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Abstract

A cube tiling of Rd is a family of pairwise disjoint cubes [0, 1)d + T = {[0, 1)d +
t : t ∈ T} such that

⋃

t∈T ([0, 1)d + t) = R
d. Two cubes [0, 1)d + t, [0, 1)d + s are

called a twin pair if |tj − sj | = 1 for some j ∈ [d] = {1, . . . , d} and ti = si for
every i ∈ [d] \ {j}. In 1930, Keller conjectured that in every cube tiling of Rd there
is a twin pair. Keller’s conjecture is true for dimensions d 6 6 and false for all
dimensions d > 8. For d = 7 the conjecture is still open. Let x ∈ R

d, i ∈ [d],
and let L(T, x, i) be the set of all ith coordinates ti of vectors t ∈ T such that
([0, 1)d+t)∩([0, 1]d+x) 6= ∅ and ti 6 xi. Let r−(T ) = minx∈Rd max16i6d |L(T, x, i)|
and r+(T ) = maxx∈Rd max16i6d |L(T, x, i)|. It is known that if r−(T ) 6 2 or
r+(T ) > 6, then Keller’s conjecture is true for d = 7. In the present paper we show
that it is also true for d = 7 if r+(T ) = 5. Thus, if [0, 1)d + T is a counterexample
to Keller’s conjecture in dimension seven, then r−(T ), r+(T ) ∈ {3, 4}.

Key words: box; cube tiling; Keller’s conjecture; rigidity.

1 Introduction

A cube tiling of Rd is a family of pairwise disjoint cubes [0, 1)d + T = {[0, 1)d + t : t ∈ T}
such that

⋃

t∈T ([0, 1)d + t) = R
d. Two cubes [0, 1)d + t, [0, 1)d + s are called a twin pair

if |tj − sj| = 1 for some j ∈ [d] = {1, . . . , d} and ti = si for every i ∈ [d] \ {j}. In 1907,
Minkowski [18] conjectured that in every lattice cube tiling of Rd, that is, when T is a
lattice in R

d, there is a twin pair, and in 1930, Keller [7] generalized this conjecture to
arbitrary cube tiling of Rd. Minkowski’s conjecture was confirmed by Hajós [6] in 1941.
In 1940, Perron [19] proved that Keller’s conjecture is true for all dimensions d 6 6 (see
also [15]).

In 1992, Lagarias and Shor [12], using ideas from Corrádi’s and Szabó’s papers [3, 20],
constructed a cube tiling of R10 which does not contain a twin pair and thereby refuted
Keller’s cube tiling conjecture. In 2002, Mackey [17] gave a counterexample to Keller’s
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conjecture in dimension eight, which also shows that this conjecture is false in dimension
nine. For d = 7 Keller’s conjecture is still open.

Let [0, 1)d + T be a cube tiling, x ∈ R
d and i ∈ [d], and let L(T, x, i) be the set of all

ith coordinates ti of vectors t ∈ T such that ([0, 1)d + t) ∩ ([0, 1]d + x) 6= ∅ and ti 6 xi

(Figure 1). For every x ∈ R
d and i ∈ [d] the set L(T, x, i) contains at most 2d−1 elements.
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Figure 1: A portion of a cube tiling [0, 1)2+T of R2. The number of elements in L(T, x, i)
depends on the position of x ∈ R

2. For x = (2, 3), we have L(T, x, 1) = {3/2}(= {t1}) and
L(T, x, 2) = {5/2, 11/4}(= {t2, t

′
2}), while for x′ = (4, 15/4), we have L(T, x′, 1) = {7/2}

and L(T, x′, 2) = {13/4}. This portion of the tiling [0, 1)2 + T shows that r−(T ) = 1 and
r+(T ) = 2.

Let

r−(T ) = min
x∈Rd

max
16i6d

|L(T, x, i)| and r+(T ) = max
x∈Rd

max
16i6d

|L(T, x, i)|. (1.1)

In 2010, Debroni et al. [4] computed, using the supercomputer Cray XT5 Kraken,
that Keller’s conjecture is true for all cube tilings [0, 1)7 +T of R7 such that T ⊂ (1/2)Z7.
This result shows that Keller’s conjecture is true for cube tilings of R7 with r−(T ) 6 2
([10]). In [10] we showed that Keller’s conjecture is true for cube tilings [0, 1)7 + T of R7

for which r+(T ) > 6. In this paper we prove that

Theorem 1. Keller’s conjecture is true for all cube tilings [0, 1)7 + T of R7 for which
r+(T ) = 5.

It follows from the above results that if [0, 1)7 + T is a counterexample to Keller’s
conjecture in dimension seven, then r−(T ), r+(T ) ∈ {3, 4} (Corollary 30).
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Keller’s cube tiling conjecture was not as clearly motivated as Minkowski’s conjecture
was. Recall that, the existence of a twin pair in a lattice tiling [0, 1)d + T determines
the form of a basis for the lattice T . Keller’s conjecture was rather a generalization of
Minkowski’s conjecture. In our opinion the paper of Lagarias and Shor [13] presents the
problem of the existence of twin pairs in cube tilings of Rd in an appropriate manner. In
this important work, roughly speaking, the authors measure distances between some of
the cubes in a tiling [0, 1)d +T . When the dimension of the space increases, the distances
between cubes can also increase. In [13] Lagarias and Shor gave an estimation of how fast
the distances between cubes increase. A twin pair is a pair of cubes with the minimal
possible distance in a cube tiling. It follows from Perron’s result that for d 6 6 in an
arbitrary cube tiling of Rd there are cubes which are closed (twin pairs). From Mackey’s
example [17] it is known that in dimension eight the process of cubes moving away in
cube tilings has started. Resolving Keller’s conjecture for d = 7 will answer the question
whether this process had already begun in dimension seven.

Working on Keller’s conjecture has, on the one hand, provided the opportunity of
answering an old query in tiling theory, and on the other hand is the beginning of a
much deeper and more interesting investigation into the structure of cube tilings of Rd in
the spirit of Lagarias’s and Shor’s ideas contained the paper [13]. These investigations,
besides describing the structure of tilings, can provide new ideas in topics related to cube
tilings. For example, in [9] we showed how a cube tiling code designed in [13] can be
used to obtain an interesting partitions and matchings of a d-dimensional cube, and in
[16] a surprising structure of cube tilings of R3 is described (see also [8]). Moreover, the
computations made by David Applegate (see Section 1 in [4]) prove that there is a twin
pair in every cube tiling [0, 1)6 + T of R6 with r−(T ) 6 2. On the other hand, Theorem
5.2 in [10] shows that there is a twin pair in every cube tiling [0, 1)6 + T of R6 such that
r+(T ) > 3. Thus, these two results give a new proof of Keller’s conjecture in dimensions
d 6 6 ([10, Theorem 5.4]).

To make the paper self-contained we have collected the basic notions in Section 2. We
use a very abstract language, in the form of systems of abstract words, but in the long
run such an approach simplifies the reasoning. Therefore, Section 2 is very expanded.
It contains numerous examples and figures. We belive that it will help the reader in
understanding the basic concepts contained in the paper (Section 2 in the presented
paper is almost the same as Section 2 in [10].)

The proof of Theorem 1 is based on a structural result dealing with two systems of
abstract words having 12 words each (Theorem 27). It can be interpreted by means of
systems of cubes in the flat torus Td = {(x1, . . . , xd)(mod2) : (x1, . . . , xd) ∈ R

d} as follows:
A set F ⊂ T

d is called a polycube if F has a tiling by translates of the unit cube, that is,
there is a family of pairwise disjoint translates of the unit cube F = [0, 1)d + T , T ⊂ T

d,
such that

⋃

t∈T [0, 1)d + t = F . The question of how many tilings the polycube F has is a
basic in tiling theory. As we show in Sections 2 and 6 the case r+(T ) = 5 is reduced to
the following task: For d ∈ {4, 5, 6} determine all polycubes F ⊂ T

d which have at least
two twin pair free cube tilings F and G such that F ∩ G = ∅ and |F | = |G | = 12. The
case r+(T ) > 6 resolved in [10] relies on showing that no two different twin pair free cube
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tilings exist for a polycube F with 11 cubes or less.
In graph theory knowing the structure of small graphs (graphs with a few vertices)

plays an important role. Similarly in cube tilings it is very useful to know the structures
of all tilings of polycubes with a few cubes. The essential in the paper small systems
of abstract words, which describe the structures of small polycubes, are given in Section
3. In Section 4 we establish necessary conditions that have to be fulfilled by the above
mentioned two systems of words. The results from this section allow us to make reductions
in the computations which are described in Section 5. The reductions are necessary to
make the computations in a reasonable time as the number of all cases that would have
to be considered by the computer program is more than

(

64
12

)

372. At the end of Section
5 based on the results of the computations we give the forms of two systems of abstract
words which describe the structures of two disjoint twin pair free cube tilings of a polycube
F with 12 cubes (Theorem 27). Finally, in Section 6 using Theorem 27 we prove Theorem
1.

2 Basic notions

In this section we present the basic notions on dichotomous boxes and words (details can
be found in [5, 11]). We start with systems of boxes.

In the whole paper, if X is a family of sets, then
⋃

X =
⋃

A∈X
A. Moreover, if Y

is a set, then a partition of Y is a family Y of its pairwise disjoint subsets such that
⋃

Y = Y .

2.1 Dichotomous boxes and polyboxes

Let X1, . . . , Xd be non-empty sets with |Xi| > 2 for every i ∈ [d]. The set X = X1×· · ·×Xd

is called a d-box. A non-empty set K ⊆ X is called a box if K = K1 × · · · × Kd and
Ki ⊆ Xi for each i ∈ [d]. By Box(X) we denote the set of all boxes in X.

The box K is said to be proper if Ki 6= Xi for each i ∈ [d] (Figure 2).

A B A C F D E H1

2
a b c d e

Figure 2: The box A ⊂ [0, 1]2 is proper, and B is not. The boxes A and B are dichotomous,
while A and C are not. The set F ⊂ [0, 1]2 is a polybox, and F = {D,E} is suit for it.
Moreover, F is rigid. The set H is not a polybox.

Two boxes K and G in X are called dichotomous if there is i ∈ [d] such that Ki =
Xi \ Gi. A suit is any collection of pairwise dichotomous boxes. A suit is proper if it
consists of proper boxes. A non-empty set F ⊆ X is said to be a polybox if there is a suit
F for F , that is, if

⋃

F = F . In other words, F is a polybox if it has a partition into
pairwise dichotomous boxes. A polybox F is rigid if it has exactly one suit, that is, if F
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and G are suits for a rigid polybox, then F = G . (Figures 2c and 3d, e; the polyboxes
⋃

F 3,B and
⋃

F 3,Bc

in Figure 5 are not rigid.)

2

1 1

2
3

a b c d e

Figure 3: Partition a is a minimal partition of [0, 1]2, and Partition b is a minimal
partition which is at the same time a simple partition. Partition c is a simple partition
which is not a minimal partition. The systems of boxes d, e are suits for rigid polyboxes
in the 3-box [0, 1]3.

The important property of proper suits is that, for every proper suits F and G for
a polybox F , we have |F | = |G | (see the suits F 3,B and F 3,Bc

in Figure 5). Thus, we
can define a box number |F |0 = the number of boxes in any proper suit for the polybox F
(compare (2.4) and Theorem 2.4 in [11]). In Figure 5 we have |

⋃

F 3,B|0 = 3. Obviously,
the above property is not true for suits which are not proper (compare suits in Figure 3a
and 3c). A proper suit for a d-box X is called a minimal partition of X (Figures 3 and
5). In [5] we showed that a suit F is a minimal partition of a d-box X if and only if
|F | = 2d.

A family C ⊂ Box(X) is called a simple partition of X if for every K,G ∈ C and
every i ∈ [d] we have Ki = Gi or, if Gi 6= Xi, Ki = Xi \Gi and C is a suit for X (Figures
3b and 3c).

Two boxes K,G ⊂ X are said to be a twin pair if Kj = Xj \Gj for some j ∈ [d] and
Ki = Gi for every i ∈ [d] \ {j}. Alternatively, two dichotomous boxes K,G are a twin
pair if K ∪ G is a box. (The suits in Figures 3a, b, c contains twin pairs, while the suits
in Figures 3d, e do not contain a twin pair). Observe that the suit for a rigid polybox
cannot contain a twin pair.

2.2 The structure of minimal partitions

In order to sketch our approach to the problem of the existence of twin pairs in a cube
tiling of Rd we describe the structure of a minimal partition. A graph-theoretic description
of this structure can be found in [2, 14] (see also [13]).

Let X be a d-box. A set li = {x1} × · · · × {xi−1} ×Xi × {xi+1} × · · · × {xd}, where
xj ∈ Xj for j ∈ [d]\{i}, is called a line in X. A set F ⊆ X is called an i-cylinder (Figure
4) if for every line li one has li ∩ F = li or li ∩ F = ∅.

Let F be a minimal partition, and let B ⊂ Xi be a proper subset of Xi set such that
there is a box K ∈ F with Ki ∈ {B,Bc}, where Bc = Xi \B. Let

F
i,B = {K ∈ F : Ki = B} and F

i,Bc

= {K ∈ F : Ki = Bc}.
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Figure 4: The set on the left is a 3-cylinder in X = [0, 1]3, and the set on the right is not
because the line l3 = {x} × {y} × [0, 1] has a non-empty intersection with this set but l3
is not entire contained in it.

Since boxes in F are pairwise dichotomous, the set
⋃

(F i,B ∪F i,Bc

) is an i-cylinder, and
the set of boxes F i,B ∪ F i,Bc

is a suit for it (Figure 5). The partition F is minimal,
and therefore |F | = 2d. Thus, the boxes in F can form at most 2d−1 pairwise disjoint
i-cylinders. More precisely, for every i ∈ [d] there are sets B1, . . . , Bki ⊂ Xi such that
Bn 6∈ {Bm, (Bm)c} for every n,m ∈ [ki], n 6= m, and

F = F
i,B1

∪ F
i,(B1)c ∪ · · · ∪ F

i,Bki ∪ F
i,(Bki )c . (2.1)

The boxes in F are proper, and hence |F i,Bn

∪ F i,(Bn)c | > 2 for every n ∈ [ki]. Thus,
ki 6 2d−1 for every i ∈ [d]. (That is why 1 6 |L(T, x, i)| 6 2d−1 for every cube tiling
[0, 1)d + T , x ∈ R

d and i ∈ [d].)
If K is a box in X and G is a family of boxes, then let

Kic = K1 × · · · ×Ki−1 ×Ki+1 × · · · ×Kd and Gic = {Kic : K ∈ G }.

(In [11] the set Kic is denoted by Ki′ .) Moreover, let xic = (x1, . . . , xi−1, xi+1, . . . , xd) for
x ∈ X.

Since
⋃

(F i,B∪F i,Bc

) is an i-cylinder, we have
⋃

F
i,B
ic =

⋃

F
i,Bc

ic . Moreover, the sets
of boxes F

i,B
ic = (F i,B)ic and F

i,Bc

ic = (F i,Bc

)ic are two suits for the polybox
⋃

F
i,B
ic ,

which is a polybox in the (d − 1)-box Xic (Figure 5). Note that as F
i,B
ic and F

i,Bc

ic are
proper suits for the polybox

⋃

F
i,B
ic , we have |F i,B

ic | = |F i,Bc

ic |.

If now K,G ∈ F is a twin pair, then there is a suit F i,B ∪ F i,Bc

⊂ F for some
i-cylinder such that K,G ∈ F i,B ∪ F i,Bc

. Thus, K,G ∈ F i,B or K,G ∈ F i,Bc

or
K ∈ F i,B and G ∈ F i,Bc

. In the third case Kic ∈ F
i,B
ic ∩ F

i,Bc

ic , where Kic = Gic . So,
if F

i,B
ic ∩ F

i,Bc

ic 6= ∅, then there is a twin pair in F . (In [10, Section 2.2] we present a
comparison of the structure of a minimal partition and a graph-theoretic description of
this structure given in [2, 14].)

2.3 Cube tilings and dichotomous boxes

Every two cubes [0, 1)d + t and [0, 1)d + p in an arbitrary cube tiling [0, 1)d + T of R
d

satisfy Keller’s condition: There is i ∈ [d] such that ti − pi ∈ Z \ {0} ([7]). For any
cube [0, 1]d + x, where x ∈ R

d, the family of boxes Fx = {([0, 1)d + t) ∩ ([0, 1]d + x) 6=

the electronic journal of combinatorics 22(1) (2015), #P1.16 6



F

'
'

i

'
'

' '

( )
( )

1

2
3

F

F

F

F F
F F

F
F

F

3,B

3,C

3,B

3,C

3

3

c

c

c

c

c

3,B

3,B
c

3,C

3,Cc

3,B
3,Cc

Figure 5: The minimal partition F = F 3,B∪F 3,Bc

∪F 3,C∪F 3,Cc

of the 3-box X = [0, 1]3

(B = [0, 1/2), C = [0, 3/4)). The set
⋃

(F 3,B ∪ F 3,Bc

) is a 3-cylinder and F 3,B ∪ F 3,Bc

is a proper suit for it.

