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Abstract

A tree is called a k-tree if its maximum degree is at most k. We prove the
following theorem. Let k > 2 be an integer, and G be a connected bipartite graph
with bipartition (A,B) such that |A| 6 |B| 6 (k − 1)|A| + 1. If σk(G) > |B|,
then G has a spanning k-tree, where σk(G) denotes the minimum degree sum of k
independent vertices of G. Moreover, the condition on σk(G) is sharp. It was shown
by Win (Abh. Math. Sem. Univ. Hamburg, 43, 263–267, 1975) that if a connected
graph H satisfies σk(H) > |H|−1, then H has a spanning k-tree. Thus our theorem
shows that the condition becomes much weaker if the graph is bipartite.
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple
edges. Let G be a graph with vertex set V (G) and edge set E(G). We write |G| for the
order of G, that is, |G| = |V (G)|. For a vertex v of G, let NG(v) denote the neighborhood
of v in G, and denote the degree of v in G by degG(v), in particular, degG(v) = |NG(v)|.
A set X of vertices of G is called an independent set if no two vertices of X are adjacent.
For two vertices x and y of G, an edge joining them is denoted by xy or yx. For an integer
k > 2, a tree is called a k-tree if its maximum degree is at most k. Let α(G) denote the
independence number of G. The number σk(G) is defined to be the minimum degree sum
of k independent vertices of G. Namely, for an integer k > 1 with α(G) > k, we define

σk(G) := min
S

{

∑

x∈S

degG(x) : S is an independent set of size k

}

and σk(G) := ∞ if α(G) < k.
We begin with some known results on spanning k-trees related to our theorem, and

other results on a spanning k-tree can be found in the book [1], and papers [2], [3], [5]
and others. In particular, a survey article [6] contains many current results on spanning
trees including spanning k-trees.

The next theorem gives a sufficient condition using σk(G) for a graph to have a span-
ning k-tree.

Theorem 1 (Win [7]). Let k > 2 be an integer and G be a connected graph. If σk(G) >
|G| − 1, then G has a spanning k-tree.

Our main result of this paper is the following theorem, which shows that the condition
on σk(G) in the above Theorem 1 can be relaxed a lot for bipartite graphs.

Theorem 2. Let k > 2 be an integer, and G be a connected bipartite graph with bipartition

(A,B) such that |A| 6 |B| 6 (k − 1)|A|+ 1. If

σk(G) > |B|,

then G has a spanning k-tree.

The above theorem with k = 2 was obtained by Moon and Moser.

Theorem 3 (Moon and Moser [4]). Let G be a connected bipartite graph with bipartition

(A,B) such that |A| 6 |B| 6 |A| + 1. If σ2(G) > |B|, then then G has a Hamiltonian

path.

Note that the condition |B| 6 (k − 1)|A| + 1 is necessary for the bipartite graph G

to have a spanning k-tree since if |B| > (k − 1)|A| + 1, then G cannot have a spanning
k-tree. The degree sum condition is sharp in the following sense. Let k > 3 and s > 1 be
integers, and let A1, A2, B1 and B2 be disjoint sets of vertices such that |A1| = (k−2)s+1,
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|A2| = s, |B1| = s, |B2| = (k − 1)s+ 1. Then define a bipartite graph G with bipartition
(A1 ∪ A2, B1 ∪ B2) and edge set E(G) = {xy : x ∈ A1, y ∈ B1} ∪ {xy : x ∈ B1, y ∈
A2} ∪ {xy : x ∈ A2, y ∈ B2}. Then |A1 ∪ A2| = (k − 1)s + 1 < |B1 ∪ B2| = ks + 1 and
σk(G) = ks = |B1∪B2|−1. Moreover, G has no spanning k-tree. Therefore the condition
on σk(G) in Theorem 2 is sharp.

