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Abstract

Symmetric joint distribution between crossings and nestings was established in
several combinatorial objects. Recently, Marberg extended Chen and Guo’s result
on coloured matchings to coloured set partitions following a multi-dimensional gen-
eralization of the bijection and enumerative methods from Chen, Deng, Du, Stanley,
and Yan. We complete the study for arc-coloured permutations by establishing sym-
metric joint distribution for crossings and nestings and by showing that the ordinary
generating functions for j-noncrossing, k-nonnesting, r-coloured permutations ac-
cording to size n are rational functions. Finally, we automate the generation of
these rational functions and analyse the first 70 series.

Keywords: arc-coloured permutation, crossing, nesting, bijection, enumeration,
tableau, generating tree, finite state automaton, transfer matrix, automation.

1 Introduction

Crossing and nesting statistics have intrigued combinatorialists for many decades. For
example, it is well known that Catalan numbers, cn = 1

n+1

(
2n
n

)
, count the number of

noncrossing matchings on [2n] which is also the number of nonnesting matchings of the
same size. The concept of crossing and nesting was then extended to higher numbers
where symmetric joint distribution continues to hold not only for matchings [11], but
also for set partitions [5, 13], labelled graphs [8], set partitions of classical types [16],
permutations [2], and type B permutations [12]. In all cases, bijective proofs were given;
and for some, generating functions were found.

Inspired by recent works of Chen and Guo [4] on coloured matchings and Marberg [14]
on coloured set partitions, we combine two theorems of [14] to establish symmetric joint
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distribution of crossing and nesting statistics for arc-coloured permutations. We also
show that the ordinary generating functions for j-noncrossing, k-nonnesting, r-coloured
permutations according to size n are rational functions, and automate the generation
of these rational functions. The study of over seventy initial rational functions yields
very interesting information on patterns of singularities and degrees of numerator and
denominator polynomials. Furthermore, the difference in complexity of rational series
also sheds some light on the dichotomy of their limiting functions: D-finite or non-D-
finite.

In addition to being in bijection with type B (or signed) permutations, 2-coloured per-
mutations provide a compact representation of genome arrangements tracking orientation
of each segment. In general, r-coloured permutations may be a natural model for the study
of genome rearrangement problems, in particular, for tracking different types of distance
metrics [10]. With automated generation of their rational series according to crossing
and nesting statistics, random generation algorithms like Boltzmann sampling [9] can be
applied for the investigation of the distribution of such structures modelled by coloured
permutations.

1.1 Definitions and terminology

A permutation S of the set [n] := {1, 2, . . . , n} is a bijection from [n] to itself, σ : [n]→ [n].
Using a two-line notation, we can write S =

(
1 2 3 ... n

σ(1) σ(2) σ(3) ... σ(n)

)
. An arc annotated

diagram is a labelled graph on n vertices increasingly labelled horizontally such that
Arc(i, j) joins vertex i to vertex j. A permutation can be represented as an arc annotated
diagram where Arc(i, σ(i)) is drawn as an upper arc for σ(i) > i, and a lower arc for
σ(i) < i. Note that the dissymmetry draws a fixed point in S as an upper loop. When this
diagram is restricted to only the upper arcs (or lower arcs) with all n vertices, then it also
represents a set partition of [n]. Separately, we call these upper and lower arc diagrams
of a permutation. From such a diagram, we define a k-crossing (resp. k-nesting) as k arcs
{(i1, j1), (i2, j2), . . . , (ik, jk)} all mutually cross, or i1 < i2 < · · · < ik < j1 < j2 < · · · < jk
(resp. nest, i. e. i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1 ) as shown in Figure 1 (resp.
Figure 2). We also need a variant: enhanced k-crossing (resp. enhanced k-nesting) where
i1 < i2 < · · · < ik 6 j1 < j2 < · · · < jk (resp. i1 < i2 < · · · < ik 6 jk < jk−1 < · · · < j1 )
as shown in Figure 3 (resp. Figure 4).

i1 i2
. . . ik j1 j2

. . . jk

Figure 1: A k-crossing

i1 i2
. . . ik jk

. . . j2 j1

Figure 2: A k-nesting

We need both notions of crossings and nestings for permutations because the en-
hanced definitions are used for upper arc diagrams whereas the other definitions (without
enhanced), for lower arc diagrams. This is in accordance with the literature [7] on per-
mutation statistics for weak exceedances and pattern avoidance. We define the crossing
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i1 i2
. . . ik = j1 j2

. . . jk

Figure 3: An enhanced k-crossing

i1 i2
. . . ik = jk

. . . j2 j1

Figure 4: An enhanced k-nesting

number, cr(S) = j (resp. nesting number, ne(S) = k) of a permutation S as the maxi-
mum j (resp. k) such that S has a j-enhanced crossing (resp. k-enhanced nesting) in the
upper arc diagram or a j-crossing (resp. k-nesting) in the lower arc diagram. When a
permutation S does not have a j-(enhanced)-crossing (resp. k-(enhanced)-nesting), then
we say S is j-noncrossing (resp. k-nonnesting). Burril, Mishna and Post[2] gave an in-
volution mapping between the set of permutations of [n] with cr(S) = j and ne(S) = k
and those with cr(S) = k and ne(S) = j, thus extending the result of symmetric joint
distribution for matchings and set partitions of Chen, Deng, Du, Stanley and Yan [5] and
Krattenthaler [13] to permutations.

