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Abstract

Consider a game played on the edge set of the infinite clique by two players,
Builder and Painter. In each round, Builder chooses an edge and Painter colours
it red or blue. Builder wins by creating either a red copy of G or a blue copy of
H for some fixed graphs G and H. The minimum number of rounds within which
Builder can win, assuming both players play perfectly, is the on-line Ramsey number
7(G, H). In this paper, we consider the case where G is a path P;. We prove that
7(Ps, Ppy1) = [54/4] = 7(Ps3,Cy) for all £ > 5, and determine 7(Py, Pyy1) up to an
additive constant for all £ > 3. We also prove some general lower bounds for on-line
Ramsey numbers of the form 7(Py41, H).
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1 Introduction

Ramsey’s theorem [16] states that for all & € N, there exists ¢t € N such that any red-blue
edge colouring of a clique K; contains a monochromatic clique of order k. We call the
least such t the k™ Ramsey number, and denote it by r(k). Ramsey numbers and their
generalisations have been a fundamentally important area of study in combinatorics for
many years. Particularly well-studied are Ramsey numbers for graphs. Here the Ramsey
number of two graphs G and H, denoted by (G, H), is the least ¢ such that any red-blue
edge colouring of K, contains a red copy of G or a blue copy of H. See e.g. [15] for a
survey of known Ramsey numbers.

An important generalisation of Ramsey numbers, first defined by Erdds, Faudree,
Rousseau and Schelp [5], is as follows. Let G and H be two graphs. We say that a graph K
has the (G, H)-Ramsey property if any red-blue edge colouring of K must contain either
a red copy of G or a blue copy of H. Then the size Ramsey number #(G, H) is given by
the minimum number of edges of any graph with the (G, H)-Ramsey property.

In this paper, we consider the following related generalisation defined independently
by Beck [1] and Kurek and Rucinski [10]. Let G and H be two graphs. Consider a game
played on the edge set of the infinite clique Ky with two players, Builder and Painter.
In each round of the game, Builder chooses an edge and Painter colours it red or blue.
Builder wins by creating either a red copy of G or a blue copy of H, and wishes to do
so in as few rounds as possible. Painter wishes to delay Builder for as many rounds as
possible. (Note that Painter may not delay Builder indefinitely — for example, Builder
may simply choose every edge of K, r).) The on-line Ramsey number #(G, H) is the
minimum number of rounds it takes Builder to win, assuming that both Builder and
Painter play optimally. We call this game the 7(G, H)-game, and write 7(G) = 7(G, G).
Note that 7(G, H) > e(G) + e(H) — 1 for all graphs G and H, as Painter may simply
colour the first e(G) — 1 edges red and all subsequent edges blue. It is also clear that
7(G,H) < 7(G,H).

On-line Ramsey theory has been well-studied. The best known bounds for 7#(K;) are
given by

ML < rr) < onitindt
where ¢ is a positive constant. The lower bound is due to Alon (and was first published in
a paper of Beck [1]), and the upper bound is due to Conlon [3]. Note that these bounds
are similar to the best known bounds for classical Ramsey numbers 7(t), although Conlon

also proves in [3] that
F(K;) <O (T<2t>>

for some constant C' > 1 and infinitely many values of ¢, which gives positive evidences
supporting a conjecture of Kurek and Ruciriski [10] that 7(K;) = o(r(t)?). For general
graphs G, the best known lower bound for 7(G) is given by Grytczuk, Kierstead and
Pratat [§].
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Theorem 1. For graphs G, we have 7(G) = B(G)(A(G) — 1)/2 + e(G), where B(G)
denotes the vertex cover number of G.

Various general strategies for Builder and Painter have also been studied. For example,
consider the following strategy for Builder in the 7(G, H)-game. Builder chooses a large
but finite set of vertices in Ky, say a set of size n € N, with n > r(G, H). Then Builder
chooses the edges of the induced K, in a uniformly random order, allowing Painter to
colour each edge as they wish, until the game ends. This strategy was analysed for the
7(K3)-game by Friedgut, Kohayakawa, R6dl, Rucinski and Tetali [6], and for the more
general 7(G)-game by Marciniszyn, Spohel and Steger [11, 12].

Finally, let 7, (G)-game be the 7(G)-game in which Builder is forbidden to uncovering a
graph with chromatics number greater than x(G). Grytczuk, Haluszczak and Kierstead [7]
proved that Builder can win the 7, (G)-game. Kierstead and Konjevod [9] proved the
hypergraph generalisation.

Given the known bounds on 7(K}), it is not surprising that determining on-line Ram-
sey numbers exactly has proved even more difficult than determining classical Ramsey
numbers exactly, and very few results are known. A significant amount of effort has been
focused on the special case where G and H are paths. Grytczuk, Kierstead and Pratat [8]
and Pralat [13, 14] have determined 7( Py, Pry1) exactly when max{k, {} < 8 (where P;
is a path on s verices). In addition, Beck [2] has proved that the size Ramsey number
7(Pg, Py) is linear in k. (The best known upper bound, due to Dudek and Pratat [4], is
7( Py, Py) < 137k.) The best known bounds on 7(Py1, Py11) were proved in [8].

Theorem 2. For all k,¢ € N, we have k + € — 1 < 7(Pyi1, Pry1) < 2k + 20 — 3.

In general, it seems difficult to bound on-line Ramsey numbers 7(G, H) below. One
of the major difficulties in doing so is the variety of possible strategies for Builder. We
present a strategy for Painter which mitigates this problem somewhat.

Definition 3. Let F be a family of graphs. We define the F-blocking strategy for Painter
as follows. Write R; for the graph consisting of all uncovered red edges immediately before
the ¢th move of the game, and write e; for the ith edge chosen by Builder. Then Painter
colours e; red if R; + e; is F-free, and blue otherwise. (Recall that a graph is F-free if it
contains no graph in F as a subgraph.)

In an 7(G, H)-game, it is natural to consider F-blocking strategies with G € F. For
example, if 7 = {G}, then the F-blocking strategy for Painter consists of colouring every
edge red unless doing so would cause Painter to lose the game. If Painter is using an
F-blocking strategy, one clear strategy for Builder would be to construct a red F-free
graph, then use it to force a blue copy of H in e¢(H) moves. We will show that this is
effectively Builder’s only strategy (see Proposition 13), and thus to bound 7(G, H) below
it suffices to prove that no small red F-free graph can be used to force a blue copy of H.
We use this technique to derive some lower bounds for on-line Ramsey numbers of the
form 7(Pgi1, H), taking F = { P11} U{C; : i > 3}.
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Theorem 4. Let k, ¢ € N with k > 2. Let H be a graph on |H| vertices with { edges and
let A= A(H). Then

(2A +1)6/(24) if k=2,
F(Pey1, H) > § (5A+4)0/(5A) i k=3,
(A+1)t/A if k£ > 4.

Moreover, if H is connected and k > 4, then
7(Per1, H) 2 (A+1)¢/A +min{k/2 — 2,|H| — 1}.

For k = 2, we show that if H = Pp,; for £ > 2 or H = Cy for ¢ > 5, then the bound
on 7(Ps, H) given by Theorem 4 is tight.

Theorem 5. For all { > 2, we have 7(Ps, Pryy) = [50/4]. Also,

0+2  if0=34,

PPy, C) = {[56/4} it £ > 5.

Furthermore, for k = 3, we determine 7(Py, Pyyq1) up to an additive constant for all
(> 3.
Theorem 6. For all ¢ > 3, we have (70 +2)/5 < 7(Py, Pry1) < (7€ +52) /5.

Our proof of the upper bound for k = 3 is complicated, so the proof is included in the
Appendix. The lower bound follows from Lemma 18, a simple extension of the proof of
Theorem 4, and we believe that it is tight.

Conjecture 7. For all £ > 3, we have 7(Py, Pry1) = [(T0 4 2)/5].
By Theorems 5 and 6, we have
lim f(P37 PE+1)/€ = 5/47
{—00
lim 7(Py, Ppy1)/l = T7/5.
{—00

On the other hand, for all fixed & > 4, Theorems 2 and 4 imply that

3/2 g liminff(PkH, Pg+1)/€ < limsup ’I:(Pk_,_l, Pg+1)/€ < 2,

L= f—00

and we make the following conjecture.

Conjecture 8. For k > 4, limy_,o 7(Pyy1, Pri1) /¢ = 3/2. Moreover, for all £ > k > 4,
we have 7(Pri1, Pry1) = [30/2] + k — 3. In particular, we have 7(Py41) = [bk/2] — 3 for
k> 4.
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Note that Conjecture 8 would imply Conjecture 4.1 of [14]. Conjectures 7 and 8 have
been confirmed for ¢ < 8 by Pralat [13], using a high-performance computer cluster.
Finally, we give some bounds on 7(Cy, Pry1).

Theorem 9. For { > 3, we have 20 < 7(Cy, Ppryq) < 40 — 4. Moreover, 7(Cy, Py) = 8.

Many of the lower bounds above follow from Theorem 4, and all of them follow from
analysing F-blocking strategies. In particular, we obtain tight lower bounds on 7(Ps, Ppy1)
and 7(Ps, Cy) in this way, as well as a lower bound on 7(Py, Ppy1) which matches Conjec-
ture 7. We are therefore motivated to ask the following question.

Question 10. For which graphs G and H does there exist a family F of graphs such that
the F-blocking strategy is optimal for Painter in the 7(G, H)-game?

The paper is laid out as follows. In Section 3, we prove Theorem 4. We prove
Theorem 5 in Sections 4 and 5 (see Theorem 21, Proposition 23 and Theorem 24). Finally,
in Section 6 we prove Theorem 9. The proof of Theorem 6 is in the Appendix.

2 Notation and conventions

We write N for the set {1,2,...} of natural numbers, and Ny := N U {0}.

Suppose P = v;...v; and @ = w;...w, are paths. If i < j, we write v;Pv; (or
vjPv;) for the subpath v;v;41...v; of P. We also write P() for the concatenation of
P and ). For example, if i < j and ¢/ < j' then wv; Pvjyw;Qwj denotes the path
UV Vg1 - - - VjYWprWir4q - - - Wyr.

