} n+\frac{11 \times 3^{4 \alpha+3}-1}{8}\right) & \equiv 0(\bmod 8),  \tag{11}\\
\operatorname{ped}\left(3^{4 \alpha+4} n+\frac{19 \times 3^{4 \alpha+3}-1}{8}\right) & \equiv 0(\bmod 8) . \tag{12}
\end{align*}
$$

In view of $(9)$ and the facts $\operatorname{ped}(1)=1, \operatorname{ped}(2)=2, \operatorname{ped}(3)=3, \operatorname{ped}(4)=4$, we obtain the following corollary.
Corollary 2. For $\alpha \geqslant 0$ and $i=0,1,2,3$ we have that

$$
\begin{equation*}
\operatorname{ped}\left(\frac{t_{i} \times 3^{2 \alpha}-1}{8}\right) \equiv i(\bmod 4) \tag{13}
\end{equation*}
$$

where $t_{0}=33, t_{1}=9, t_{2}=17$ and $t_{3}=25$.
Replacing $\alpha$ by $2 \alpha$ in (10), we find that for $\alpha \geqslant 0$,

$$
\begin{equation*}
\operatorname{ped}\left(3^{8 \alpha} n+\frac{3^{8 \alpha}-1}{8}\right) \equiv \operatorname{ped}(n)(\bmod 8) . \tag{14}
\end{equation*}
$$

Employing (14) and the facts $\operatorname{ped}(1)=1, \operatorname{ped}(2)=2, \operatorname{ped}(3)=3, \operatorname{ped}(4)=4, \operatorname{ped}(10)=$ $29, \operatorname{ped}(5)=6, \operatorname{ped}(253)=5178754681431$ and $\operatorname{ped}(8)=16$, we obtain the following congruences modulo 8.

Corollary 3. For $\alpha \geqslant 0$ and $0 \leqslant j \leqslant 7$ we have that

$$
\begin{equation*}
\text { ped }\left(\frac{s_{j} \times 3^{8 \alpha}-1}{8}\right) \equiv j(\bmod 8) \tag{15}
\end{equation*}
$$

where $s_{0}=65, s_{1}=9, s_{2}=17, s_{3}=25, s_{4}=33, s_{5}=81, s_{6}=41$ and $s_{7}=2025$.
Utilizing the generating functions of $\operatorname{ped}(9 n+4)$, $\operatorname{ped}(9 n+7)$ discovered by Andrews, Hirschhorn and Sellers [1] and the $p$-dissection identities of two Ramanujan's theta functions due to Cui and $\mathrm{Gu}[3]$, we will prove the following theorem.

Theorem 4. Let $p$ be a prime such that $p \equiv 5,7(\bmod 8)$ and $1 \leqslant i \leqslant p-1$. Then for $n \geqslant 0$ and $\alpha \geqslant 1$,

$$
\begin{equation*}
\operatorname{ped}\left(9 p^{2 \alpha} n+\frac{(72 i+33 p) p^{2 \alpha-1}-1}{8}\right) \equiv 0(\bmod 8) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ped}\left(9 p^{2 \alpha} n+\frac{(72 i+57 p) p^{2 \alpha-1}-1}{8}\right) \equiv 0(\bmod 8) . \tag{17}
\end{equation*}
$$

## 2 Proof of Theorem 1

Andrews, Hirschhorn and Sellers [1] established the following results for $\operatorname{ped}(3 n+1)$ :

$$
\begin{align*}
& \sum_{n=0}^{\infty} \operatorname{ped}(9 n+1) q^{n}=\frac{f_{2}^{2} f_{3}^{4} f_{4}}{f_{1}^{5} f_{6}^{2}}+24 q \frac{f_{2}^{3} f_{3}^{3} f_{4} f_{6}^{3}}{f_{1}^{10}}  \tag{18}\\
& \sum_{n=0}^{\infty} \operatorname{ped}(9 n+4) q^{n}=4 \frac{f_{2} f_{3} f_{4} f_{6}}{f_{1}^{4}}+48 q \frac{f_{2}^{2} f_{4} f_{6}^{6}}{f_{1}^{9}} \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(9 n+7) q^{n}=12 \frac{f_{2}^{4} f_{3}^{6} f_{4}}{f_{1}^{11}} \tag{20}
\end{equation*}
$$

By the binomial theorem it is easy to see that for all positive integers $m$ and $k$,

$$
\begin{equation*}
f_{k}^{2 m} \equiv f_{2 k}^{m}(\bmod 2) \tag{21}
\end{equation*}
$$