∅ : t ∈ T} is a partition of the cube [0, 1]d + x in which, because of Keller’s condition,
every two boxes K,G ∈ Fx are dichotomous: There is i ∈ [d] such that Ki and Gi are
disjoint and Ki ∪ Gi = [0, 1] + xi. Moreover, since cubes in cube tilings are half-open,
every box in Fx is proper, and consequently the family Fx is a minimal partition. The
structure of the partition Fx reflects the local structure of the cube tiling [0, 1)d + T .
Obviously, a cube tiling [0, 1)d + T contains a twin pair if and only if the partition Fx

contains a twin pair for some x ∈ R
d ([14, 19]) (see Figure 1). Observe also that if

Fx = F i,B1

x ∪ F
i,(B1)c

x ∪ · · · ∪ F i,Bki(x)

x ∪ F
i,(Bki(x))c

x , then |L(T, x, i)| = ki(x) (compare
(2.1)).

The idea to consider the cubes [0, 1)d + t, t ∈ T, for which ([0, 1)d + t)∩ ([0, 1]d +x) 6= ∅
comes from Perron [19].

2.4 Key result in proving Theorem 1

Let [0, 1)7 + T be a cube tiling of R7, and let Fx be as defined in the previous section. If
r+(T ) = 5, then

Fx = F
i,B1

∪ F
i,(B1)c ∪ · · · ∪ F

i,B5

∪ F
i,(B5)c .

for some x ∈ R
7 and some i ∈ [7].

Assume that there are no twin pairs in the tiling [0, 1)7+T . Then Fx does not contain
a twin pair. It follows from [10, Corollary 4.6] (compare Theorem 15 in Section 3) that
|F i,Bn

| > 12 for every n ∈ [5]. Thus, there is at least one n ∈ [5] such that |F i,Bn

| = 12
because |Fx| = 128 and |F i,Bj

| = |F i,(Bj)c | for every j ∈ [5]. The suits F
i,Bn

ic and
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F
i,(Bn)c

ic are disjoint and do not contain a twin pair (see the last part of Section 2.2).
The main effort in the paper will be rely on describing the forms of all disjoint and

twin pair free suits F
i,Bn

ic and F
i,(Bn)c

ic such that |F i,Bn

ic | = |F
i,(Bn)c

ic | = 12 and
⋃

F
i,Bn

ic =
⋃

F
i,(Bn)c

ic . In Theorem 27, which is our key result in proving Theorem 1, we give the

forms of the suits F
i,Bn

ic and F
i,(Bn)c

ic . Having this, we will prove Theorem 1 quite easily.

2.5 Dichotomous words and polybox codes

The results in the present paper are formulated and proved in full generality. Suits have
the form of systems of abstract words. We collect below basic notions concerning words
(details can be found in [11]).

A set S of arbitrary objects will be called an alphabet, and the elements of S will be
called letters. A permutation s 7→ s′ of the alphabet S such that s′′ = (s′)′ = s and s′ 6= s
is said to be a complementation. Each sequence of letters s1 . . . sd from the set S is called
a word. The set of all words of length d is denoted by Sd. Two words u = u1 . . . ud and
v = v1 . . . vd are dichotomous if there is j ∈ [d] such that u′

j = vj. If V ⊆ Sd consists of
pairwise dichotomous words, then we call it a polybox code (or polybox genome). (In the
next section we give examples of polybox codes and their relationships with suits.) Two
words u, v ∈ Sd form a twin pair if there is j ∈ [d] such that u′

j = vj and ui = vi for
every i ∈ [d] \ {j}.

Let A = {i1 < · · · < in} ⊆ [d] and Ac = [d] \ A. Then uA = ui1 . . . uin and VA = {vA :
v ∈ V } for V ⊆ Sd. If i ∈ [d] and A = {i}c, then we write uic and Vic instead of u{i}c

and V{i}c , respectively. If V ⊆ Sd, l ∈ S and i ∈ [d], then V i,l = {v ∈ V : vi = l}. The
representation

V = V i,l1 ∪ V i,l′1 ∪ · · · ∪ V i,lki ∪ V i,l′
ki , (2.2)

where lj, l
′
j ∈ S and V i,lj ∪ V i,l′j 6= ∅ for j ∈ [ki], will be called a distribution of words in

V . For every l ∈ S and i ∈ [d] let V i,l
ic = (V i,l)ic .

Let us discuss briefly a connection between dichotomous words and adjacent vertices
in a d-dimensional Keller graph ([3]), which is a graph on the vertex set {0, 1, 2, 3}d in
which two vertices v, w ∈ {0, 1, 2, 3}d are adjacent if there are i, j ∈ [d], i 6= j, such that
vi 6= wi, vj 6= wj and |vi − wi| = 2 or |vj − wj| = 2. Define a complementation on the
alphabet {0, 1, 2, 3} by 0′ = 2 and 1′ = 3. Thus, two vertices v, w ∈ {0, 1, 2, 3}d are
adjacent in the Keller graph if and only if the words v, w are dichotomous and they do
not form a twin pair. In the paper we consider polybox codes V whose words are written
down in an alphabet S which has more then four letters and therefore the elements of
V cannot be considered as vertices of the Keller graph. But when V ⊂ {a, a′, b, b′}d, the
reader who is familiar with the Keller graphs may assume that 0 = a, 2 = a′, 1 = b and
3 = b′.

2.6 Realizations of polybox codes

Let X = X1 × · · · × Xd be a d-box. Suppose that for each i ∈ [d] a mapping fi : S →
Box(Xi) \ {Xi} is such that fi(s

′) = Xi \ fi(s) for s ∈ S. We define the mapping
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f : Sd → Box(X) by
f(s1 . . . sd) = f1(s1) × · · · × fd(sd).

About such defined f we will say that it preserves dichotomies. If V ⊆ Sd, then the set
of boxes f(V ) = {f(v) : v ∈ V } is said to be a realization of the set of words V . Figures
6 and 7 present realizations of polybox codes in various d-boxes X (see also Example 4).

Clearly, if V is a polybox code, then f(V ) is a suit for the polybox
⋃

f(V ). The
realization is said to be exact if for each pair of words v, w ∈ V , if vi 6∈ {wi, w

′
i}, then

fi(vi) 6∈ {fi(wi), Xi \ fi(wi)} (Figure 6).
A polybox code V ⊆ Sd is called a partition code if any realization f(V ) of V is a suit

for a d-box X. For example, V = {aa, aa′, a′b, a′b′} is a partition code (Figure 6), while
the polybox codes V,W whose realizations are presented in Figure 7 are not partition
codes. Observe that, if V ⊆ Sd is a partition code, then f(V ) is a minimal partition.
Indeed, for every v ∈ V the box f(v) is proper and thus f(V ) is a proper suit for X.
Moreover, if a partition code V ⊆ Sd has a distribution of words of the form (2.2), and
F is an exact realization of V , then for every j ∈ [ki] the set F i,Bj

∪F i,(Bj)c is an exact
realization of the polybox code V i,lj ∪ V i,l′j , where F i,Bj

∪ F i,(Bj)c , for j ∈ [ki], are as in
(2.1).

A partition code C ⊆ Sd is said to be simple if for every v, w ∈ C and every i ∈ [d] we
have vi = wi or vi = w′

i. For example, U = {ab, a′b, ab′, a′b′}, where a, b ∈ S, is a simple
partition code, while V = {aa, aa′, a′b, a′b′} is not a simple partition code.

We will exploit some abstract but very useful realization of polybox codes. This sort of
realization was invented in [1], where it was the crucial tool in proving the main theorem
of that paper (compare [11, Section 2]).

Let S be an alphabet with a complementation, and let

ES = {B ⊂ S : |{s, s′} ∩B| = 1,whenever s ∈ S},

Es = {B ∈ ES : s ∈ B}

Let V ⊆ Sd be a polybox code, and let v ∈ V . The equicomplementary realization of the
word v is the box

v̆ = Ev1 × · · · × Evd

in the d-box (ES)d = ES × · · · × ES. The equicomplementary realization of the code V
is the family

E(V ) = {v̆ : v ∈ V }.

If S is finite, s1, . . . , sn ∈ S and si 6∈ {sj, s
′
j} for every i 6= j, then

|Es1 ∩ · · · ∩ Esn| = (1/2n)|ES|. (2.3)

In the paper we will assume that S is finite, unless it will be explicitly stated otherwise.
The value of the realization E(V ), where V ⊆ Sd, lies in the equality (2.3) (which does

not hold for translates of the unit interval [0, 1) in T
1). In particular, boxes in E(V ) are

of the same size: |Evi| = (1/2)|ES| for every i ∈ [d] and consequently |v̆| = (1/2d)|ES|d
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for v ∈ E(V ). Thus, two boxes v̆, w̆ ⊂ (ES)d are dichotomous if and only if v̆ ∩ w̆ = ∅.
The same is true for cubes in a cube tiling of a polycube F ⊂ T

d and therefore working
with the boxes v̆, v ∈ V , we can think of them as translates of the unit cube in T

d.
Moreover, from (2.3) we obtain the following important lemma ([10]).

Lemma 2. Let w, u, v ∈ Sd, and let D be a simple partition of the d-box w̆. If boxes w̆∩ ŭ
and w̆ ∩ v̆ belong to D , then there is a simple partition code C ⊆ Sd such that u, v ∈ C.
In particular, if w̆ ∩ ŭ and w̆ ∩ v̆ form a twin pair, then u and v are a twin pair. �

In a general case the above lemma is not true; for a given three boxes K,G and H in
a d-box X such that K and G are dichotomous and K ∩ H, G ∩ H belong to a simple
partition of H, it can happen that K and G are not members of the same simple partition
of X. For example, let X = [0, 4] × [0, 4], K = [2, 4] × [2, 4], G = [2, 3) × [0, 2) and
H = [1, 3)× [1, 3). Then the boxes K∩H = [2, 3)× [2, 3), G∩H = [2, 3)× [1, 2) belong to
a simple partition C = {[1, 2)× [1, 2), [1, 2)× [2, 3), [2, 3)× [1, 2), [2, 3)× [2, 3)} of H. But
K and G do not belong to the same simple partition of X because K1 6∈ {G1, X1 \G1}.

Let V ⊆ Sd be a polybox code, and f(V ) an exact realization of V . The set f(V ) is
a suit (a set of pairwise dichotomous boxes), while V describes the structure of it. The
code V has infinitely many exact realizations which may be very different from each other.
For example, the partitions in Figures 6a, b, c are pairwise different but they are all the
exact realizations of the polybox code V = {aa, aa′, a′b, a′b′}. The differences can even
be related to the number of dimensions of a specific partition; the sets in Partition 6c
are 3-dimensional, but this partition can be regarded as 2-dimensional minimal partition
with the same structure as Partitions 6a and 6b.

X1

2X

A
B

1

2

a b c d

Figure 6: Partitions a−c are exact realization of the code V = {aa, aa′, a′b, a′b′}. Partition
d is also a realization of V but not exact. Partition c is a minimal partition of the 2-box
X = X1 × X2, where X1 is the triangle A ∪ B, and X2 = [0, 1]. The realizations a, b, d
are partitions of 2-box [0, 1]2; in the first realization we have f1(a) = f2(a) = [0, 1/2) and
f2(b) = [0, 5/8); in the second one we have f1(a) = [1/8, 3/8)∪ (5/8, 7/8), f2(a) = [0, 1/2)
and f2(b) = [1/8, 3/8) ∪ (5/8, 7/8); in the third case f1(a) = A (and then f1(a

′) = B) ,
f2(a) = [0, 1/2) and f2(b) = [0, 5/8); in the last partition we have fi(a) = fi(b) = [0, 1/2)
for i = 1, 2.

2.7 Equivalent and rigid polybox codes

Let V,W ⊆ Sd be polybox codes, and let v ∈ Sd. We say that v is covered by W ,
and write v ⊑ W , if f(v) ⊆

⋃

f(W ) for every mapping f that preserves dichotomies.
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For example, the word v = bb is not covered by the code W = {aa, a′b, a′b′} because
there is a realization f(W ) such that f(bb) 6⊂

⋃

f(W ). For example, if X = [0, 1]2,
f1(a) = f2(a) = [0, 1/2) and f1(b) = [1/3, 2/3), f2(b) = [0, 2/3), then f(bb) = [1/3, 2/3) ×
[0, 2/3) 6⊂ [0, 1/2)2 ∪ [1/2, 1] × [0, 1] (obviously, one can find a realization g(W ) such that
g(v) ⊂

⋃

g(W )). It can be easily checked that for every l ∈ S the word w = la is covered
by W (see also Example 4).

If v ⊑ W for every v ∈ V , then we write V ⊑ W .
Polybox codes V,W ⊆ Sd are said to be equivalent if V ⊑ W and W ⊑ V (Figure 7).

Thus, V and W are equivalent if and only if
⋃

f(V ) =
⋃

f(W ) for every mapping f that
preserves dichotomies. Obviously, if V and W are equivalent, then |V | = |W | (see also
comments below (2.6)).

1

2
3

Figure 7: Realizations f(V ), f(W ) in the 3-box X = [0, 1]3 of equivalent polybox codes
V,W ⊂ {a, a′, b, b′, c, c′}3, where V = {aaa, aaa′, aa′b, ba′b′, b′a′b′} (on the left) and W =
{aac, aa′c, abc′, ab′c′, a′a′b′} (on the right). In this example we have f1(a) = [0, 1/2),
f1(b) = [0, 7/8), f2(a) = [0, 1/2), f2(b) = [0, 1/4), f3(a) = [0, 1/4), f3(b) = [0, 1/2) and
f3(c) = [0, 3/8).

A polybox code V ⊂ Sd is called rigid if there is no code W ⊂ Sd which is equivalent
to V and V 6= W (Example 3). Thus, if polybox codes V,W are equivalent and one of
them is rigid, then V = W . Observe that, rigid polybox codes cannot contain a twin pair.

The following result describes one of the most important property of polybox codes
([11, Theorem 10.6]).

If w ∈ Sd and V ⊆ Sd is a polybox code such that w ⊑ V,w 6∈ V , then there is a
simple partition code C ⊆ Sd and there are two words v, u ∈ V ∩ C such that

|{i ∈ [d] : vi = u′
i}| ≡ 1 (mod 2). (2.4)

(see Examples 3 and 4). Observe that it follows from the above that if a polybox codes
V ⊆ Sd is not rigid (which in particular means that w ⊑ V and w 6∈ V for some w ∈ Sd),
then V has to contain the words v and u such as in (2.4). This property is a starting
point in the computations in Section 5.

The definition of the relation ⊑ is rather cumbersome tool to decide whether w ⊑ V .
Below we give very useful and easy test, especially in the computations, to check whether
w ⊑ V ([11, Theorem 10.4]).

the electronic journal of combinatorics 22(1) (2015), #P1.16 11



Let g : Sd × Sd → Z be defined by the formula

g(v, w) =
d
∏

i=1

(2[vi = wi] + [wi 6∈ {vi, v
′
i}]), (2.5)

where [p] = 1 if the sentence p is true and [p] = 0 if it is false.
Let w ∈ Sd, and let V ⊆ Sd be a polybox code. Then

w̆ ⊆
⋃

E(V ) ⇔ w ⊑ V ⇔
∑

v∈V

g(v, w) = 2d. (2.6)

It follows from the definition of equivalent polybox codes V,W ⊆ Sd and (2.6) that
V and W are equivalent if and only if

⋃

E(V ) =
⋃

E(W ). Another characterization of
equivalent polybox codes V,W ⊆ Sd which stems from (2.6) is the following: Polybox
codes V,W ⊆ Sd are equivalent if and only if

∑

v∈V g(v, w) = 2d for every w ∈ W and
∑

w∈W g(w, v) = 2d for every v ∈ V .

Example 3. Let V = {aaaa, a′a′a′a, baa′a, a′baa, aa′ba, bbba′}. If l 6∈ {a, a′}, then
∑

v∈V g(v, bbbl) = 1 + 1 + 2 + 2 + 2 + 8 = 24, and if l = a, then
∑

v∈V g(v, bbbl) =
2 + 2 + 4 + 4 + 4 + 0 = 24. Therefore, for every l ∈ S, by (2.6), bbbl ⊑ V . (Thus, V has to
contain two words v, u described in (2.4). These are aaaa and a′a′a′a.) In particular, for
every l ∈ S the twin pair bbbl, bbbl′ is covered by V . Obviously, again by (2.6), this means
that for every realization f(V ) the boxes f(bbbl) and f(bbbl′) are contained in

⋃

f(V ). It
can be checked that

∑

v∈V g(v, w) < 2d for every w ∈ Sd such that w 6∈
⋃

l∈S{bbbl, bbbl
′}.

Thus, every such word w is not covered by V . Occasionally, we will denote this fact by
w 6⊑ V . Moreover, it follows from the above that V is rigid.