If G is a graph, we will write |G| for the number of vertices of G' and e(G) for the
number of edges of G.

In the context of an 7(G, H)-game, an uncovered edge is an edge of Ky that has
previously been chosen by Builder, and a new vertex is a vertex in Ky not incident to any
uncovered edge.

Many of our lemmas say that in an 7(G, H)-game, given a finite coloured graph X C
Ky, Builder can force Painter to construct a coloured graph Y C Ky satisfying some
desired property. We will often apply such a lemma to a finite coloured graph X' O X
and in these cases we will implicitly require V(Y) N V(X’) C V(X). (Intuitively, when
Builder chooses a new vertex while constructing Y, it should be new with respect to X’
rather than X.) This is formally valid, since we may apply the lemma to an 7#(G, H)-
game on the board Ky— (V(X’)\ V(X)) and have Builder choose the corresponding edges
in KN.

For technical convenience, we allow Builder to “waste” a round in the 7(G, H)-game
by choosing an uncovered edge. If he does so, the round contributes to the duration of the
game but the edge Builder chooses is not recoloured. Since such a move is never optimal
for Builder, the definition of 7(G, H) is not affected.
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3 General lower bounds

Our aim is to bound 7(G, H) below for graphs G and H. In this section, Painter will
always use an F-blocking strategy for some family F of graphs with G € F. Hence, as
we shall demonstrate in Proposition 13 below, Builder’s strategy boils down to choosing
a red graph with which to force a blue copy of H.

Definition 11. Let F be a family of graphs and let R C Ky be an F-free graph. We say
that an edge e € Ky — R is (R, F)-forceable if R + e is not F-free. We say a graph H
is (R, F)-forceable if there exists H' C Ky — R with H' isomorphic to H such that every
edge e € E(H') is (R, F)-forceable. We call H" an (R, F)-forced copy of H. If R and F
are clear from context, we will omit ‘(R, F)-’.

Definition 12. Let F be a family of graphs and let H be a graph. We say a graph
R C Ky is an F-scaffolding for H if the following properties hold.

(i) R is F-free.
(ii) H is (R, F)-forceable.
(iii) R contains no isolated vertices.

Proposition 13. Let G and H be graphs. Let F be a family of graphs with G € F.
Suppose every F-scaffolding for H has at least m edges. Then 7(G,H) > m+ e(H).

Proof. Consider an 7(G, H)-game in which Painter uses an F-blocking strategy. Further
suppose Builder wins by claiming edges eq,...,e,. Since Builder choosing an edge which
Painter colours blue has no effect on Painter’s subsequent choices, without loss of gen-
erality we may assume that there exists ¢ such that Painter colours ey, ...,e; red and
€it1,---,e blue. Let R C Ky be the subgraph with edge set {ey,...,¢;}, and let B C Ky
be the subgraph with edge set {e;11,...,e.}. Thus R is the uncovered red graph and B
is the uncovered blue graph.

We will show that R is an F-scaffolding for H. First note that R is F-free by Painter’s
strategy, and R has no isolated vertices by definition. Moreover, since G € F and Builder
wins, there exists H' C B with H’ isomorphic to H. So e(B) > e(H). Moreover, by
Painter’s strategy all edges in B must be (R, F)-forceable, so H is (R, F)-forceable. Hence
R is an F-scaffolding for H, so ¢(R) > m. Therefore, Builder wins in r > e(R) + ¢(B) >
m + e(H) rounds. O

Therefore, to bound 7(G, H) below, it suffices to bound the number of edges in an
F-scaffolding for H below for some family F of graphs with G € F. We first use Propo-
sition 13 to bound 7(Cy, H) for connected graphs H.

Lemma 14. Let H be a connected graph. Then every {C; : i > 3}-scaffolding for H has
at least |H| — 1 edges. Moreover, 7(Cyx, H) > |H| +e(H) — 1 for all k > 3.
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Proof. Let R be a {Cj}-scaffolding for H with e(R) minimal. Note that each (R, {Cy})-
forceable edge must lie entirely in a component of R. Since H is connected, R is connected
and |R| > |H|. Hence, e(R) > |H| — 1.

By Proposition 13, 7(Cy, H) > |H| + e(H) — 1. O

To prove Theorem 4, we set G = Pyy; and F = { P11} U{C; : i > 3}. Thus an F-free
graph is a forest whose components have diameter less than k. Lemma 17 gives a lower
bound on the number of edges in an F-scaffolding for H.

Note that replacing F by { P41} and attempting a similar proof yields a worse lower
bound in some cases. For example, taking H = Py,.; with k£ > 3, if Painter follows the
{Py11}-blocking strategy then Builder can win in 3k moves by first constructing a red Cl.

We will see in the proof of Lemma 17 that if R is a red F-free graph with no isolated
vertices, and X C V(R) is the set of endpoints of P;’s in R, then Builder may force
at most A(H)(|R| + | X]|) edges of H using R. It will therefore be very useful to bound
|R|+ | X| above in terms of e(R), first in the special case where R is a tree (see Lemma 15)
and then in general (see Lemma 16).

Lemma 15. Let k,m € N with k > 2. Let R be a Py 1-free tree with m edges. Let X be
the set of endpoints of P.’s in R. If X # 0, then |R| + |X| < 2m — k + 4.

Proof. We claim that if x € X, then x is a leaf of R. Indeed, let P be a P, with one
endpoint equal to z. Let y € V(P) be the neighbour of = in P, and suppose zz € E(R)
for some z # y. Then either z € V(P) and xzPx is a cycle in R, or z ¢ V(P) and Pxz is
a P41 in R — both are contradictions. Hence if x € X, then x is a leaf. But since X = (),
R contains a P, and hence at least k — 2 vertices of degree greater than 1. Hence

|IR| + | X| < |R|+ |R| — (k—2)=2m — k + 4,
and the proposition follows. O

Lemma 16. Let k,m € N with k > 2. Let R be a Py.q-free forest with m edges and no
1solated vertices. Let X be the set of all endpoints of Py’s in R. Then

Am  ifk =2,
|R| 4+ |X| < {5m/2 if k=3,
2m if k> 4.

Moreover, if k > 4 and there exists an edge e such that R + e contains a Pyi1, then
|R| + | X| < 2m — k + 4.

Proof. Let Ry, ..., R, be the components of R. Let m; = e(R;) and X; = X NV (R;) for
all 1 <o < r. If £ =2, then R is a disjoint union of m edges and the result is immediate.
Suppose k£ = 3. Without loss of generality, let Ry, ..., R be those components of R

which consist of a single edge. (Note that we may have ' = 0.) Thenm = '+, m;
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and r — 1’ < m/2. Then by Lemma 15 we have

R+ X =D [Ri|+ > (IR|+ X)) <2+ ) (2mi+1)
i=1 i=r'+1 =741
=2m+r—r < 5m/2

and so the result follows.

Finally, suppose k > 4. Let ¢ be the number of components of R containing a Pj.
Without loss of generality suppose that Ry, ..., R, are the components of R which contain
a P. For ¢ <i <r, we have |R;| + |X;| = |Ri| = m; + 1 < 2m;. Then by Lemma 15 we
have

R+ [X] =Y (IR + X)) <Y _@mi—k+4)+ Y (2m;) =2m —q(k—4). (1)
i=1 i=1 i=q+1

Suppose that there exists an edge e such that R+ e contains a Py ;. If X # (), then ¢ > 1
and so |R| + |X| < 2m — k+ 4 by (1). Hence we may assume that X = {), and so e is
an edge between two vertices of R. It follows that R contains two vertex-disjoint paths
of combined length at least k — 1, and hence that

R+ |X|=|Rl=m+r<m+(m—-Fk+3)<2m—k+4,

as desired. The first inequality follows since all edges in a given path must lie in the same
component of R. O

Lemma 17. Let k,¢ € N with k > 2. Let H be a graph with { edges and let A = A(H).
Let F = { P11} U{C; i > 3}. Suppose R is an F-scaffolding for H. Then, we have

0/(2A) itk =2,
e(R) = { 40/(5A) if k =3,
/A if k> 4.

Moreover, if H is connected and k > 4 then e(R) > min {£ + £ — 2, |H| — 1}.

Proof. Let m = e(R). Note that R is a Py i-free forest with m edges and no isolated
vertices. Let X be the set of endpoints of Py’s in R and let Y = V(R) \ X.

We first claim that any (R, F)-forceable edge is either incident to X or internal to Y.
Suppose not. Then there exist y € Y and z ¢ V(R) such that yz is a forceable edge. Let
F € F be such that ' C R+e. Note that e € E(F'), since R is F-free. Since dre(z) = 1,
we have F' = P,,;. But then y is an endpoint of a P, in R, contradicting y € Y.

Let H' be a forced copy of H. Then H' contains at most A|X| edges incident to X,
and at most A|Y|/2 edges internal to Y. All edges of H' are forceable, so it follows that

AlY]  A(R[+]X])

{=e(H') < AIX|+ =5 > . 2)
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Lemma 16 and (2) imply the lemma holds unless & > 4 and H is connected.

Now suppose H is connected and k > 4. If there exists an edge e such that R + e
contains a Py, then |R| + |X| < 2m — k + 4 by Lemma 16. Hence, (2) implies that
m = f + g — 2. Therefore, we may assume that no such edge exists, and in particular
that X = (). This implies that R is a {C; : i > 3}-scaffolding for H. Lemma 14 implies
that m > |H| — 1 as required.

O

Theorem 4 follows immediately from Proposition 13 and Lemma 17.
We now bound 7(FPy, Ppy1) from below.

Lemma 18. Let ¢ € N with ¢ > 3. Then we have 7(Py, Pryq) = (70 +2) /5.

