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Abstract

It was shown that linked systems of symmetric designs with a∗1 = 0 and mutually
unbiased bases (MUBs) are triply regular association schemes. In this paper, we
characterize triple regularity of linked systems of symmetric designs by its Krein
number. And we prove that a maximal set of MUBs carries a quadruply regu-
lar association scheme and characterize the quadruple regularity of MUBs by its
parameter.
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1 Introduction

Q-polynomial association schemes are defined by Delsarte in [5] as a framework to study
design theory including such as combinatorial t-designs or orthogonal arrays. As a con-
tinuous analogue of designs in Q-polynomial association schemes, Delsarte, Goethals and
Seidel introduced the concept of spherical designs in [6]. Several combinatorial designs,
spherical designs and mutually unbiased bases, which is considered in quantum informa-
tion theory, have the structure of Q-polynomial association schemes of small class as fol-
lows: symmetric designs and linked systems of symmetric designs for 3 class Q-antipodal
case [4, 8, 11], certain equiangular line sets for 3 class Q-bipartite case [8, 11], real mutually
unbiased bases for 4 class, Q-antipodal and Q-bipartite case [1, 7, 11]. Much recent effort
has focused on these imprimitive families and the research of imprimitive Q-polynomial
association schemes of small class is important for design theory.

It was shown in [11] that 3-class Q-antipodal association schemes satisfying a∗1 = 0 and
4-class association schemes which are both Q-antipodal and Q-bipartite are triply regular.
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In this paper we characterize the triple regularity for 3-class Q-antipodal association
schemes and the quadruple regularity for 4-class association schemes which are both Q-
antipodal and Q-bipartite.

The present paper is organized as follows. In Section 2, we prepare the notion and
lemmas on association schemes, spherical designs and triple and quadruple regularity for
association schemes needed later.

In Section 3, we consider linked systems of symmetric designs. Systems of projective
designs, that were defined by Cameron [3], are the combinatorial object of finite doubly
transitive groups which have more than two pairwise inequivalent permutation represen-
tations with the same permutation character. We call it linked systems of symmetric
designs, if symmetric designs appearing in systems of projective designs have all same
parameters. Noda [10] showed several inequalities concerning the parameters of linked
systems of symmetric designs and Mathon [9] showed every linked system of symmetric
designs carries a 3-class association scheme and calculated its eigenmatrices. It implies
that these association schemes are Q-polynomial with the Q-antipodal property. Con-
versely van Dam [4] showed every 3-class Q-antipodal association scheme arises from a
linked system of symmetric designs. The author [11] proved that every linked system
of symmetric designs with a∗1 = 0 is a triply regular association scheme. In this section
we will show the converse proposition, that is, if a linked system of symmetric designs is
triply regular, then a∗1 = 0. This proof is essentially due to [10, Theorem 2].

In Section 4, we consider the real mutually unbiased bases (MUBs). One important
problem of real MUBs is to determine the maximal number of real MUBs in Rd. It is well
known that its number is at most d/2 + 1. A set of real MUBs is said to be maximal if
equality holds. Recently Martin et al. [7] showed that there is a one-to-one correspondence
between real MUBs and 4-class association schemes which are both Q-bipartite and Q-
antipodal. Moreover Martin et al. [8] had shown that a 4-class association schemes which
are both Q-bipartite and Q-antipodal is obtained by the extended Q-bipartite double of
a linked system of symmetric design with certain parameters. The author proved in [11]
that every set of MUBs carries a triply regular association scheme. The main theorem in
this section is that a set of MUBs carries a quadruply regular association scheme if and
only if a set of MUBs is maximal.

Finally, in Section 5, we discuss the quadruple regularity of linked systems of symmetric
designs.

2 Preliminaries

Let X be a finite set, we define diag(X × X) = {(x, x) | x ∈ X}. Let {Ri}i∈I be a set
of relations on X, we define Rt

i = {(y, x) | (x, y) ∈ Ri}. A pair (X, {Ri}i∈I) is a coherent
configuration if the following properties are satisfied:

1. {Ri}i∈I is a partition of X ×X,

2. Rt
i = Ri∗ for some i∗ ∈ I,
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3. Ri ∩ diag(X ×X) 6= ∅ implies Ri ⊂ diag(X ×X),

4. for i, j, k ∈ I, the number |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| is independent of the
choice of (x, y) ∈ Rk.

If moreover R0 = diag(X × X) and i∗ = i for all i ∈ I, then we call (X, {Ri}i∈I) a
symmetric association scheme.

Let Sd−1 denotes the unit sphere in Rd. Let X1, . . . , Xn be finite subsets of Sd−1.
We denote by

∐n
i=1Xi the disjoint union of X1, . . . , Xn. We denote by 〈x, y〉 the inner

product of x, y ∈ Rd. We define the nontrivial angle set A(Xi, Xj) between Xi and Xj by

A(Xi, Xj) = {〈x, y〉 | x ∈ Xi, y ∈ Xj, x 6= ±y},

and the angle set A′(Xi, Xj) between Xi and Xj by

A′(Xi, Xj) = {〈x, y〉 | x ∈ Xi, y ∈ Xj, x 6= y}.

If i = j, then A(Xi, Xi) (resp. A′(Xi, Xi)) is abbreviated A(Xi) (resp. A′(Xi)).
We define the intersection numbers on Xj for x, y ∈ Sd−1 by

pjα,β(x, y) = |{z ∈ Xj | 〈x, z〉 = α, 〈y, z〉 = β}|.