Next, Chen and Guo [4] generalized symmetric equidistribution of crossing and nesting
statistics to coloured complete matchings. Recently, Marberg [14] extended Chen et al’s
enumerative results on matchings to coloured set partitions proving that the ordinary
generating functions of j-noncrossing, k-nonnesting, r-coloured partitions according to size
n are rational functions. We further extend symmetric joint distribution and rationality of
generating functions to r-arc-coloured permutations, or r-coloured permutations in short.

Some caution on terminology is in order here. Group properties of coloured permuta-
tions have been widely studied since the 1990’s [1, 18], but there the colours are assigned
to vertices instead of arcs.

1.2 An extension to coloured permutations

Since crossing and nesting statistics involves arcs, we define an r-coloured permutation
parallel to [14] as a pair, (S, φ) consisting of a permutation of [n] and an arc-colour
assigning map φ : Arc(S) → [r], and use a capital Greek letter, Σ, to denote these
objects. We say Σ has a k-crossing (resp. k-nesting) if k arcs of the same colour cross
(resp. nest). Throughout this paper, enhanced statistics is applied to upper arc diagrams
while non-enhanced for lower arc diagrams of permutations. Define cr(Σ) (resp. ne(Σ)) as
the maximum integer k such that Σ has a k-crossing (resp. k-nesting). The bijection of [2]
can be extended to establish symmetric joint distribution of the numbers cr(Σ) and ne(Σ)
over r-coloured permutations preserving opener and closer sequences (equivalently, sets
of minimal and maximal elements of each block when upper arc and lower arc diagrams
are viewed separately as set partitions).

More formally, vertices of a permutation are of five types, an opener ( ), a closer (

), a fixed point ( ) , an upper transitory ( ), and a lower transitory( ). For
a particular permutation, Σ, restricting to only one colour, both upper arc and lower arc
diagrams can be seen separately as set partitions whose minimal block elements are the
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openers ( or ), and maximal block elements are the closers ( or ). Let min(P )
(resp. max(P )) denote the set of minimum (resp. maximum) elements of the blocks of a set
partition P . Chen et al. [5] proved the following theorem for symmetric joint distribution
of crossing and nesting statistics in set partitions.

Theorem 1 (Theorem 1.1 of [5]). Fix a positive integer n and subsets S, T ⊆ [n]. The
statistics cr(P ) and ne(P ) have a symmetric joint distribution over all partitions P of [n]
with min(P ) = S and max(P ) = T .

For coloured set partitions, Marberg [14] generalized Theorem 1.1 of [5] to maintain
symmetric joint distribution for r-coloured set partitions. In Marberg’s notation, for given
positive integers j, k, and subsets S, T ⊆ [n], we write NCNS,T

j,k (n, r) for the number of
r-coloured partitions Λ = (P, φ) of [n] with cr(Λ) < j and ne(Λ) < k, and min(Λ) = S,
and max(Λ) = T , where we define min(Λ) := min(P ) and max(Λ) := max(P ). Marberg
proved the following.

Theorem 2 (Theorem 1.4 of [14]). NCNS,T
j,k (n, r) = NCNS,T

k,j (n, r) for all integers j, k and
subsets S, T ⊆ [n].

Also from [14] for enhanced crossing and nesting numbers of r-coloured set partitions,
using Λ = (P, φ) to denote an r-coloured enhanced set partition, Marberg proved the
following.

Theorem 3 (Theorem 5.7 of [14]). Let S, T ⊆ [n]. The enhanced crossing and nesting
numbers cr(Λ) and ne(Λ) have a symmetric joint distribution over all r-coloured enhanced
partitions Λ of [n] with min(Λ) \max(Λ) = S and max(Λ) \min(Λ) = T .

Further extension of symmetric joint distribution to r-coloured permutations requires
a similar set-up: Given an r-coloured permutation Σ = (S, φ), let the set of openers
(resp. the set of closers) be O(Σ) (resp. C(Σ)) of the uncoloured permutation, S. For all
positive integers, j and k, and subsets O, C ⊆ [n], define NCNO,C

j,k (n, r) to be the number
of r-coloured permutations Σ of [n] with cr(Σ) < j, ne(Σ) < k, O(Σ) = O, and C(Σ) = C.
Then we reach an analogous result to Theorem 1.1 in [5, 14] for r-coloured permutations
in the following Corollary.

Corollary 1. For all positive integers, j and k, and subsets O, C ⊆ [n], NCNO,C
j,k (n, r) =

NCNO,C
k,j (n, r).

Proof. An r-coloured permutation Σ = (S, φ) can be viewed as an ordered pair (Λ,Λ) of
an r-coloured enhanced partition Λ from the upper arc diagram of Σ and an r-coloured
set partition Λ from the lower arc diagram of Σ. The sets O (resp. C) ⊆ [n] are precisely
min(Λ) and min(Λ) (resp. max(Λ) and max(Λ)). Thus Theorem 3 (Theorem 5.7 of [14])
applies to Λ, and similarly Theorem 2 (Theorem 1.4 of [14]) applies to Λ.