Proof. Let F = {P,} U{C; : i > 3}. Let R be an F-scaffolding for P,,;. Let X be the
set of endpoints of P3’s in R, and let Y = V(R) \ X. By Lemma 16 and Proposition 13,
to prove the lemma it suffices to show that |R| + |X| > ¢+ 1.

Let H be a forced copy of Ppyq. Note that any (R, F)-forceable edge is either incident
to X or internal to Y. Note also that Y # (). Indeed, if X = () then this is immediate. If
X # 0, then R is a Pj-free forest containing a P;. The central vertex of this P; cannot
be an element of X, and is therefore an element of Y.

Since A(H) = 2, H contains at most 2|.X| edges incident to X. Moreover, since H is
a path, H[Y] is a forest and so ey (V) < |Y| — 1. Tt follows that

CL<2|X|+ Y| —-1=|R|+|X|—1,

and hence |R| + | X| > ¢ + 1 as desired.

4 Determining 7(Ps, Py11) for £ > 2

Theorem 4 implies that 7(Ps, Ppyq) = [5€/4] for £ > 2. To bound 7(Ps, Py11) above, we
shall present a strategy for Builder. In the discussion that follows, we assume for clarity
that Painter will never voluntarily lose the 7(Ps, Ppyq)-game.

Builder will use the threat of a red P; to force a blue Py ;. First, Builder will use
Lemma 19 to construct a blue path P with one endpoint incident to a red edge. Builder
will then use a procedure outlined in Lemma 20 to efficiently extend P until it has length
between ¢ — 4 and /. Finally, Builder will carefully extend P into a blue P4, yielding a
tight upper bound for 7(Ps, Py11) (see Theorem 21).

Lemma 19. Let ¢ € N with ¢ > 5. Builder can force one of the following structures
independent of Painter’s choices:

(i) a red Ps in at most ¢ — 1 rounds.

(ii) a blue P, in ¢ — 1 rounds.
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(iii) a blue P, with one endpoint incident to a red edge in t rounds for some 4 <t < q—1.

Proof. Builder first chooses an arbitrary vertex xi, then proceeds as follows. Suppose
that Builder has already obtained a blue path x;...x; in ¢ — 1 rounds for some 1 <7 < q.
Builder then chooses the edge x;z;.1, where x;,1 is a new vertex. If Painter colours z;x; 1
blue, we have obtained a blue path z;...x;.1 in ¢ rounds, and so if i + 1 < ¢ we may
repeat the process. If Painter colours all such edges blue, we will obtain a blue path
x1...x4 in ¢ — 1 rounds and achieve (ii). Suppose instead that for some 1 < i < g — 1,
within ¢ rounds we obtain a path x;...x;,; such that x;...x; is blue and z;z;,, is red.
If i > 4 then we have achieved (iii), so suppose in addition 7 < 3.

First suppose i € {1,2}. In this case, Builder chooses the two edges x;v and vz,
where v is a new vertex. If ¢ = 1, Builder also chooses the edge x;.1w where w is a
new vertex. If Painter colours z;v, vx; 1 or ;1w red, then x; 1x;v, v, 1z; Oor T;x; W
respectively is a red P; and we have achieved (i). Otherwise, we have achieved (iii).
Indeed, if © = 1 then x1vzow is a blue P, constructed in 4 rounds with z; incident to the
red edge x1x9, and if ¢ = 2 then zixovx3 is a blue Py constructed in 4 rounds with z3
incident to the red edge x3x,.

Finally, suppose ¢ = 3. Then Builder chooses the edge x4 z,. If Painter colours the
edge red, then x3xyr; is a red P3 and we have achieved (i), so suppose Painter colours
the edge blue. Then x4xx923 is a blue P, constructed in 4 rounds with z3 incident to
the red edge x3z4, so we have achieved (iii). O

Lemma 20. Let { € N with ¢ > 4. Builder can force one of the following structures
independent of Painter’s choices:

(i) a red Ps in at most 5¢/4 — 1 rounds.
(ii) a blue Ppyq in at most 5¢/4 — 1 rounds.

(iii) a blue P, with one endpoint incident to a red edge in at most 5t/4 — 1 rounds for
some l —3 <t </

Proof. Throughout the proof, we assume for clarity that Painter will always avoid (i)
and (ii) if possible. By Lemma 19 (taking ¢ = ¢ + 1) we may assume that Builder has
constructed a blue P;, say vy ...v;, which satisfies

(%) vy ...v has one endpoint incident to a red edge vu, and Builder constructed vy . . . v,
in at most 5¢/4 — 1 rounds. Moreover, 4 <t < /.

Note that ¢ < 5t/4 — 1 since t > 4.

If t > ¢ — 3, then we have achieved (iii). Hence, we may assume that 4 <t < ¢ — 3.
Without loss of generality, let v;u be a red edge as in (). Builder will extend vy ... v; as
follows. We apply Lemma 19 with ¢ = ¢ —t+ 1 > 5 on a set of new vertices. We split
into cases depending on Painter’s choice.

Case 1: Builder obtains a red Pj in at most ¢ — ¢ rounds, as in Lemma 19(i).
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In this case, Builder has spent at most 5¢/4 — 14+ ¢ —t < 5¢/4 — 2 rounds in total
since t < ¢ — 4, and so we have achieved (i).

Case 2: Builder obtains a blue path w; ... w;_syq in ¢ — ¢ rounds, as in Lemma 19(ii).

In this case, Builder has again spent at most 5¢/4 — 2 rounds in total. Builder now
chooses the edge wyv;. If Painter colours it red, then wjviu is a red P3; and we have
achieved (i). If Painter colours it blue, then w; 41 ...wyvy...v; is a blue Py and we
have achieved (ii).

Case 3: Builder obtains a blue path w; ... wy and a red edge wyz in at most ¢ rounds
for some 4 <t < ¢ —t, as in Lemma 19(iii).
In this case, Builder has spent at most

5t 5t 5t0 5(t+t) 5¢

— =14t ==t ——-=-=-1 —= -2 —=-2

4 + 4 + 4 4 4 4
rounds in total. Builder now chooses the edge v,w;. If Painter colours it red, then v,w,x
is a red P3 and we have achieved (i). If Painter colours it blue, then v ... vaw; ... wy is
a blue P,y with vy incident to the red edge vyu. Moreover, this P, satisfies (*) with
t +t' > t. Hence by iterating the argument above, the result follows. O]

Theorem 21. For all { > 2, 7(Ps, Ppyq) = [50/4].

Proof. Theorem 4 implies that 7(Ps, Ppyq) > [5/4]. It therefore suffices to prove that
Builder can win the 7(Ps, Pyy1)-game within [5¢/4] rounds. First note that 7(Ps, Ps) =
3 and 7(Ps, P;) = 4, as shown by Grytczuk, Kierstead and Pratat [8] and Pralat [13]
respectively, so we may assume ¢ > 4. Applying Lemma 20, either Builder obtains a blue
path v; ...v41 and a red edge v1u in at most 5(¢41)/4—1 rounds for some {—3 < t+1 < /¢
or we are done. Write

-8 (2] 52 e

and note that Builder has at least r(¢) rounds left to construct either a red P; or a blue
Py11. We now split into cases depending on the precise value of t.

Case 1: t = (¢ — 1, so that r(t) = 1.
Builder chooses the edge vgv,, where vg is a new vertex. If Painter colours it red, then
voviu is a red P3 and we are done. Otherwise, vgv; ... vy is a blue Py, and we are done.

Case 2: t = ( — 2, so that r(t) > 3.

Builder chooses the edge v,_qx, where z is a new vertex. If Painter colours it blue, then
we are in Case 1 with an extra round to spare. If Painter colours it red, Builder chooses
the edges v,_jw and wx, where w is a new vertex. If Painter colours either edge red then
TVp_qw or wrvy_q respectively is a red P3 and we are done. Otherwise, vy ... v, jwz is a
blue P, 1 and we are done.

Case 3: t = ( — 3, so that r(t) > 4.
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Builder chooses the edge vy_ox, where x is a new vertex. If Painter colours it blue,
then we are in Case 2. If Painter colours it red, Builder chooses the edges v,_sw, wz and
xy, where w and y are new vertices. If Painter colours any of these edges red then zv,_sw,
wWxvy_g O Vy_oxy respectively is a red P3 and we are done. Otherwise, vy ... v, swzy is a
blue P, and we are done.

Case 4: t = ( — 4, so that r(t) > 5.

Builder chooses the edge vy_s3x, where x is a new vertex. If Painter colours it blue,
then we are in Case 3. If Painter colours it red, Builder chooses the edges vgvi, ve_sw,
wx and xy, where vy, w and y are new vertices. If Painter colours any of these edges red
then voviu, TV, 3w, wrve_3 or vy_3xy respectively is a red P3 and we are done. Otherwise,
VU1 - .. Vp_swxy is a blue Py, and we are done. O

5 Determining 7(P;,Cy) for £ > 3

Our aim is to determine 7(P3, Cy) for all £ > 3, so proving Theorem 5. As a warmup, we
first determine 7(P3, C3) and 7(Ps, Cy). Note that Theorem 4 implies that 7(Ps, C3) > 5¢/4
for all £ > 3, but this lower bound is too weak when ¢ < 4. Instead, we consider the
{C/}-blocking strategy for Painter in an 7(Cy, P3)-game.

Proposition 22. For all ¢ > 3, we have 7(Ps,Cy) > { + 2.

Proof. We consider the {C,}-blocking strategy for Painter in the 7(Cy, P;)-game. Let R
be an edge-minimal {Cy}-scaffolding for P;. Then R must contain two distinct P’s, so
e(R) = (. The result therefore follows from Proposition 13. O

The upper bounds are both relatively straightforward.
Proposition 23. We have 7(P3,Cs) =5 and 7(Ps, Cy) = 6.

Proof. By Proposition 22, we have 7(P3,C3) > 5 and 7(P;3,Cy) > 6. It is easy to show
that r(P;, Cy) = 4 (see e.g. Radziszowski [15]), so we also have #(Ps,Cy) < (3) = 6 as
Builder may simply choose the edges of a Kj. It therefore suffices to prove that Builder
can win the 7(Ps, C3)-game in 5 rounds.