For a positive integer t, a finite non-empty set X in the unit sphere Sd−1 is called a
spherical t-design in Sd−1 if the following condition is satisfied:

1

|X|
∑
x∈X

f(x) =
1

|Sd−1|

∫
Sd−1

f(x)dσ(x)

for all polynomials f(x) = f(x1, . . . , xd) of degree not exceeding t. Here |Sd−1| denotes
the volume of the sphere Sd−1. When X is a t-design and not a (t + 1)-design, we call t
its strength.

We define the Gegenbauer polynomials {Qk(x)}∞k=0 on Sd−1 by

Q0(x) = 1, Q1(x) = dx,

k + 1

d+ 2k
Qk+1(x) = xQk(x)− d+ k − 3

d+ 2k − 4
Qk−1(x).

A criterion for t-designs using Gegenbauer polynomials is known [6, Theorem 5.3, 5.5].

Lemma 1. Let X be a finite set in Sd−1. The following conditions are equivalent:

1. X is a t-design,

2.
∑

x,y∈X
Qk(〈x, y〉) = 0 for any k ∈ {1, . . . , t}.
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We define {fλ,l}λl=0 as the coefficients of Gegenbauer expansion of xλ for any nonneg-

ative integers λ, i.e., xλ =
∑λ

l=0 fλ,lQl(x), and let Fλ,µ(x) =
∑min{λ,µ}

l=0 fλ,lfµ,lQl(x), where
λ, µ are nonnegative integers.

Next, we consider triple or quadruple regularity of a symmetric association scheme.

Definition 2. Let (X, {Ri}di=0) be a symmetric association scheme. Then the association
scheme X is said to be triply regular if, for all i, j, k, l,m, n ∈ {0, 1, . . . , d}, and for
all x, y, z ∈ X such that (x, y) ∈ Ri, (y, z) ∈ Rj, (z, x) ∈ Rk, the number pi,j,kl,m,n :=

|Rm(x) ∩ Rn(y) ∩ Rl(z)| depends only on i, j, k, l,m, n and not on x, y, z. We call pi,j,kl,m,n

triple intersection numbers.

Definition 3. Let (X, {Ri}di=0) be a symmetric association scheme. Then the association
scheme X is said to be quadruply regular if, for all I = (i1, i2, i3, i4) ⊂ {0, 1, . . . , d}4,
J = (jα,β)16α<β64 ⊂ {0, 1, . . . , d}6 and x1, . . . , x4 ∈ X such that (xk, xl) ∈ Rjk,l for any
1 6 k < l 6 4, the number

|Ri1(x1) ∩Ri2(x2) ∩Ri3(x3) ∩Ri4(x4)|

depends only on I, J and not on x1, . . . , x4.

Let (X, {Ri}di=0) be a symmetric association scheme. We define the i-th subcon-
stituent with respect to z ∈ X by Ri(z) := {y ∈ X | (z, y) ∈ Ri} and the (i, j)-th
subconstituent with respect to (z1, z2) ∈ X × X by Ri,j(z1, z2) := Ri(z1) ∩ Rj(z2). We
denote by Rm,n

i,j,k,l(z1, z2) the restriction Rn to Ri,j(z1, z2) × Rk,l(z1, z2) for (z1, z2) ∈ Rm.
Quadruple regularity is characterized by the concept of coherent configuration. We omit
easy proof of the following lemma.

Lemma 4. A symmetric association scheme (X, {Ri}di=0) is quadruply regular if and
only if (X, {Ri}di=0) is triply regular and for all m ∈ {1, . . . , d} and z1, z2 ∈ X with
(z1, z2) ∈ Rm,

(
⋃d

i,j=1
Ri,j(z1, z2), {Rm,n

i,j,k,l(z1, z2) | 1 6 i, j, k, l, n 6 d, pl,k,ni,j,m 6= 0})

is a coherent configuration whose parameters depend only on m, not on the choice of z1, z2

with (z1, z2) ∈ Rm.

Remark 5. For (z1, z2) ∈ Rm with m = 0 namely z1 = z2,

(
⋃d

i,j=1
Ri,j(z1, z2), {Rm,n

i,j,k,l(z1, z2) | 1 6 i, j, k, l,m 6 d, pl,k,ni,j,m 6= 0})

= (
⋃d

i=1
Ri(z1), {Rk

i,j(z1) | 1 6 i, j 6 d, 0 6 k 6 d, pki,j 6= 0})

holds. The condition that (
⋃d
i,j=1Ri,j(z1, z2), {Rm,n

i,j,k,l(z1, z2) | 1 6 i, j, k, l,m 6 d, pl,k,ni,j,m 6=
0}) is a coherent configuration whose parameters depend only on m, not on the choice of
z1, z2 with (z1, z2) ∈ Rm with m = 0 is equivalent that the association scheme is triply
regular.
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Let X be a finite subset in Sd−1 with degree s, and A(X) = {α1, . . . , αs}. For z1, z2 ∈
X with 〈z1, z2〉 = αm 6= ±1, Xm

i,j = Xm
i,j(z1, z2) will denote the orthogonal projection of

{y ∈ X | 〈y, z1〉 = αi, 〈y, z2〉 = αj} to 〈z1, z2〉⊥ = {y ∈ Rd | 〈y, z1〉 = 〈y, z1〉 = 0}, rescaled
to lie in Sd−3. If 〈x, z1〉 = αi, 〈x, z2〉 = αj, 〈y, z1〉 = αk, 〈y, z2〉 = αl and 〈x, y〉 = αn, then
the inner product of the orthogonal projections of x, y to 〈z1, z2〉⊥ rescaled to lie in Sd−3

is

αm,ni,j,k,l :=
(αn − αiαk)(1− α2

m)− (αj − αiαm)(αl − αkαm)√
(1− α2

i − α2
j − α2

m + 2αiαjαm)(1− α2
k − α2

l − α2
m + 2αkαlαm)

.