By (21) we see that

$$
\begin{equation*}
\frac{f_{1}^{2}}{f_{2}} \equiv \frac{f_{2}}{f_{1}^{2}} \equiv 1(\bmod 2) \tag{22}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{f_{2}^{2}}{f_{1}^{4}} \equiv \frac{f_{3}^{4}}{f_{6}^{2}} \equiv 1(\bmod 4) \tag{23}
\end{equation*}
$$

It follows from (18) and (23) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(9 n+1) q^{n} \equiv \frac{f_{4}}{f_{1}}(\bmod 4) \tag{24}
\end{equation*}
$$

In view of (1) and (24) we see that for $n \geqslant 0$,

$$
\begin{equation*}
\operatorname{ped}(9 n+1) \equiv \operatorname{ped}(n)(\bmod 4) \tag{25}
\end{equation*}
$$

Congruence (9) follows from (25) and mathematical induction.
Andrews, Hirschhorn and Sellers [1] also established the following 3-dissection formula of the generating function of $\operatorname{ped}(n)$ :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(n) q^{n}=\frac{f_{12} f_{18}^{4}}{f_{3}^{3} f_{36}^{2}}+q \frac{f_{6}^{2} f_{9}^{3} f_{36}}{f_{3}^{4} f_{18}^{2}}+2 q^{2} \frac{f_{6} f_{18} f_{36}}{f_{3}^{3}} \tag{26}
\end{equation*}
$$

Fortin, Jacob and Mathieu [6], and Hirschhorn and Sellers [9] independently derived the following 3-dissection formula of the generating function of overpartitions:

$$
\begin{equation*}
\frac{f_{2}}{f_{1}^{2}}=\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}} \tag{27}
\end{equation*}
$$

Combining (1), (18), (26), (27) we deduced that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \operatorname{ped}(9 n+1) q^{n} \equiv \frac{f_{3}^{4}}{f_{6}^{2}} \frac{f_{2}^{2}}{f_{1}^{4}} \frac{f_{4}}{f_{1}} \\
& \left.\quad \equiv \frac{f_{3}^{4}\left(\frac{f_{6}^{4} f_{9}^{6}}{f_{6}^{2}}\right.}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}}\right)^{2}\left(\frac{f_{12} f_{18}^{4}}{f_{3}^{3} f_{36}^{2}}+q \frac{f_{6}^{2} f_{9}^{3} f_{36}}{f_{3}^{4} f_{18}^{2}}+2 q^{2} \frac{f_{6} f_{18} f_{36}}{f_{3}^{3}}\right) \\
& \equiv
\end{align*}
$$

Extracting those terms associated with powers $q^{3 n+1}$ on both sides of (28), then dividing by $q$ and replacing $q^{3}$ by $q$, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(27 n+10) q^{n} \equiv \frac{f_{2}^{8} f_{3}^{15} f_{12}}{f_{1}^{16} f_{6}^{8}}+4 \frac{f_{2}^{5} f_{3}^{9} f_{4} f_{6}}{f_{1}^{14} f_{12}^{2}}(\bmod 8) \tag{29}
\end{equation*}
$$

By the binomial theorem and (22) we have

$$
\begin{equation*}
\frac{f_{2}^{8}}{f_{1}^{16}} \equiv \frac{f_{3}^{16}}{f_{6}^{8}} \equiv 1(\bmod 8), \tag{30}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{f_{2}^{8} f_{3}^{15} f_{12}}{f_{1}^{16} f_{6}^{8}} \equiv \frac{f_{12}}{f_{3}}(\bmod 8) \tag{31}
\end{equation*}
$$

It follows from (21) that

$$
\begin{equation*}
\frac{f_{2}^{5} f_{3}^{9} f_{4} f_{6}}{f_{1}^{14} f_{12}^{2}} \equiv \frac{f_{12}}{f_{3}}(\bmod 2) \tag{32}
\end{equation*}
$$

Substituting (31) and (32) into (29), we see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} p e d(27 n+10) q^{n} \equiv 5 \frac{f_{12}}{f_{3}}(\bmod 8) \tag{33}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}(81 n+10) q^{n} \equiv 5 \frac{f_{4}}{f_{1}}(\bmod 8) \tag{34}
\end{equation*}
$$

and for $n \geqslant 0$,

$$
\begin{align*}
& \operatorname{ped}(81 n+37) \equiv 0(\bmod 8),  \tag{35}\\
& \operatorname{ped}(81 n+64) \equiv 0(\bmod 8) \tag{36}
\end{align*}
$$

Thanks to (1) and (34), we see that for $n \geqslant 0$,

$$
\begin{equation*}
\operatorname{ped}(81 n+10) \equiv 5 \operatorname{ped}(n)(\bmod 8) \tag{37}
\end{equation*}
$$

Congruence (10) follows from (37) and mathematical induction. Replacing $n$ by $81 n+37$ in (10) and employing (35), we obtain (11). Replacing $n$ by $81 n+64$ in (10) and using (36), we deduce (12). The proof is complete.