Take new vertices u, v, w, x, y and z. Builder first chooses the edges uv, uw and ux.
If Painter colours more than one of these edges red, then we have obtained a red P; and
we are done.

Suppose Painter colours uv, uw and ux blue. Then Builder chooses the edges vw and
wz. If Painter colours either edge blue, then vwuv or wruw respectively is a blue C's and
we are done. If Painter colours both edges red, then vwz is a red P; and we are done.

Finally, suppose Painter colours (without loss of generality) uv red, but ww and ux
blue. Then Builder chooses the edge zy. If Painter colours xy red, Builder chooses the
edge wx, yielding either a red P; (namely wzy), or a blue C3, wruw, and we are done.
If Painter colours zy blue, Builder chooses the edge yu, yielding either a red P; (namely
yuv) or a blue C5 (namely uzyu), and we are done. O
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We now determine 7(Ps,Cy) for ¢ > 5. As in Section 4, Builder’s strategy will be to
build up a long blue path using Lemma 20. Builder will then carefully close this path
into a blue C,.

Theorem 24. For all ¢ > 5, 7(Ps,Cy) = [54/4].

Proof. Theorem 4 implies that 7(P;, Cy) > [5¢/4]. It therefore suffices to prove that
Builder can win the 7(Ps, Cy)-game within [5¢/4] rounds. By Lemma 20, Builder can
force one of the following structures independent of Painter’s choices:

(i) ared Py in at most 5(¢ — 1)/4 — 1 rounds.
(ii) a blue Py in at most 5(¢ — 1)/4 — 1 rounds.

(iii) a blue P, with one endpoint incident to a red edge in at most 5¢/4 — 1 rounds for
some { —4 <t <l —1.

If Painter chooses (i), then we are done. Suppose Painter chooses (ii), so that Builder has

at least 50 500 —1) 507 5 9
H‘(T‘QZH‘Z*W

rounds to construct a red P; or a blue Cy, and let v; ... v, be the corresponding blue path.
Then Builder chooses the edges vyv;, vivs and vpve. If Painter colours vyv; blue then
v1...vp071 18 a blue (), and we are done. If Painter colours vyv; red and v,v3 or vyvy red,
then vyviv3 or vivew, respectively is a red P; and we are done. Finally, if Painter colours
both viv3 and vyvy blue, then viv3vy ... vvov; is a blue Cy and we are done.

Finally, suppose Painter chooses (iii). Let v; ... v; be the corresponding blue path and
let viu be a red edge. Write

-39 -5 oo

so that Builder has at least r(¢) rounds left to construct either a red Ps or a blue Cy. We
split into cases depending on the precise value of t.

Case 1: t = (¢ — 1, so that r(t) > 3.

Builder first chooses the edge vy_jw, where w is a new vertex. If Painter colours v,_jw
blue, then Builder chooses the edge wv;. If Painter colours wv, red then woviu is a red Ps,
and if Painter colours wwv; blue then viv,...vy_qwv; is a blue Cy,. Now suppose Painter
colours vy_jw red instead. Then Builder chooses the edges v,z and xv;, where x is a
new vertex. If Painter colours either edge red, then wv,_1x or xviu respectively is a red
P3; and we are done. Otherwise, v;...v,_12v; is a blue (), and we are done.

Case 2: t = — 2, so that r(t) > 4.

Builder first chooses the edge vy_sw, where w is a new vertex. If Painter colours vy_sw
blue then we are in Case 1, so suppose Painter colours v,_sw red. Builder then chooses the
edges vy_sx, zw and wvy, where x is a new vertex. If Painter colours any of these edges
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red, then wv,_sx, xwve_o or v,_swuv; respectively is a red P3 and we are done. Otherwise,
V1Vs . .. UVp_axwv; 1S a blue Cy and we are done.

Case 3: t = (¢ — 3, so that r(t) > 5.

Builder first chooses the edge v,_sw, where w is a new vertex. If Painter colours v,_zw
blue then we are in Case 2, so suppose Painter colours v,_3w red. Builder then chooses
the edges vy_sx, rw, wy and yv,, where  and y are new vertices. If Painter colours any
of these edges red, then wv,_3x, rwuv,_s3, v,_swy or yviu respectively is a red P; and we
are done. Otherwise, vivs ... vy _sxwyv; is a blue Cy and we are done.

Case 4: t = ( — 4, so that r(t) > 6.

Builder first chooses two edges wz and zy, where w, x and y are new vertices. If
Painter colours both edges red, wzy is a red P3 and we are done. Now suppose that
Painter colours one edge blue and one red, say wz red and xy blue. Then Builder chooses
the edges vy_qw, wz, zx and yv,, where z is a new vertex. If Painter colours any of
these edges red, then v,_ywz, Twz, zzw or yviu respectively is a red P3 and we are done.
Otherwise, v1vs . .. v_qwzryv; is a blue Cy; and we are done.

We may therefore assume that Painter colours both wz and xy blue. Builder now
chooses the edge v,_4w. If Painter colours v,_sw blue, we are in Case 1 (taking our path
to be v1vy ... vp_4wzy), so suppose Painter colours v,_4w red. Then Builder chooses the
edges vy_4z, zw and yv,, where z is a new vertex. If Painter colours any of these edges
red, then wv,_4z, zwvy,_4 or yvu respectively is a red P3 and we are done. Otherwise,
V1Vy . .. Up_gzwxyv is a blue C; and we are done. O

6 Bounding 7(Cy, Pyy,) for £ > 3

Our aim is to prove Theorem 9, i.e. to bound 7(Cy, Ppyq) for all £ > 3. First we prove
that 7:(04, P4) = 8.

Proposition 25. 7(Cy, Py) = 8.

Proof. First, we consider the {Cy}-blocking strategy for Painter in the 7(Cy, P;)-game.
Let R be an edge-minimal {C}}-scaffolding for P;. Then R must contain three distinct
Py’s, so e(R) > 5 as R is Cy-free. Proposition 13 implies that 7(Cy, Py) > 8.

It therefore suffices to prove that Builder can win the 7(Cy, Py)-game within 8 rounds.
Builder first chooses the edges uvy, ..., uvy for distinct vertices w,vq,...,vs. Without
loss of generality we may assume that there exists an integer j such that Painter colours
the edges uv; blue if ¢ < 7, and red otherwise.

Suppose j > 2. Then Builder chooses four edges vyw, vow, viw’ and vew’, where w
and w’ are new vertices. If Painter colours all edges red, then viwvow'vy is a red Cy. If
Painter colours one of the edges blue say vow, then viuvsw is a blue Pj.

Suppose j < 1. Then Builder chooses edges viv, and vyvs. If Painter colours both
edges red, then uwvovivsu is a red Cy. Suppose that Painter colours both edges blue.
Builder then chooses the edges vovy and vsvy. If Painter colours both vovy and vsvy red,
then uvovsvzu is a red Cy. Otherwise, v3v1v9v4 OF Vov1V3V4 is & blue Py. Therefore we may
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assume that vjvs is blue and vyv3 is red. Further suppose that 7 = 1 and so uwv; is blue.
Then Builder chooses the edges vov3 and vyvy. If Painter colours one of them blue, then
UV VU3 OF U194 18 a blue Py. Otherwise uvsvovau is a red Cy. Finally, suppose that
j = 0. Builder chooses the edges vov3z and vzvy. If Painter colours one of them red, then
uV1V3Vu or uv vsvau is a red Cy. Otherwise vivyv3vy is a blue Pj. O

We now prove Theorem 9.

Proof of Theorem 9. The lower bound follows from Lemma 14 and 7(Cy4, Py) = 8 by
Proposition 25. To prove the theorem, it is enough to show that 7(Cy, Ppyq) < 40 — 4
for all £ > 3. We proceed by induction on ¢. By Proposition 25, this is true for ¢ = 3.
Suppose instead that ¢ > 4 and Builder first spends at most 4¢ — 8 rounds forcing Painter
to construct a red Cy or a blue P, = vy ...v,. (This is possible by the induction hypoth-
esis.) We may assume that the latter holds or else we are done. Then Builder chooses
four edges vz, vz, v1y and vyy, where x and y are new vertices. If Painter colours all
edges red, then vizveyv, is a red Cy. If Painter colours one of the edges blue, say vy,
then vy ...vex is a blue P,y;. In total, Builder has chosen at most 4¢ — 4 edges and the
proposition follows. O
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A Bounding 7(Py, P;11) for £ > 3

Here, we prove Theorem 6. Lemma 18 implies that 7(Py, Pry1) = (7€ +2)/5 for £ > 3. Tt
therefore suffices to bound 7( Py, Py11) above, which we do in Theorem 44. In the following
discussion we take on the role of Builder, and we will assume for clarity that Painter will
not voluntarily lose the game by creating a red P;.

We will employ the following strategy to construct a blue Py ;. We will obtain two
(initially trivial) vertex-disjoint blue paths @ and R, repeatedly extend them, and then
join them together to form a blue Py, when they are sufficiently long. Here @) is distinct
from R in that we require one of ()’s endpoints to be incident to a red edge bc disjoint
from V(R). Some of our methods for extending a blue path require this property, and
others destroy it. Thus at each stage we will extend either ) or R depending on which
of our extension methods Painter allows us to use.

We will use the following lemma to join () and R together (and sometimes to extend Q).

Lemma 26. Let Q be a (possibly trivial) blue path with endpoints a and b, where b is
incident to a red edge be. Let R be a (possibly trivial) blue path vertex-disjoint from
V(Q) U {c}. Then Builder can force Painter to construct one of the following while
uncovering at most 2 edges:

(i) a blue path Q" of length e(Q) + e(R) + 1 with one endpoint incident to a red edge.
(ii) a red Py.