We denote p
(i,j,m)
α,β (x, y) = |{z ∈ Xm

i,j | 〈x, z〉 = α, 〈y, z〉 = β}|.

Lemma 6. Let X ⊂ Sd−1 be a finite set and A′(X) = {α1, . . . , αs}. Assume that
(X, {Rk}sk=0) is a symmetric association scheme, where Rk = {(x, y) ∈ X ×X | 〈x, y〉 =
αk} (0 6 k 6 s) and α0 = 1. Then |{(i, j) ∈ {1, . . . , s}2 | Xm

i,j(z1, z2) 6= ∅}| = |{(i, j) ∈
{1, . . . , s}2 | pmi,j 6= 0}| for 〈z1, z2〉 = αm.

Proof. Immediate from definition.

The following theorem is used to prove Corollary 9.

Theorem 7 ([11, Theorem 2.6]). Let Xi ⊂ Sd−1 be a spherical ti-design for i ∈ {1, . . . , n}.
Assume that Xi ∩ Xj = ∅ or Xi = Xj, and Xi ∩ (−Xj) = ∅ or Xi = −Xj for i, j ∈
{1, . . . , n}. Let si,j = |A(Xi, Xj)|, s∗i,j = |A′(Xi, Xj)| and A(Xi, Xj) = {α1

i,j, . . . , α
si,j
i,j },

α0
i,j = 1, when −1 ∈ A′(Xi, Xj), we define α

s∗i,j
i,j = −1. We define Rk

i,j = {(x, y) ∈ Xi×Xj |
〈x, y〉 = αki,j}. If one of the following holds depending on the choice of i, j, k ∈ {1, . . . , n}:

1. si,j + sj,k − 2 6 tj,

2. si,j+sj,k−3 = tj and for any γ ∈ A(Xi, Xk) there exist α ∈ A(Xi, Xj), β ∈ A(Xj, Xk)
such that the number pjα,β(x, y) is independent of the choice of x ∈ Xi, y ∈ Xk with
γ = 〈x, y〉,

3. si,j + sj,k − 4 = tj and for any γ ∈ A(Xi, Xk) there exist α, α′ ∈ A(Xi, Xj), β, β
′ ∈

A(Xj, Xk) such that α 6= α′, β 6= β′ and the numbers pjα,β(x, y), pjα,β′(x, y) and

pjα′,β(x, y) are independent of the choice of x ∈ Xi, y ∈ Xk with γ = 〈x, y〉,

then (
∐n

i=1Xi, {Rk
i,j | 1 6 i, j 6 n, 1− δXi,Xj

6 k 6 s∗i,j}) is a coherent configuration. The
parameters of this coherent configuration are determined by A(Xi, Xj), |Xi|, ti, δXi,Xj

,

δXi,−Xj
, and when si,j + sj,k − 3 = tj (resp. si,j + sj,k − 4 = tj), the numbers pjα,β(x, y)

(resp. pjα,β(x, y), pjα′,β(x, y), pjα,β′(x, y)) which are assumed be independent of (x, y) with
〈x, y〉 = γ.

The following lemma shows the antipodal double cover of coherent configurations
obtained from finite subsets in Sd−1 are also coherent configurations.
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Lemma 8. Let X+
i , X

−
i ⊂ Sd−1 be a finite subset such that X+

i = −X−i for i ∈ {1, . . . , n}.
If {X+

i }ni=1 carries a coherent configuration, then {X+
i , X

−
i }ni=1 carries also a coherent

configuration.

Proof. We define Xε
i (x, α) = {w ∈ Xε

i | 〈x,w〉 = α}, and Xε
i (x, α; y, β) = Xε

i (x, α) ∩
Xε
i (y, β) for x ∈ Sd−1, ε = + or −. Then the following equalities hold:

1. X+
i (x,−α) = X+

i (−x, α),

2. X+
i (x, α) = −X−i (x,−α).

By (1), X+
i (x, α; y, β) = X+

i (−x,−α; y, β) = X+
i (x, α;−y,−β) holds. Then by (2),

X+
i (x, α; y, β) = −X−i (x,−α; y,−β) holds. Therefore

|X+
i (x, α; y, β)| = |X+

i (−x,−α; y, β)| = |X+
i (x, α;−y,−β)| = |X−i (x,−α; y,−β)|

holds. This implies that intersection numbers on {X+
i , X

−
i }ni=1 is determined by the

coherent configuration {X+
i }ni=1.

The following corollary gives a sufficient condition for association schemes obtained
from an antipodal finite subset of sphere to be quadruple regular of triply regular. Its
proof follows from the same argument of [11, Corollary 2.9].

Corollary 9. Let X ⊂ Sd−1 be an antipodal finite subset and A′(X) = {α1, . . . , αs} with
α1 > · · · > αs = −1. Assume that (X, {Rk}sk=0) is a triply regular symmetric association
scheme, where Rk = {(x, y) ∈ X × X | 〈x, y〉 = αk} (0 6 k 6 s) and α0 = 1. Then for
1 6 i, j, k, l,m 6 s− 1 such that pmi,j 6= 0 and pmk,l 6= 0,

1. A(Xm
i,j(z1, z2), Xm

k,l(z1, z2)) = {αm,ni,j,k,l | 0 6 n 6 s, pl,k,ni,j,m 6= 0, αm,ni,j,k,l 6= ±1}.