Let X = X1×· · ·×Xd be a d-box. For every i ∈ [d] let Si be the set of all pairs (A, i),
where A is a proper subset of Xi. With the set of all proper boxes in X we associate the
set of words Sd, where S =

⋃d

i=1 Si. We define a complementation (A, i) 7→ (A, i)′ on S
by the formula (A, i)′ = (Ac, i), where Ac = Xi \ A. Obviously, if Xi is infinite for some
i ∈ [d], then S is infinite.

Observe now that if F is a proper suit for a polybox F ⊆ X, then the set of words
V = {Ā1 . . . Ād : A1 × · · · × Ad ∈ F} ⊆ Sd, where Āi = (Ai, i) for i ∈ [d] is a polybox
code, and the suit F is an exact realization of V . (Of course, this is one of the many
ways of receiving polybox codes for suits.)

2.8 Geometry of dichotomous boxes

In this section we describe the main techniques used in the paper. They are based on the
properties of the realization E(V ).

Usually we will consider two disjoint sets V,W ⊂ Sd which form equivalent polybox
codes. Recall, that polybox codes V and W are equivalent if and only if

⋃

E(V ) =
⋃

E(W ), where
⋃

E(V ) =
⋃

v̆∈E(V ) v̆ (compare the comment below (2.6)). Moreover, let

us recall that if i ∈ [d] and v ∈ Sd, then vi denotes the letter standing in the word v at
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the ith position, while vic ∈ Sd−1 is the word that arises from v by skipping the letter vi
in the word v. Moreover, Vic = {vic : v ∈ V }.

Our goal is to reveal the structure of V and W or estimate the cardinality of V
(since V,W are equivalent, we have |V | = |W |). Below we describe the most important
techniques applied in the paper.

• The structure of V from the suit for w̆. Let w ⊑ V . Then w̆ ⊆
⋃

E(V ) and the
set of boxes F = {w̆ ∩ v̆ : v ∈ V } is a suit for w̆. In Example 4 we show what kind of
information can be obtained from the structure of F .

Example 4. In Figure 8 the five boxes on the left are a realization of the polybox code
V = {aaa, a′a′a′, baa′, a′ba, aa′b}, and the box in the middle is a realization of the word
w = bbb. Since w ⊑ V , we have w̆ ⊂

⋃

E(V ). Thus, the 3-box w̆ is divided into pairwise
dichotomous boxes of the form w̆ ∩ v̆ for v ∈ V , and the set

⋃

({w̆ ∩ v̆ : v ∈ Q} ∪ {w̆ ∩ v̆ :
v ∈ P}), where P = {v ∈ V 3,a : w̆∩ v̆ 6= ∅} and Q = {v ∈ V 3,a′ : w̆∩ v̆ 6= ∅}, is a 3-cylinder
in the box w̆. Therefore,

⋃

{(w̆∩ v̆)3c : v ∈ Q} =
⋃

{(w̆∩ v̆)3c : v ∈ P}. Thus, the polybox
⋃

{(w̆∩ v̆)3c : v ∈ Q} is divided twice into pairwise dichotomous boxes without twin pairs
and |Q| = |P | = 2. In Lemma 14 we will show that these two information allow us to
predict the form of Q3c and P3c : Q3c = {ba, a′a′} and P3c = {aa, a′b}.

1

2
3

' =

Figure 8: On the top: The light box (in the middle) is contained in the sum of five
pairwise dichotomous boxes (the boxes on the left). These boxes determine a partition
of the light box into pairwise dichotomous boxes (the partition on the right). On the
bottom: The boxes in this partition are arranged into 3-cylinders.

• The structure of W from the distribution of words in V . Below, in (P), (V), (C)
and (Co) we show how to use an information on a distribution of words in V of the form
(2.2) to say something about the distribution of words in W .

Let V,W,U ⊆ Sd be polybox codes and assume that V and W are equivalent. Recall
that V i,l

ic = (V i,l)ic for every i ∈ [d] and l ∈ S.

(P): Projections. Suppose that there is x ∈
⋃

E(V i,l′) such that xic 6∈
⋃

E(V i,l
ic ) (see

Figure 9A, where l = a). Since
⋃

E(V ) =
⋃

E(W ) and (2.3), the point x can be covered
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Ea

Ea'

Eb
Eb'

x

y

z

t

A B C

i

x

xi

i
c

Figure 9: Figure 9: A scheme of realizations E(V ) (A), E(W ) (B) and E(U) (C), where
V = V i,a ∪ V i,a′ , W = W i,a′ ∪W i,b ∪W i,b′ and U = U i,a ∪ U i,a′ ∪ U i,b ∪ U i,b′ . We assume
that the codes V and W are equivalent, and thus

⋃

E(V ) =
⋃

E(W ).

only by a box w̆ ∈ E(W ) such that wi = l′. Thus, W i,l′ 6= ∅. In particular, if W i,l = ∅
and W i,l′ 6= ∅, then W i,l′ ⊑ V i,l′ (compare Figures 9A and 9B).
(S): Slices. By (2.3), for every r ∈ El ∩ Es, l 6∈ {s, s′} the set πi

r = ES × · · · × ES ×
{r} × ES × · · · × ES, where {r} stands at the ith position, slices the sets

⋃

E(U i,l) and
⋃

E(U i,s) simultaneously (Figure 9C, where r ∈ {x, y, z, t}).

(V): Volumes. Let |V i,l| = n and |V i,l′ | = m, and let n < m. Since all boxes ŭ, u ∈ Sd,
are of the same size and n < m, by (P), |W i,l′ | > m− n (compare Figures 9A and 9B).

(C): Cylinders. Suppose that V i,l ∪ V i,l′ = ∅ and W i,l ∪W i,l′ 6= ∅ for some l ∈ S. Then
⋃

E(W i,l
ic ) =

⋃

E(W i,l′

ic ), and hence the set
⋃

E(W i,l ∪W i,l′) in an i-cylinder in the d-box
(ES)d (compare Figures 9A and 9B, where l = b). Indeed, if the set

⋃

E(W i,l ∪ W i,l′)

is not an i-cylinder, then
⋃

E(W i,l
ic ) 6=

⋃

E(W i,l′

ic ). By (P), V i,l ∪ V i,l′ 6= ∅, which is not

true. Observe that, by (2.6), the codes W i,l
ic and W i,l′

ic are equivalent.

(Co): Covers. Suppose that polybox codes V i,l
ic and W i,l

ic ∪W
i,s1
ic ∪· · ·∪W i,sk

ic are equivalent,
where sn 6∈ {l, l′, sj, s

′
j} for every n, j ∈ [k], n 6= j. Then

W i,s1
ic ∪ · · · ∪W i,sk

ic ⊑ V i,l′

ic and V i,l
ic ⊑ W i,l

ic ∪W
i,s′1
ic ∪ · · · ∪W

i,s′
k

ic .

(In Figures 9A and 9B the codes V i,a
ic and W i,a

ic ∪W i,b
ic are equivalent, where a = l, b = s1,

and W i,a = ∅). Indeed, since boxes in E(V ) are pairwise dichotomous and, by (2.6),
w̆ic ⊆

⋃

E(V i,l
ic ) for every w ∈ W i,s1∪· · ·∪W i,sk , it follows that each point x ∈ w̆\

⋃

E(V i,l)

has to be covered by the set
⋃

E(V i,l′). Therefore, w̆ic ⊆
⋃

E(V i,l′

ic ) for every w ∈

W i,s1 ∪ · · · ∪ W i,sk , and consequently, by (2.6), wic ⊑ V i,l′

ic for w ∈ W i,s1 ∪ · · · ∪ W i,sk .

Thus, W i,s1
ic ∪ · · ·∪W i,sk

ic ⊑ V i,l′

ic . In the similar manner we show that V i,l
ic ⊑ W i,l

ic ∪W
i,s′1
ic ∪

· · · ∪W
i,s′

k

ic .

For fixed x ∈ ES and i ∈ [d] let

πi
x = ES × · · · × ES × {x} × ES × · · · × ES,

where {x} stands at the ith position.
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• The structure of V and W from slices of the sets
⋃

E(V ) and
⋃

E(W ) by a set
πi
x. Let V,W ⊆ Sd be equivalent polybox codes. Then, by (2.6),

⋃

E(V ) =
⋃

E(W ),
and therefore πi

x ∩
⋃

E(V ) = πi
x ∩

⋃

E(W ) for every x ∈ ES. In the next lemma we
show that this last equality implies that the codes {vic : v ∈ V and πi

x ∩ v̆ 6= ∅} and
{wic : w ∈ W and πi

x ∩ w̆ 6= ∅} are equivalent. Moreover, we will pay attention whether
these codes are rigid (Figure 10) because their rigidity can help to estimate the number
of words in V and W .

1

2
3

p 3
x

p 3
x

Figure 10: The realizations f(V ) and f(U) of two polybox codes V = {v, u}, where
v = aaa (the light box) and u = a′ab (boxes on the left) and U = {v, w}, where w = a′bb
(boxes on the right) in the 3-box X = [0, 1]3 (X is not pictured). The polyboxes

⋃

f(V )
and

⋃

f(U) are sliced by the set π3
x = [0, 1]2 × {x}, where x ∈ f3(a) ∩ f3(b). Below each

slice we have polyboxes in Xic = [0, 1]2 for i = 3, which are realizations of the codes
{vic , uic} (on the left) and {vic , wic} (on the right). The polybox code {vic , wic} is rigid,
while {vic , uic} is not because it is a twin pair.

Lemma 5. Let S = {l1, l
′
1, . . . , lm, l

′
m}, ε ∈ {0, 1}m and Aε = {lε11 , . . . , lεmm }, where l0k = lk

and l1k = l′k for k ∈ [m]. If V,W ⊆ Sd are equivalent polybox codes, then for every i ∈ [d]
and ε ∈ {0, 1}m the polybox codes

⋃

l∈Aε

V i,l
ic and

⋃

l∈Aε

W i,l
ic

are equivalent.

Proof. Since the polybox codes V and W are equivalent, by (2.6),
⋃

E(V ) =
⋃

E(W ).
Thus, πi

x∩
⋃

E(V ) = πi
x∩

⋃

E(W ) for every i ∈ [d] and x ∈ ES. By (2.3), the set
⋂

l∈Aε
El

is non-empty. Let z ∈
⋂

l∈Aε
El. Since πi

z ∩
⋃

E(V ) =
⋃

{πi
z ∩ v̆ : v ∈

⋃

l∈Aε
V i,l} and πi

z ∩
⋃

E(W ) =
⋃

{πi
z∩w̆ : w ∈

⋃

l∈Aε
W i,l}, it follows that

⋃

E(
⋃

l∈Aε
V i,l
ic ) =

⋃

E(
⋃

l∈Aε
W i,l

ic ).

By (2.6), the codes
⋃

l∈Aε
V i,l
ic and

⋃

l∈Aε
W i,l

ic are equivalent. �

• The structure of V from the equality
∑

v∈V g(v, w) = 2d. Let V,W ⊂ Sd be disjoint
sets which are equivalent polybox codes. Then for every w ∈ W we have w ⊑ V,w 6∈ V ,
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and, by (2.6),
∑

v∈V g(v, w) = 2d, where g(v, w) ∈ {0, 1, 2, . . . , 2d−1} for every v ∈ V .
Assume that w = b . . . b and let {v1, . . . , vm} ⊆ V be such that w̆ ∩ v̆i 6= ∅ for every
i ∈ [m] and w ⊑ {v1, . . . , vm}. The solutions of the system of the equations

∑d−1
i=0 xi2

i =

2d,
∑d−1

i=0 xi = m, where xi are non-negative integers for i ∈ {0, 1, . . . , d − 1}, show the
frequency of the letter b in the words from the set {v1, . . . , vm}. We explain this on
the following example. Recall first that g(v, w) = 2i if and only if vj = b for every
j ∈ I ⊂ [d], |I| = i and vj 6∈ {b, b′} for j ∈ [d] \ I. In the example we assume that d = 3,
w = bbb and m = 5. The above system has two solutions: x0 = 2, x1 = 3, x2 = 0 and
x0 = 4, x1 = 0, x2 = 1. It follows from the first solution that in the set {v1, . . . , v5} there
are exactly three words such that each of them contains exactly one letter b and two words
which have no letter b or, by the second solution, in the set {v1, . . . , v5} there is exactly
one word with two letters b and the rest four words have no letter b. This observation
is quite useful in the computations as it allows us to restrict the number of words which
have to be considered during the computations (see Section 5).

2.9 Graph of siblings on a polybox code

In the previous section we described slices of a polybox
⋃

E(V ) by the sets πi
x. Observe

that if the set of boxes {vic : v ∈ V and πi
x ∩ v̆ 6= ∅} contains a twin pair, say vic , uic ,

and V does not contain a twin pair, then vi 6∈ {ui, u
′
i} (see Figure 10, the picture on the

left). As we will see the knowledge of the number of such pairs v, u in V can help in the
estimation of the number of words in the polybox code V .

In [10] we defined a graph on a polybox code V . We now recall the definition of it.
Two words v, u ∈ Sd such that vi 6∈ {ui, u

′
i} for some i ∈ [d], and vic , uic is a twin pair

are called i-siblings (in Figure 10 the boxes on the left are a realization of i-siblings for
i = 3).

Let V ⊆ Sd be a polybox code. A graph of siblings on V is a graph G = (V,E ) in which
two vertices v, u ∈ V are adjacent if they are i-siblings for some i ∈ [d]. We colour each
edge in E with the colours from the set [d]: An edge (v, u) ∈ E has a colour i ∈ [d] if v, u
are i-siblings. The graph G is simple and, if V does not contain a twin pair, d(v) 6 d for
every v ∈ V , where d(v) denotes the number of neighbors of v. (To show that d(v) 6 d,
suppose on the contrary that it is not true. Then there are two vertices u and w which
are adjacent to v such that v′j = uj and v′j = wj for some j ∈ [d]. Since v, u are k-siblings,
and v, w are n-siblings for some k, n ∈ [d] \ {j}, we have vk 6∈ {uk, u

′
k}, vn 6∈ {wn, w

′
n} and

v{k,j}c = u{k,j}c , v{n,j}c = w{n,j}c . The vertices u and w are dichotomous, and therefore it
must be u′

k = wn and k = n. Thus, u, w are a twin pair, a contradiction.)
Observe that if v, u are i-siblings in a polybox code V such that vi = l and ui = s,

l 6∈ {s, s′}, then for every x ∈ El ∩ Es the set {vic : v ∈ V and πi
x ∩ v̆ 6= ∅} contains the

twin pair vic , uic (see Figure 10).
In [10] we proved the following two lemmas.

Lemma 6. Let G = (V,E ) be a graph of siblings on a polybox code V ⊂ Sd, u and v be
adjacent vertices, and let d(u) = n and d(v) = m. If n + m = 2d, then there are i ∈ [d]
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and l ∈ S such that
|V i,l ∪ V i,l′ | > 2d− 2, (2.7)

and if n + m 6 2d− 1, then

|V i,l ∪ V i,l′ | > n + m− 1 (2.8)

for some i ∈ [d] and some l ∈ S. �

By d(G) we denote the average degree of a graph G.

Lemma 7. Let G = (V,E ) be a simple graph, and let

m = max{d(v) + d(u) : v, u ∈ V and v, u are adjacent}.

Then d(G) 6 m/2. �

Lemma 8. Let S = {a, a′, b, b′}, and let G = (V,E ) be a graph of siblings on a polybox
code V ⊂ Sd. In every cycle in G the number of edges with a colour i ∈ [d] is even. In
particular, there are no odd cycles in G.

Proof. Let v1, (v1, v2), v2, . . . , vn, (vn, v1), v1 be a cycle in V , i ∈ [d], and let

(vk1 , vk1+1), . . . , (vkj , vkj+1)

be all edges in this cycle with the colour i, where 1 6 k1 < · · · < kj 6 n and kj + 1
is taken modulo n + 1. Assume that v1i = a. It follows from the definition of i-siblings
that alternately vmi ∈ {a, a′} for every m ∈ {1, . . . , k1}, vmi ∈ {b, b′} for every m ∈
{k1 + 1, . . . , k2}, vmi ∈ {a, a′} for every m ∈ {k2 + 1, . . . , k3},. . . , vmi ∈ {b, b′} for every
m ∈ {kj−1 + 1, . . . , kj}. Thus, j is even. �

3 Small polybox codes

In this section we collect basic results about polybox codes with a small number of words.
The proofs of the following two lemmas can be found in [10, Corollary 3.3 and 3.4].