Therefore, symmetric joint distribution of nesting and crossing statistics with respect
to each colour is preserved for coloured permutations.
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As in Marberg[14], we also let NCNj,k(n, r) denote the number of all r-coloured, j-
noncrossing, k-nonnesting permutations of [n]. Summing both sides of Corollary 1 over
all O, C ⊆ [n] gives the generalization of [5, 14] for Corollary 2. We also let NCk(n, r)
(resp. NNk(n, r)) denote the number of k-noncrossing (resp. k-nonnesting) r-coloured
permutations on [n].

Corollary 2. For all integers, j, k, n, r, NCNj,k(n, r) = NCNk,j(n, r) and NCk(n, r) =
NNk(n, r).

1.3 Plan

The tools needed for the enumeration of j-noncrossing, k-nonnesting, r-coloured permu-
tations are given in Section 2. Section 3 describes the encoding process translating an
r-coloured permutation to a pair of r-tuple tableau sequence managing both notions of
crossing and nesting for upper and lower arc diagrams. Section 4 first reviews Marberg’s
enumerative approach then provides a more direct interpretation for coloured set parti-
tions. Section 5 begins with the more direct interpretation for coloured permutations,
then proves that the generating series of j-noncrossing, k-nonnesting, r-coloured permu-
tations according to size n is rational. Automating the generation of over seventy rational
series leads to some conjectures. We end with an example which connects to permutations
of type B.

2 Background

The translation of a set partition’s arc annotated diagram to a tableau sequence as exhib-
ited by Chen et al. in [5] forms the basis of our extension of symmetric joint distribution
of crossing and nesting statistics for coloured permutations. The process of taking an
r-coloured permutation and producing a pair of r-tuple sequence of tableaux leads to au-
tomation of the enumeration of such objects according to its crossing and nesting numbers.
Understanding the process requires working knowledge of the theory of integer partition,
especially its representation as Young diagrams, the Hasse diagram of the Young lattice,
and the Robinson-Knuth-Schensted (RSK, in short)-algorithm for filling positive integers
to obtain the beginning of some standard Young tableau. We refer the reader to Volume
2 of Stanley’s Enumerative Combinatorics [17] for more details.

Define a partition of n ∈ N to be a sequence λ = (λ1, λ2, . . . , λk) ∈ Nk such that∑k
i=1 λi = n, and λ1 > λ2 > . . . > λk. If λ is a partition of n, we write λ ` n or |λ| = n.

The non-zero terms λi are called the parts of λ, and we say λ has k parts if λk > 0.
We can draw λ using a left-justified array of boxes with λi boxes in row i. For example,

λ = (5, 3, 2, 2, 1) is drawn as . This representation is the Young diagram of a partition.
To “add a box” to a partition λ means to obtain a partition µ such that |λ| + 1 = |µ|,
and λ’s Young diagram is included in that of µ. This inclusion induces a partial order on
the set of partitions of non-negative integers, denoted by Y, or the Young lattice. When
we place integers 1, 2, . . . , n in all n boxes of a Young diagram so that entries increase
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in each row and column, we produce a standard Young tableau, abbreviated as SYT. As
one builds an SYT from the empty set through the process of adding a box at a time,
a sequence of integer partitions, (λ0 = ∅, λ1, λ2, . . . , λn) emerges where λi−1 ⊂ λi, and
|λi| = |λi−1| + 1. In addition to adding a box, we include “deleting a box” and “doing
nothing” for the following two types in Definition 1 adopted from [5].

Definition 1. We define two types of sequences of tableaux, T = (λ0 = ∅, λ1, λ2, . . . , λn),
where λ0 = λn = ∅ such that λi is obtained from λi−1 for each i ∈ [n] by one of the three
actions: adding a box, deleting a box, or doing nothing.

1. A hesitating tableau is any such sequence T which has λi−1 ⊆ λi when i is odd, and
λi−1 ⊇ λi when i is even.

2. A vacillating tableau is any such sequence T which has λi−1 ⊆ λi when i is even,
and λi−1 ⊇ λi when i is odd.

In the uncoloured case, Marberg [14] links the sequence T to an n-step walk on the
Hasse diagram of the Young lattice, Y where “doing nothing” is also counted as a step.
For his enumeration purposes, Marberg’s definitions differ slightly from [5] to achieve that
these n-step walks are closed walks from ∅. Though we will not walk on an ordered pair
of r-tuple Hasse diagrams, we will keep the requirement that each sequence T begins and
ends with ∅.

3 Encoding process

Translating a coloured permutation to its pair of r-tuple sequence of tableaux requires
treating the upper (resp. lower) arc diagram as an enhanced (resp. non-enhanced) coloured
set partition. We then apply two local rules for inflating the vertices while changing set
partitions to involutions: Rule H for hesitating tableaux tracking enhanced statistics in
upper arcs and Rule V for vacillating tableaux for the lower arcs, one sequence for each
colour.

Opener Closer Transitory Fixed point

Rule H 7→ 7→ 7→ 7→
Rule V 7→ 7→ 7→ 7→

Then we follow the steps below to construct an r-tuple of hesitating tableaux (resp.
vacillating tableaux) for the upper (resp. lower) arc diagrams.

Step 1 For each colour i, i ∈ [r], of the arc diagram of a given permutation on [n], apply
Rules H and V to inflate each vertex to obtain a sequence of 2n vertices.

Step 2 Begin each tableau sequence with an empty tableau, λ0i = ∅.