2. Xm
i,j(z1, z2) = Xm

k,l(z1, z2) or Xm
i,j(z1, z2)∩Xm

k,l(z1, z2) = ∅, and similarly Xm
i,j(z1, z2) =

−Xm
k,l(z1, z2) or Xm

i,j(z1, z2) ∩ −Xm
k,l(z1, z2) = ∅ for any z1, z2 ∈ X with 〈z1, z2〉 =

αm. And δXm
i,j(z1,z2),Xm

k,l(z1,z2), δXm
i,j(z1,z2),−Xm

k,l(z1,z2) are independent of z1, z2 ∈ X with

αm = 〈z1, z2〉.

3. Xm
i,j(z1, z2) has the same strength for all z1, z2 ∈ X with αm = 〈z1, z2〉.

Moreover if the assumption (1), (2) or (3) of Theorem 7 is satisfied for {Xm
i,j(z1, z2) | 1 6

i 6 s−1
2
, 1 6 j 6 s−1, pmi,j 6= 0}∪{Xm

i,j(z1, z2) | s−1
2

6 i 6 s
2
, 1 6 j 6 s

2
, pmi,j 6= 0} with m 6=

0 or s, and when ((i, j), (k, l), (m,n)) satisfies (2) (resp. (3)) the numbers p
(k,l,m)
α,β (x, y)

(resp. p
(k,l,m)
α,β (x, y), p

(k,l,m)
α,β′ (x, y), p

(k,l,m)
α′,β (x, y)) which are assumed to be independent of

(x, y) with γ = 〈x, y〉 are independent of the choice of z1, z2 with αm = 〈z1, z2〉, then
(X, {Rk}sk=0) is a quadruply regular association scheme.
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Proof. (1), (2), (3) follow from arguments similar to that in [11, Corollary 2.9].
Fix z1, z2 ∈ X with αm = 〈z1, z2〉.
If m = 0 or s, then

⋃s
i,j=1Ri(z1) ∩ Rj(z2) =

⋃s
i=1 Ri(z1). The triple regularity of

(X, {Rk}sk=0) is equivalent that
⋃s
i,j=1Ri(z1) ∩ Rj(z2) is a coherent configuration whose

parameters are independent of z1, z2 with 〈z1, z2〉 = ±1.
If 1 6 m 6 s − 1, then Xm

i,s(z1, z2) 6= ∅ if and only if Xm
s,i(z1, z2) 6= ∅ if and only if

i = s−m hold, and then Xm
s,m−s(z1, z2) = {−z1}, Xm

s−m,s(z1, z2) = {−z2} hold. Moreover
Xm
i,j = −Xm

s−i,s−j hold for any 1 6 i, j 6 s− 1. By Lemma 8, it is sufficient to show that
{Xm

i,j(z1, z2) | 1 6 i 6 s−1
2
, 1 6 j 6 s − 1, pmi,j 6= 0} ∪ {Xm

i,j(z1, z2) | s−1
2

6 i 6 s
2
, 1 6 j 6

s
2
, pmi,j 6= 0} carries a coherent configuration whose parameters are independent of z1, z2

with αm = 〈z1, z2〉, and the rest of the proof follows from the similar argument of that in
[11, Corollary 2.9].

3 Linked systems of symmetric designs

In this section we characterize the triple regularity for association schemes obtained from
linked systems of symmetric designs in terms of one Krein parameter.

Definition 10. Let (Xi, Xj, Ii,j) be an incidence structure satisfyingXi∩Xj = ∅, I tj,i = Ii,j

for any distinct integers i, j ∈ {1, . . . , f}. We put X =
⋃f
i=1Xi, I =

⋃
i 6=j Ii,j. The pair

(X, I) is called a linked system of symmetric (v, k, λ) designs if the following conditions
hold:

1. for any distinct integers i, j ∈ {1, . . . , f}, (Xi, Xj, Ii,j) is a symmetric (v, k, λ) design,

2. for any distinct integers i, j, l ∈ {1, . . . , f}, and for any x ∈ Xi, y ∈ Xj, the number
of z ∈ Xl incident with both x and y depends only on whether x and y are incident
or not, and does not depend on i, j, l.

We define the integers σ, τ by

|{z ∈ Xl | (x, z) ∈ Ii,l, (y, z) ∈ Ij,l}| =

{
σ if (x, y) ∈ Ii,j,
τ if (x, y) 6∈ Ii,j,

where i, j, l ∈ {1, . . . , f} are distinct and x ∈ Xi, y ∈ Xj. Theorem 1 in [3] shows

(σ, τ) =

(
1

v
(k2 ∓

√
n(v − k)),

k

v
(k ±

√
n)

)
,

where n = k − λ. Considering complement designs (Xi, Xj, Ii,j) for any distinct integers
i, j ∈ {1, . . . , f}, we can assume either (σ, τ) = ( 1

v
(k2 −

√
n(v − k)), k

v
(k +

√
n)) or

( 1
v
(k2 +

√
n(v − k)), k

v
(k −

√
n)).
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From a linked system of symmetric designs, we obtain a 3-class Q-antipodal association
scheme (X, {Ri}3

i=0) where

R0 = {(x, x) | x ∈ X},
R1 = {(x, y) | x ∈ Xi, y ∈ Xj, (x, y) ∈ Ii,j for some i 6= j},
R2 = {(x, y) | x, y ∈ Xi, x 6= y for some i},
R3 = {(x, y) | x ∈ Xi, y ∈ Xj, (x, y) 6∈ Ii,j for some i 6= j}.