## 3 Proof of Theorem 4

Thanks to (19) and (21), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} p e d(9 n+4) q^{n} \equiv 4 f_{2} \psi\left(q^{3}\right)(\bmod 8) \tag{38}
\end{equation*}
$$

where $\psi(q)$ is defined by

$$
\begin{equation*}
\psi(q):=\frac{f_{2}^{2}}{f_{1}} . \tag{39}
\end{equation*}
$$

In their nice paper [3], Cui and Gu established $p$-dissection formulas for $f_{1}$ and $\psi(q)$. They proved that for any odd prime $p$,

$$
\begin{equation*}
\psi(q)=\sum_{k=0}^{\frac{p-3}{2}} q^{\frac{k^{2}+k}{2}} f\left(q^{\frac{p^{2}+(2 k+1) p}{2}}, q^{\frac{p^{2}-(2 k+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right) \tag{40}
\end{equation*}
$$

and for any prime $p \geqslant 5$,

$$
\begin{equation*}
f_{1}=\sum_{\substack{k=\frac{1-p}{}, k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}} \tag{41}
\end{equation*}
$$

where

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6} & \text { if } p \equiv 1(\bmod 6)  \tag{42}\\ \frac{-p-1}{6} & \text { if } p \equiv-1(\bmod 6)\end{cases}
$$

and the Ramanujan theta function $f(a, b)$ is defined by

$$
\begin{equation*}
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \tag{43}
\end{equation*}
$$

where $|a b|<1$.
Let $a(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}:=f_{2} \psi\left(q^{3}\right) . \tag{44}
\end{equation*}
$$

It follows from (38) and (44) that for $n \geqslant 0$,

$$
\begin{equation*}
\operatorname{ped}(9 n+4) \equiv 4 a(n)(\bmod 8) . \tag{45}
\end{equation*}
$$

Substituting (40) and (41) into (44), we see that for any prime $p \equiv 5,7(\bmod 8)$,

$$
\begin{align*}
& \sum_{n=0}^{\infty} a(n) q^{n}  \tag{46}\\
= & \left(\sum_{\substack{\frac{1-p}{ \pm}, m \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{m} q^{3 m^{2}+m} f\left(-q^{3 p^{2}+(6 m+1) p},-q^{3 p^{2}-(6 m+1) p}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{12}} f_{2 p^{2}}\right) \\
& \times\left(\sum_{k=0}^{\frac{p-3}{2}} q^{\frac{3\left(k^{2}+k\right)}{2}} f\left(q^{\frac{3\left(p^{2}+(2 k+1) p\right)}{2}}, q^{\frac{3\left(p^{2}-(2 k+1) p\right)}{2}}\right)+q^{\frac{3\left(p^{2}-1\right)}{8}} \psi\left(q^{3 p^{2}}\right)\right) \tag{47}
\end{align*}
$$

Now, we consider the congruence

$$
\begin{equation*}
3 m^{2}+m+\frac{3\left(k^{2}+k\right)}{2} \equiv \frac{11\left(p^{2}-1\right)}{24}(\bmod p), \tag{48}
\end{equation*}
$$

where $-\frac{p-1}{2} \leqslant m \leqslant \frac{p-1}{2}$ and $0 \leqslant k \leqslant \frac{p-1}{2}$. Congruence (48) can be rewritten as follows

$$
\begin{equation*}
2(6 m+1)^{2}+(6 k+3)^{2} \equiv 0(\bmod p) . \tag{49}
\end{equation*}
$$

Since $p \equiv 5,7(\bmod 8)$, we have that -2 is a ratic nonresidue modulo $p$ and hence (49) is equivalent to

$$
\begin{equation*}
6 m+1 \equiv 6 k+3 \equiv 0(\bmod p) . \tag{50}
\end{equation*}
$$