Proof. First suppose that R is non-trivial, and let x and y be the endpoints of R. More-
over, suppose that either a = ¢ or @) is trivial, so that both endpoints of () are incident
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to be. Builder chooses the edges bx and cy. If Painter colours both edges red, then xbcy is
a red P,. Hence, without loss of generality, we may assume that Painter colours bz blue.
Then Q' := aQbx Ry is a blue path of length e(Q) + e(R) + 1, where a is incident to the
red edge bc.

Now suppose that @) is non-trivial and a # ¢. Builder chooses the edge ax. If Painter
colours ax blue, then bQaxRy is a blue path of length e(Q) + e(R) + 1 with endpoint
b incident to the red edge bc. So we may assume that Painter colours az red. Builder
then chooses the edge bx. If Painter colours bx red, then cbxa is a red P;. Otherwise
Q' := aQbx Ry is a blue path of length e(Q) +e(R) + 1 where a is incident to the red edge
ax.

Finally, suppose R is trivial with endpoint x. Let y be a new vertex. Then the
argument above implies the lemma on replacing x Ry with = throughout. O]

The arguments that follow are by necessity somewhat technical. The reader may
therefore find the following intuition useful.

(i) For every seven edges we uncover, we will extend either () or R by five blue edges.
(ii) When we join @ and R, e(Q) + e(R) + 1 should not be too much greater than /.

It is clear that following the above principles will yield a bound of the form 7(Py, Ppy1) <
70/5 + C for some constant C'. We will violate (i) in the first and last phases of Builder’s
strategy, but this introduces only constant overhead.

Before we can apply Lemma 26 to join () and R and obtain a blue Py, we must
extend them until e(Q) + e(R) +1 > ¢. Each time we extend @ and R, we require
two independent edges of the same colour. (Naturally, we can obtain these by choosing
three independent edges.) If these edges are blue, we may extend @ efficiently using
Lemma 30 (see Section A.1). If they are red, we may extend either @) or R efficiently
using Lemma 39 (see Section A.2). Note that the latter case is significantly harder. We
then apply Lemmas 30 and 39 repeatedly to prove Theorem 44 (see Section A.3).

In our figures throughout the section, we shall represent blue edges with solid lines
and red edges with dotted lines.

A.1 Extending @ using two independent blue edges e and f.

Throughout this subsection, e and f will be two independent blue edges vertex-disjoint
from ) and R. We will prove that we can use these two edges to efficiently extend @)
— see Lemma 30. We first define a special type of path which will be important to the
extension process.

Definition 27. We say that a path xySz is of type A if xy is a red edge and S is a
non-trivial blue path with endpoints y and z.

Note that the above definition requires x ¢ V(S). For the remainder of the section,
if we refer to a path xySz of type A, we shall take it as read that z,y, 2z and S are as in
Definition 27.
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We now sketch the proof of Lemma 30. By greedily extending the blue edge e into
a path, Builder can obtain either a long blue path or a path of type A (see Lemma 28).
If Builder obtains a long blue path P, then we can simply join P and () together us-
ing Lemma 26. Suppose instead Builder obtains a path zySz of type A. Then we use
Lemma 29 to efficiently join S and @ together. In either case, the resulting blue path @’
also has an endpoint incident to a red edge, so )’ retains the defining property of Q.

We first prove that Builder can obtain either a long blue path or a path of type A by
greedily extending e.

Lemma 28. Let m € N and let e be a blue edge. Then Builder can force Painter to
construct one of the following:

(i) a path zySz of type A with e(S) =t while uncovering t edges for some 1 <t < m.
(ii) a blue path of length m while uncovering m — 1 edges.

Proof. Let S be the blue path formed by e. Builder proceeds to extend S; greedily until
either Builder has constructed a blue path of length m or Painter has coloured an edge
red.

Indeed, suppose S; is a blue path of length ¢ for some 1 < i < m — 1 with endpoints y
and z, and that Builder has uncovered ¢ — 1 edges in forming S; from S;. Then Builder
chooses the edge xy, where x is a new vertex. If Painter colours zy red then xyS;z is
a path of type A with e(S;) = i, where 1 < i < m. Moreover, Builder has uncovered i
edges in constructing it, and so we have achieved (i). If instead Painter colours xy blue,
then S;y; := xyS;z is a blue path of length ¢ + 1 and Builder has uncovered i edges in
constructing it.

By repeating this process, Builder must either obtain a path of type A as in (i) or a
blue path S, of length m as in (ii). O

We now prove that Builder can use a path of type A to efficiently extend (). Recall
that we were given two independent blue edges, e and f, and that we have already used
e to construct a path of type A.

Lemma 29. Suppose Q) is a non-trivial blue path with endpoints a and b, where b is
incident to a red edge be.Suppose xySz is a path of type A which is vertex-disjoint from
V(Q) U {c}. Further suppose that f = vw is a blue edge vertez-disjoint from V(Q) U
V(zySz)U{c}. Then Builder can force Painter to construct one of the following:

(1) a blue path Q" of length e(Q) + e(S) + 2 with one endpoint b’ incident to a red edge
b'd while uncovering 2 edges. Moreover, f is vertex-disjoint from V(Q") U {c'}.

(ii) a blue path Q" of length e(Q) 4 e(S) + 4 with one endpoint incident to a red edge b/
while uncovering 4 edges. (Note that f need not be vertex-disjoint from V(Q")U{c'}.)

(iii) a red Py while uncovering at most 4 edges.
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Figure 2: Extending () using a path of type A and an blue independent edge vw as in
Lemma 29(ii).

Proof. Builder chooses the edge ax. First suppose Painter colours az blue. Builder then
chooses the edge by. If Painter colours the edge by red, then cbyx is a red P; and we have
achieved (iii). Suppose not. Then @' := xaQbySz (see Figure 1) is a blue path of length
e(@Q) + e(S) + 2, where x is incident to the red edge zy, and we have achieved (i).

Now suppose Painter instead colours ax red. Builder then chooses the edges av, wy
and xb. If Painter colours any of these edges red, then yxav, wyzra or yxbe respectively is
a red Py, and we have achieved (iii). Suppose not. Then @' := xbQavwySz (see Figure 2)
is a blue path of length e(Q) + e(S) + 4, where z is incident to the red edge zy, and we
have achieved (ii). O

We now consolidate Lemmas 28 and 29 into a single lemma which says that given two
independent blue edges, Builder can efficiently extend @). In applying Lemma 30, we will
take m to be £ — e(Q) — e(R) — 1. Thus if we can extend @ by at least m edges, then we
can join () and R to obtain a blue Py, immediately afterwards.

Lemma 30. Let m € N. Suppose @) is a non-trivial blue path with endpoints a and b,
where b is incident to a red edge bc. Suppose e and f are two independent blue edges
which are vertex-disjoint from V(Q) U {c}. Then Builder can force Painter to construct
one of the following:

(i) a blue path Q" with e(Q') = e(Q) + ' for some 3 < ' < m + 3 such that Q' has
an endpoint b' incident to a red edge b'c’. A total of ' edges are uncovered in the
process. Moreover, if ¢! <5 < m, then f is vertex-disjoint from V(Q') U {c}.

(i) a red Py while uncovering at most m + 3 edges.

Proof. We apply Lemma 28 to e and m, and split into cases depending on Painter’s choice.

Case 1: As in Lemma 28(i), we obtain a path xySz of type A with e(S) = t for some

1 <t < m which is vertex-disjoint from V' (f) U V(Q) U {c}, while uncovering ¢ edges.
We apply Lemma 29 to @, zySz and f. First suppose that as in Lemma 29(i), we

obtain a blue path @’ of length e(Q)+t¢+2 with one endpoint incident to a red edge while

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.15 19



preserving f’s independence. In total we have uncovered t + 2 edges. Hence Q' satisfies
(i) on setting ¢/ =t + 2.

Now suppose that as in Lemma 29(ii), we obtain a blue path @’ of length e(Q) + ¢+ 4
with one endpoint incident to a red edge. We have uncovered ¢ + 4 edges in total. Hence
setting ¢’ =t + 4, we have achieved (i) with ¢/ > 5.

Finally, suppose that as in Lemma 29(iii) we obtain a red P;. Then we have uncovered
at most ¢ +4 < m + 3 edges in total and so we have achieved (ii).

Case 2: As in Lemma 28(ii), we obtain a blue path S of length m which is vertex-disjoint
from V(Q) U {c} while uncovering m — 1 edges.

We apply Lemma 26 to @ and S to construct either a blue path @’ of length e(Q)+m+1
with one endpoint incident to a red edge or a red P, while uncovering at most 2 additional
edges. We have uncovered at most m+ 1 edges in total. Hence in the former case we have
achieved (i), and in the latter case we have achieved (ii). O

A.2 Extending Q and R using two red edges e and f.

In this subsection, our aim is to extend ) or R efficiently when given two independent
red edges e and f — see Lemma 39. As in Section A.1, it will be convenient to define
some special paths that we will use in the extension process. These paths can be viewed
as analogues of paths of type A.

Definition 31. A path vwxyz is of type B if vw and yz are red edges, and wz and zy
are blue edges.

Definition 32. A path T} ...T} is of type C' if the following statements hold:
(C1) kis odd and k > 3.

(C2) T is either a blue edge or a path of the form x;y;21, where z; € V(T3) and y; 2 is
red (and x1y; may be red or blue).

(C3) T is either a blue edge or a path of the form zyyyzx, where zx € V(Ti_1) and zxyy
is red (and ygzx may be red or blue).

(C4) Ty, Ty, ..., Tk are blue paths. Exactly one of these paths has length 1 and the rest
have length 2.

(C5) T3, Ts, ..., T, are all red Py’s.

We say Ti...T} is incomplete if T or T} is a red P3. Otherwise, we say T;...T} is
complete.

For the remainder of the section, if we refer to a path vwxyz of type B or a path
Ty ...T, of type C, we shall take it as read that v,w,z,y,2z and Ti,...,T} are as in
Definitions 31 and 32 respectively. Note that paths of type C are well-defined with respect
to direction of traversal — if v; ... v, is a path of type C, then so is v,...v;.
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Figure 3: A complete path T; ...Ts of type C.