Lemma 9. Let V ⊂ Sd be a polybox code without twin pairs, and let w ∈ Sd be a word
such that w ⊑ V and w 6∈ V . Then the code V contains at least five words. If the code V
has exactly five words, then there are a set A = {i1 < i2 < i3} ⊆ [d] and letters l1, l2, l3 ∈ S
such that

VA = {l1l2l3, l
′
1l

′
2l

′
3, wi1l2l

′
3, l

′
1wi2l3, l1l

′
2wi3} and VAc = {wAc},

where lk 6∈ {wik , w
′
ik
} for k = 1, 2, 3. Moreover, the code V is rigid, and for d = 3 the code

V is the unique code without twin pair which can cover a word w ∈ S3 \ V . �
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Lemma 10. Let V ⊂ Sd be a polybox code without twin pairs, and let w ∈ Sd be a word
such that w ⊑ V and w̆∩ v̆ 6= ∅ for every v ∈ V . If the code V has exactly six words, then
there are a set A = {i1 < i2 < i3 < i4} ⊆ [d] and letters l1, l2, l3, l4 ∈ S such that

VA = {l1l2l3l4, l
′
1l

′
2l

′
3l4, wi1l2l

′
3l4, l

′
1wi2l3l4, l1l

′
2wi3l4, wi1wi2wi3l

′
4} and VAc = {wAc},

where lk 6∈ {wik , w
′
ik
} for k = 1, 2, 3, 4. �

Lemma 11. Let V ⊂ Sd be a polybox code without twin pairs. If words w, u ∈ Sd are
dichotomous, do not form a twin pair and w, u ⊑ V but w, u 6∈ V , then |V | > 7.

Proof. Let W = {v ∈ V : v̆ ∩ w̆ 6= ∅} and U = {v ∈ V : v̆ ∩ ŭ 6= ∅}. By Lemma 9,
|W | > 5 and |U | > 5. We will consider two cases: The first is |W | = 5 and |U | = 5, and
the second is |W | = 6.

Let |W | = 5 and |U | = 5. By Lemma 9, there is a set A = {i1 < i2 < i3} ⊂ [d] and
letters l1, l2, l3 ∈ S, lk 6∈ {wik , w

′
ik
} for k = 1, 2, 3, such that

WA = {l1l2l3, l
′
1l

′
2l

′
3, wi1l2l

′
3, l

′
1wi2l3, l1l

′
2wi3} and WAc = {wAc}.

Clearly, if |W ∩ U | 6 3, then |V | > 7. Therefore, we may assume that |W ∩ U | = 4 or
|W ∩ U | = 5.

Let |W ∩ U | = 4. Since w and u are dichotomous, there is i ∈ [d] such that w′
i = ui.

If i ∈ Ac, then W ∩ U = ∅ because wAc = vAc for every v ∈ W . Thus, i ∈ A. Assume
without loss of generality that i = i1. Since the form of U is such as described in Lemma
9, |W ∩ U | = 4 and w′

i = ui, it follows that

UA = {l1l2l3, l
′
1l

′
2l

′
3, w

′
i1
l2l

′
3, l

′
1wi2l3, l1l

′
2wi3} and UAc = {wAc}.

Hence, w′
i1

= ui1 , wi2 = ui2 , wi3 = ui3 and wAc = uAc . Then w and u are a twin pair, a
contradiction.

If |W ∩ U | = 5, that is, W = U , then u = w, which contradicts the assumption.
To consider the case |W | = 6, let us assume on the contrary that |V | = 6. Then

V = W . By Lemma 10,

WA = {l1l2l3l4, l
′
1l

′
2l

′
3l4, wi1l2l

′
3l4, l

′
1wi2l3l4, l1l

′
2wi3l4, wi1wi2wi3l

′
4} and WAc = {wAc},

where A = {i1 < i2 < i3 < i4} ⊆ [d] and lk 6∈ {wik .w
′
ik
} for k = 1, 2, 3, 4.

Let p ∈ W be such that pA = wi1wi2wi3l
′
4. Since, by Lemma 9, pic4 ⊑ (W \ {p})ic4 ,

we have uic4
⊑ (W \ {p})ic4 . Indeed, if ui4 6∈ {l4, l

′
4}, then uic4

= pic4 , for otherwise u is
not covered by W , which contradicts the assumption; if ui4 = l′4, then u = p which is
impossible; if ui4 = l4, then u ⊑ W \ {p}. Note that the form of the code (W \ {p})ic4
is as in Lemma 9. In particular, wic4

is one and only word which is covered by the set
(W \ {p})ic4 and does not belong to it. Hence, uic4

= wic4
. Consequently, w and u are a

twin pair, a contradiction. Thus, |V | > 7. �
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Lemma 12. Let V ⊂ Sd be a polybox code, and let w ∈ Sd be a word such that w ⊑ V .
Assume that there are i ∈ [d] and l ∈ S, l 6∈ {wi, w

′
i}, such that the sets Q = {v ∈ V i,l : w̆∩

v̆ 6= ∅}, P = {v ∈ V i,l′ : w̆ ∩ v̆ 6= ∅} are non-empty. Then the set w̆ ∩
⋃

E(V i,l ∪ V i,l′) is
an i-cylinder in the d-box w̆ and consequently

⋃

{(w̆ ∩ v̆)ic : v ∈ Q} =
⋃

{(w̆ ∩ v̆)ic : v ∈ P}.

Moreover, if |P | = 1 and 1 6 |Q| 6 4, then there is a twin pair in V .

Proof. The set w̆∩
⋃

E(V i,l∪V i,l′) is an i-cylinder in the d-box w̆ because the set of boxes
F = {w̆ ∩ v̆ : v ∈ V } is a suit for w̆ (compare Example 4). Therefore,

⋃

{(w̆ ∩ v̆)ic : v ∈
V i,l} =

⋃

{(w̆ ∩ v̆)ic : v ∈ V i,l′}.
The proof the second part of the lemma can be found in [10, Lemma 4.1]. �

Lemma 13. Under the assumptions of Lemma 12, if the code V does not contain a twin
pair and |P | = 1, then |Q| > 5 and Pic ⊑ Qic.

Proof. Let P = {u}. By Lemma 12, |Q| > 5 and the set w̆ ∩ ŭ ∪
⋃

{w̆ ∩ v̆ : v ∈ Q} is
an i-cylinder in the box w̆. Then (w̆ ∩ ŭ)ic =

⋃

{(w̆ ∩ v̆)ic : v ∈ Q}. Thus, the family
G = {(w̆ ∩ v̆)ic : v ∈ Q} is a suit for the (d − 1)-box (w̆ ∩ ŭ)ic , and then Ewj ∩ Evj ⊆
Ewj ∩Euj for every j ∈ [d] \ {i} and v ∈ Q. Therefore, by (2.3), if wj 6= uj , then vj = uj

for every v ∈ Q. Indeed, if on the contrary wj 6= uj and vj 6= uj for some j ∈ [d] \ {i}
and some v ∈ V , then, by (2.3), there is a point x ∈ Ewj ∩Evj such that x 6∈ Ewj ∩Euj,
and then Ewj ∩ Evj 6⊆ Ewj ∩ Euj, a contradiction. Let D = {j ∈ [d] \ {i} : wj = uj}
and Dc = [d] \ (D ∪ {i}). Since uDc = vDc for every v ∈ Q and ŭD ⊆

⋃

v∈Q v̆D, and
consequently, by (2.6), uD ⊑ QD (because wj = uj for j ∈ D and G is a suit for (w̆∩ ŭ)ic),
it follows that uic ⊑ Qic . �

The last lemma of this section describes a general form of the configuration of four
words which appeared in Example 4. The proof of this lemma can be found in [10, Lemma
3.1].

Lemma 14. Under the assumptions of Lemma 12, if the code V does not contain a twin
pair and |P | = |Q| = 2, then there are a set A = {i1 < i2} ⊆ [d] \ {i} and letters l1, l2 ∈ S
such that

PA = {wi1l2, l
′
1l

′
2} and QA = {l1l2, l

′
1wi2},

where lk 6∈ {wik , w
′
ik
} for k = 1, 2. Moreover, PAc = QAc = {pAc} for some p ∈ Sd, where

Ac = [d] \ {i, i1, i2}. �

4 The structure of equivalent polyboxes codes with 12 words:

Necessary conditions

To show that Keller’s conjecture is true in dimension seven for a cube tiling [0, 1)7 + T
for which r+(T ) > 6, it was sufficient to prove the following theorem ([10]):
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Theorem 15. If V,W ⊂ Sd are disjoint sets which are equivalent polybox codes without
twin pairs, then |V | > 12.

To show that the conjecture is true in dimension seven for a cube tiling [0, 1)7 + T
with r+(T ) = 5, we will describe the structure of all twin pair free disjoint and equivalent
polybox codes V and W , with 12 words each, in dimensions four, five and six (compare
Section 2.4).

In this section we determine necessary conditions which have to be fulfilled by such
the codes V and W .

It was shown in [10] that a polybox code without twin pairs having at most seven
words is rigid. Now we need a slightly better rigidity result:

Lemma 16. Let S = {a, a′, b, b′}. If a polybox code V ⊂ Sd does not contain a twin pair
and |V | 6 9, then it is rigid.

Proof. We proceed by induction on d. By Lemma 9, for d 6 3 every polybox code V ⊂ Sd

without twin pairs is rigid. Thus, the lemma is true for d 6 3. Let d > 4. Suppose on
the contrary that there is a polybox code V ⊂ Sd having at most nine words which is not
rigid. Thus, there is a polybox code W ⊂ Sd which is equivalent to V and V ∩W = ∅.
(It can happen that W contains a twin pair.) We will show first that V i,l 6= ∅ for every
i ∈ [d] and l ∈ S.

Suppose that this is not true. We may assume that V i,a 6= ∅ and V i,b = ∅ for some
i ∈ [d]. By Lemma 5, the polybox codes V i,a

ic and W i,a
ic ∪W i,b

ic are equivalent, and by the
inductive hypothesis the code V i,a

ic ⊂ Sd−1 is rigid. Thus, V i,a
ic = W i,a

ic ∪W i,b
ic . Since V and

W are disjoint, we have V i,a
ic = W i,b

ic . Then, by (Co) in Section 2.3, V i,a
ic ⊑ V i,a′

ic , and thus

V i,a′ 6= ∅. In the same way we show that V i,a′

ic ⊑ V i,a
ic . Consequently the codes V i,a′

ic , V i,a
ic

are equivalent. Since V i,a
ic is rigid, these codes are equal. Then the set V i,a∪V i,a′ contains

a twin pair, which is impossible.
Thus, V i,l 6= ∅ for every i ∈ [d] and l ∈ S.

We now show that for every l, s ∈ S, l 6∈ {s, s′}, the code V i,l∪V i,s contains i-siblings.
To do this, let us suppose on the contrary that there are i ∈ [d] and two letters in

S, say a and b, such that there are no i-siblings in V i,a ∪ V i,b, that is, the polybox code
V i,a
ic ∪ V i,b

ic does not contain a twin pair. This means, by the inductive hypothesis, that
the polybox code V i,a

ic ∪ V i,b
ic is rigid. Then, by Lemma 5, V i,a

ic ∪ V i,b
ic = W i,a

ic ∪W i,b
ic . Since

V ∩ W = ∅, it follows that V i,a
ic = W i,b

ic and V i,b
ic = W i,a

ic . By (Co), V i,a
ic ⊑ V i,a′

ic and

V i,b
ic ⊑ V i,b′

ic . Note that V i,a
ic ∩ V i,a′

ic = ∅ and V i,b
ic ∩ V i,b′

ic = ∅ because V does not contain
twin pairs. Therefore, by Lemma 9, |V | > |V i,a′ | + |V i,b′ | > 10, a contradiction.

Thus, we assume that for every l, s ∈ {a, a′, b, b′}, l 6∈ {s, s′} there are i-siblings in
V i,l ∪ V i,s.

We now consider a graph G = (V,E ) of siblings on V (compare Section 2.9). Recall
that N(v) denotes the set of all neighbors of the vertex v ∈ V .

It follows from the above assumption on i-siblings in V that for every {l, s} ∈ {{b, a},
{b, a′}, {b′, a}, {b′, a′}} and every i ∈ [d] there is an edge (v, u) ∈ E such that {vi, ui} =
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{l, s}. Thus, for every i ∈ [d] there are at least 4 edges with the colour i, and therefore
|E | > 4d.

Let u0, v0 ∈ V be such that

d(v0) + d(u0) = max{d(v) + d(u) : v, u ∈ V and v, u are adjacent}.

We will consider three cases: d(u0) + d(v0) = 9, d(u0) + d(v0) = 8 and finally d(u0) +
d(v0) 6 7.

Let d(u0) + d(v0) = 9. By Lemma 6 (2.8), there are i ∈ [d] and l ∈ S such that
|V i,l ∪ V i,l′ | > 8. Since V i,s 6= ∅ and V i,s′ 6= ∅, where s 6∈ {l, l′}, it follows that |V | > 10,
a contradiction.

Let d(u0) + d(v0) = 8. We first assume that d > 5.

We may assume without loss of generality that u0 = aaa . . . a and v0 = ba′a . . . a. If
there are i ∈ [d] and l ∈ S such that |V i,l ∪ V i,l′ | > 8, then|V | > 10 because |V i,s| >
1 and |V i,s′ | > 1, where s 6∈ {l, l′}, which is impossible. Thus, we may assume that
|V i,l ∪ V i,l′ | 6 7 for every i ∈ [d] and l ∈ S. Note that there are i, j ∈ {2, . . . , d}, i 6= j,
such that |V i,a ∪ V i,a′ | = 7, |V j,a ∪ V j,a′ | = 7 and the sets V i,a ∪ V i,a′ and V j,a ∪ V j,a′ are
subsets of N(u0) ∪ N(v0). (To see this, observe first that for every v ∈ N(u0) ∪ N(v0)
the word v has at most one letter from the set {b, b′} at the positions 2, . . . , d. Since
|V i,l ∪ V i,l′ | 6 7 for every i ∈ [d] and l ∈ S, it follows that for every i ∈ [d] there
is at least one v ∈ N(u0) ∪ N(v0) with vi ∈ {b, b′}. Therefore, there are at most two
positions n, k ∈ {2, . . . , d} such that vn ∈ {b, b′} for at least two words v ∈ N(u0)∪N(v0)
and vk ∈ {b, b′} for at least two words v ∈ N(u0) ∪ N(v0). Consequently, there are two
positions i, j ∈ {2, . . . , d}\{n, k} such that ui ∈ {b, b′} for precisely one u ∈ N(u0)∪N(v0)
and wj ∈ {b, b′} for precisely one w ∈ N(u0) ∪N(v0).)

Let {u} = (N(u0)∪N(v0)) \ (V i,a ∪ V i,a′) and {w} = (N(u0)∪N(v0)) \ (V j,a ∪ V j,a′).
We have ui ∈ {b, b′}, uj ∈ {a, a′} and wj ∈ {b, b′}, wi ∈ {a, a′}. Moreover, v̄i, v̄j ∈ {b, b′},
where {v̄} = V \ (N(u0) ∪ N(v0)). Assume without loss of generality that ui = b and
wi = a. Since vi, vj ∈ {a, a′} for every v ∈ (N(u0)∪N(v0))\{u, w}, the only vertices from
the set N(u0) ∪ N(v0) which can be adjacent to the vertex v̄ are u and w. This means
that, there are no two words p, q ∈ V which are i-siblings such that pi = b′ and qi = a′.
A contradiction.

Let now d = 4 and assume that u0 = aaaa and v0 = ba′aa. By just considered case, we
assume that for every i, j ∈ {2, 3, 4}, i 6= j, we have |V i,a ∪ V i,a′ | 6 6 or |V j,a ∪ V j,a′ | 6 6.
Thus, it suffices to consider three cases: n2 = n3 = n4 = 2; n2 = 3, n3 = 2, n4 = 1, and
n2 = n3 = 2, n4 = 1, where

ni = |(V i,b ∪ V i,b′) ∩ (N(u0) ∪N(v0))|

for i ∈ {2, 3, 4}.
Let {v1, . . . , v6} = (N(u0)∪N(v0))\{u0, v0}. Observe that in the first two cases, if two

vertices vn, vm ∈ {v1, . . . , v6} are adjacent, then vn, vm ∈ (V i,b ∪ V i,b′) ∩ (N(u0) ∪N(v0))
for some i ∈ {2, 3, 4}. (Recall that, since u0 = aaaa and v0 = ba′aa, if vi ∈ {b, b′} for
some v ∈ N(v0) ∪N(u0) and i ∈ {2, 3, 4}, then vj ∈ {a, a′} for every j ∈ {2, 3, 4} \ {i}.)
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Therefore, in these two cases the maximal number of edges with endpoints in N(u0)∪N(v0)
is achieved if the vertices v1, . . . , v6 are arranged as presented in Figure 11a and b for the
first and the second case, respectively (recall that, by Lemma 8, the graph G does not
contain triangles). Since d(v̄) 6 4, where {v̄} = V \ (N(u0) ∪N(v0)), we have |E | < 16,
which contradicts the assumption on the number of edges in G.
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Figure 11: Subgraphs of G with the maximal numbers of edges with endpoints in the
set N(u0) ∪ N(v0) in the first two cases. In the first case (a) we have v12, v

2
2 ∈ {b, b′},

v33, v
4
3 ∈ {b, b′} and v54, v

6
4 ∈ {b, b′}. In the second case (b) we have v12, v

2
2, v

3
2 ∈ {b, b′},

v43, v
5
3 ∈ {b, b′} and v64 ∈ {b, b′}.