Step 3 Scanning each inflated vertex k, k ∈ [2n], from left to right,
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1. we add a box to the previous tableau λk−1i for an opener and label the box
by the closer vertex label in the permutation’s arc diagram according to RSK-
algorithm;

2. we do nothing to λk−1i to get λki for a single vertex;

3. and for a closer, we delete the box in λk−1i whose label is the corresponding
closer label in the permutation’s arc diagram, and then reverse RSK-algorithm
to obtain λki .

This encoding process differs slightly from the one used in the bijection of Chen et al.
[5] for interchanging nesting and crossing numbers in set partitions. However, as proved
in [5], by RSK-algorithm, we know that each tableau sequence thus constructed has at
most j columns and k rows if the permutation, Σ, has cr(Σ) = j and ne(Σ) = k.

3.1 An example of a 2-coloured permutation

We show a 2-coloured permutation and its tableau sequence encoding.

Example 1. A permutation encoded by a hesitating tableau sequence, λ1 for colour 1,
λ2 for colour 2 in the upper arcs and a vacillating tableau sequence, µ2 for colour 2 in
the lower arcs.

λ01 λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81 λ91 λ101 λ111 λ121
∅ 4 4 4 4 3

4
4 4 ∅ ∅ ∅ ∅ ∅

Rule H1

λ02 λ12 λ22 λ32 λ42 λ52 λ62 λ72 λ82 λ92 λ102 λ112 λ122
∅ ∅ ∅ 5 5 5 5 5 6 5 6 5 6 6 6 ∅

Rule H2

1 2 3 4 5 6

1
2

2

1

2

2

Rule V2

µ0
2 µ1

2 µ2
2 µ3

2 µ4
2 µ5

2 µ6
2 µ7

2 µ8
2 µ9

2 µ10
2 µ11

2 µ12
2

∅ ∅ 6 6 5
6

5
6

5
6

5
6

5
6

6 6 ∅ ∅

As a bonus, we also show the result of transposing every tableau in each sequence
λ1, λ2, and µ2, and filling the tableau from the right yielding the following 2-coloured
permutation in Figure 5.
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1 2 3 4 5 6

1
2

21

2 2

Figure 5: Interchanging nesting and crossing numbers of Example 1

4 Enumeration of coloured set partitions—another approach

A quick overview of Marberg’s approach [14] for the enumeration of coloured set partitions
helps set the stage for a new interpretation.

4.1 Marberg’s Gj,k,r for set partitions

Marberg viewed r sequences of vacillating tableaux, one for each colour, as r × (k − 1)
matrices A = [Ai,l] encoding λli in a vacillating tableau sequence T for colour i. If the set
partition is j-noncrossing and k-nonnesting, then this tableau has a maximum of j − 1
columns and k − 1 rows. For colour i, the ith row of matrix A just lists parts of λl, thus
at most k − 1 non-zero parts. The multigraph Gj,k,r is drawn using all such allowable
A’s as vertices, and edges and loops connecting vertices corresponding to adding a box,
deleting a box, or doing nothing in the construction of vacillating tableaux so that the
resulting sequence contains only tableaux of at most j− 1 columns and k− 1 rows. Once
completed, the multigraph Gj,k,r gives rise to an adjacency matrix. To find the number
NCNj,k(n, r) which is also the number of (n− 1)-step walks on Gj,k,r from the zero matrix
to itself, the method of transfer matrix gives a quotient of two polynomials (determinants
actually), thus concluding that the ordinary generating function

∑
n>0 NCNj,k(n+ 1, r)xn

is rational.

4.2 From exhaustive generation to Gj,k,r for set partitions

To illustrate the construction of Gj,k,r, we first reconstruct Marberg’s G2,2,1 and G2,2,2 via
the first three steps of the following enumeration scheme:

1. Generate all set partitions according to size (level of the tree).

2. Organize each level according to the types of consecutive gaps (described below).

3. Construct a finite state automaton (also Marberg’s multigraph, Gj,k,r) where states
track the number of openers with their corresponding crossing and nesting statistics,
and edges track the types of consecutive gaps in set partitions.

4. Apply Marberg’s bijection from the set of all j-noncrossing, k-nonnesting, r-coloured
set partitions of size n + 1 to the set of all n-step closed walks on Gj,k,r from its
initial vertex.
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5. Apply the method of transfer matrix on the adjacency matrix of Gj,k,r to yield a
rational series.

4.2.1 Construction of G2,2,1

The arc annotated diagram of a set partition on [n] has n − 1 consecutive gaps, i. e.
between each pair of adjacent points. Let the set of noncrossing, nonnesting, uncoloured
set partitions on [n] be denoted by P2,2,1(n). Figure 6 shows the first three levels of
exhaustive generation.

Figure 6: Noncrossing, nonnesting, uncoloured set partitions

Domain Set partition Types of arcs Types of steps in G2,2,1 and G2,2,2

m > 2 m− 1 m no arc
×

m > 2 m− 1

r

m a 1-arc coloured r
r

, r ∈ [2]

m > 2 m− 1

r

m an opener
vi

r

vi+1

m > 3 m

r

m− 1 a closer
vi+1rvi

m > 3 m− 1

2

m

1

a closer and an opener

vi1
12

vi2

Table 1: Consecutive gaps in set partitions and their corresponding steps in G2,2,r.