See Figure 3 for an example of a path of type C.

We now sketch the proof of Lemma 39. Let e and f be two independent red edges.
Using these edges, Builder can force either a path of type B or a path of type C using
Lemma 33. If Builder obtains a path vwzyz of type B, they will apply Lemma 34 to
efficiently extend () using vwzyz.

Suppose instead Builder obtains a path T ... T}, of type C. Then we run into a problem
— T ...T} is not complete, and only a complete path of type C may be used to efficiently
extend R (see Lemma 38). Builder will therefore use Corollary 37 to extend T3 ... T} into
a path 17 ...T}, of type C which is either complete or arbitrarily long. Builder then uses
Lemma 38 to extend R using 77 ...T},. If T{ ... T}, is complete, this extension is efficient;
otherwise, Builder wins the game immediately afterwards by joining () and the resulting
blue path. Thus an incomplete path of type C is used to extend R at most once over the
course of the game, adding only constantly many rounds to the game’s length.

We first prove that given two independent red edges Builder can force either a path
of type B or a path of type C.

Lemma 33. Given two independent red edges e and f, Builder can force Painter to
construct one of the following:

(i) a path of type B while uncovering 2 edges;
(ii) an incomplete path T'TyT5 of type C and length 5 while uncovering 3 edges;

(iii) a red Py while uncovering 2 edges.

Proof. Write e = uv and f = xy. Builder chooses the edges vw and wz, where w is a new
vertex. If Painter colours both edges red, then uvwz is a red Py and we have achieved (iii).
Suppose without loss of generality that Painter colours vw blue. If Painter also colours
wz blue, then uvwxy is a path of type B and we have achieved (i). If instead Painter
colours wx red, then Builder chooses the edge tu. However Painter colours tu, tuvwzxy is
now a path of type C and length 5, taking T} = tuv, T5 = vw and T3 = wxy. Moreover,
Ts is a red Ps, so T1T,T5 is incomplete and we have achieved (ii). O

We next prove that Builder can use a path of type B to efficiently extend Q.

Lemma 34. Suppose @ is a non-trivial blue path with endpoints a and b, where b is
incident to a red edge be. Suppose vwzyz is a path of type B vertex-disjoint from V(Q)U
{c}. Then, by uncovering at most 3 edges, Builder can force Painter to construct one of
the following:
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Figure 4: Extending @) using a path of type B as in Lemma 34.

(i) a blue path Q" of length e(Q) + 5 with one endpoint V' incident to a red edge b'c’.
(ii) a red Py.

Proof. Builder chooses the edges bv, vy and wz. If Painter colours any of these edges red,
then cbvw, wvyz or vwzy respectively is a red P, and we have achieved (ii). Otherwise,
aQbvyzrwz is a blue path of length e(Q) + 5, where z is incident to the red edge zy (see
Figure 4), and we have achieved (i). O

We now focus on paths of type C. We first note the following simple property of such
paths, which follows immediately from their definition (Definition 32).

Proposition 35. Suppose T} ...T} is a path of type C. Then
€(T1 ce Tk) =2k—-5+ €(T1) + €(Tk)

Let Ty ...T) be an incomplete path of type C. We first prove an ancillary lemma,
which says that Builder can always extend an incomplete path of type C into a slightly
longer path of type C.

Lemma 36. Suppose T} ... T} is an incomplete path of type C and length ¢. Then Builder
can force Painter to do one of the following:

(i) for some i € {3,4}, extend T' ... T}, to a path T] ... T}, of type C and length £ 4 i
while uncovering i edges.

(ii) construct a red Py while uncovering at most 4 edges.

Proof. Suppose without loss of generality that Ty = zpyrzr is a red P3, where xp €
V(Tk-1). Set T! = T; for i < k. Then Builder chooses two edges uv and vw, where u, v
and w are new vertices.

First suppose Painter colours both edges blue. Then Builder chooses the edge zpu. If
Painter colours ziu red, then xpyrzru is a red P, and we have achieved (ii). If Painter
colours z;u blue, then set T, = zwuv and T}, = vw. Thus, T7...T], is a path of
type C and length ¢ + 3, and we have achieved (i).

Now suppose that Painter colours both wv and vw red. Then Builder chooses the
edges 2zt and tu, where t is a new vertex. If Painter colours one of these edges red, then
Tryrzil or tuvw is a red Py, respectively, and we have achieved (ii). If Painter colours
both z;t and tu blue, then set T} | = ztu and T}, = uvw. Thus, T]...T} , is a path
of type C and length ¢ + 4, and we have achieved (i).
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Finally, suppose without loss of generality that Painter colours uv blue and vw red.
Then Builder chooses the edges zpu and wz, where x is a new vertex. If Painter colours
ziu red, then zpygzpu is a red Py and we have achieved (ii). If Painter colours zju blue,
then set T, = zyuv and T}, = vwx. Thus T]...T} ., is a path of type C of length
¢ + 4, however Painter colours wz, and we have achieved (i). O

By applying Lemma 36 repeatedly, Builder can extend the path 1717573 of type C given
by Lemma 33 into either a complete path of type C or an arbitrarily long incomplete path
of type C. Recall from Proposition 35 that a path T; ... T} of type C has length at most
2k — 1.

Corollary 37. Let ko = 5 be an odd integer. Suppose TiyT5T3 is an incomplete path of
type C and length 5. Then Builder can force Painter to do one of the following:

(i) for some k,l € N, extend T\T5T5 to a complete path T ... T} of type C and length ¢
such that 5 < k < ko, while uncovering ¢ — 5 edges.

(ii) for somel € N, extend T'T>Ts to an incomplete path Ty ... T} of type C and length {
while uncovering { — 5 edges.

(iii) construct a red Py while uncovering at most 2ky — 6 edges.
We next prove that Builder can extend R using a path of type C.

Lemma 38. Suppose T ... T}, is a path of type C with k > 5 and e(T} ... Ty) = £. Suppose
R is a (possibly trivial) blue path which is vertex-disjoint from Ty ...Ty. Then Builder
can force Painter to construct one of the following:

(i) a blue path R of length e(R) + (5k — 7)/2 while uncovering 3(k — 1)/2 edges. This

case can only occur if Ty ... T}, is incomplete.

(ii) a blue path R’ of length e(R) + ¢ while uncovering at most 7¢'/5 —{ edges for some
1<V <5(k—1)/2. This case can only occur if Ty ... T}, is complete.

(iii) a red Py while uncovering at most 3(k —1)/2 edges.

Proof. Let a and b be the endpoints of R. (If R is trivial, then let a = b.)For i €
{3,5,...,k — 2}, write T; = x;y;2; where z; € V(T;_1) and z; € V(T;11). Thus z;y;z; is a
red P for each i € {3,5,...,k — 2}. Builder chooses the set

Fy = {33'36% bzs, T5C1, C125, T7C, Co27, . - . JxkaC%u C%Zkfﬂ’
of edges, where cq, ... ) Ch—s are new vertices. Note that
k—5 3(k—1
|F1\:2+2~T:k—3<%. (3)

If Painter colours an edge in F} red, say z;w or wz; for some integer ¢ and some vertex
w, then zyy;x;w or wz;y;z; respectively is a red P;. So in this case we have achieved (iii).
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T, r3 Yz Z3 S, Ts Ys 25 T

Figure 5: Structure of S; and Sy in Lemma 38 for a path T;...T7 of type C.

Now suppose Painter colours all edges in F} blue. Then we have obtained a blue path
S1 = ThxsaRbzs T xsciz5Tgrrc027 . . .Tk‘_3l'k_2€% Zhod 1.
Note that S; has length
e(S1) = e(Ta) + e(Ty) + - + e(Th1) + [ F1| + e(R)

_ <2.$+1)+(k—3)+e(R):e(R)+2k—5,

where the second equality follows from (3).
Builder now chooses the set

Fy = A{ysys, Ysyr. - - - Y12}
of edges. Note that |Fy| = (K — 5)/2, so by (3) we have uncovered

k-5 3k—11

|Fi|+ | Fl =k -3+ 5 5 (5)

edges in total so far. If Painter colours an edge in F, red, say y;y;1o for some ¢ €
{3,5,...,k — 4}, then z;y;y;1ow;1o is a red P;. So in this case we have achieved (iii).
Suppose Painter colours all edges in F5 blue. Then we have obtained a blue path

S9 = Yp—2Yk—4 - - - Ys5Y3-

Note that Sy has length |Fy| = (k — 5)/2. Moreover, S; and Sy are vertex-disjoint (see
Figure 5) and by (4) we have
k—>5 5(k—3
e(S1) +e(S2) =e(R) + 2k — 5+ 5 = e(R) + % (6)
Our aim is now to join S; and Sy together to form R'. The way in which we do this
depends on the structure of T and Tj.

Case 1: T;...T} is incomplete.

Without loss of generality we may assume that T} is a red Ps, say xiy;2; with 2z, €
V(T3). Builder chooses the edges y1yx_2, ysr1, x1u and uz;, where u is a new vertex.
In total, Builder has uncovered |Fi| + |F5| +4 = 3(k — 1)/2 edges by (5). If Painter
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T 21 T3 Y3 Z3 Ts Ys 25 7 27
(iii) a R b i
r1 21 T3 Y3 Z3 Ts Ys Zs T7r Y7 Z7
(iv) a R b 1
7 A\
1 Y1 &1 X3 Y Z3 Ts Ys Zs 7 Yr  Z7

Figure 6: Extending a blue path R with a path 77 ...7% as in cases 1 through 4 (respec-
tively) of Lemma 38.

colours any of the edges red, then x1y1yx_22k_2, Y3T1Y121, 21y121U Or uz 1y 21 is a red Py,
respectively, and we have achieved (iii). Suppose Painter colours them all blue. Then
R’ := y1yp_252y3x1uz1S] is a blue path of length e(S;) + e(S2) +4 = e(R) + (bk —7)/2
by (6) (see Figure 6(i)) and hence we have achieved (i).

Case 2: 1Ti...Ty is complete and each of T} and T} is a blue edge.