In the third case we assume that v11 ∈ {a, a′, b, b′} and v1i ∈ {a, a′} for i ∈ {2, 3, 4},
v22, v

3
2 ∈ {b, b′}, v43, v

5
3 ∈ {b, b′} and v64 ∈ {b, b′}. Observe that now the vertices v2, . . . , v6

can be joined with v1, but similarly as above if vn, vm ∈ {v2, . . . , v6} are adjacent, then
vni , v

m
i ∈ (V i,b∪V i,b′)∩ (N(u0)∪N(v0)) for some i ∈ {2, 3, 4}. Since d(v̄) 6 4, the number

of edges with endpoints in the set N(u0) ∪N(v0) has to be at least 12 because |E | > 16.
This can be done only if v1, v3, v5 ∈ N(u0) and v2, v4, v6 ∈ N(v0) or v1, v2, v4 ∈ N(v0)
and v3, v5, v6 ∈ N(u0). We will consider the first case (the second case is considered in
the same way.) To obtain 12 edges with endpoints in the set N(u0)∪N(v0), which is the
maximal number of edges with endpoints in this set, the vertices v1, . . . , v6 have to be
arranged as presented in Figure 12.

uv

v v

v v

v
v

2 3

4 5

6
1

00

Figure 12: Subgraph of G with the maximal number of edges with endpoints in the set
N(u0) ∪N(v0) in the third cases.

Since d(v) 6 4 for every v ∈ V and the graph G, by Lemma 8, does not contain
triangles, it must be d(v̄) < 4 and then |E | < 16, a contradiction. This completes the
proof of the lemma in the case d(u0) + d(v0) = 8.

the electronic journal of combinatorics 22(1) (2015), #P1.16 22



Finally, let d(v0) + d(u0) 6 7. It follows from Lemma 7 that

d(G) 6
7

2
.

Since d(G)|V | = 2|E | and 2|E | > 32, we have |V | > 9, a contradiction. �

In the next two lemmas we give forbidden distributions of words in the codes V and
W under consideration.

Lemma 17. Let S = {a, a′, b, b′}, and let V,W ⊂ Sd be disjoint sets which are equivalent
polybox codes without twin pairs. If |V | = 12, then for every i ∈ [d] and every l, s ∈ S,
l 6∈ {s, s′}, the distribution

|V i,l| = 5, |V i,l′ | = 1, |V i,s| = 5, |V i,s′ | = 1

is impossible.

Proof. Recall that V i,l
ic = (V i,l)ic for every l ∈ S and i ∈ [d].

Assume on the contrary that there is i ∈ [d] such that |V i,a| = 5, |V i,a′ | = 1 and
|V i,b| = 5, |V i,b′ | = 1. Let {v} = V i,a′ and {u} = V i,b′ . Observe that there is w ∈ W such
that w̆ ∩

⋃

E(V i,a) 6= ∅ and w̆ ∩
⋃

E(V i,a′) 6= ∅, for otherwise, by (P) in Section 2.3,
V i,a ⊑ W i,a and V i,a′ ⊑ W i,a′ . Then, by Lemma 11 and 9, |W i,a| > 7 and |W i,a′ | > 5,
respectively. Hence, W i,b ∪W i,b′ = ∅ which is impossible because, by (V) in Section 2.3,
|W i,b| > 4. Similarly, w̆ ∩

⋃

E(V i,b) 6= ∅ and w̆ ∩
⋃

E(V i,b′) 6= ∅ for some w ∈ W .
Thus, by Lemma 13, vic ⊑ V i,a

ic and uic ⊑ V i,b
ic .

The proof splits into two parts. In the first part we assume that u and v are not
i-siblings. In the second, the words u, v are i-siblings.

Assume that u, v are not i-siblings. Then the polybox code {uic , vic} is rigid (see

Figure 10, on the right). By Lemma 5, the polybox codes V i,a′

ic ∪ V i,b′

ic and W i,a′

ic ∪W i,b′

ic

are equivalent. Thus, {vic , uic} = W i,a′

ic ∪W i,b′

ic . Since V ∩W = ∅, it follows that

vic = wic and uic = qic ,

where {w} = W i,b′ and {q} = W i,a′ . By (Co) in Section 2.3, we have vic ⊑ W i,b
ic ,

uic ⊑ W i,a
ic . Thus, by Lemma 9, |W i,b| > 5 and |W i,a| > 5. Hence, the code W has

the same distribution of words as the code V : |W i,a| = 5, |W i,a′ | = 1 and |W i,b| = 5,
|W i,b′ | = 1.

Since vic ⊑ W i,b
ic and vic ⊑ V i,a

ic , the forms of W i,b
ic and V i,a

ic are as described in Lemma
9. Similarly, uic ⊑ W i,a

ic and uic ⊑ V i,b
ic , and therefore the forms of W i,a

ic and V i,b
ic are also

as in Lemma 9.
Suppose that there is a point y ∈ (ES)d such that yic 6∈ v̆ic and yic ∈

⋃

E(W i,b
ic ) ∩

⋃

E(V i,a
ic ). Then, by (2.3), we can choose the point y such that yi ∈ Eb \ Ea. Then, y ∈

⋃

E(W i,b) and y 6∈
⋃

E(V i,a). Thus, y ∈
⋃

E(W ) and y 6∈
⋃

E(V ) because {v} = V i,a′ .
A contradiction.
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Therefore, the sets
⋃

E(W i,b
ic ) and

⋃

E(V i,a
ic ) cannot have a common point outside

the box v̆ic , and, for the same reason, the sets
⋃

E(W i,a
ic ) and

⋃

E(V i,b
ic ) cannot have a

common point outside the box ŭic . Then, by (P) and (V), it must be
⋃

E(W i,b
ic ) \ v̆ic =

⋃

E(V i,b
ic ) \ ŭic and

⋃

E(W i,a
ic ) \ ŭic =

⋃

E(V i,a
ic ) \ v̆ic . (4.1)

We now examine when the sets
⋃

E(W i,b
ic ) and

⋃

E(V i,a
ic ) have a common point outside

the box v̆ic . Assume for simplicity that vic = b . . . b. Since vic ⊑ W i,b
ic , by Lemma 9, there

is a set A = {i1 < i2 < i3} ⊆ [d] \ {i} such that (W i,b
ic )A = {l1l2l3, l

′
1l

′
2l

′
3, bl2l

′
3, l

′
1bl3, l1l

′
2b},

where lk ∈ {a, a′} for k = 1, 2, 3, and (W i,b
ic )Ac = {b . . . b} (here Ac = [d] \ (A ∪ {i})).

Similarly, since vic ⊑ V i,a
ic , there is a set B = {j1 < j2 < j3} ⊆ [d] \ {i} such that

(V i,a
ic )B = {s1s2s3, s

′
ss

′
2s

′
3, bs2s

′
3, s

′
1bs3, s1s

′
2b}, where sk ∈ {a, a′} for k = 1, 2, 3, and

(V i,a
ic )Bc = {b . . . b} (here Bc = [d]\ (B∪{i})). We will show that if A∩B 6= ∅, then there

is a point y ∈ (ES)d such that yic ∈
⋃

E(W i,b
ic ) ∩

⋃

E(V i,a
ic ) and yic 6∈ v̆ic . We consider

the case when A = B.
We may assume that l1l2l3 = aaa. If s1s2s3 = aaa, then taking yik ∈ Ea \ Eb for

k = 1, 2, 3 and yj ∈ Eb for every j ∈ Ac we obtain the point yic with the above mentioned
property. Indeed, yic ∈ p̆ic ∩ t̆ic , where the words p ∈ W i,b, t ∈ V i,a are such that
pA = tA = aaa. Moreover, yic 6∈ v̆ic because yik ∈ Ea \ Eb for k = 1, 2, 3.

Let s1s2s3 6∈ {aaa, a′a′a′}. Since {s1s2s3, s
′
1s

′
2s

′
3} ∈ {{a′aa, aa′a′}, {aa′a, a′aa′}, {aaa′,

a′a′a}}, we may assume that s1s2s3 = a′aa. Then the set (V i,a
ic )A (we have A = B)

contains one of the words aab or a′a′b; if it contains the word aab, we take yik ∈ Ea \ Eb
for k = 1, 2, yi3 ∈ Ea ∩ Eb and yj ∈ Eb for every j ∈ Ac; if it contains the word a′a′b,
we take yik ∈ Ea′ \ Eb for k = 1, 2, yi3 ∈ Ea′ ∩ Eb and yj ∈ Eb for every j ∈ Ac. Since

aaa, a′a′a′ ∈ (W i,b
ic )A, in both cases yic ∈

⋃

E(W i,b
ic )∩

⋃

E(V i,a
ic ). Clearly, yic 6∈ v̆ic because

yik 6∈ Eb for k = 1, 2.
The rest two cases |A∩B| = 2 and |A∩B| = 1 are considered in the very similar way.

Thus, we assume that A ∩ B = ∅. To finish this part of the proof we show that the
equalities (4.1) cannot hold simultaneously.

We still may assume that vic = b . . . b. Since uic and vic do not form a twin pair, there
is j ∈ [d] \ {i} such that uj 6∈ {b, b′}. If j ∈ Ac, then

⋃

E(W i,b
ic ) \ v̆ic 6=

⋃

E(V i,b
ic ) \ ŭic

because all words in W i,b
ic have the letter b at the position j, while, by Lemma 9, there is a

word pic ∈ V i,b
ic with pj = uj and p̆ic \ ŭic 6= ∅. To see that

⋃

E(W i,b
ic )\ v̆ic 6=

⋃

E(V i,b
ic )\ ŭic

let us choose a point z ∈ p̆ic \ ŭic such that zj ∈ Epj \ Eb. Then z ∈
⋃

E(V i,b
ic ) \ ŭic and

z 6∈
⋃

E(W i,b
ic ) \ v̆ic .

Similarly,
⋃

E(W i,a
ic ) \ ŭic 6=

⋃

E(V i,a
ic ) \ v̆ic when j ∈ Bc. Since A ∩ B = ∅, we have

[d] \ {i} = Ac ∪ Bc, and thus one of the equalities (4.1) does not hold. A contradiction.
This finishes the proof of the lemma in the case when u and v are not i-siblings

Let now u and v be i-siblings. Then vic and uic are a twin pair. We can assume without
loss of generality that vic = b . . . b. It was shown at the beginning of the proof, that
vic ⊑ V i,a

ic . Thus, by Lemma 9, (V i,a
ic )A = {l1l2l3, l

′
1l

′
2l

′
3, bl2l

′
3, l

′
1bl3, l1l

′
2b}, where li ∈ {a, a′}

for i = 1, 2, 3, and A = {i1 < i2 < i3} ⊆ [d] \ {i}. Observe that, since the words vic , uic

form a twin pair, the polybox code V i,a
ic ∪ V i,b′

ic , where V i,b′ = {u}, does not contain a
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twin pair. Indeed, every word in V i,a
ic contains at least two letters from the set {a, a′},

while uj ∈ {b, b′} for all j ∈ [d] \ {i}. Hence, by Lemma 16, the polybox code V i,a
ic ∪ V i,b′

ic

is rigid. Thus, by Lemma 5, V i,a
ic ∪ V i,b′

ic = W i,a
ic ∪ W i,b′

ic . Since the codes V and W are

disjoint, we have V i,a
ic = W i,b′

ic . By (Co) in Section 2.3, V i,a
ic ⊑ V i,a′

ic , and then, by Lemma
9, |V i,a′ | > 5, a contradiction. �

Lemma 18. Let V,W ⊂ Sd be disjoint sets which are equivalent polybox codes without
twin pairs. If there are i ∈ [d] and l, s ∈ S, l 6∈ {s, s′}, such that |V i,l| = |V i,l′ | = 1 and
|V i,s| 6= |V i,s′ | or |V i,l| = 1 and 2 6 |V i,l′ | 6 4, then |V | > 12.

Proof. By Theorem 15, |V | > 12.
Let |V i,l| = |V i,l′ | = 1. By Lemma 12, V i,l ⊑ W i,l and V i,l′ ⊑ W i,l′ , and thus, by

Lemma 9, |W i,l| > 5 and |W i,l′ | > 5.
Since |V i,s| 6= |V i,s′ |, we may assume, by (V) in Section 2.3, that W i,s 6= ∅. Conse-

quently, we may assume that |W i,l| = 5. Observe that, by Lemma 9, the code W i,l is
rigid.

Suppose now that for every r ∈ S, r 6∈ {l, l′}, we have W i,r = ∅ or W i,r′ = ∅. Then,
by Lemma 5, there are s1, . . . , sk ∈ S, sn 6∈ {l, l′, sm, s

′
m} for every n,m ∈ [k], n 6= m,

such that W i,l
ic and V i,l

ic ∪ V i,s1
ic ∪ · · · ∪ V i,sk

ic are equivalent. Since W i,l
ic is rigid, we have

W i,l
ic = V i,l

ic ∪ V i,s1
ic ∪ · · · ∪ V i,sk

ic . Then V i,l ∩W i,l 6= ∅, which is a contradiction.
Therefore, there is r ∈ S, r 6∈ {l, l′} such that the sets W i,r and W i,r′ are non-empty.

Clearly, it is enough to consider the case when r = s because W i,s 6= ∅, |W i,l| = 5 and
|W i,l′ | > 5. Suppose that |V | = 12. Then |W i,s| = |W i,s′ | = 1 and |W i,l| = |W i,l′ | = 5.
Observe that, by Lemma 12, W i,s ⊑ V i,s and W i,s′ ⊑ V i,s′ , which, by Lemma 9, implies
that |V i,s| > 5, |V i,s′ | > 5. Since |V i,s| 6= |V i,s′ |, we have V i,l = ∅ or V i,l′ = ∅, a
contradiction. Thus, |V | > 12.

Let now |V i,l| = 1 and 2 6 |V i,l′ | 6 4. Obviously, V i,s∪V i,s′ 6= ∅ for some s ∈ S \{l, l′}

because |V | > 12. If the codes V i,s
ic and V i,s′

ic are equivalent, then, by Theorem 15,

|V | > |V i,s|+ |V i,s′ | > 24. Assume that V i,s
ic and V i,s′

ic are not equivalent. Then, by (P) in
Section 2.3, W i,s∪W i,s′ 6= ∅. Since |V i,l| = 1 and 2 6 |V i,l′ | 6 4, by Lemma 12, V i,l ⊑ W i,l

and V i,l′ ⊑ W i,l′ . Then, by Lemma 9 and 11, |W i,l| > 5 and |W i,l′ | > 7, respectively.
Thus, |V | = |W | > |W i,l| + |W i,l′ | + |W i,s ∪W i,s′ | > 12 because W i,s ∪W i,s′ 6= ∅. �

The following lemma will play an important role in determining the structure of the
polybox codes V and W .

Lemma 19. Let S = {a, a′, b, b′}, and let V,W ⊂ Sd be disjoint sets which are equivalent
polybox codes without twin pairs. Assume that there are i ∈ [d] and l, p ∈ S, l 6= p, such
that the sets V i,l and V i,p are non-empty. If there are letters l1, l2 ∈ S, l1 6∈ {l2, l

′
2}, such

that the polybox code V i,l1 ∪ V i,l2 does not contain i-siblings, then |V | > 12.

Proof. By Theorem 15, |V | > 12. In the first part of the proof we show that the theorem
is valid if V i,s = ∅ for at least one s ∈ S. We will consider three cases.

In the first case we assume that V i,s = ∅ or V i,s′ = ∅ for every s ∈ S. Assume that
V i,s = ∅. Then, by Lemma 5, the codes V i,l

ic and W i,l
ic ∪W

i,s
ic are equivalent, where s 6∈ {l, l′}.
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Note that W i,s = ∅, for otherwise, by (Co) in Section 2.3, W i,s
ic ⊑ V i,l′

ic , and thus V i,l′ 6= ∅,
which is a contradiction because V i,l 6= ∅. Hence, the codes V i,l

ic and W i,l
ic are equivalent.

Similarly, V i,p
ic and W i,p

ic are equivalent. By Theorem 15, |V | > |V i,l| + |V i,p| > 24.

In the second case we assume that p = l′ and V = V i,l∪V i,l′ . If W = W i,l∪W i,l′ , then
the polybox codes V i,l and W i,l are equivalent and similarly, V i,l′ and W i,l′ are equivalent.
Then, by Theorem 15, |V | = |V i,l| + |V i,l′ | > 24.

If W i,s 6= ∅, where s 6∈ {l, l′}, then, by (C) in Section 2.3, the set
⋃

E(W i,s ∪W i,s′) is

an i-cylinder because V i,s ∪ V i,s′ = ∅. Thus, the codes W i,s
ic and W i,s′

ic are equivalent. By
Theorem 15, |W | > |W i,s| + |W i,s′ | > 24, and hence |V | > 12.