To organize the set partitions on each level, we note that for each P ∈ P2,2,1(n), a
consecutive gap belongs to one of the first four types in Table 1 where the matching steps
in G2,2,1 are also given. Since r = 1, only two states exist in the finite state automaton,
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G2,2,1: v0, the initial state with no opener (boxed in Figure 6 for level 2), and v1, for one
opener. No other states are present because any state vi with i > 2 openers will form at
least a 2-nesting or 2-crossing when closed. Incident at v0 are three types of edges: two

loops,
×

for no arc in the consecutive gap, and
1

for a distance 1-arc both of which
do not change the number of openers present as consecutive gaps are encountered; the
last type is a directed edge from v0 to v1 to indicate that an opener is present in the

consecutive gap. Once at v1, only the loop,
×

, is allowed because a 1-arc
1

will create
a 2-nesting in P with the existing opener. A directed edge from v1 to v0 means that an
opener is closed. To simplify drawing, an edge without arrows is bidirectional. The result
is shown in Figure 8.

4.2.2 Construction of G2,2,2

We first show the tree of exhaustive generation in Figure 7. Rectangular boxes group con-
secutive gaps according to the number of openers. Dashed and shaded triangles indicate
similar children generation of a partition: without any opener, a dashed triangle repeats
the generation established in the big dashed triangle, and similarly for the shaded box for
the generation of children from one opener in their parent.

1

2

1

2

1

1 2

1 2

1

1 2

Figure 7: Noncrossing, nonnesting, 2-coloured set partitions

To construct G2,2,2, we organize the types of consecutive gaps in set partitions into
four states in our finite state automaton: v0 as the initial state for no opener, two states
indicating one r-coloured (r ∈ [2]) opener, v11 and v12 , and one more state, v212 , for two
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openers, one of each colour, since two arcs of different colours do not create a crossing or
nesting. As in G2,2,1, the loops and edges are placed according to what is allowed in P ,
but a new edge between v11 and v12 is added in the last row of Table 1 for the closing
of one colour on point m while an opener is present at point m − 1 in P . The result is
shown in Figure 9.

For details on how the adjacency matrices for Figures 8 and 9 give rise to generating
functions, please see [19].

v0 v1

×

1

×
1

Figure 8: An uncoloured set partition
graph, G2,2,1.

v0

v11

v12

v212

×

1

2

× 2

×
1

×

1

2

12

2

1

Figure 9: A 2-coloured set partition
graph, G2,2,2.

To construct the multigraph, Gj,k,r, for general j, k > 2, the organization of vertices
according to the number of openers (as in Figure 10) combined with the crossing and nest-
ing statistics produced by the openers (as in Marberg’s tableaux sequence bijection [14])
yields an automation algorithm.

v0

v11

v12
...

v1r

v211

v212
...

v21r

v221
...

v2rr

Figure 10: The line-up for states of the same number of openers

We list the first few series for G2,2,r, r = {3, 4}. The first two series, r = 1, 2 were
found by Marberg [14] where A216949 in [15] is for r = 2. Our series mark the number of
consecutive gaps, namely, xk counts the number of such coloured set partitions on k + 1
elements. For more terms and the rational functions, please consult A225029–A225033 in
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[15] for r = 3 to 7.∑
n>0

NCN2,2(n, 3)xn =
1− 10x+ 22x2 − x3

1− 14x+ 59x2 − 74x3 + x4

= 1 + 4x+ 19x2 + 103x3 + 616x4 + 3949x5 + . . .∑
n>0

NCN2,2(n, 4)xn =
1− 20x+ 122x2 − 224x3 + x4

1− 25x+ 218x2 − 782x3 + 973x4 − x5

= 1 + 5x+ 29x2 + 193x3 + 1441x4 + . . .

Using an average personal computer, Maple 15 can generate up to 7 colours. The next
case, r = 8, with a matrix size of 256× 256, computation would take too long to find the
determinants.

5 Enumeration of r-coloured permutations

Similar to the construction of Gj,k,r(Π) (i.e. the multigraph for set partitions), we modify
the first three steps of the enumeration scheme from Section 4.2 for the construction
of Gj,k,r(Σ), the multigraph for permutations. Once constructed, a similar bijection from
the set of all j-noncrossing, k-nonnesting, r-coloured permutations of size n to the set of
all n-step closed walks on Gj,k,r(Σ) from its initial vertex permits a routine application
of the method of transfer matrix to the adjacency matrix of Gj,k,r(Σ), thus resulting in a
rational series.

1. Generate all permutations from ∅ as shown in Figure 11 for G2,2,2(Σ).

∅

1

2

1
1

1
2

2
1

2
2

1

1

1
1

2

1
2
1
1

1
1

1

1
2

1
1

2
2

Figure 11: Noncrossing, nonnesting, 2-coloured permutations

2. Organize each level according to types of vertices present.
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3. Construct a finite state automaton Gj,k,r(Σ) (i.e. the multigraph for permutations)
where the states track the number of opener pairs with their corresponding crossing
and nesting statistics, and edges track the types of vertices in permutations.

We remark that an analogous bijection from the set of all j-noncrossing, k-nonnesting,
r-coloured permutations of size n to the set of all n-step closed walks on Gj,k,r(Σ) from
its initial state leads to a rational series via the method of transfer matrix.

5.1 Warm-up examples

Instead of translating consecutive gaps from set partitions into steps in the multigraph
Gj,k,r(Π), we examine each vertex in the arc diagram of a coloured permutation and assign
each type of vertex to a step in Gj,k,r(Σ). The construction of the first two cases help
build intuition for the general case.