Conversely every 3-class Q-antipodal association scheme with equivalence relation R0∪R2

arises from a linked system of symmetric designs in [4, Theorem 5.8].
The following is the main result in this section. The implication (2)⇒ (1) was shown

in [11].

Theorem 11. Let (X, {Ri}3
i=0) be a Q-polynomial association scheme which is Q-antipodal

with equivalence relation R0 ∪R2. Then the following are equivalent:

1. (X, {Ri}3
i=0) is triply regular,

2. a∗1 = 0.

Proof. (2)⇒(1): See [11, Corollary 6.2].
(1)⇒(2):Let {Xi, . . . , Xf} be a system of imprimitivity with respect to the equivalence

relation R0 ∪R2 and (X,R1) a linked system of symmetric (v, k, λ) designs. Assume that

σ =
1

v
(k2 −

√
n(v − k)), τ =

k

v
(k +

√
n).

By the assumption of triple regularity, the following number

|{w ∈ X | (x,w), (y, w), (z, w) ∈ R1}|

for distinct points x, y, z ∈ X1 does not depend on x, y, z ∈ X1. This implies that a pair
(X1,

⋃f
i=2Xi) is a 3-design, therefore equality holds in [10, Theorem 2] (see also Remark 12

below). It follows that

f − 1 =
(v − 2)

√
k(v − k)

(v − 2k)
√
v − 1

.

This implies a∗1 = 0 (See [11, p.14]).

Remark 12. Mathon [9] pointed out that the inequality in [10, Theorem 2], which is
obtained by the counting argument,

(v − 2)

(
(v − 1)

(
λ

3

)
+

(
k

3

)
−
(
k

(
σ

3

)
+ (v − k)

(
τ

3

)))
> (f − 1)

(
(k − 2)λ

(
k

3

)
− (v − 2)

(
k

(
σ

3

)
+ (v − k)

(
τ

3

)))
is equivalent to a∗1 > 0.
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4 Real mutually unbiased bases

In this section we characterize the quadruple regularity for association schemes obtained
from real MUBs in terms of its Krein parameter.

Definition 13. Let M = {Mi}fi=1 be a collection of orthonormal bases of Rd. M is called
a set of real mutually unbiased bases (MUBs) if any two vectors x and y from different
bases satisfy 〈x, y〉 = ±1/

√
d.

Let M = {Mi}fi=1 be a set of MUBs, and put X = M ∪ (−M). The angle set of X is

A′(X) = { 1√
d
, 0,− 1√

d
,−1}.

We set

α0 = 1, α1 =
1√
d
, α2 = 0, α3 = − 1√

d
, α4 = −1,

and we define Rk = {(x, y) ∈ X×X | 〈x, y〉 = αk}. Then (X, {Rk}4
k=0) is a Q-polynomial

association scheme which is both Q-antipodal and Q-bipartite [7, Theorem 4.1].
Conversely let (X, {Rk}4

k=0) be a Q-polynomial association scheme which is both Q-
antipodal and Q-bipartite, then the image of the embedding into first eigenspace by
primitive idempotent E1 is M ∪ (−M), where M is a set of MUBs [7, Theorem 4.2].

Applying [2, Theorem 4.8] to the above scheme for i = j = 1 using the parameters in
[7, Appendix], we obtain the inequality f 6 d

2
+ 1. We call M a maximal set of MUBs if

this upper bound is attained.
We now show that every set of f MUBs gives rise to a linked system of symmetric

designs with f − 1 Q-antipodal classes.

Lemma 14. Let (X, {Ri}4
i=0) be a Q-polynomial association scheme which is both Q-

antipodal and Q-bipartite with f Q-antipodal classes of size 2d. Assume f > 3. Then
for z ∈ X and j = 1, 3 (Rj(z), {Ri ∩ (Rj(z)×Rj(z))}3

i=0}) is a Q-polynomial association
scheme which is Q-antipodal with (f − 1) Q-antipodal classes of size d and a∗1 = d

f−1
− 2.

Proof. It was shown in [11, Section 5] that (X, {Ri}4
i=0) is triply regular, in particular

Rj(z) carries an association scheme for any z ∈ X, j ∈ {1, 3}. Let Xj(z) be a derived
design in Sd−2 of X with respect to z, αj. We determine the intersection numbers of
Xj(z). For x, y ∈ Xj(z), we set

pα,β(x, y) = |{w ∈ Xj(z) | 〈x,w〉 = α, 〈w, y〉 = β}|.

The angle set of Xj(z) is

A(Xj(z)) =

{
α1 :=

√
d− 1

d− 1
, α2 :=

−1

d− 1
, α3 :=

−
√
d− 1

d− 1

}
,

Xj(z) is a 3-distance set and a 2-design in Sd−2. So set the degree s = 3 and the strength
t = 2 and observe t = 2s − 4 here. And for any γ = 〈x, y〉, the intersection numbers
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pα2,α2(x, y), pα2,α1(x, y), pα1,α2(x, y) are independent of the choice of x, y ∈ Xj(z) with
γ = 〈x, y〉 as follows:

pα2,α2(x, y) =


0 if 〈x, y〉 = α1,

d− 2 if 〈x, y〉 = α2,

0 if 〈x, y〉 = α3,

pα2,α1(x, y) = pα1,α2(x, y) =


d+
√
d

2
− 1 if 〈x, y〉 = α1,

0 if 〈x, y〉 = α2,
d+
√
d

2
if 〈x, y〉 = α3.