In the third case we assume that there is exactly one letter s ∈ S such that V i,s = ∅.
Thus, we may assume that V i,a 6= ∅, V i,a′ 6= ∅ and V i,b 6= ∅, V i,b′ = ∅. Then, by Lemma
5, the polybox codes V i,a

ic and W i,a
ic ∪W i,b′

ic are equivalent. Similarly, V i,a′

ic and W i,a′

ic ∪W i,b′

ic

are equivalent.
If V i,a is not rigid, then, by Lemma 16, |V i,a| > 10. Thus, only the case |V i,a| = 10,

|V i,a′ | = 1 and |V i,b| = 1 has to be considered. Since V i,b′ = ∅, by (P), V i,b ⊑ W i,b, and
consequently, by Lemma 9, |W i,b| > 5. Note that, by (V), |W i,a| > 9 because |V i,a| = 10
and |V i,a′ | = 1. Therefore, |W | > |W i,a| + |W i,b| > 14, which contradicts the assumption
that |V | = 12. Thus, |V | > 12.

If the codes V i,a and V i,a′ are rigid, then V i,a
ic = W i,a

ic ∪W i,b′

ic and V i,a′

ic = W i,a′

ic ∪W i,b′

ic .
Since V ∩ W = ∅, the set W i,a ∪ W i,a′ is empty. Then, by (C) in Section 2.3, the set
⋃

E(V i,a ∪ V i,a′) is an i-cylinder. Consequently, the codes V i,a
ic and V i,a′

ic are equivalent,

and since they are rigid, we have V i,a
ic = V i,a′

ic . Hence, the set V i,a ∪ V i,a′ contains a twin
pair, which is a contradiction. This completes the first part of the proof.

In the second part of the proof we assume that V i,s 6= ∅ for every s ∈ S.

Suppose that the set V i,a∪V i,b does not contain i-siblings (we assume that l1 = a and
l2 = b). Then V i,a

ic ∪ V i,b
ic does not contain a twin pair.

If |V i,a ∪ V i,b| > 10, then assume that |V i,a ∪ V i,b| = 10 and |V i,a′ | = |V i,b′ | = 1. By
Lemma 18, |V i,a| = 5, |V i,a′ | = 1 and |V i,b| = 5, |V i,b′ | = 1, which is, by Lemma 17,
impossible. Thus, |V | > 12.

If |V i,a∪V i,b| 6 9 then, by Lemma 16, the polybox code V i,a
ic ∪V i,b

ic is rigid. By Lemma
5, the codes V i,a

ic ∪ V i,b
ic and W i,a

ic ∪W i,b
ic are equivalent. Thus, V i,a

ic ∪ V i,b
ic = W i,a

ic ∪W i,b
ic .

Consequently, V i,a
ic = W i,b

ic and V i,b
ic = W i,a

ic because V and W are disjoint. Therefore, by

(Co) in Section 2.3, V i,a
ic ⊑ V i,a′

ic and V i,b
ic ⊑ V i,b′

ic . By Lemma 9, |V i,a′ | > 5, |V i,b′ | > 5.
Since the sets V i,a and V i,b are non-empty and the distribution |V i,a′ | = 5, |V i,a| = 1 and
|V i,b′ | = 5, |V i,b| = 1 is, by Lemma 17, impossible, it follows that |V | > 12. �

From Lemmas 18 and 19 we obtain the following corollary which will be used in the
computations.

Corollary 20. Let S = {a, a′, b, b′}, V,W ⊂ Sd be disjoint sets which are equivalent
polybox codes without twin pairs, and let

R = {(6, 5), (6, 6), (7, 2), (7, 3), (7, 4), (7, 5), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4),
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(9, 0), (9, 1), (9, 2), (9, 3), (10, 0), (10, 1), (10, 2), (11, 0), (11, 1)}.

Suppose that there are i ∈ [d] and s ∈ S such that (|V i,s|, |V i,s′ |) ∈ R. Then |V | > 12.

Proof. By Theorem 15, |V | > 12. Thus, by the assumption on V i,s and V i,s′ , there are
two letters l, p ∈ S such that V i,l and V i,p are non-empty sets. Suppose that there is
a letter in the set S, say it is the letter a, such that V i,a = ∅. Then there are no two
words v, u ∈ V which are i-siblings such that {vi, ui} ∈ {{a, b}, {a, b′}}. By Lemma 19,
|V | > 12.

Assume now that all sets V i,a, V i,a′ , V i,b and V i,b′ are non-empty and suppose on the
contrary that |V | = 12. Assume that s = a. Then (|V i,b|, |V i,b′ |) ∈ {(1, 1), (1, 2)}. By
Lemma 18, |V | > 12, a contradiction. �

In the last lemma we show that the polybox codes V and W can be written down in
the alphabet S = {a, a′, b, b′}.

Lemma 21. Let V,W ⊂ Sd be disjoint sets which are equivalent polybox codes without
twin pairs. If there are i ∈ [d] and l1, l2, l3 ∈ S, where l1 6∈ {l2, l

′
2, l3, l

′
3}, l2 6∈ {l3, l

′
3}, such

that V i,lk ∪V i,l′
k 6= ∅ for k = 1, 2, 3, then |V | > 12. Moreover, if |V | = 12, then the polybox

codes V,W might be written down in the alphabet {a, a′, b, b′}.

Proof. It follows from Theorem 15 that |V | > 12. To prove the first part of the lemma,
let us suppose on the contrary that |V | = 12. Assume that l1 = a, l2 = b and l3 = c. Note
that

W i,l ∪W i,l′ 6= ∅ (4.2)

for every l ∈ {a, b, c}. Indeed, if W i,l ∪ W i,l′ = ∅ for some l ∈ {a, b, c}, then, by (C) in
Section 2.3, the set

⋃

E(V i,l ∪ V i,l′) is an i-cylinder and consequently the codes V i,l
ic and

V i,l′

ic are equivalent. By Theorem 15, |V i,l| + |V i,l′ | > 24, a contradiction.
We will show that V i,l 6= ∅ for every l ∈ {a, a′, b, b′, c, c′}.
Assume that there is a letter in the set {a, b, c}, say it is the letter c, such that V i,c 6= ∅

and V i,c′ = ∅. Then, by (P) in Section 2.3., V i,c ⊑ W i,c, and thus, by Lemma 9, |W i,c| > 5.
If |W i,a∪W i,a′ | > 4 and |W i,b∪W i,b′| > 4, then |W | > 12, a contradiction. Thus, we may
assume that |W i,b ∪ W i,b′ | 6 3, and then, by Lemma 18, we may assume that W i,b 6= ∅
and W i,b′ = ∅ or |W i,b| = |W i,b′ | = 1. We now consider these two cases in detail.

Let W i,b 6= ∅ and W i,b′ = ∅. By (P), W i,b ⊑ V i,b and then |V i,b| > 5, by Lemma 9.
If W i,c′ = ∅, then, by (P), W i,c ⊑ V i,c. Since V i,c ⊑ W i,c, the codes V i,c and W i,c are

equivalent. By Theorem 15, |V i,c| > 12. Hence, |V | > |V i,b|+ |V i,c| > 12, a contradiction.
Therefore, W i,c′ 6= ∅. Then |W i,c ∪ W i,c′ | > 6 because |W i,c| > 5. Since V i,c′ = ∅,

by (P), we have W i,c′

ic ⊑ W i,c
ic . By Lemma 11, if |W i,c′

ic | > 2, then |W i,c
ic | > 7. Clearly,

|W i,c ∪W i,c′ | < 11 because (4.2) and |V | = 12. Thus, |W i,c′

ic | 6 3. Then, by (P) and (V)
in Section 2.3, |V i,c| > 4. Hence, |V i,a ∪ V i,a′ | 6 3 as |V i,b| > 5. By Lemma 18, we may
assume that V i,a 6= ∅ and V i,a′ = ∅ or |V i,a| = |V i,a′ | = 1.

In the first case we have |W i,a| > 5, by (P) and Lemma 9. Note that W i,a′ 6= ∅,
for otherwise W i,a ⊑ V i,a, and then |V i,a| > 7. Consequently, V i,c ∪ V i,c′ = ∅ because
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|V i,b| > 5, a contradiction. Since |W i,c ∪W i,c′ | > 6, |W i,a| > 5 and W i,a′ 6= ∅, it follows
that W i,b ∪W i,b′ = ∅, a contradiction.

Let |V i,a| = |V i,a′ | = 1. Since |V i,c| 6= |V i,c′ |, by Lemma 18, |V | > 12. A contradiction.

Let now |W i,b| = |W i,b′ | = 1. By Lemma 18, it must be |W i,c| = |W i,c′ |, for otherwise
|W | > 12, which contradicts the assumption |V | = 12. Since |W i,c| > 5, we have W i,a ∪
W i,a′ = ∅, a contradiction.

We have shown that the sets V i,l, V i,l′ are non-empty for every l ∈ {a, b, c}. Clearly,
in the same way we show that the sets W i,l,W i,l′ are non-empty for every l ∈ {a, b, c}.

Thus, if |V i,c ∪ V i,c′ | 6 3, then, by Lemma 18, |V i,c| = 1 and |V i,c′ | = 1. By Lemma
12, V i,c ⊑ W i,c and V i,c′ ⊑ W i,c′ and consequently |W i,c| > 5 and |W i,c′ | > 5, by Lemma
9. This means that W i,l = ∅ for some l ∈ {a, a′b, b′}, which is a contradiction. Hence,
|V i,l ∪ V i,l′ | = 4, and by Lemma 18,

|V i,l| = |V i,l′ | = 2 (4.3)

for l ∈ {a, b, c}.
Observe now that for every l ∈ {a, b, c} there is w ∈ W such that w̆ ∩

⋃

E(V i,l) 6= ∅
and w̆ ∩

⋃

E(V i,l′) 6= ∅, for otherwise V i,l ⊑ W i,l and V i,l′ ⊑ W i,l′ for some l ∈ {a, b, c},
and thus, by Lemma 11, |W i,l| > 7 and |W i,l′ | > 7. Then |W | > 12, a contradiction.

Therefore, for every l ∈ {a, b, c, } the form of the polybox code V i,l∪V i,l′ is as described
in Lemma 14. In the next two steps, which are d = 4 and d > 5, we show that this is
impossible.

Let d = 4. For simplicity assume that i = 1 and the form of V 1,a ∪ V 1,a′ is as at
the first four positions in Table 1 (compare also Example 4). Let w ∈ W be such that
w̆ ∩

⋃

E(V 1,a) 6= ∅ and w̆ ∩
⋃

E(V 1,a′) 6= ∅. Thus, w1 6∈ {a, a′}. We may assume that
w1 = b. Clearly, w2 = w3 = b, by Lemma 14.

Pick x ∈
⋃

E(V 1,a ∪ V 1,a′) such that x1 ∈ Eb′, x2, x3 ∈ Eb and x4 ∈ Ea ∩ Ew4.
The point x1c belongs to w̆1c and therefore, x has to be covered by a box ŭ for some
u ∈ W 1,b′ . Since x belongs to

⋃

E(V 1,a ∪ V 1,a′) and u1 = b′, we have ŭ ∩
⋃

E(V 1,a) 6= ∅
and ŭ ∩

⋃

E(V 1,a′) 6= ∅. Then, u2 = u3 = b, by Lemma 14. Therefore, w4 6= u4, for
otherwise w and u form a twin pair, which is impossible.

We first assume that w4 6= a. Then, by (2.3), Ea ∩ Eu4 \ Ew4 6= ∅ (we have u4 6= a′

because ŭ ∩
⋃

E(V i,a ∪ V 1,a′) 6= ∅). We pick a point y ∈
⋃

E(V 1,a ∪ V 1,a′) such that
y1 ∈ Eb, y2, y3 ∈ Eb and y4 ∈ Ea ∩ Eu4 \ Ew4. Then y 6∈ w̆ ∪ ŭ. For the same reason
as above, the point y is covered by a box v̆ for some word v ∈ W 1,b with v2 = v3 = b.
Since v4c = w4c and v,w are dichotomous words, v′4 = w4. Then v and w are a twin pair,
a contradiction.

Let w4 = a. Now, we pick a point z ∈
⋃

E(V 1,a∪V 1,a′) such that z1 ∈ Eb′, z2, z3 ∈ Eb
and z4 ∈ Ea \Eu4. Then z 6∈ w̆∪ ŭ. The point z is covered by a box q̆ for some q ∈ W 1,b′

with q2 = q3 = b. Since u4c = q4c and u,q are dichotomous words, u′
4 = q4. Then u and q

are a twin pair, a contradiction.
The proof of the first part of the lemma for d = 4 is completed.

Let now d > 5. We may assume without loss of generality that i = 1 and the form of
V 1,a ∪ V 1,a′ at the first five position is, by Lemma 14, as presented in Table 1.

the electronic journal of combinatorics 22(1) (2015), #P1.16 28



The distributions of words in the polybox codes V 1,b∪V 1,b′ and V 1,c∪V 1,c′ at positions
2, . . . , d are analogous to the distributions of words in V 1,a∪V 1,a′ but the positions of the
corresponding columns in these two codes as well as the letters in the columns may be
different from those in V 1,a ∪ V 1,a′ . Thus, we may assume that there are j ∈ {4, 5} and
letters l, s, r, p ∈ S such that

|(V 1,a ∪ V 1,a′)j,l| = 4, |(V 1,b ∪ V 1,b′)j,s| = 4, |(V 1,c ∪ V 1,c′)j,r| = 4 (4.4)

or
|(V 1,a ∪ V 1,a′)j,l| = 4, |(V 1,b ∪ V 1,b′)j,s| = 4,

|(V 1,c ∪ V 1,c′)j,p| = 2, |(V 1,c ∪ V 1,c′)j,p
′

| = 1, |(V 1,c ∪ V 1,c′)j,r| = 1, (4.5)

where r /∈ {p, p′}.

V 1,a ∪ V 1,a′ i = 1 i = 2 i = 3 i = 4 i = 5

v1 a a′ b a a
v2 a a a a a
v3 a′ a′ a′ a a
v4 a′ b a a a

Table 1.

We first consider the distribution (4.4). There are five cases that have to be examined.

The first case is l = s = r, and thus V = V j,l, where |V j,l| = 12. Then, by induction
on d, we obtain |Vjc| > 12, a contradiction.

The second case is l 6∈ {s, s′, r, r′}, s 6∈ {r, r′}, and thus V = V j,l ∪ V j,s ∪ V j,r, where
|V j,l| = |V j,s| = |V j,r| = 4. By (P), W = W j,l∪W j,s∪W j,r. Therefore, the codes V j,l and
W j,l are equivalent. By Lemma 9, the polybox code V j,l is rigid because it does not cover
even a single word. Hence, V j,l = W j,l, and then V ∩W 6= ∅, which is a contradiction.

Similarly, in the third case r = s and l 6∈ {s, s′}, that is, V = V j,l ∪ V j,s, where
|V j,l| = 4 and |V j,s| = 8, we obtain V ∩W 6= ∅, which is not possible.

In the fourth case we have l′ = s and r /∈ {l, l′}. Then V = V j,l ∪ V j,l′ ∪ V j,r, where
|V j,l| = |V j,l′| = |V j,r| = 4. By Lemma 5, there are s1, . . . , sk ∈ S, sn 6∈ {l, l′, sm, s

′
m} for

every n,m ∈ [k], n 6= m, such that V i,l
ic and W i,l

ic ∪W i,s1
ic ∪· · ·∪W i,sk

ic are equivalent. Since,
by Lemma 9, the code V j,l is rigid, we have V i,l

ic = W i,l
ic ∪W i,s1

ic ∪ · · · ∪W i,sk
ic . The codes

V and W are disjoint, and therefore W i,l = ∅. Then V i,l
ic = W i,s1

ic ∪ · · · ∪W i,sk
ic . By (C) in

Section 2.3, W i,s1
ic ∪ · · · ∪W i,sk

ic ⊑ V i,l′

ic and, by Lemma 11, |V i,l′ | > 7, a contradiction.
Finally, in the fifth case we have l = s and r = l′. Then V = V j,l ∪ V j,l′ . We may

assume that |V j,l| = 8 and |V j,l′ | = 4. By Lemma 9, the code V j,l′ is rigid. Therefore,
if W = W j,l ∪ W j,l′ , then V j,l′ = W j,l′ . Hence, V and W are not disjoint, which is
not true. Thus, W j,p ∪ W j,p′ 6= ∅ for some p /∈ {l, l′}. By (C) in Section 2.3, the set
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⋃

E(W j,p ∪ W j,p′) is a j-cylinder. Then, the codes W j,p
jc and W j,p′

jc are equivalent. By

Theorem 15, |W | > |W j,p| + |W j,p′ | > 24, a contradiction.

To consider the distribution (4.5) observe first that p ∈ {l, l′, s, s′}, for otherwise, by
Lemma 18, |V | > 12, which contradicts our assumption on |V |.