5.1.1 Construction of G2,2,1(Σ)

As for set partitions, we first construct the multigraph G2,2,1(Σ) for noncrossing, nonnest-
ing, uncoloured permutations. Let us denote the set of all such permutations on [n] by

S2,2,1(n). If S ∈ S2,2,1(n), then a vertex is either a fixed point ( ) , an opener ( ),

a closer ( ), or a lower transitory( ). We can’t have an upper transitory which
contributes to a 2-(enhanced) crossing.

In Figure 12, v0 still indicates the initial state with 0 opener; v1 indicates the state
with 1 opener. The loop labelled 1 is the step taken when a fixed point coloured 1 is
encountered in the vertex set of the permutation. The loop labelled 1t is the presence
of a lower transitory with coloured 1 arcs on both sides; this is possible only when an
opener coloured 1 is present, thus at v1. Note that a lower transitory does not alter
the state. The directed edge (v0, v1) indicates the presence of an opener, and the edge
traversed in reverse indicates that of a closer. An edge drawn without arrows still means
a bidirectional edge.

v0 v11 1t

1
1

Figure 12: An uncoloured permutation graph, G2,2,1.

5.1.2 Construction of G2,2,2(Σ)

The construction of G2,2,2 involves more types of states and edges which we summarize in
Table 2. The tree of generation in Figure 11 shows the types of vertices to organize for
the finite state automaton. Each state with one opener has the colour of the opener as
its subscript. When a state has two openers, both colours are used, thus only one such
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vertex in v2. The method of transfer matrix gives the following generating function. Here
x marks the size of the permutation.∑

n>0

NCN2,2(n, 2)xn =
1− 6x+ 4x2

(1− 2x)(1− 6x)

= 1 + 2x+ 8x2 + 40x3 + 224x4 + 1312x5 + 7808x6 +O(x7).

This series, A092807 in [15], counts (with interpolated zeros) the number of closed
walks of length n at a vertex of the edge-vertex incidence graph of K4, the complete
graph on 4 vertices associated with the edges of K4.

Domain Permutation Vertex Arcs Steps in G2,2,2(Σ)

all vertices

l

a fixed point
l

, l ∈ [2]

all except the last

r

s an opener
vi

r
s

vi+1 , r, s ∈ [2]

all except the first

r

s a closer
vi+1

r
s

vi , r, s ∈ [2]

no first, no last rr a lower transitory
rt

, r ∈ [2]

no first, no last
sr

an upper transitory

vir
rs

vis , r, s ∈ [2]

no first, no last rs a lower transitory

vir
sr

vis , r, s ∈ [2]

Table 2: Vertices in permutations and their corresponding steps in G2,2,2(Σ).

5.2 Proof of Rationality through Multigraphs for r-coloured permutations

To construct Gj,k,r(Σ) for j, k > 2 (otherwise, the trivial permutation), we first define the
set of labels for the vertices followed by the edge set. To track completed crossing and
nesting statistics in addition to the number of opener pairs, we use r copies of hesitating
(resp. vacillating) tableau bijection sequences for upper (resp. lower) arc diagrams of r-
coloured permutations. An important detail is to track the changes in upper and lower
arc diagrams simultaneously for permutations.

Extending Marberg’s matrix label [14] for each vertex of Gj,k,r(Π), we use a pair of
matrices [ UL ] to label each vertex of Gj,k,r(Σ) where each matrix A ∈ {U,L} satisfies the
following:

1. A is a non-negative integer matrix of dimension r × (k − 1).
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v0

v1 1
1

v1 1
2

v1 2
1

v1 2
2

v2 1,2
1,2

1

2

2 1t

2 2t

1t1

1 2t

1t

2t

1
1

12

1
2

2
1

12

2
2

12

12

2
2

1
2

2
1

1
1

Figure 13: A 2-coloured permutation multigraph, G2,2,2(Σ)

2. Each row i of A = [Ai,l] codes the tableau translation of colour i as an integer
partition, namely,

j > Ai,1 > Ai,2 > . . . > Ai,k−1 > 0, for all i ∈ [r].

3. For each vertex label, [ UL ] ,

k−1∑
l=1

r∑
i=1

Ui,l =
k−1∑
l=1

r∑
i=1

Li,l.

An edge connects vertices labelled [ UL ] and [ U
′

L′ ] , if

• an opener or closer pair is encountered in a permutation’s arc diagram, that is,

U − U ′ = ±Ei,l and L− L′ = ±Em,n

where the same sign applies, and Ei,l denotes the r×(k−1) matrix with 1 in position
(i, l) and 0 elsewhere, or

• a lower or upper transitory is encountered causing a change in tableau sequence,
that is, either

U = U ′, and L− L′ = Ei,l − Em,n,
or

L = L′, and U − U ′ = Ei,l − Em,n,
for some (i, l) 6= (m,n), or
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• a fixed point, a lower transitory, or an upper transitory is encountered causing no
change in the tableau sequence, that is, [ UL ] = [ U

′
L′ ] , and the number of loops at

[ UL ] is
∑r

i=1(ui + li) where ui is the number of distinct entries in the ith row of U
which are less than j − 1, and li is the number of distinct entries in the ith row of
L greater than 0.