2 Proof of Theorem 2

We begin with some notation. Let T be a tree. We denote the set of leaves of T by
Leaf(T ). For two vertices u and v of T , there exists a unique path connecting u and v

in T , and it is denoted by PT (u, v). Let T be a rooted tree with root w. For a vertex
v ∈ V (T ) − {w}, the vertex adjacent to v and lying on the path PT (v, w) is called the
parent of v and denoted by v−. A vertex whose parent is v is called a child of v. In
particular, there are degT (v)− 1 children of v, and the set of children of v is denoted by
Child(v). We define the total excess te(G; k) from k of a graph G as

te(G; k) :=
∑

v∈V (G)

max{degG(v)− k, 0}.

Thus a tree T has te(T ; k) = 0 if and only if T is a k-tree. We are ready to prove
Theorem 2.

Proof of Theorem 2. By Theorem 3, we may assume that k > 3 though most part of the
following proof holds even if k = 2. Let G be a connected bipartite graph with bipartition
(A,B) that satisfies the following two conditions instead of the conditions of Theorem 2.

max{|A|, |B|} 6 (k − 1)min{|A|, |B|}+ 1, and (1)

σk(G) > max{|A|, |B|}. (2)

Notice that the above two conditions and the conditions of Theorem 2 are essentially
equivalent, and by these new conditions, we can assume that w ∈ A without loss of
generality, which will soon be apparent, and decrease the number of cases in case analysis.
Moreover, we do not use the sizes of two partite sets until the last stage of the proof.

Suppose that G has no spanning k-tree. Choose a spanning tree T of G so that

(T1) te(T ; k) is as small as possible,
(T2) |Leaf(T )| is as small as possible, subject to (T1) and,
(T3) Leaf(T ) ∩ A 6= ∅ and Leaf(T ) ∩ B 6= ∅ if possible, subject to (T2).

Since G has no spanning k-tree, there exists a vertex w such that degT (w) = l > k+1.
Let D1, D2, . . . , Dl be the components of T − w. For every 1 6 i 6 l, let vi denote the
vertex of Di adjacent to w in T . For every 1 6 i 6 k, let ui ∈ V (Di) be a leaf of T , and
let U := {u1, . . . , uk}.

Without loss of generality, we may assume that w ∈ A as mentioned above. Assume
that ui ∈ A for 1 6 i 6 m, and ui ∈ B for m + 1 6 i 6 k, where it might occur that
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m = 0 or m = k. We regard Di as a rooted tree with root ui for 1 6 i 6 k, and with root
vi for k + 1 6 i 6 l (see Figure 1). For every 1 6 t 6 l, let

Xt :=
⋃

16j6m, j 6=t

(NG(uj) ∩ V (Dt)),

Yt :=
⋃

m+16j6k, j 6=t

(NG(uj) ∩ V (Dt)),

Zt :=











(NG(ut) ∩ V (Dt)) \Xt if 1 6 t 6 m,

(NG(ut) ∩ V (Dt)) \ Yt if m+ 1 6 t 6 k,

∅ if k + 1 6 t 6 l,

and

Z1
t :=































{z ∈ Zt : a vertex of PT (ut, z
−) is adjacent to some uj in G,

where 1 6 j 6 m and j 6= t} if 1 6 t 6 m,

{z ∈ Zt : a vertex of PT (ut, z
−) is adjacent to some uj in G,

where m+ 1 6 j 6 k and j 6= t} if m+ 1 6 t 6 k,

∅ if k + 1 6 t 6 l (see Figure 1).

w

ua

u1 ulum um+1

ub

uk

v1 vm vm+1

v
bva

Ya

Xa

Ya
Za

1

z

z-

Zb
1

Xb

A B

Yb

Yb

z

z-

D1 Dk

Za

Zb

E(G)-E(T)E(T)

Xa

Xa

Xb

Yb

vk vl
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Figure 1: A spanning tree T of a bipartite graph G with bipartition A ∪ B.