Similarly, r ∈ {l, l′, s, s′}, for otherwise V j,r ⊑ W j,r and, by Lemma 9, |W j,r| > 5.
Since |V j,r| = 1, we have, by (V), |W j,r| − |W j,r′| 6 1. Then |W j,r′| > 4. Note that

W j,r′

jc ⊑ W j,r
jc , for otherwise, by (P), V j,r′ 6= ∅, which is not true. Therefore, by Lemma

11, |W j,r| > 7 and consequently |W j,r′| > 6. Then |W | > 12, a contradiction.
Thus, in the rest part of the proof we assume that l ∈ {r, r′} and s ∈ {p, p′} (recall

that r 6∈ {p, p′}). Hence, only two cases have to be considered: |V j,r| = 5, V j,r′ = ∅ (and
then |V j,p| = 6, |V j,p′ | = 1 or |V j,p| = 2, |V j,p′ | = 5) and |V j,r| = 1, |V j,r′ | = 4.

Let |V j,r| = 5, V j,r′ = ∅. Then, by (P), V j,r ⊑ W j,r and thus, by Lemma 11,
|W j,r| > 7. By (V), |W j,r′ | > 2 because |V j,r| = 5.

If |V j,p| = 6, |V j,p′ | = 1, then, by (V), |W j,p| > 5, and consequently |W | > |W j,r| +
|W j,r′ | + |W j,p| > 14, a contradiction.

If |V j,p| = 2, |V j,p′ | = 5, then, by Lemma 11, V j,p
jc 6⊑ V j,p′

jc . Therefore,
⋃

E(V j,p
jc ) \

⋃

E(V j,p′

jc ) 6= ∅ and then, by (P), W j,p 6= ∅. Moreover, by (V), |W j,p′| > 3. Then

|W | > |W j,r| + |W j,r′ | + |W j,p| + |W j,p′| > 13, a contradiction.

Let |V j,r| = 1, |V j,r′ | = 4. Then, by Lemma 18, |V | > 12, a contradiction. This
completes the proof of the first part of the lemma.

Thus, if |V | = 12, then for every i ∈ [d] there are at most two letters l, s ∈ S, l 6∈ {s, s′}
such that the sets V i,l∪V i,l′ and V i,s∪V i,s′ are non-empty. Since there are no connection
between the letters standing at the two different positions i, j ∈ [d] in the code V , we may
assume that V ⊂ {a, a′, b, b′}d.

To show that W ⊂ {a, a′, b, b′}d assume on the contrary that there is i ∈ [d] such that
W i,l ∪W i,l′ 6= ∅, where l 6∈ {a, a′, b, b′}. Since V i,l ∪ V i,l′ = ∅ and W i,l ∪W i,l′ 6= ∅, by (C)
in Section 2.3, the set

⋃

E(W i,l ∪W i,l′) is an i-cylinder. Consequently, by Theorem 15,
|W | > |W i,l| + |W i,l′ | > 24, a contradiction. �

5 Computations

In this section we describe the computations that allow us to determine all equivalent
and disjoint polybox codes V,W ⊂ Sd without twin pairs having 12 words each, where
S = {a, a′, b, b′} and d ∈ {4, 5, 6}.

Before we start let us recall the definition of isomorphic polybox codes.
If v ∈ Sd, and σ is a permutation of the set [d], then σ∗(v) = vσ(1) . . . vσ(d). For every

i ∈ [d] let hi : S → S be a bijection such that hi(l
′) = (hi(l))

′ for every l ∈ S, and let
h : Sd → Sd be defined by the formula h(v) = h1(v1) . . . hd(vd). We say that polybox
codes P,Q ⊂ Sd are isomorphic if there are σ and h such that Q = {h1(vσ(1)) . . . hd(vσ(d)) :
v ∈ P}. The composition h ◦ σ∗ is an isomorphism between P and Q. Let V and W be
disjoint, equivalent and twin pair free polybox codes, and let h ◦ σ∗(V ) be an isomorphic
code to V . It follows from the definition of the isomorphism h◦σ∗ that the codes h◦σ∗(V )
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and h ◦ σ∗(W ) are also disjoint, equivalent and do not contain a twin pair. To show this
it is enough to notice that the definition of h ◦ σ∗ guarantees that h ◦ σ∗(w) ⊑ h ◦ σ∗(V ),
whenever w ⊑ V .

5.1 Covers of a pair of words

We begin with the following

Lemma 22. Let S = {a, a′, b, b′}, d ∈ {4, 5, 6}, and let V,W ⊂ Sd be disjoint sets which
are equivalent polybox codes without twin pairs. Assume that for every i ∈ [d] there are
two letters l, p ∈ S such that W i,l 6= ∅ and W i,p 6= ∅. If |V | = 12, then for every v ∈ V
the number of words in the set Wv = {w ∈ W : w̆ ∩ v̆ 6= ∅} is at most eight for d = 4,
seven for d = 5 and six for d = 6.

Proof. We prove the lemma for d = 6. Suppose on the contrary that |Wv| = 7. Assume for
simplicity that v = bbbbbb. For every s ∈ S we have Es∩Es′ = ∅ and therefore every word
in Wv has no letter b′ and every word in W \Wv has b′ at some position i ∈ [6]. Since |W | =
12, by Lemma 19, for every i ∈ [6] and every pair {l, s} ∈ {{a, b}, {a, b′}, {a′, b}, {a′, b′}}
there are two words p, q ∈ W which are i-siblings such that {pi, qi} = {l, s}. We will
consider a graph G of siblings on W (compare Section 2.9). Call an edge (p, q) in G of
the type b′ if {pi, qi} ∈ {{a, b′}, {a′, b′}}. Since vertices in Wv do not contain the letter b′,
both endpoints of any edge of the type b′ belong to the set W \Wv (call such an edge an
inner edge) or one of the endpoints lies in Wv and the other in W \Wv (call such an edge
an outer edge) .

Clearly, since vertices in Wv do not contain the letter b′, if w ∈ W \ Wv contains at
least three letters b′, then there is no outer edge which is incident to w.

Observe that, if w ∈ W \Wv contains two letters b′, then there is at most one outer
edge which is incident to w. To see this, assume that w = b′b′w3w4w5w6 and suppose
on the contrary that there are two outer edges, say (w, u) and (w, p), where u, p ∈ Wv.
We may assume that u = abw3w4w5w6. Then p = a′bw3w4w5w6, p = baw3w4w5w6 or
p = ba′w3w4w5w6. In the first case u and p form a twin pair, and in the rest two cases u
and p are not dichotomous. In both cases we obtain a contradiction.

Recall that the outer and the inner edges in G are coloured with the colours {1, . . . , 6}:
An edge (p, q) of the type b′ has a colour i ∈ [6] if {pi, qi} ∈ {{a, b′}, {a′, b′}}. We need
at least two edges of each colour i ∈ [6]: One edge (p, q) with {pi, qi} = {a, b′} and the
second one (u, t) with {ui, ti} = {a′, b′}.

Let {w1, . . . , w5} = W \Wv. In Figures 13a, b, we indicate the forbidden colourings of
subgraphs of G, where i, j, k ∈ [6] are pairwise different and all edges are of the type b′

(slanted edges in Figures 13a, b are outer edges).

To show that the colouring in Figure 13a is forbidden assume on the contrary that
i = 1, j = 2, k = 3. Then we may assume that wn = b′wn

2 . . . w
n
6 , where wn

i 6= b′ for
i = 2, . . . , 6, because wn is incident to two outer edges. The edges with the colours j and
k are of the type b′, and therefore wm

2 = wm
3 = b′ (there are no words with b′ in the set

Wv, and thus wm
3 = b′). But then wn and wm cannot be adjacent because wm cannot
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Figure 13: Forbidden colourings (a and b).

contain more than two letters b′. A contradiction. The proof that the colouring in Figure
13b is forbidden is similar.

Observe now that the outer edges can be coloured with at most five colours from the
set {1, . . . , 6} because if two or more outer edges are incident to some w ∈ W \Wv, then
they have to be of the same colour. This follows from the fact that every w ∈ W \ Wv

which is adjacent to at least two vertices from Wv contains exactly one letter b′. On the
other hand, if the two outer edges (w, u) and (w, q), where u, q ∈ Wv, have the colours
i, j ∈ [d], i 6= j, then wi = wj = b′ because u and q have no letter b′. A contradiction.

Assume that the outer edges are coloured with the colours {1, 2, 3, 4, 5}. Thus, two
inner edges have to be coloured by the colour 6. Since the colourings in Figures 13a, b
are forbidden, each endpoints of an inner edge with the colour 6 can be incident to at
most one outer edge. Therefore, the inner edges are coloured by at least four colours:
Two inner edges are coloured by the colour 6 and three inner edges are coloured by three
colours i, j, k ∈ {1, . . . , 5}. Thus, there are at least five inner edges. By Lemma 8, the
graph G cannot contain an odd cycles. Therefore, the inner edges coincide with at least
five edges in the graph which is presented in Figure 13 on the right. Since the inner edges
are coloured with at least four colours (two edges with the colour 6 and three edges with
the colours i, j, k) there is a cycle in G of length four containing three edges coloured by
three colours. This is, by Lemma 8, impossible.

The situation does not improve (is even worse) if the outer edges are coloured with
less than five colours or if |Wv| > 8. In the same way we prove the lemma in the cases
d = 4, 5. �

Let S = {a, a′, b, b′}, d ∈ {4, 5, 6}, and let V,W ⊂ Sd be disjoint sets which are
equivalent polybox codes without twin pairs. By (2.4), there are v, u ∈ V such that
vi ∈ {ui, u

′
i} for every i ∈ [d] and |{i ∈ [d] : vi = u′

i}| = 3 for d = 4 and |{i ∈ [d] : vi =
u′
i}| ∈ {3, 5} for d = 5, 6. From now on, without loss of generality, we assume that

v = bbbb, u = b′b′b′b for d = 4,

v = bbbbb, u = b′b′b′bb or v = bbbbb, u = b′b′b′b′b′ for d = 5,

v = bbbbbb, u = b′b′b′bbb or v = bbbbbb, u = b′b′b′b′b′b for d = 6.

Since V and W are equivalent, by (2.6), we have v̆ ∪ ŭ ⊂
⋃

E(W ).
Let R be as in Corollary 20, and let

Wv,u = {w ∈ W : w̆ ∩ (v̆ ∪ ŭ) 6= ∅} and (|W i,l
v,u|, |W

i,l′

v,u |) 6∈ R ∪ {(12, 0)} (5.1)
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for every i ∈ [d] and l ∈ S. Note that the first equality means, again by (2.6), that
v, u ⊑ Wv,u.

Our further proceedings is described within the following three points:

1. For every d ∈ {4, 5, 6} we first compute all twin pair free codes Wv,u ⊂ Sd with
|Wv,u| 6 12 satisfying (5.1).

2. Next, we append, if necessary, the missing words M = M(Wv,u) ⊂ Sd to the
code Wv,u such that the set of words Wv,u ∪ M is a polybox codes without twin pair,
|Wv,u ∪M | = 12 and |(Wv,u ∪M)i,l| 6= 12 for every i ∈ [d] and l ∈ S.
A comment: Observe that, if (|W i,l

v,u|, |W
i,l′

v,u |) ∈ R for some i ∈ [d] and some l ∈ S, then

(|(Wv,u∪M)i,l|, |(Wv,u∪M)i,l
′

|) ∈ R∪{(12, 0)}. If now V is a twin pair free polybox code
which is equivalent to Wv,u ∪M , disjoint with it and (|(Wv,u ∪M)i,l|, |(Wv,u ∪M)i,l

′

|) 6=
(12, 0), then, by Corollary 20, |Wv,u ∪ M | > 12, a contradiction. That is why we may
consider only the codes Wv,u whose distributions of the words satisfy (5.1). As we see the
codes Wv,u ∪M such that |(Wv,u ∪M)i,l| = 12 for some i ∈ [d] and some l ∈ S will not
considered during the computations.

3. Finally, we select only these codes Wv,u ∪ M which, by Lemma 19, contain all
siblings: For every i ∈ [d] and every {l, s} ∈ {{a, b}, {a, b′}, {a′, b}, {a′, b′}} there are two
words p, q ∈ Wv,u ∪M which are i-siblings such that {pi, qi} = {l, s}. (Every code of the
form Wv,u ∪M will our candidate for the code W defined at the beginning of Section 5.
The code V will be find in the proof of Theorem 27.)

Let
Wv = {w ∈ W : v̆ ∩ w̆ 6= ∅} and Wu = {w ∈ W : ŭ ∩ w̆ 6= ∅}.

Then, v ⊑ Wv and u ⊑ Wu. Since Wv,u = Wv ∪ (Wu \ Wv) for some Wv and Wu, to
determine all covers Wv,u with |Wv,u| 6 12 we first compute all covers Wv and Wu with
the number of words described in Lemma 22: |Wv|, |Wu| 6 8 for d = 4, |Wv|, |Wu| 6 7 for
d = 5 and |Wv|, |Wu| 6 6 for d = 6. Obviously, in all cases, by Lemma 9, |Wv|, |Wu| > 5.

By Covv and Covu we denote the family of all covers Wv and Wu, respectively with
the above described number of words.

By Covv,u we denote the family of all covers Wv,u with |Wv,u| 6 12 satisfying (5.1).
The family Covv,u can be easily computed from Covv and Covu as follows: For every

Wv ∈ Covv and Wu ∈ Covu if the code Wv,u = Wv ∪ (Wu \Wv) consists of at most twelve
pairwise dichotomous words, does not contain a twin pair and its distribution of words
satisfies (5.1), then Wv,u is added to Covv,u.

For every d ∈ {4, 5, 6} we give non-isomorphic codes in Covv and Covu but to compute
Covv,u we use all codes in Covv and Covu. Having computed the family Covv,u we will
find non-isomorphic codes Wv,u in the family Covv,u, and to these non-isomorphic codes
we will try attach the missing words M in the fashion described previously. Obviously,
if the code Wv,u ∪M contains all siblings and has twelve words without twin pairs, and
h ◦σ∗(Wv,u) ∈ Covv,u is isomorphic to Wv,w, then the code h ◦σ∗(Wv,u ∪M) also contains
all siblings and does not contain a twin pair.

We now describe in details the way of computing the codes Wv,u ∪M for d = 4.

the electronic journal of combinatorics 22(1) (2015), #P1.16 33



Case d=4

By (2.5) and (2.6), for every w ∈ Wbbbb we have

g(w, bbbb) = 2i for i ∈ {0, . . . , 3}

and
∑

w∈Wbbbb

g(w, bbbb) = 16.

Let xi denote the number of words in Wbbbb with i letters b (compare the last part of Section
2.8). Thus, admissible values of xi for i = 0, 1, 2, 3 are the solutions of the systems of the
equations

x0 + 2x1 + 4x2 + 8x3 = 16, x0 + x1 + x2 + x3 = m (5.2)

where x0, x1, x2, x3 are non-negative integers and m = |Wbbbb|. Below we list the positive
solutions of (5.2) for m = 7, 8 (for m = 5, 6 the form of the cover Wbbbb is described in
Lemma 9 and 10):
For m = 7 we have

x1 = 6, x2 = 1 or x0 = 2, x1 = 3, x2 = 2 or

x0 = 4, x2 = 3 or x0 = 4, x1 = 2, x3 = 1.

For m = 8 we have
x1 = 8 or x0 = 2, x1 = 5, x2 = 1 or

x0 = 4, x1 = 2, x2 = 2 or x0 = 6, x1 = 1, x3 = 1.

Every solution of (5.2) gives a necessary distribution of words in a cover Wbbbb with
respect to a number of the letters b in every word. For example, if |Wbbbb| = 8 and
Wbbbb(ib) denotes the set of all words in Wbbbb having i letters b, then the distribu-
tion (|Wbbbb(0b)|, |Wbbbb(1b)|, |Wbbbb(2b)|, |Wbbbb(3b)|) can take only one of the forms given
by the solutions of (5.2) for m = 8: (0, 8, 0, 0), (2, 5, 1, 0), (4, 2, 2, 0) or (6, 1, 0, 1). By
Covbbbb(i1, i2, i3, i4) we denote the family of all covers Wbbbb such that

(|Wbbbb(0b)|, |Wbbbb(1b)|, |Wbbbb(2b)|, |Wbbbb(3b)|) = (i1, i2, i3, i4).

In Table 2 we present the results of the computations for d = 4 (we present only non-empty
sets Covbbbb(i1, i2, i3, i4)):

Total Non-isomorphic codes
|Covbbbb(0, 2, 3, 0)| = 32 aaab, a′a′a′b, baa′b, a′bab, aa′bb
|Covbbbb(2, 3, 0, 1)| = 64 aaaa, a′a′a′a, baa′a, a′baa, aa′ba, bbba′

aaaa, aaa′b, aa′a′a′, a′aba, a′ba′a′, ba′ba, bbaa′;
|Covbbbb(2, 3, 2, 0)| = 576 aaab, aa′ba, a′baa′, aaa′a, aa′aa′, a′bba, bba′a′

|Covbbbb(2, 5, 1, 0)| = 192 aaab, aba′a′, a′aaa, a′aba′, a′a′a′a′, baa′a, ba′aa′, ba′ba
|Covbbbb(0, 8, 0, 0)| = 8 aaab, aa′ba′, aba′a, a′aba, a′a′a′b, a′baa′, baa′a′, ba′aa
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Table 2.