Write 17 = x127 and Ty = xpz with 21 € V(T3) and z, € V(T;_1). First suppose
that £ > 7. Builder chooses the edges y3r; and y;_ox;. In total, Builder has uncovered
|Fy|+|Fy]+2 = (3k—7)/2 edges by (5). If Painter colours both edges red, then z3ysziyk—o
is a red Py and we have achieved (iii). Suppose Painter colours x1ys blue. Then R’ :=
Soysr121512k2) 18 a blue path of length e(S1) 4+ e(S2) +3 = e(R) + (5k —9)/2 by (6) (see
Figure 6(ii)). Writing ¢ := e(R’) — e(R) = (5k — 9)/2, Builder has uncovered

3k—7 7 b5k—9 4
5 <F T3 (2k 3)_? 14
edges in total, where the last equality follows from Proposition 35. Hence we have
achieved (ii). If instead Painter colours z1y;_» blue, the same argument shows we have
achieved (ii) on replacing Says by Soyx_o. So if k > 7, we are done.

If instead &k = 5, Builder chooses the edges ysz; and uz;, where u is a new vertex.
If Painter colours both edges red, then uxiyszs is a red P, and we have achieved (iii).
Suppose instead Painter colours wz; blue for some w € {u,y3}. Then R := wxi21517525
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is a blue path of length e(S1) + e(S2) + 3 (as €(S2) = 0) and Builder has uncovered
|F1| + |F2| 4+ 2 edges. Thus we have achieved (ii) as above.

Case 3: T)...T} is complete and exactly one of T} and T}, is a blue edge.

Without loss of generality we may assume that 77 is a blue edge. Let 77 = x12;
with z; € V(T), and let Ty = zyrzx with xx € V(Tr_1). Note that xpy, is red and
yr2r is blue. Builder chooses the edges xryr_o and y3y,. In total, Builder has uncovered
|Fi|+|Fa]+2 = (3k—7)/2 edges by (5). If Painter colours either zyy_o or ysyx red, then
YkTrYk—2Tk_o OF T3ysyrxy is a red Py respectively, and we have achieved (iii). Suppose
Painter instead colours both edges blue. Then R’ := z121S12xYr_252y3yrz, is a blue
path of length e(S5)) + e(S2) +4 = e(R) + (5k — 7)/2 by (6) (see Figure 6(iii)). Writing
0" :=e(R') — e(R) = (5k — 7)/2, Builder has uncovered

3k—7 7 bk—T7 4
5 <F T3 (2k 2)_? 14
edges in total, where the last equality follows from Proposition 35. Hence we have
achieved (ii).

Case 4: T)...T} is complete and neither T} nor T}, is a blue edge.

Let T} = z1y121 and T}, = zxyrzr where z; € V(Ty) and z € V(Ti—1). Thus ziy,
and ygzr are blue, and y;2z; and xy, are red. Then Builder chooses the edges vz,
TrYp—2, and ysy;. In total, Builder has uncovered |Fi| + |F3| + 3 = (3k — 5)/2 edges
by (5). If Painter colours one of these edges red, then xpyrz1y1, YsTrYk—_oTr_2 O 23Y3Yy121
respectively is a red Py and we have achieved (iii). Suppose Painter colours them all
blue. Then R’ := zpyp2z1S12kYk_252ysy1x1 is a blue path (see Figure 6(iv)) of length
e(S1) +e(S2) +5 =e(R)+5(k—1)/2 by (6). Writing ¢' := e(R') — e(R) = (5bk — 5)/2,
Builder has uncovered

3k—5 7 5k—5 7

—(2k—1)= = —
2 5 2 (2K ) 5 ¢

edges in total, where the last equality follows from Proposition 35. We have achieved
case (ii). O

Finally, we consolidate Lemmas 33, 34 and 38 and Corollary 37 into a single lemma
which says that given two independent red edges, Builder can extend either ) or R. As
with Lemma 30, in applying Lemma 39 we will take m to be { — e(Q) — e(R) — 1.

Lemma 39. Let m > 9 be an integer. Let () and R be blue paths and let e and f be two
red edges. Suppose that Q) s non-trivial and has an endpoint b incident to a red edge bc.
Further suppose that V(Q) U {c}, R, e and [ are pairwise vertez-disjoint. Then Builder
can force Painter to construct one of the following:

(i) a blue path Q' with one endpoint V' incident to a red edge V'c' such that e(Q') =
e(Q)+5, while uncovering 5 edges. Moreover, R is vertez-disjoint from V(Q')U{c'}.

(ii) a blue path R' such that e(R') = e(R)+{ for some 1 < {' < m+5 while uncovering
at most T0' /5 — 2 edges. Moreover, R' is vertez-disjoint from V(Q) U {c}.
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(iii) a blue path R’ such that e(R') > e(R)+m while uncovering at most Tm/5+ 6 edges.
Moreover, R is vertex-disjoint from V(Q) U {c}.

(iv) a red Py while uncovering at most Tm/5 + 6 edges.

Proof. We first apply Lemma 33 to e and f. If as in Lemma 33(iii) we obtain a red P,
while uncovering 2 edges, then we have achieved (iv). Suppose we do not. Then we split
into cases depending on Painter’s choice.

Case 1: We obtain a path vwzyz of type B while uncovering 2 edges, as in Lemma 33(i).
Moreover, vwzyz is vertex-disjoint from V(Q) U {c} and R.

We apply Lemma 34 to ) and vwzxyz. Hence we have uncovered at most 5 edges in
total. If we obtain a red Py, then we have achieved (iv). Suppose instead we obtain a blue
path @' of length ¢+ 5 with one endpoint & incident to a red edge b'¢’, where V(Q")U{c'}
is vertex-disjoint from R. Then we have achieved (i).

Case 2: We obtain an incomplete path 717575 of type C and length 5 while uncovering
3 edges, as in Lemma 33(ii). Moreover, T1T»T5 is vertex-disjoint from V(Q) U {c} and R.

Let ko be the least odd number such that ky > (2m+7)/5. Since bkg < (2m+7)+5-2,
and both 5kg and 2m + 17 are odd integers, we have ky < 2m/5 + 3. Moreover, kg >
(2m +7)/5 = 5 since m > 9. We apply Corollary 37 to 717573 and kq. If we obtain a
red P, while uncovering at most 2ko — 6 additional edges, then we have achieved (iv).
Suppose we do not. Then we split into subcases depending on Painter’s choice.

Case 2a: For some k,¢ € N, we obtain a complete path 77 ...7T} of type C and length
¢ such that 5 < k < ko while uncovering ¢ — 5 additional edges, as in Corollary 37(i).
Moreover, T7 ... T} is vertex-disjoint from V(Q) U {c} and R.

We now apply Lemma 38 to 77 ...7} and R. Suppose we obtain a blue path R’ with
length e(R) 4 ¢', where

—1 —1 2
€,<5(k2 )<5(/c02 )gg_(?mw):m%’

while uncovering at most 7¢'/5—¢ edges as in Lemma 38(ii). Note that R’ is vertex-disjoint
from V(Q)U{c}. In total we have uncovered at most 3+ (¢ —5) + (7¢'/5 =€) =T /5 —2
edges, so we have achieved (i).

Suppose instead we obtain a red P, while uncovering at most 3(k — 1)/2 edges as in
Lemma 38(iii). Note that ¢ < 2k — 1 by Proposition 35. In total we have therefore
uncovered at most

3(ko—1) _Tko—9 7 (2m 9 Tm
— < < - — _ 2=
3+ ((=5)+ == — < —5— <3 (5 +3> 5 +6 (7)

edges, and thus we have achieved (iv).

Case 2b: For some ¢ € N, we obtain an incomplete path 77 ... T} of type C and length
¢ while uncovering ¢ — 5 additional edges, as in Corollary 37(ii). Moreover, T} ... T} is
vertex-disjoint from V(Q) U {c} and R.
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We apply Lemma 38 to T7...T; and R. Whatever the outcome, we uncover at most
3(ko—1)/2 edges. We have therefore uncovered at most 7m/5+6 edges in total, as in (7).
If we obtain a red P, as in Lemma 38(iii), then we have achieved (iv). Hence we may
assume that we obtain a blue path R’ of length

dko — 7 5 2m+7 7

e(R) + 5 >eR)+--———=-=¢(R)+m,

as in Lemma 38(i). (The inequality follows from the definition of ky.) We have therefore
achieved (iii). O

A.3 An upper bound on 7(Py, Ppyq) for £ > 3

We now use Lemmas 26, 30 and 39 to bound 7( Py, Ppy1) above in Theorem 44. Together
with Theorem 4, this will imply Theorem 6.

Recall that Builder’s strategy is to extend blue paths () and R using independent
edges. For the remainder of the section, we denote the graph Builder has uncovered by
G. In order to keep track of the lengths of () and R and the number of independent edges
available, we introduce the following notation.

Definition 40. Let G be a graph. Given ¢, 7, npe, nrea € No, we say that G contains a
(q, 7, Nplue, Nred ) -Structure if it satisfies the following properties:

(P1) G contains a (possibly trivial) blue path @ of length ¢ with one endpoint b incident
to a red edge bc.

(P2) G contains a (possibly trivial) blue path R of length 7.

(P3) G contains a set F' of independent edges containing nyp. blue edges and n,eq red
edges.

(P4) V(Q)UA{c}, R and F are pairwise vertex-disjoint.

This notation substantially simplifies the statements of Lemmas 26, 30 and 39. The
corresponding statements are as follows.

Corollary 41. Let q,7r,Nyeq, Nbwe € No and let G be a graph. Suppose G contains a
(q, 7, Nblue, Nred ) -Structure. Then Builder can force Painter to construct a graph G' 2 G
with e(G") < e(G)+2 such that G' contains a (q+7r+1,0, Nye, Nrea ) -Structure or a red Py.