Then Xi ⊆ B and Yi ⊆ A for all 1 6 i 6 l, and Zi ⊆ B for 1 6 i 6 m and Zi ⊆ A for
m+ 1 6 i 6 k. We relabel indices i of Di and rechoose ui so that
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(U1) U ∩ A 6= ∅ and U ∩ B 6= ∅ if possible and,
(U2) Xl 6= ∅ if possible, subject to (U1).

Let X :=
⋃

16i6l Xi, Y :=
⋃

16i6l Yi and Z :=
⋃

16i6l Zi. Then the following claim
holds.

Claim 1. For every integer 1 6 t 6 l, let wt be any vertex of Dt such that degT (wt) 6 k−1
or wt = vt. Then for any two distinct integers i, j ∈ {1, 2, . . . , l}, the following three

statements hold.

(i) wiwj 6∈ E(G).

(ii) If v ∈ V (Di) is adjacent to wi in G − E(T ) and if v′ ∈ NT (v) ∩ PT (v, wi), then

v′wj 6∈ E(G).

(iii) Assume that wi 6= vi, wj 6= vj and v ∈ NG(wi) ∩ V (Dh) for some h ∈ {1, . . . , l} −
{i, j}. If v′ ∈ NT (v), then v′wj 6∈ E(G).

Proof. (i). If wiwj ∈ E(G) and wj 6= vj, then T1 = T − wvi + wiwj is a spanning tree of
G and te(T1; k) = te(T ; k)− 1, which contradicts the choice (T1). If wi = vi and wj = vj,
then wiwj 6∈ E(G) since vi and vj are both contained in B. Hence (i) holds.

(ii). If v′wj ∈ E(G) and wi 6= vi, then T2 = T − wvj − vv′ + wiv + v′wj is a spanning
tree and te(T2; k) = te(T ; k) − 1, a contradiction. If v′wj ∈ E(G) and wj 6= vj, then
T2 = T − wvi − vv′ + wiv + v′wj is a spanning tree and te(T2; k) = te(T ; k) − 1, a
contradiction again. If wi = vi and wj = vj, then v′wj 6∈ E(G) since all of vi, v

′ and vj
are contained in B. Thus (ii) holds.

(iii). If v′wj ∈ E(G), then T3 = T − wvh − vv′ + wiv + wjv
′ is a spanning tree and

te(T3; k) = te(T ; k)− 1, a contradiction. Therefore Claim 1 holds. �

By Claim 1 (i) and by choosing wt = ut, we have that U is an independent set of G.
Furthermore, by Claim 1 (i), we obtain the following claim.

Claim 2. For all v ∈ X ∪ Y , degT (v) > k.

Claim 3. For each 1 6 i 6 l, the following statements hold.

(i) ({vi} ∪ Leaf(Di)) ∩ (Xi ∪ Yi) = ∅.

(ii) ({vi} ∪ Leaf(Di)) ∩ Z1
i = ∅.

Proof. (i). The statement (i) follows immediately from Claim 1 (i).
(ii). Suppose that there exists a vertex v ∈ ({vp}∪Leaf(Dp))∩Z1

p for some 1 6 p 6 l.
Since Z1

i = ∅ for each k + 1 6 i 6 l, we have p ∈ {1, . . . , k}. Assume p ∈ {1, . . . ,m}.
Then v ∈ B, and there exist two vertices x ∈ Xp ∩ V (PT (up, v

−)) and uq ∈ U with
1 6 q 6= p 6 m that are adjacent in G. Let x′ ∈ Child(x) ∩ V (PT (up, v

−)). Then
T1 = T − wvp − xx′ + upv + xuq is a spanning tree of G and te(T ; k) > te(T1; k) since
v ∈ {vp} ∪ Leaf(Dp). This contradicts (T1). We can similarly derive a contradiction in
the case p ∈ {m+ 1, . . . , k}. Hence Claim 3 holds. �
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By Claim 2, it follows that |Child(v)| > k − 1 for all v ∈ X ∪ Y . For each x ∈ X,
choose a set Childk−1(x) of k − 1 children of x, and let

Q(x) := {x} ∪ Childk−1(x).