Note that a fixed point in the arc diagram of a permutation adds a new row to its tableau
translation in that colour, whereas upper (resp. lower) transitories add a box then delete a
box (resp. vice versa) for the corresponding rows of the matrix; thus, in the case no change
happens to the r-tableau sequence, tracking where in the tableaux such a manoeuvre is
possible leads to the number of loops for each vertex of Gj,k,r(Σ). No other edges are
present.

Once constructed, Gj,k,r(Σ) yields an adjacency matrix which permits the application
of the method of transfer matrix, thus resulting in a rational generating function for
j-noncrossing, k-nonnesting, r-coloured permutations.

Once automated, the construction of Gj,k,r(Σ) together with the method of transfer
matrix yields the rational series, some of which are shown in Table 3. Table 4 lists the
degrees of numerator and denominator polynomials for pattern complexity analysis.

5.3 Observations from 70 initial series

The generation of series is primarily limited by the symbolic computation of determinants
of large matrices with many non-zero entries. For example, Maple 17 took 8 hours to find
the rational function for j = 2 = k and r = 5, a 252 × 252 matrix with about 5% of its
entries being non-zero.

Let
∑

n NCperm
k (n, r)xn denote the ordinary generating function for the number of

k-noncrossing, r-coloured permutations of [n].

5.3.1 Noncrossing permutations

For k = 2, and r = 1, as noted in Table 2 of [2], NCperm
2 (n, 1) =

1

n+ 1

(
2n
n

)
, the nth

Catalan number, thus
∑

n NCperm
2 (n, 1)xn is algebraic. Let∑

n

NCNperm
j,2 (n, 1)xn = Rj,2,1(x) =

Pj,2,1(x)

Qj,2,1(x)
.

For 2 6 j 6 50, degPj,2,1(x) = degQj,2,1(x) = j − 1. Moreover, all zeroes of Qj,2,1(x)
are distinct positive reals with the smallest zero approaching 1

4
as j increases. Recently,

Chen [3] proved the following for partitions.

Theorem 4.

lim
j→∞

∑
n

NCNpart
j,2 (n, 1)xn =

1−
√

1− 4x

2x
.
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j k r

2 2 1 1−x
1−2x

2 3 1 1−3x+x2
(1−3x)(1−x)

2 4 1 1−5x+6x2−x3
(1−2x)(1−4x+2x2)

2 5 1 (1−x)(1−6x+9x2−x3)
(1−3x+x2)(1−5x+5x2)

2 6 1 1−9x+28x2−35x3+15x4−x5
(1−3x)(1−2x)(1−x)(1−4x+x2)

2 7 1 1−11x+45x2−84x3+70x4−21x5+x6
(1−7x+14x2−7x3)(1−5x+6x2−x3)

2 8 1 (1−x)(1−3x+x2)(1−9x+26x2−24x3+x4)
(1−2x)(1−4x+2x2)(1−8x+20x2−16x3+2x4)

2 9 1 1−15x+91x2−286x3+495x4−462x5+210x6−36x7+x8
(1−3x)(1−x)(1−6x+9x2−3x3)(1−6x+9x2−x3)

2 10 1 1−17x+120x2−455x3+1001x4−1287x5+924x6−330x7+45x8−x9
(1−2x)(1−3x+x2)(1−5x+5x2)(1−8x+19x2−12x3+x4)

3 3 1 1−11x+34x2−30x3+4x4

(1−8x+10x2)(1−4x+2x2)

2 2 2 1−6x+4x2

(1−6x)(1−2x)

2 3 2 1−18x+95x2−150x3+36x4

(1−10x)(1−6x)(1−3x)(1−x)

2 2 3 1−17x+66x2−36x3
(1−12x)(1−6x)(1−2x)

2 3 3 1−53x+1012x2−8529x3+31059x4−39690x5+8100x6

(1−21x)(1−15x)(1−10x)(1−6x)(1−3x)(1−x)

2 2 4 1−36x+380x2−1200x3+576x4

(1−20x)(1−12x)(1−6x)(1−2x)

2 2 5 1−65x+1408x2−11804x3+32880x4−14400x5
(1−30x)(1−20x)(1−12x)(1−6x)(1−2x)

2 2 6 1−106x+4048x2−68232x3+496944x4−1270080x5+518400x6

(1−42x)(1−30x)(1−20x)(1−12x)(1−6x)(1−2x)

2 2 7 1−161x+9842x2−287632x3+4152216x4−27460656x5+65862720x6−(7!)2x7
(1−56x)(1−42x)(1−30x)(1−20x)(1−12x)(1−6x)(1−2x)

Table 3: The rational series for selected values of j, k, and r.

Though the adjacency matrix of permutations’ Gj,2,1(Σ) differs from that of set par-
titions’ Gj,2,1(Π) only by 1 in the (1, 1)th entry, except for the (1, 1)th entry, we still
have

lim
j→∞

Rj,2,1(x) =
1−
√

1− 4x

2x
.

The sequence of rational functionsRj,2,1 approaching an algebraic function is an interesting
phenomenon.