Thus, $m=\frac{ \pm p-1}{6}$ and $k=\frac{p-1}{2}$. Extracting those terms associated with powers $q^{p n+\frac{11\left(p^{2}-1\right)}{24}}$ on both sides of (46) and employing the fact that Congruence (48) holds if and only if $m=\frac{ \pm p-1}{6}$ and $k=\frac{p-1}{2}$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p n+\frac{11\left(p^{2}-1\right)}{24}\right) q^{p n+\frac{11\left(p^{2}-1\right)}{24}}=(-1)^{\frac{ \pm p-1}{6}} q^{\frac{11\left(p^{2}-1\right)}{24}} f_{2 p^{2}} \psi\left(q^{3 p^{2}}\right) . \tag{51}
\end{equation*}
$$

Dividing $q^{\frac{11\left(p^{2}-1\right)}{24}}$ on both sides of (51) and then replacing $q^{p}$ by $q$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p n+\frac{11\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} f_{2 p} \psi\left(q^{3 p}\right) \tag{52}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p^{2} n+\frac{11\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} f_{2} \psi\left(q^{3}\right) \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(p(p n+i)+\frac{11\left(p^{2}-1\right)}{24}\right)=0 \tag{54}
\end{equation*}
$$

for $n \geqslant 0$ and $1 \leqslant i \leqslant p-1$. Combining (44) and (53), we have

$$
\begin{equation*}
a\left(p^{2} n+\frac{11\left(p^{2}-1\right)}{24}\right) \equiv a(n)(\bmod 2) . \tag{55}
\end{equation*}
$$

By (55) and mathematical induction, we find that for $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{equation*}
a\left(p^{2 \alpha} n+\frac{11\left(p^{2 \alpha}-1\right)}{24}\right) \equiv a(n)(\bmod 2) \tag{56}
\end{equation*}
$$

Replacing $n$ by $p(p n+i)+\frac{11\left(p^{2}-1\right)}{24}(1 \leqslant i \leqslant p-1)$ in (56) and using (54), we deduce that for $n \geqslant 0$ and $\alpha \geqslant 1$,

$$
\begin{equation*}
a\left(p^{2 \alpha} n+\frac{(24 i+11 p) p^{2 \alpha-1}-11}{24}\right) \equiv 0(\bmod 2) \tag{57}
\end{equation*}
$$

Finally, replacing $n$ by $p^{2 \alpha} n+\frac{(24 i+11 p) p^{2 \alpha-1}-11}{24}(1 \leqslant i \leqslant p-1)$ in (45) and using (57), we get (16).

We conclude the paper by proving (17). In view of (20) and (21), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} p e d(9 n+7) q^{n} \equiv 4 f_{1} \psi\left(q^{6}\right)(\bmod 8), \tag{58}
\end{equation*}
$$

where $\psi(q)$ is defined by (39). Let $b(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b(n) q^{n}:=f_{1} \psi\left(q^{6}\right) \tag{59}
\end{equation*}
$$

By (58) and (59), we find that for $n \geqslant 0$,

$$
\begin{equation*}
\operatorname{ped}(9 n+7) \equiv 4 b(n)(\bmod 8) \tag{60}
\end{equation*}
$$

Substituting (40) and (41) into (59), we see that for any prime $p \equiv 5,7(\bmod 8)$,

$$
\begin{align*}
\sum_{n=0}^{\infty} b(n) q^{n}= & \left(\sum_{\substack{m=1-p \\
m \neq \frac{1 p-1}{6}}}^{\frac{p-1}{2}}(-1)^{m} q^{\frac{3 m^{2}+m}{2}} f\left(-q^{\frac{3 p^{2}+(6 m+1) p}{2}},-q^{\frac{3 p^{2}-(6 m+1) p}{2}}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}}\right) \\
& \times\left(\sum_{k=0}^{\frac{p-3}{2}} q^{3\left(k^{2}+k\right)} f\left(q^{3\left(p^{2}+(2 k+1) p\right)}, q^{3\left(p^{2}-(2 k+1) p\right)}\right)+q^{\frac{3\left(p^{2}-1\right)}{4}} \psi\left(q^{6 p^{2}}\right)\right) \tag{61}
\end{align*}
$$

As above, for any prime $p \equiv 5,7(\bmod 8),-\frac{p-1}{2} \leqslant m \leqslant \frac{p-1}{2}$ and $0 \leqslant k \leqslant \frac{p-1}{2}$, the congruence relation

$$
\begin{equation*}
\frac{3 m^{2}+m}{2}+3\left(k^{2}+k\right) \equiv \frac{19\left(p^{2}-1\right)}{24}(\bmod p) \tag{62}
\end{equation*}
$$

holds if and only if $m=\frac{ \pm p-1}{6}$ and $k=\frac{p-1}{2}$. This implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b\left(p n+\frac{19\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} f_{p} \psi\left(q^{6 p}\right) . \tag{63}
\end{equation*}
$$