Similarly, for each y ∈ Y , we define

R(y) := {y} ∪ Childk−1(y),

where Childk−1(y) is a set of k − 1 children of y. Then

|Q(x) ∩ A| = |R(y) ∩ B| = k − 1 and |Q(x) ∩ B| = |R(y) ∩ A| = 1 (3)

for every x ∈ X and y ∈ Y . By Claim 3 (ii), Child(z) 6= ∅ for every z ∈ Z1
i , where

1 6 i 6 k. For every z ∈ Zi with 1 6 i 6 k, let z∗ = z− if z ∈ Zi − Z1
i ; otherwise, let

z∗ ∈ Child(z). Let
S(z) := {z, z∗} for every z ∈ Z.

Claim 4. For every z ∈ Z, degT (z
−) 6 2.

Proof. Suppose that there exists a vertex z ∈ Zi such that degT (z
−) > 3 for some

i. Then T1 = T − zz− + zui is a spanning tree of G and te(T ; k) > te(T1; k) and
|Leaf(T )| > |Leaf(T1)|. This contradicts (T1) or (T2). Hence Claim 4 holds. �

Claim 5. For all x1, x2 ∈ X, y1, y2 ∈ Y and z1, z2 ∈ Z with x1 6= x2, y1 6= y2, z1 6= z2, the

following holds.

(i) Q(x1) ∩Q(x2) = ∅, R(y1) ∩R(y2) = ∅ and S(z1) ∩ S(z2) = ∅.

(ii) Q(x1) ∩R(y1) = ∅, Q(x1) ∩ S(z1) = ∅ and R(y1) ∩ S(z1) = ∅.

Proof. (i). Obviously, Q(x1) ∩ Q(x2) = ∅ for all x1 6= x2 ∈ X since x1 and x2 are
not adjacent in T . Similarly, R(y1) ∩ R(y2) = ∅ for each y1 6= y2 ∈ Y . Suppose that
S(z1) ∩ S(z2) 6= ∅ for some z1 6= z2 ∈ Z, which implies z∗1 = z∗2 . By the definition of Zi,
we have z1, z2 ∈ Zh for some 1 6 h 6 k. By the symmetry of z1 and z2, we may assume
that (a) z1, z2 ∈ Z1

h, (b) z1 ∈ Z1
h and z2 ∈ Zh − Z1

h, or (c) z1, z2 ∈ Zh − Z1
h.

First, suppose that (a) holds. Then z∗1 ∈ Child(z1) and z∗2 ∈ Child(z2). Hence
z∗1 6= z∗2 , a contradiction. Next, suppose that (b) holds. Then z−2 = z∗2 = z∗1 ∈ Child(z1),
and hence PT (uh, z

−
2 ) = PT (uh, z1) + z1z

−
2 . Since a vertex of PT (uh, z

−
1 ) is adjacent to

some up in G, where p 6= h, it follows from the definition of Z1
h that z2 ∈ Z1

h. This
contradicts z2 ∈ Zh − Z1

h. Finally, suppose that (c) holds. Then z−1 = z−2 , which implies
degT (z

−
1 ) > 3. This contradicts Claim 4.