For 0 6 λ 6 2, 0 6 µ 6 2 and (λ, µ) 6= (1, 2), (2, 1), (2, 2), we obtain a system of 6 linear
equations∑

16l63
16m63

(l,m)6=(2,2),(2,1),(1,2)

αλl β
µ
mpαl,αm(x, y) = |Xj(z)|Fλ,µ(〈x, y〉)− 〈x, y〉λ − 〈x, y〉µ − αλ2α

µ
2p

j
α2,α2

(x, y)

− αλ2α
µ
1p

j
α2,α1

(x, y)− αλ1α
µ
2p

j
α1,α2

(x, y),

where Fλ,µ(t) is defined in [6, Section 7].

{pαi,αj
(x, y) | 1 6 i, j 6 3, (i, j) 6= (2, 2), (2, 1), (1, 2)}

is uniquely determined by Theorem 7. The intersection matrices Bi and the second
eigenmatrix Q are as follows:

B1 =


0 1 0 0

(f−2)(d+
√
d)

2
(f−3)(d+3

√
d)

4
d+2
√
d

4
d+
√
d

4

0 d+
√
d−2

2
0 d+

√
d

2

0 (f−3)(d−
√
d)

4
(f−2)d

4
(f−3)(d+

√
d)

4

 ,

B2 =


0 0 1 0

0 d+
√
d−2

2
0 d+

√
d

2

d− 1 0 d− 2 0

0 d−
√
d

2
0 d−

√
d−2

2

 ,

B3 =


0 0 0 1

0 (f−3)(d−
√
d)

4
(f−2)d

4
(f−3)(d+

√
d)

4

0 d−
√
d

2
0 d−

√
d−2

2
(f−2)(d−

√
d)

2
(f−3)(d−

√
d)

4
(f−2)(d−2

√
d)

4
(f−3)(d−3

√
d)

4

 ,

Q =


1 d− 1 (f − 1)(d− 1) f − 1

1
√
d− 1 −

√
d+ 1 −1

1 −1 −f + 1 f − 1

1 −
√
d− 1

√
d+ 1 −1

 ,
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and hence the Krein matrix B∗1 is given as follows:

B∗1 =


0 1 0 0

d− 1 d
f−1
− 2 d

f−1
0

0 (f−2)d
f−1

(f−2)d
f−1

− 2 d− 1

0 0 1 0

 .

Therefore X1(z) is a Q-polynomial association scheme which is Q-antipodal.

The following theorem shows that for MUBs, quadruple regularity is equivalent to
their maximality.

Theorem 15. Suppose that (X, {Ri}4
i=0) is a Q-polynomial association scheme which is

both Q-antipodal and Q-bipartite. Then the following conditions are equivalent:

1. (X, {Ri}4
i=0) is quadruply regular,

2. f = d
2

+ 1.

Proof. (1)⇒(2): Assume (X, {Ri}4
i=0) is quadruply regular. Then X1(z) is triply regular

for any z ∈ X. By Lemma 14 and Theorem 11, d
f−1
− 2 = 0. Therefore f = d

2
+ 1 holds.

(2)⇒(1): By [11, Corollary 5.3] it is sufficient to show that the assumption of Corol-
lary 9 is satisfied.

(i) When 〈z1, z2〉 = α2, {(i, j) | 1 6 i 6 s−1
2
, 1 6 j 6 s − 1, pmi,j 6= 0} ∪ {(i, j) |

s−1
2

6 i 6 s+1
2
, 1 6 j 6 s+1

2
, pmi,j 6= 0} is {(1, 1), (1, 3), (2, 2)}. X2

i,j = X2
i,j(z1, z2) is a

3-design in Sd−3 for (i, j) ∈ {(1, 1), (1, 3), (2, 2)}. Indeed X2
2,2 is a cross polytope in Sd−3.

|X2
1,1| = p2

1,1 = d2

4
, |X2

1,3| = p2
1,3 = d2

4
where p2

1,1 and p2
1,3 are the intersection numbers of X

in [1, 6 Appendix]. And the angle sets A(X2
1,1) = A(X2

1,3) = {
√
d−2
d−2

, −2
d−2

, −
√
d−2

d−2
} hold, so

Gegenbauer polynomial expansion of their annihilator polynomial F (x) :=
∏

α∈A′(X2
i,j)

x−α
1−α

is

F (x) =
4

d2
Q0(x)+

2(d2 + 6)(d− 2)

d3(d− 1)
Q1(x)+

(d− 2)3(d+ 3)

d3(d− 1)
Q2(x)+

6(d− 2)(d− 3)

d2(d− 1)
Q3(x),

therefore X2
1,1 and X2

1,3 are 3-designs in Sd−3 by [6, Theorem 6.5]. We renumber as follows:

X1 = X2
2,2, X2 = X2

1,1, X3 = X2
1,3.

We define si,j = |A(Xi, Xj)|. Then the matrix (si,j) is1 2 2
2 3 3
2 3 3

 .