Thanks to (63), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b\left(p^{2} n+\frac{19\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{\frac{ \pm p-1}{6}} f_{1} \psi\left(q^{6}\right) \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
b\left(p(p n+i)+\frac{19\left(p^{2}-1\right)}{24}\right)=0 \tag{65}
\end{equation*}
$$

for $n \geqslant 0$ and $1 \leqslant i \leqslant p-1$. It follows from (59) and (64) that for $n \geqslant 0$,

$$
\begin{equation*}
b\left(p^{2} n+\frac{19\left(p^{2}-1\right)}{24}\right) \equiv b(n)(\bmod 2) \tag{66}
\end{equation*}
$$

By (66) and mathematical induction, we deduce that for $n \geqslant 0$ and $\alpha \geqslant 0$,

$$
\begin{equation*}
b\left(p^{2 \alpha} n+\frac{19\left(p^{2 \alpha}-1\right)}{24}\right) \equiv b(n)(\bmod 2) . \tag{67}
\end{equation*}
$$

Replacing $n$ by $p(p n+i)+\frac{19\left(p^{2}-1\right)}{24}(1 \leqslant i \leqslant p-1)$ in (67) and employing (65), we find that

$$
\begin{equation*}
b\left(p^{2 \alpha} n+\frac{(24 i+19 p) p^{2 \alpha-1}-19}{24}\right) \equiv 0(\bmod 2) \tag{68}
\end{equation*}
$$

for $n \geqslant 0, \alpha \geqslant 1$ and $1 \leqslant i \leqslant p-1$. Congruence (17) follows from (60) and (68). This completes the proof of Theorem 4.

## Acknowledgements

We wish to thank the referee for helpful comments.

## References

[1] G. E. Andrews, M. D. Hirschhorn and J. A. Sellers. Arithmetic properties of partitions with even parts distinct. Ramanujan J., 23:169-181, 2010.
[2] S. C. Chen. On the number of partitions with distinct even parts. Discrete Math., 311:940-943, 2011.
[3] S. P. Cui and N. S. S. Gu. Arithmetic properties of $l$-regular partitions. Adv. Appl. Math., 51:507-523, 2013.
[4] S. P. Cui and N. S. S. Gu. Congruences for 9-regular partitions modulo 3. Ramanujan J., to appear (DOI:10.1007/s11139-014-9586-3).
[5] B. Dandurand and D. Penniston. l-divisiblity of $l$-regular partition functions. Ramanujan J., 19:63-70, 2009.
[6] J.-F. Fortin, P. Jacob and P. Mathieu. Jagged partitions. Ramanujan J., 10:215-235, 2005.
[7] D. Furcy and D. Penniston. Congruences for $l$-regular partition functions modulo 3. Ramanujan J., 27:101-108, 2012.
[8] B. Gordon and K. Ono. Divisibility of certain partition functions by powers of primes. Ramanujan J., 1:25-34, 1997.
[9] M. D. Hirschhorn and J. A. Sellers. Arithmetic relations for overpartitions. J. Comb. Math. Comb. Comp., 53:65-73, 2005.
[10] W. J. Keith. Congruences for 9-regular partitions modulo 3. Ramanujan J., 35:157164, 2014.
[11] B. L. S. Lin and A. Y. Z. Wang. Generalization of Keith's conjecture on 9-regular partitions and 3-cores. Bull. Austral. Math. Soc., 90:204-212, 2014.
[12] J. Lovejoy and D. Penniston. 3-regular partitions and a modular K3 surface. In q-series with applications to combinatorics, number theory, and physics, pages 177182, Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
[13] D. Penniston. The $p^{a}$-regular partition function modulo $p^{j}$. J. Number Theory, 94:320-325, 2002.
[14] D. Penniston. Arithmetic of $l$-regular partition functions. Int. J. Number Theory, 4:295-302, 2008.
[15] J. J. Webb. Arithmetic of the 13-regular partition function modulo 3. Ramanujan J., 25:49-56, 2011.
[16] E. X. W. Xia and O. X. M. Yao. Parity results for 9-regular partitions. Ramanujan J., 34:109-117, 2014.
[17] E. X. W. Xia and O. X. M. Yao. A proof of Keith's conjecture for 9-regular partitions modulo 3. Int. J. Number Theory, 10:669-674, 2014.
[18] O. Y. M. Yao. New congruences modulo powers of 2 and 3 for 9-regular partitions. J. Number Theory, 142:89-101, 2014.


[^0]:    *Supported by the National Natural Science Foundation of China (No. 11201188).