(ii). By Claim 1 (iii), Q(x1) ∩ R(y1) = ∅ for each x1 ∈ X and y1 ∈ Y . Suppose that
Q(x1) ∩ S(z1) 6= ∅ for some x1 ∈ X and z1 ∈ Z. Since Zi = ∅ for k + 1 6 i 6 l, it follows
that x1 ∈ Xh and z1 ∈ Zh for some 1 6 h 6 k. If h ∈ {1, . . . ,m}, then both x1 and z1
are contained in B, and so z∗1 = z−1 ∈ Child(x1). But this implies that z1 ∈ Z1

h, and so
z∗1 ∈ Child(z1), a contradiction.
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Assume h ∈ {m + 1, . . . , k}. Then x1 ∈ B and z1 ∈ A, and x1 is adjacent to some
up in G with 1 6 p 6 m. By Claim 1 (ii), z−1 6= x1. Hence x1 = z∗1 ∈ Child(z1),
which implies z1 ∈ Z1

h. Then there exist two vertices y ∈ V (PT (uh, z
−
1 )) and uq with

m+ 1 6 q 6= h 6 k which are adjacent in G. Choose y′ ∈ Child(y) ∩ V (PT (y, z1)). Then
T2 = T−wvh−x1z1−yy′+x1up+uhz1+uqy is a spanning tree of G and te(T ; k) > te(T2; k).
This contradicts (T1). Hence Q(x1) ∩ S(z1) = ∅ for each x1 ∈ X and z1 ∈ Z. Similarly,
we can show that R(y1)∩S(z1) = ∅ for each y1 ∈ Y and z1 ∈ Z. Hence Claim 5 is proved.
�

For every 1 6 i 6 l, let Qi :=
⋃

x∈Xi
Q(x), Ri :=

⋃

y∈Yi
R(y), Si :=

⋃

z∈Zi
S(z) and

Oi := V (Di)− (Qi ∪Ri ∪ Si). Let

Q :=
⋃

16i6l

Qi, R :=
⋃

16i6l

Ri, S :=
⋃

16i6l

Si and O :=
⋃

16i6l

Oi.

Claim 6. (i) If Xi 6= ∅ for some 1 6 i 6 m or k + 1 6 i 6 l, then Oi ∩ A 6= ∅.

(ii) Oi ∩ B 6= ∅ for each m+ 1 6 i 6 l.

Proof. (i) Suppose that Xi 6= ∅ for some 1 6 i 6 m or k + 1 6 i 6 l. Let ri be the root
of Di, that is, ri = ui for 1 6 i 6 m, and ri = vi for k + 1 6 i 6 l. Choose xi ∈ Xi

so that |PT (ri, xi)| is as small as possible. Note that xi 6= ri by Claim 3 (i). Recall that
xi ∈ Xi ⊂ B, and so x−

i ∈ A. By Claim 1 (iii), we obtain x−
i 6∈ Ri. By the minimality of

|PT (ri, xi)|, we have x
−
i 6∈ Qi∪Si. Thus we obtain that x−

i ∈ Oi∩A, and hence Oi∩A 6= ∅.
(ii) First, assume i ∈ {k + 1, . . . , l}. By Claim 3 (i), we have vi 6∈ Qi. Since vi is a

root of Di, we have vi 6∈ Ri. Since Zi = ∅, it follows that vi ∈ Oi ∩ B. Next, assume
i ∈ {m + 1, . . . , k}. If Yi 6= ∅, then we can also prove the statement (ii) by a similar
argument as in the statement (i). Hence we may assume Yi = ∅. Thus Z1

i = ∅, and so
S(z) = {z, z−} for any z ∈ Zi. Suppose that z− = vi for some z ∈ Zi. Then dT (z

−) > 3.
This contradicts Claim 4. Hence vi 6∈ Si. On the other hand, by Claim 3 (i), we have
vi 6∈ Qi. Thus we obtain vi ∈ Oi ∩B. �

Claim 7. (i) |A| = (k − 1)|X|+ |Y |+ |Z|+ |O ∩ A|+ 1

(ii) |B| = |X|+ (k − 1)|Y |+ |Z|+ |O ∩B|

Proof. By (3) and Claim 5 (i), we have |Q∩A| = (k−1)|X|, |R∩A| = |Y | and |S∩A| = |Z|.
By Claim 5 (ii), Q, R, S, O and {w} are pairwise disjoint. Thus we deduce

|A| = |Q ∩ A|+ |R ∩ A|+ |S ∩ A|+ |O ∩ A|+ |{w}|

= (k − 1)|X|+ |Y |+ |Z|+ |O ∩ A|+ 1.