If si,j + sj,k − 2 6 3, that is, when one of the i, j, k is equal to 1, then the assumption (1)
of Theorem 7 holds.
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If si,j + sj,k − 3 = 3, that is, when

(i, j, k) ∈ {(l,m, n) | 2 6 l,m, n 6 3}, (1)

And X2 ∪X3 carries a subconstituent association scheme R1(z1) of X whose parameters
are independent of z1 by Lemma 14, therefore those for (2, 3, 3) (respectively (2, 3, 2),
(3, 2, 3)) are determined by those for (2, 2, 3) (respectively (2, 2, 2), (3, 3, 3)). The in-
tersection numbers {pjα,β | α = α2

i,j or β = α2
j,k} for x ∈ Xi, y ∈ Xk and (i, j, k) ∈

{(2, 2, 2), (3, 3, 3), (2, 2, 3)} are given in Table 1. These numbers are independent of
z1, z2 ∈ X with 〈z1, z2〉 = α2. Hence the assumption of (2) of Theorem 7 holds for
i, j, k (i, j, k) in (1).

(ii) When 〈z1, z2〉 = α1, {Xm
i,j(z1, z2) | 1 6 i 6 s−1

2
, 1 6 j 6 s − 1, pmi,j 6= 0} ∪

{Xm
i,j(z1, z2) | s−1

2
6 i 6 s+1

2
, 1 6 j 6 s+1

2
, pmi,j 6= 0} is {X1

1,1, X
1
1,2, X

1
1,3, X

1
2,1}. X1

i,j =
X1
i,j(z1, z2) is a 2-design in Sd−3 for (i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 1)}. Indeed X1

1,2, X1
2,1

are regular simplexes in Sd−3. And X1
1,1 and X1

1,3 are subconstituents of X1(z1) with
respect to z2 ∈ X1(z1). X1(z1) is a Q-polynomial association scheme by Theorem 14 with
a∗1 = 0, so [11, Lemma 4.2] implies that X1

1,1 and X1
1,3 are 2-designs in Sd−3. We renumber

as follows:

X1 = X1
2,1, X2 = X1

1,2, X3 = X1
1,1, X4 = X1

1,3.

We define si,j = |A(Xi, Xj)|. Then the matrix (si,j) is
1 2 2 2
2 1 2 2
2 2 3 3
2 2 3 3

 .

If si,j + sj,k − 2 6 2, that is, when

(i, j, k) ∈ {(l,m, n) | 1 6 m 6 2, 1 6 l, n 6 4 or 3 6 m 6 4, 1 6 l, n 6 2},

then the assumption (1) of Theorem 7 holds.
If si,j + sj,k − 3 = 2, that is, when

(i, j, k) ∈ {(l,m, n) | 1 6 l 6 2, 3 6 m,n 6 4 or 3 6 l,m 6 4, 1 6 n 6 2}, (2)

or if si,j + sj,k − 4 = 2, that is, when

(i, j, k) ∈ {(l,m, n) | 3 6 l,m, n 6 4}, (3)

we directly verify that the intersection numbers on Xj for x ∈ Xi, y ∈ Xk are independent
of x, y and of z1, z2 by using the triple regularity of subconstituents of X in stead of
showing that the (i, j, k) in (2) (respectively (3)) satisfy the assumption (2) (respectively
(3)) of Theorem 7. By Theorem 11, Lemma 14 and the assumption f = d/2 + 1, R1(z1)
is a triply regular association scheme and its parameters are independent of z1. Since
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X2, X3 and X4 are the subconstituents of R1(z1) with respect to z2, X2∪X3∪X4 carries a
coherent configuration with fibers X2, X3 and X4. Moreover the parameters of its coherent
configuration are independent of z1 with 〈z1, z2〉 = α1. Interchanging z1 with z2 and using
X4 = −X1

3,1, it holds that X1 ∪ X3 ∪ X4 carries a coherent configuration with fibers
X2, X3 and X4 whose parameters are independent of z1, z2 with 〈z1, z2〉 = α1. Thus the
intersection numbers on Xj for x ∈ Xi, y ∈ Xk are independent of x, y and of z1, z2 for
i, j, k satisfying (2) or (3).

(iii) The case 〈z1, z2〉 = α3 is similar to the case 〈z1, z2〉 = α1.
By Corollary 9, we obtain the desired result.

Table 1: the values of pjα,β(x, y), where x ∈ Xi(z), y ∈ Xk(z)

(i, j, k) (α, β) pjα,β(x, y)

(α2
i,j, α

2
j,k)


0 〈x, y〉 = α1

i,k
d
2
− 1 〈x, y〉 = α2

i,k

0 〈x, y〉 = α3
i,k

(2, 2, 2)

(3, 3, 3)

(α2
i,j, α

1
j,k)

(α1
i,j, α

2
j,k)


d+2
√
d

4
− 1 〈x, y〉 = α1

i,k

0 〈x, y〉 = α2
i,k

d+2
√
d

4
〈x, y〉 = α3

i,k

(α2
i,j, α

3
j,k)

(α3
i,j, α

2
j,k)


d−2
√
d

4
〈x, y〉 = α1

i,k

0 〈x, y〉 = α2
i,k

d−2
√
d

4
− 1 〈x, y〉 = α3

i,k

(α2
2,2, α

2
2,3)


0 〈x, y〉 = α1

2,3
d
2
− 1 〈x, y〉 = α2

2,3

0 〈x, y〉 = α3
2,3

(α2
2,2, α

1
2,3)

(α2
2,2, α

3
2,3)


d
4
− 1 〈x, y〉 = α1

2,3

0 〈x, y〉 = α2
2,3

d
4

〈x, y〉 = α3
2,3

(2, 2, 3) (α1
2,2, α

2
2,3)


d+2
√
d

4
〈x, y〉 = α1

2,3

0 〈x, y〉 = α2
2,3

d+2
√
d

4
〈x, y〉 = α3

2,3

(α3
2,2, α

2
2,3)


d−2
√
d

4
〈x, y〉 = α1

2,3

0 〈x, y〉 = α2
2,3

d−2
√
d

4
〈x, y〉 = α3

2,3

Remark 16. Let M be a maximal set of MUBs and X = M ∪ (−M). It was already
shown in [1, Theorem 5] that {x ∈ X | 〈x, z1〉 = 〈x, z2〉 = 1√

d
} for z1, z2 ∈ X such that

〈z1, z2〉 = 0 carries an association scheme.
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Remark 17. One might wonder if the integrality of intersection numbers of the above
quadruply regular association scheme implies new necessary condition for existing maxi-
mal mutually unbiased bases, but the conditions of the integrality show d = k2

16
, which is

already known.