Conjecture 1. For r = 1 and j = 2, as k increases, Q2,k,1(x)|Q2,mk,1(x) for m ∈ N.
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j k r N D
2 2 1 1 1
2 3 1 2 2
2 4 1 3 3
2 5 1 4 4
2 6 1 5 5
2 7 1 6 6
2 8 1 7 7
2 9 1 8 8
2 10 1 9 9
2 11 1 10 10
2 12 1 11 11
2 13 1 12 12
2 14 1 13 13
2 15 1 14 14
2 16 1 15 15
2 17 1 16 16
2 18 1 17 17
2 19 1 18 18
2 20 1 19 19
2 21 1 20 20
2 22 1 21 21
2 23 1 22 22
2 24 1 23 23
2 25 1 24 24

j k r N D
2 26 1 25 25
2 27 1 26 26
2 28 1 27 27
2 29 1 28 28
2 30 1 29 29
2 31 1 30 30
2 32 1 31 31
2 33 1 32 32
2 34 1 33 33
2 35 1 34 34
2 36 1 35 35
2 37 1 36 36
2 38 1 37 37
2 39 1 38 38
2 40 1 39 39
2 41 1 40 40
2 42 1 41 41
2 43 1 42 42
2 44 1 43 43
2 45 1 44 44
2 46 1 45 45
2 47 1 46 46
2 48 1 47 47
2 49 1 48 48

j k r N D
2 50 1 49 49
3 3 1 4 4
3 4 1 14 14
3 5 1 21 21
3 6 1 44 44
3 7 1 61 61
3 8 1 100 100
3 9 1 131 131
3 10 1 190 190
4 4 1 20 20
4 5 1 114 114
2 2 2 2 2
2 3 2 4 4
2 4 2 14 14
2 5 2 22 22
2 6 2 43 43
2 7 2 62 62
3 3 2 21 21
2 2 3 3 3
2 3 3 6 6
2 2 4 4 4
2 2 5 5 5

Table 4: The degrees, N and D, of the numerator and denominator of the rational function
for selected values of j, k, and r

Conjecture 2. For j and k fixed at 2, as r increases from 1, the quotient of consecutive
denominators of R2,2,r is

Q2,2,r(x)

Q2,2,r−1(x)
= (1− r(r + 1)x), for r > 1.

Furthermore, degP2,2,r(x) = degQ2,2,r(x) = r for all r ∈ N .

Although the increase in degree in P and Q follows the same pattern as the first case,
namely, nonnesting, 1-coloured permutations, the zeroes of the Q2,2,r approach 0 as r
increases.

Conjecture 3. For j = 2, and k = 3, as r increases from 1,

Q2,3,r(x)

Q2,3,r−1(x)
=

(
1−

(
2r

2

)
x

)(
1−

(
2r + 1

2

)
x

)
, for r > 1.
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5.3.2 A non-D-finite conjecture

For a fixed j > 3, r = 1, as k increases from 2, Rj,k,1 grows in complexity unpredictably
seen from degrees of numerator and denominator polynomials of R, further confirming
the conjecture [14]: The ordinary generating series for j-noncrossing permutations is non-
D-finite for j > 3.

5.4 Permutations of type B

A type B permutation, also a signed permutation on [n] is a permutation σ of {−n, . . . ,
−2,−1, 1, 2, . . . , n} that satisfies σ(−i) = −σ(i) for each i ∈ [n]. For example, we write
σ = (3,−5, 2, 4,−1) to mean σ =

( −5 −4 −3 −2 −1 1 2 3 4 5
1 −4 −2 5 −3 3 −5 2 4 −1

)
with an arc diagram repre-

sentation:

−5 −4 −3 −2 −1 1 2 3 4 5

Hamdi [12] extended Corteel’s result [7] on symmetric joint distribution of crossings
and nestings for permutations to signed permutations. A signed permutation like σ above
can be drawn as a 2-coloured permutation where arcs of colour 1 (resp. colour 2) connect
elements of the same (resp. opposite) sign. For example, a 2-coloured arc diagram repre-
sentation of σ = (3,−5, 2, 4,−1) is shown in Figure 14. This bijection mapping between

1 2 3 4 5

1
1

2

2

1

Figure 14: A 2-coloured arc diagram of σ = (3,−5, 2, 4,−1)

the set of type B permutations on [n] and 2-coloured permutations on [n] does not transfer
results of symmetric joint distribution for crossings and nestings; rather, 2-coloured arc
diagrams of type B permutations differentiate crossings and nestings between same-signed
and opposite-signed elements.

6 Concluding Remarks

When both nesting and crossing numbers are bounded, a finite multigraph can be con-
structed, leading to a rational generating series. The method of transfer matrix may be
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extended to the enumeration of set partitions of classical types as in the works of Rubey
and Stump [16], even their coloured counterparts. The challenge lies in finding the gener-
ating function when only one of the bounds is present. For instance, Marberg [14] showed
that the ordinary generating function for noncrossing 2-coloured set partitions is D-finite,
but conjectured non-D-finite series for noncrossing r-coloured set partitions when r > 3.
Experimental data shows that noncrossing 2-coloured permutations have unpredictable
complexity for the rational functions, thus placing the series in the non-D-finite category.

The automation of generating series for coloured set partitions and permutations of
arbitrarily fixed nesting and crossing numbers opens a new window into the classification
of series. As one of the parameters increases, a sequence of rational functions emerges
with a myriad of patterns to understand. See Chen [3] for examples of such results.
Since crossing and nesting numbers are bounded in biological models, specific series also
open the door to random generations for topological structural studies of secondary RNA’s
(coloured set partitions [6]) and genome rearrangement problems (coloured permutations).
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