Similarly, we can obtain the desired equality (ii). �

We now prove the theorem by considering three cases.

Case 1. |X| > |Y |+ 1.

It follows that U ∩ A 6= ∅ since X 6= ∅. Moreover, the following claim holds in this
case.
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Claim 8. O ∩ A 6= ∅.

By the assumption of Case 1, we have X 6= ∅. If Xi 6= ∅ for some 1 6 i 6 m or
k + 1 6 i 6 l, then Claim 6 (i) implies O ∩ A 6= ∅. Therefore we may assume that
Xi = ∅ for all 1 6 i 6 m and k + 1 6 i 6 l, and thus Xh 6= ∅ for some m + 1 6

h 6 k. If Leaf(Dl) ∩ B 6= ∅, then, by exchanging the role of Dh with uh and Dl with
ul ∈ Leaf(Dl)∩B, we can obtain a contradiction to (U2). Thus we have Leaf(Dl) ⊆ A.
It follows from Claim 3 (i) that Leaf(Dl) ∩ Yl = ∅, and since Xl = ∅ and Zl = ∅ (by the
definition of Zl), we have Leaf(Dl) ⊆ O ∩ A, and hence O ∩ A 6= ∅.

Assume first m 6 k − 1. By the assumption of Case 1 and Claims 7 (i) and 8, we
obtain

|A| = (k − 1)|X|+ |Y |+ |Z|+ |O ∩ A|+ 1

= m|X|+ (k −m− 1)|X|+ |Y |+ |Z|+ |O ∩ A|+ 1

> m|X|+ (k −m− 1)(|Y |+ 1) + |Y |+ |Z|+ 2

= m|X|+ (k −m)|Y |+ |Z|+ (k −m) + 1

>
∑

16i6m

|NG(ui) ∩X|+
∑

m+16i6k

|NG(ui) ∩ Y |

+
∑

16i6k

|NG(ui) ∩ Z|+
∑

m+16i6k

|NG(ui) ∩ {w}|+ 1

=
∑

16i6k

degG(ui) + 1

> σk(G) + 1.

Hence σk(G) 6 |A| − 1 6 max{|A|, |B|} − 1. By (2), this is a contradiction.
Next assume m = k. By (U1), we have Leaf(T ) ⊆ A. Since |X| > |Y |+ 1, it follows

that Xp 6= ∅ for some 1 6 p 6 l. Let x ∈ Xp. Then, there exists an integer q with
1 6 q 6 k and q 6= p such that x ∈ NG(uq). Since T1 = T − wvp + xuq is a spanning tree
of G with te(T ; k) > te(T1; k), it follows from (T2) that |Leaf(T )| = |Leaf(T1)|, that is,
vp is a leaf of T1. Therefore Leaf(T1) ∩ A 6= ∅ and Leaf(T1) ∩ B 6= ∅. This contradicts
(T3).

Case 2. |X| 6 |Y | and m > 1.

By Claim 6 (ii), we have |O ∩ B| > k − m + 1. By the assumption of Case 2 and
Claim 7 (ii), we obtain

|B| = |X|+ (k − 1)|Y |+ |Z|+ |O ∩ B|

= |X|+ (k −m)|Y |+ (m− 1)|Y |+ |Z|+ |O ∩ B|

> |X|+ (k −m)|Y |+ (m− 1)|X|+ |Z|+ |O ∩B|

> m|X|+ (k −m)|Y |+ |Z|+ k −m+ 1

>
∑

16i6k

|NG(ui) ∩
⋃

16j6l

V (Dj)|+
∑

m+16i6k

|NG(ui) ∩ {w}|+ 1

> σk(G) + 1.
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Hence σk(G) 6 |B| − 1 6 max{|A|, |B|} − 1, a contradiction.