Corollary 42. Let m,q,r,nweq € Nog with g,m > 1. Suppose G is a graph containing a
(q, 7,2, nyeq)-structure. Then Builder can force Painter to construct a graph G' 2 G such
that one of the following holds:

(i) G' contains a (q + €', 7, Nblue, Nrea ) -Structure and e(G') = e(G) + €' for some 3 <
¢ < m+ 3 and some nype € No. Moreover, if 3 < ¢ < 5 < m, then we may take
Nplue = 1.
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(ii) G’ contains a red Py and e(G") < e(G) +m + 3.

Corollary 43. Let m,q,7,npwe € No with ¢ > 1 and m > 9. Suppose G is a graph
containing a (q, 7, Nplue, 2)-structure. Then Builder can force Painter to construct a graph
G' O G such that one of the following holds:

(i) e(G") =e(G) +5 and G’ contains a (q + 5,7, Npe, 0)-structure.

(ii) There exists 1 < ¢ < m + 5 such that e(G') < e(G) + 7¢'/5 — 2 and G’ contains a
(g, + ¥, e, 0)-structure.

(iii) e(G") < e(G) +Tm/54 6 and G’ contains a (q,r + M, Npe, 0)-structure.
(iv) e(G") < e(G) +7™m/5+ 6 and G’ contains a red Pj.
Theorem 44. For all { € N, we have 7(Py, Ppy1) < (70 + 52)/5.

Proof. Our aim is to show that Builder can construct a graph G with e(G) < (7¢+52)/5
containing a red P4 or a blue Py .

We first obtain an initial blue path ) with one endpoint incident to a red edge. We
claim that either Builder can construct a path zySz of type A with e(S) < ¢, while
uncovering at most (7e(S) + 4)/5 edges, or we are done. We proceed as follows. Builder
chooses an edge e = wv. First suppose Painter colours wv blue. Then apply Lemma 28
to uw, taking m = ¢. If we find a blue FP,,; while uncovering ¢ — 1 additional edges, then
since we have uncovered ¢ edges in total we are done. Suppose instead we find a path
xySz of type A with e(S) < ¢, while uncovering e(S) additional edges in the process.
Then in total Builder has uncovered e(S) + 1 < (7e(S) + 4)/5 edges, as desired.

Suppose instead Painter colours uv red. Then Builder chooses the edge vx, where x
is a new vertex. If Painter colours vx blue, then uvx is a path of type A constructed
while uncovering 2 < (7 + 4)/5 edges in total. If Painter colours vz red, then Builder
chooses the edges tu, uw and wz, where t and w are new vertices. If Painter colours any
of these edges red, then tuvx, xvuw or wxvu respectively is a red P, and we are done.
Otherwise, tuwzv is a path of type A (taking S = tuwz), constructed while uncovering
5= (7-3+4)/5 edges in total. Therefore, we may assume that Builder has constructed
a path zySz of type A with e(S) < ¢ while uncovering at most (7e(S) + 4)/5 edges as
claimed.

Let Gg be the graph consisting of all edges uncovered so far. Thus Gj contains a
(qo,0,0,0)-structure for some 1 < go < ¢, and e(Gy) < (7qo+4)/5. Suppose that for some
¢ > 0, Builder has already constructed a graph G; such that there exist g;, 7;, Nblue i, Tred,i €
Ny satisfying the following properties:

(G1) G; C Ky is the graph of all uncovered edges.
(G2) G; contains a (g, i, Nblue,is Mred i )-Structure, and ¢; > 0.

(G3) ¢+ <l+4.
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(G4) Tred,is Mblue,i < 1.
(G5> e(GZ) < (7((]2 + Ti) + 4)/5 + Nblue,i + Nred,i-

Note that (G1)—(G5) hold for i = 0. We are going to show that Builder can force a graph
Gi11 2 G; such that one of the following holds:

(a) G;41 contains a red Py or a blue Py and e(Gy41) < (7€ + 52)/5.

(b) there exist git1,7i+1, Mblue,i+1s Ted,i+1 € No such that ¢ 41 + i1 > ¢; +1r; and Gy,
it 15 Tit1s Mbluei+1 aNd Npeq 11 together satisfy (G1)—(G5).

If (a) holds, we are done. If (b) holds, then Builder can repeat the algorithm to obtain
Gi+2. We then simply repeat the process until it terminates, which must happen by (G3)
(since gi+1 + 7riv1 > @i + 7 whenever these quantities are defined). It therefore remains
only to prove that forcing such a graph is possible.

Let m = ¢ — ¢; — r; — 1. We split into cases depending on the values of ¢;, s, Npiue,i
and nyeq ;-

Case 1: ¢ +r; > {(—1.
In this case, we may simply join our two blue paths together to achieve (a). Apply
Corollary 41 to G;. Builder obtains a graph G, 2 G; with

(G5 T(q; +1;) + 4 (G3),(G4) 7¢ + 52
e(Gip1) = e(Gi) +2 < % + Npluei + Mred,i T2 < o

Moreover, G’ contains a red P, or a blue Py, so we have achieved (a).

Case 2: (—9<q;+r; <{—2,s0that 1 <m <8.

In this case, it is more efficient to naively extend our paths to the right combined
length and join them than it is to apply our normal extension methods and potentially
end up with paths longer than we need. Builder will force a red P, or a blue P, as
follows. Apply Corollary 41 to G; to obtain a graph G’ O G; with e(G’) = e(G;) + 2.
Note that G’ contains a red Py or a (¢; + 7; + 1,0, Nplue i, Nred s )-Structure. By repeating
the process at most m additional times, Builder obtains a graph G” 2 G’ O G}, where

(G5 7(qi +m;) +4

6<G”> g €<G) + 2m + 2 g + 7/Lblue,i + nred,i + 2m + 2
@) 7(0—m—1)+4 70 3m 41T _ T+ 41
< I m5 )+ +242m 2= 2+ m; < Jg ,

such that G” contains a red Py or a (¢; + 7 + m + 1,0, Nplue i, Nrea,i)-Structure (which
contains a blue Ppyq). Thus we have achieved (a).

Case 3: ¢; +1r; < —10, so that m > 9.
In this case, we will extend our paths efficiently using Corollaries 42 and 43. By
choosing at most 3 —npye ; — Nrea,; additional independent edges (on new vertices), Builder
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4 ! L / !/ / /
obtains a graph G D G; containing a (g;, 7, N jyes Mreq )-Structure such that ni; +nl.4 < 3,
: / _ / _
either ny,;,, = 2 or n 4 = 2, and

(G5) (g 4+ 1) + 4

We split into subcases depending on the values of ny ., and n, 4.

+ n/blue + n;ed' (8)

Case 3a: ny,, =2 and nj 4 < L.

We apply Corollary 42 to G, obtaining a graph G’ 2 G. First suppose Corollary 42(i)
holds, so that there exists some 3 < ¢/ < m+3 such that G’ contains a (¢;+0', 7, Nl1.0s Treq)-
structure and e(G’) = e(G})+'. Set Gip1 = G, qiy1 = ¢+, 11 = 15 and Nyed it1 = Ny
Set Nplye,iv1 = 0 if ¢ > 5 and npjye 41 = 1 otherwise. Clearly ¢;+1 + 741 > ¢; + 7, and
(G1) and (G4) are satisfied. Recall from Corollary 42(i) that if ¢/ < 5 < m then we may
take ny),, = 1, so (G2) is satisfied. We have ¢;41 + 741 < ¢ +m+3 41, =(+2, so (G3)
is satisfied. If 3 < ¢’ < 4, we have

®) 7(qz + T’i) +4
5

e(G) =e(G) + ' < + 24 Mg + £

_Matnt O+ — — +2+ny < @1 7ie1) + + 1+ N
) 5 )
7(Gig1 +71ip1) +4

= 5 + Nblue,i+1 + Nred,i+1-
So (G5) is satisfied and we have therefore achieved (b). A similar argument holds for the
case when ¢ > 5.

Suppose instead that Corollary 42(ii) holds, so that G’ contains a red P, and e(G’) <

e(G%) +m + 3. Then we have

G(G/)< 2((]24‘7",)4‘4 7€+9
= 5

(+5<——,
5 e 5

where the final inequality follows since ¢; + r; < ¢ — 10. We have therefore achieved (a).

+24+nq+m+3<

Case 3b: n/, =2 and ny,, < 1.

We apply Corollary 43 to G, obtaining a graph G’ O G’. Suppose Corollary 43(i)
or (ii) holds. In either case, it follows that there exist ¢ and ' such that G’ contains a
(¢, 7", N jyes 0)-structure and

1<q¢d+r —(¢+m) <m+5.

Write ¢ = ¢ + 71" — (¢ +1:). Set Giy1 = G, ¢iy1 = ¢, Tiv1 = 7', Nblueit1 = Ny and
Nredit1 = 0. Clearly (G1)—(G4) are satisfied, and g1 + 741 > ¢; + ;. Moreover, we have

A ®) T(g+r;+0)+4
e(Giy1) < e(G)) + 5 2< @ +r 5+ )+ + Mple

7 i1 T 7T +4
= (G 5 +) + Nblue,it1 + Mred,it+15
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so (Gb) is satisfied. We have therefore achieved (b).

Now suppose Corollary 43(iii) holds, so that G’ contains a (g;, 7; +m, 1y, 0)-structure
and e(G") < e(G}) +Tm/5+ 6. We apply Corollary 41 to G’, obtaining a graph G” such
that

7
e(G") = e(G)+2 < e(Gl) + ?m 48
®) 7(qs + 71+ m) + 4 0+ 52

< + Nppe + 10 < .
5 blue 5

Moreover, G” contains a red Py or an (¢, 0, ny,,., 0)-structure (which contains a blue Ppy4).
We have therefore achieved (a).

Finally suppose Corollary 43(iv) holds, so that G’ contains a red Py and e(G') <
e(GE) + Tm/5 + 6. Then we have

7 ®) 7(q; + 1 4 0+ 42
e(G’)<e(G;)+?m+6< (q”;mH .+ 8 < ; .
We have therefore achieved (a). This completes the proof of the theorem. ]
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