5 Quadruple regularity of linked systems of symmetric designs

Finally we consider whether the linked of symmetric designs with a∗1 = 0 could become
quadruply regular or not. We denote the collection of all k-subsets of Ω by

(
Ω
k

)
. Let

(Xi, Xj, Ii,j) be an incidence structure satisfying Xi ∩Xj = ∅, I tj,i = Ii,j for any distinct

integers i, j ∈ {1, . . . , f}. We put X =
⋃f
i=1Xi, I =

⋃
i 6=j Ii,j. Let (X, I) be a linked

system of symmetric designs with 1 < k < v−1. By [3, Theorem 1], n = k−λ is a square
number. Since k < v − 1, we have n 6= 1. Hence n > 4 and we have v > 15. We define

α(S) = |R1(x1) ∩R1(x2) ∩R1(x3) ∩R1(x4)|,

for S = {x1, x2, x3, x4} ∈
(
X1

4

)
.

Counting in two ways the numbers of these sets

{(S, y) ∈
(
X1

4

)
×
⋃f

i=2
Xi | (x, y) ∈ R1 for any x ∈ S},

{(S, T ) ∈
(
X1

4

)
×
(⋃f

i=2 Xi

2

)
| (x, y) ∈ R1 for any x ∈ S, y ∈ T},

we have the following equalities:∑
S∈(X1

4 )

α(S) = (f − 1)v

(
k

4

)
, (4)

∑
S∈(X1

4 )

(
α(S)

2

)
=

1

2
(f − 1)v

(
(f − 2)k

(
σ

4

)
+ (v − 1)

(
λ

4

)
+ (f − 2)(v − k)

(
τ

4

))
. (5)

Using Cauchy-Schwarts inequality with (4) and (5), we obtain

(k − 1)k2(v − k)2(v − k − 1)(v − 2)

(v − 2k)(v − 1)2v
(k(v−3)(v−k)(v−2k)+

√
n(v−1)(v2−6kv+v+6k2)) > 0.

If equality holds, then we have k(v−3)(v−k)(v−2k)+
√
n(v−1)(v2−6kv+v+6k2) = 0.

Multiplying k(v − 3)(v − k)(v − 2k) −
√
n(v − 1)(v2 − 6kv + v + 6k2) and dividing by

vk(k − 1)(v − k − 1)(v − k) 6= 0, we obtain

v(v + 1)2 + 4k2(v + 3)− 4kv(v + 3) = 0.

Solving this quadratic equation by k, we obtain

k =
v(v + 3)±

√
v(v − 1)(v + 3)

2(v + 3)
.
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Then it is a necessary condition that v(v−1)(v+3) is a square number. The elliptic curve
y2 = v(v−1)(v+3) has rank 0 and only 6 integral points (v, y) = (−2, 6), (−1, 4), (3, 36),
(0, 0), (1, 0), (−3, 0). It contradicts v > 15. Therefore (X1,

⋃f
i=2Xi) does not become

a 4-design. Hence a linked system of symmetric designs does not carry a quadruply
regular association scheme and a maximal set of MUBs does not carry a quintuply regular
association scheme. However, let (X, {Ri}4

i=0) be the association scheme derived from a
maximal set of MUBs with d > 4, the numbers

|Ri1(x1) ∩Ri2(x2) ∩Ri3(x3) ∩Ri4(x4) ∩Ri5(x5)| (6)

for xk ∈ X1 such that (xk, xl) ∈ R2, im ∈ {1, 3} and 1 6 k, l,m 6 5 are uniquely
determined as follows. Let M = {M1, . . . ,Md/2+1} be a maximal set of MUBs. Consider
the orthogonal transformation on M given by M1 to the standard basis. Then the elements

of
⋃ d

2
+1

i=2 Xi have form 1√
d
(±1, . . . ,±1) since M1 and Mi are mutually unbiased. The

binary code C is defined corresponding to the elements of
⋃ d

2
+1

i=2 Xi as follows: c = (ci) ∈ C
corresponds to x = (xi) ∈

⋃ d
2

+1

i=2 Xi, then ci = 0, 1 according to whether xi = 1√
d
,− 1√

d
,

respectively. C is said to be a Kerdock-like code in [1]. The weight enumerator of C is

WC(x, y) = xd + d(d−2)
2

x
d+
√
d

2 y
d−
√
d

2 + 2(d− 1)x
d
2 y

d
2 + d(d−2)

2
x

d−
√

d
2 y

d+
√
d

2 + yd. Then

WC⊥(x, y) =
1

d2
WC(x+ y, x− y) = xd +

d(d− 1)(d− 2)(d− 4)

360
xd−6y6 + · · · .

Hence C is an orthogonal array whose strength is 5 if d > 4. This implies that (6) are
uniquely determined for xk ∈ X1 such that (xk, xl) ∈ R2, im ∈ {1, 3} and 1 6 k, l,m 6 5.
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