Case 3. m = 0.

By (U1), Leaf(Di) ⊆ B for all 1 6 i 6 l. Note that X = ∅ since m = 0, and hence
we can ignore condition (U2) and use a symmetry among Xi’s. Since degT (w) > k + 1,
if degT (a) > k for all a ∈ A− {w} then |B| > (k − 1)|A| + 2, a contradiction. Hence we
may assume that there exists a vertex ah ∈ V (Dh) ∩ A such that degT (ah) 6 k − 1 for
some 1 6 h 6 l. Without loss of generality, we may assume that h = 1. By Claim 1 (i),
{a1, u2, . . . , uk} is an independent set of G.

We regard D1 as a rooted tree with root a1, and change the definitions of Yi (1 6 i 6 l)
and Oi (2 6 i 6 l) as follows;

Yi :=
⋃

26j6k,j 6=i

(NG(uj) ∩ V (Di)), Oi := V (Di)− (NG(a1) ∪Ri ∪ Si).

Following the above change of Yi, we also change the definition of Ri (2 6 i 6 l).
We first consider D1. By Claim 1 (ii), (NG(a1) ∩ V (D1)) ∩ (R1 ∩ B) = ∅. Therefore

|NG(a1) ∩ V (D1)|+
∑

26i6k

|NG(ui) ∩ V (D1)|

6 |NG(a1) ∩ V (D1)|+ (k − 1)|Y1|

= |NG(a1) ∩ V (D1)|+ |R1 ∩ B|

6 |V (D1) ∩ B|.

We next considerD2, . . . , Dl. By Claim 1 (iii), we have (NG(a1)∩V (Di))∩(Ri∩B) = ∅.
In the same proof as Claim 5 (ii), we can prove that (NG(a1)∩ V (Di))∩ (Si ∩B) = ∅ for
each 2 6 i 6 l.

Using the same argument in the proof of Claim 6 (ii), we can prove that Oi ∩ B 6= ∅
for each 2 6 i 6 l, and hence,

|NG(a1) ∩ V (Di)|+
∑

26j6k

|NG(uj) ∩ V (Di)|

6 |NG(a1) ∩ V (Di)|+ (k − 1)|Yi|+ |Zi|

= |NG(a1) ∩ V (Di)|+ |Ri ∩ B|+ |Si ∩B|

= |V (Di) ∩ B| − |Oi ∩ B|

6 |V (Di) ∩ B| − 1.

By summing above two inequalities, we deduce

σk(G) 6
∑

16i6l

(

|NG(a1) ∩ V (Di)|+
∑

26j6k

|NG(uj) ∩ V (Di)|
)

+
∑

26j6k

|NG(uj) ∩ {w}|

6
∑

16i6l

|V (Di) ∩ B| − (l − 1) + (k − 1)

6 |B| − 1,
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a contradiction. Consequently the proof is complete.

References

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs, LNM 2031, Chapter
8, Springer, 2011.

[2] A. Czygrinow, G. Fan, G. Hurlbert, H.A. Kierstead and W.T.Trotter, Spanning Trees
of Bounded Degree, Electron. J. Combin., 8(1):#R33, 2001.

[3] H. Matsuda and H. Matsumura, On a k-tree containing specified leaves in a graph,
Graphs Combin. 22(3):371–381, 2006.

[4] J. Moon and L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1:163–165,
1963.

[5] V. Neumann-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, Com-

binatorica 11(1):55–61, 1991.

[6] K. Ozeki and T. Yamashita, Spanning trees – A survey, Graphs Combin. 27(1):1–26,
2011.

[7] S. Win, Existenz von Gerusten mit vorgeschriebenem Maximalgrad in Graphen, Abh.
Math. Sem. Univ. Hamburg, 43:263–267, 1975.

the electronic journal of combinatorics 22(1) (2015), #P1.13 10


	Introduction
	Proof of Theorem 2