If we now make the substitution b → b′ at the first three positions in every word in
the covers from Table 2, we obtain Covb′b′b′b(i1, i2, i3, i4) for every (i1, i2, i3, i4) from the
set {(0, 2, 3, 0), (2, 3, 0, 1), (2, 3, 2, 0), (2, 5, 1, 0), (0, 8, 0, 0)}. Let v = bbbb and u = b′b′b′b,
and let

Covv = Covv(0, 2, 3, 0)∪Covv(2, 3, 0, 1)∪Covv(2, 3, 2, 0)∪Covv(2, 5, 1, 0)∪Covv(0, 8, 0, 0),

Covu = Covu(0, 2, 3, 0)∪Covu(2, 3, 0, 1)∪Covu(2, 3, 2, 0)∪Covu(2, 5, 1, 0)∪Covu(0, 8, 0, 0).

The simple computations show that |Covv,u| = 312 from which five codes are non-
isomorphic:

W 0
v,u = {a′a′a′b, a′baa′, baa′a, aa′a′a, a′aa′a′, abba′, bbaa, ab′a′a′, b′ab′a, b′a′aa, b′b′aa′}

W 1
v,u = {aaaa, aaa′b, aa′a′a′, aa′ba, abaa′, a′ab′a, a′bbb, a′b′a′a′, b′a′b′a, b′b′aa′}

W 2
v,u = {aaba, aab′a′, aa′bb, ab′b′a, a′ab′b, a′a′ba′, a′a′b′a, a′bba, baba′, b′a′b′a′}

W 3
v,u = {aaba, aab′b, aa′bb, aa′b′a′, a′ab′a, a′a′ba′, a′bba, a′b′b′a′, baba′, b′a′b′a}

W 4
v,u = {aaba, aab′b, aa′bb, aa′b′a, a′ab′a′, a′a′ba′, a′bba, a′b′b′a, baba′, b′a′b′a′}.

Finally, to these five codes we append the missing words M j, j ∈ {0, . . . , 4}, according
the rules we gave before: The code W 0

v,u has to be extended by one word, and the rest
four codes by two words each. In all resulting polybox codes without twin pairs we check
whether they posses all siblings (see the point 3 below (5.1)). The following two claims
summarize our computations in dimension four.

Claim 23. The word bb′ab′ is the sole for which the set W = W 0
v,u ∪ M0, where M0 =

{bb′ab′}, is a polybox code without twin pair containing all siblings. �

Claim 24. For every pair t, r ∈ S4 of dichotomous words and every j ∈ [4] if the set
W j

v,u ∪ {t, r} is a polybox code without twin pairs, then it does not contain all siblings:
There is i ∈ [4] and a pair of letters {l, s} ∈ {{a, b}, {a, b′}, {a′, b}, {a′, b′}} such that
there are no two words p, w ∈ W j

v,u ∪ {t, r} which are i-siblings and {pi, wi} = {l, s}.
Thus, by Lemma 19, for every j ∈ [4] the code W j

v,u cannot be extended to a polybox code
W j

v,u ∪M j with twelve words without twin pairs such that there is a code V without twin
pairs which is disjoint with W j

v,u ∪M j and equivalent to it. �

Case d = 5

For d = 5, by Lemmas 9, 10 and 22 we consider only one system of the equations:

x0 + 2x1 + 4x2 + 8x3 + 16x4 = 32, x0 + x1 + x2 + x3 + x4 = 7 (5.3)

where x0, x1, x2, x3, x4 are non-negative integers. It has the following positive solutions:
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x2 = 6, x3 = 1 or x1 = 2, x2 = 5, x3 = 1 or x1 = 2, x2 = 3, x3 = 2

or x0 = 2, x1 = 1, x2 = 1, x3 = 3 or x0 = 2, x1 = 1, x2 = 1, x3 = 3

or x0 = 2, x1 = 1, x2 = 3, x4 = 1 or x0 = 2, x1 = 3, x3 = 1, x4 = 1

or x1 = 4, x2 = 2, x4 = 1 or x0 = 4, x2 = 1, x3 = 1, x4 = 1

The results of the computations for d = 5 are presented in Table 3.

Total Non-isomorphic codes
|Covbbbbb(0, 0, 2, 3, 0)| = 80 aaabb, a′a′a′bb, baa′bb, a′babb, aa′bbb
|Covbbbbb(0, 2, 3, 0, 1)| = 320 aaaba, a′a′a′ba, baa′ba, a′baba, aa′bba, bbbba′

|Covbbbbb(2, 3, 1, 0, 1)| = 640 aaaaa, a′a′a′aa, baa′aa, a′baaa, aa′baa, bbbaa′, bbba′b
aaaab, aaa′bb, aa′a′a′b, a′abab, a′ba′a′b, ba′bab, bbaa′b;

|Covbbbbb(0, 2, 3, 2, 0)| = 2880 aaabb, aa′bab, a′baa′b, aaa′ab, aa′aa′b, a′bbab, bba′a′b

Table 3.

For the pair v = bbbbb, u = b′b′b′bb we obtained |Covv,u| = 2400 from which fifteen
codes are non-isomorphic (Table 4), and for the pair v = bbbbb, q = b′b′b′b′b′ we obtained
|Covv,q| = 4480 from which seven codes are non-isomorphic (Table 5). Every code Q ∈
Covv,u ∪ Covv,q has ten words.

No. Non-isomorphic codes in Covv,u for v = bbbbb, u = b′b′b′bb
1. aabab, aab′ba, aa′bbb, ab′b′ba′, a′ab′bb, a′a′ba′b, a′a′b′ba′, a′bbab, baba′b, b′a′b′ba
2. aabab, aab′bb, aa′bbb, aa′b′ba, a′ab′ba′, a′a′ba′b, a′bbab, a′b′b′ba, baba′b, b′a′b′ba′

3. aabab, aa′bbb, ab′b′aa, ab′b′a′b, a′a′ba′b, a′bbab, a′b′b′a′a′, a′b′b′ba, baba′b, b′b′b′aa′

4. aabab, aa′bbb, ab′b′aa, ab′b′ba′, a′a′ba′b, a′bbab, a′b′b′ab, a′b′b′a′a′, baba′b, b′b′b′a′a
5. aabab, aa′bbb, ab′b′ab, ab′b′a′a, a′a′ba′b, a′bbab, a′b′b′aa′, a′b′b′ba, baba′b, b′b′b′a′a′

6. aabab, aa′bbb, ab′b′a′a, ab′b′ba′, a′a′ba′b, a′bbab, a′b′b′aa′, a′b′b′a′b, baba′b, b′b′b′aa
7. abbaa, abba′b, ab′b′aa, ab′b′a′b, a′bba′a′, a′bbba, a′b′b′a′a′, a′b′b′ba, bbbaa′, b′b′b′aa′

8. abbaa, abba′b, ab′b′aa, ab′b′ba′, a′bba′a′, a′bbba, a′b′b′ab, a′b′b′a′a′, bbbaa′, b′b′b′a′a
9. abbaa, abba′b, ab′b′aa′, ab′b′a′b, a′bba′a′, a′bbba, a′b′b′a′a, a′b′b′ba′, bbbaa′, b′b′b′aa
10. abbaa, abba′b, ab′b′aa′, ab′b′ba, a′bba′a′, a′bbba, a′b′b′ab, a′b′b′a′a, bbbaa′, b′b′b′a′a′

11. abbaa, abba′b, ab′b′ab, ab′b′a′a′, a′bba′a′, a′bbba, a′b′b′aa, a′b′b′ba′, bbbaa′, b′b′b′a′a
12. abbaa, abba′b, ab′b′a′a′, ab′b′ba, a′bba′a′, a′bbba, a′b′b′aa, a′b′b′a′b, bbbaa′, b′b′b′aa′

13. abbaa, abba′b, a′bba′a′, a′bbba, bbbaa′, b′ab′aa, b′ab′a′b, b′a′b′a′a′, b′a′b′ba, b′b′b′aa′

14. abbaa, abba′b, a′bba′a′, a′bbba, bbbaa′, b′ab′aa, b′ab′ba′, b′a′b′ab, b′a′b′a′a′, b′b′b′a′a
15. abbaa, abba′b, a′bba′a′, a′bbba, bbbaa′, b′ab′aa′, b′ab′a′b, b′a′b′a′a, b′a′b′ba′, b′b′b′aa

Table 4.

the electronic journal of combinatorics 22(1) (2015), #P1.16 36



No. Non-isomorphic codes in Covv,q for v = bbbbb, q = b′b′b′b′b′

1. aaabb, aaab′b′, aa′bbb, aa′b′b′b′, a′a′a′bb, a′a′a′b′b′, a′babb, a′b′ab′b′, baa′bb, b′aa′b′b′

2. aaabb, aaab′b′, aa′bbb, ab′a′b′b′, a′ab′b′b′, a′a′a′bb, a′a′a′b′b′, a′babb, baa′bb, b′a′ab′b′

3. aaabb, aaa′b′b′, aa′bbb, aa′b′b′b′, a′a′ab′b′, a′a′a′bb, a′babb, a′b′a′b′b′, baa′bb, b′aab′b′

4. aaabb, aaa′b′b′, aa′bbb, ab′ab′b′, a′ab′b′b′, a′a′ab′b′, a′a′a′bb, a′babb, baa′bb, b′a′a′b′b′

5. aaabb, aab′ab′, aa′bbb, aa′b′b′b′, a′a′a′bb, a′a′b′a′b′, a′babb, a′b′b′ab′, baa′bb, b′ab′a′b′

6. aaabb, aab′ab′, aa′bbb, ab′b′a′b′, a′ab′b′b′, a′a′a′bb, a′a′b′a′b′, a′babb, baa′bb, b′a′b′ab′

7. aaabb, aab′b′b′, aa′bbb, aa′b′ab′, a′ab′a′b′, a′a′a′bb, a′babb, a′b′b′ab′, baa′bb, b′a′b′a′b′

Table 5.

Claim 25. Let v = bbbbb, u = b′b′b′bb and q = b′b′b′b′b′. For every pair t, r ∈ S5 of
dichotomous words and every code Q ∈ Covv,u ∪ Covv,q if the set Q ∪ {t, r} is a polybox
code without twin pairs, then it does not contain all siblings: There is i ∈ [5] and a
pair of letters {l, s} ∈ {{a, b}, {a, b′}, {a′, b}, {a′, b′}} such that there are no two words
p, w ∈ Q∪{t, r} which are i-siblings and {pi, wi} = {l, s}. Thus, by Lemma 19, for every
Q ∈ Covv,u ∪ Covv,q the code Q cannot be extended to a polybox code Q ∪M with twelve
words without twin pairs such that there is a code V without twin pairs which is disjoint
with Q ∪M and equivalent to it.

Case d=6

By Lemma 22, for d = 6 we need all covers of the word bbbbbb by codes without twin
pairs consisting of five and six words. By Lemmas 9 and 10, these codes have the forms
(Table 6):

Total Non-isomorphic codes
|Covbbbbbb(0, 0, 0, 2, 3, 0)| = 160 aaabbb, a′a′a′bbb, baa′bbb, a′babbb, aa′bbbb
|Covbbbbbb(0, 0, 2, 3, 0, 1)| = 960 aaabba, a′a′a′bba, baa′bba, a′babba, aa′bbba, bbbbba′

Table 6.

For the pair v = bbbbbb, u = b′b′b′bbb we obtained |Covv,u| = 8128 from which fifteen
codes are non-isomorphic (Table 7), and for the pair v = bbbbbb, q = b′b′b′b′b′b we obtained
|Covv,q| = 17918 from which fifteen codes are non-isomorphic (Table 8). Every code
Q ∈ Covv,u ∪ Covv,q has ten words.
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No. Non-isomorphic codes in Covv,u for v = bbbbbb, u = b′b′b′bbb
1. aab′abb, aa′b′bbb, a′a′b′a′bb, a′b′b′abb, babbaa′, babbba, ba′bbab, ba′bba′a,

bbbba′a′, b′ab′a′bb
2. aababb, aa′bbbb, a′a′ba′bb, a′bbabb, baba′bb, b′b′b′aaa, b′b′b′aa′b, b′b′b′a′a′a′,

b′b′b′a′ba, b′b′b′baa′

3. abbaab, abba′bb, ab′b′aba, ab′b′a′bb, a′bba′a′b, a′bbbab, a′b′b′a′ba′, a′b′b′bba,
bbbaa′b, b′b′b′aba′

4. abbaab, abba′bb, ab′b′aba, ab′b′bba′, a′bba′a′b, a′bbbab, a′b′b′abb, a′b′b′a′ba′,
bbbaa′b, b′b′b′a′ba

5. abbaab, abba′bb, ab′b′abb, ab′b′a′ba, a′bba′a′b, a′bbbab, a′b′b′aba′, a′b′b′bba,
bbbaa′b, b′b′b′a′ba′

6. abbaab, abba′bb, ab′b′a′ba, ab′b′bba′, a′bba′a′b, a′bbbab, a′b′b′aba′, a′b′b′a′bb,
bbbaa′b, b′b′b′aba

7. abbaab, abba′bb, a′bba′a′b, a′bbbab, bbbaa′b, b′ab′aba, b′ab′a′bb, b′a′b′a′ba′,
b′a′b′bba, b′b′b′aba′

8. abbaab, abba′bb, a′bba′a′b, a′bbbab, bbbaa′b, b′ab′aba, b′ab′bba′, b′a′b′abb,
b′a′b′a′ba′, b′b′b′a′ba

9. abbaab, abba′bb, a′bba′a′b, a′bbbab, bbbaa′b, b′b′b′aaa, b′b′b′aa′b, b′b′b′a′a′a′,
b′b′b′a′ba, b′b′b′baa′

10. abbaab, abba′bb, a′bba′a′b, a′bbbab, bbbaa′b, b′b′b′aaa, b′b′b′aba′, b′b′b′a′ab,
b′b′b′a′a′a′, b′b′b′ba′a

11. abbaab, abba′bb, a′bba′a′b, a′bbbab, bbbaa′b, b′b′b′aab, b′b′b′aa′a, b′b′b′a′aa′,
b′b′b′a′ba, b′b′b′ba′a′

12. bbbaaa, bbbaa′b, bbba′a′a′, bbba′ba, bbbbaa′, b′b′b′aaa, b′b′b′aa′b, b′b′b′a′a′a′,
b′b′b′a′ba, b′b′b′baa′

13. bbbaaa, bbbaa′b, bbba′a′a′, bbba′ba, bbbbaa′, b′b′b′aaa, b′b′b′aba′, b′b′b′a′ab,
b′b′b′a′a′a′, b′b′b′ba′a

14. bbbaaa, bbbaa′b, bbba′a′a′, bbba′ba, bbbbaa′, b′b′b′aaa′, b′b′b′aa′b, b′b′b′a′a′a,
b′b′b′a′ba′, b′b′b′baa

15. bbbaaa, bbbaa′b, bbba′a′a′, bbba′ba, bbbbaa′, b′b′b′aaa′, b′b′b′aba, b′b′b′a′ab,
b′b′b′a′a′a, b′b′b′ba′a′

Table 7.
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No. Non-isomorphic codes in Covv,q for v = bbbbbb, q = b′b′b′b′b′b
1. aaabbb, aab′b′b′a, aa′bbbb, aa′b′b′b′b, a′a′a′bbb, a′a′b′b′b′a′, a′babbb, a′b′b′b′b′a,

baa′bbb, b′ab′b′b′a′

2. aaabbb, aab′b′b′a, aa′bbbb, ab′b′b′b′a′, a′ab′b′b′b, a′a′a′bbb, a′a′b′b′b′a′, a′babbb,
baa′bbb, b′a′b′b′b′a

3. aaabbb, aab′b′b′b, aa′bbbb, aa′b′b′b′a, a′ab′b′b′a′, a′a′a′bbb, a′babbb, a′b′b′b′b′a,
baa′bbb, b′a′b′b′b′a′

4. aaabbb, aa′bbbb, ab′b′ab′a, ab′b′a′b′b, a′a′a′bbb, a′babbb, a′b′b′a′b′a′, a′b′b′b′b′a,
baa′bbb, b′b′b′ab′a′

5. aabbba, aab′b′b′a, aa′bbbb, aa′b′b′b′b, a′a′bbba′, a′a′b′b′b′a′, a′bbbba, a′b′b′b′b′a,
babbba′, b′ab′b′b′a′

6. aabbba, aab′b′b′a, aa′bbbb, ab′b′b′b′a′, a′ab′b′b′b, a′a′bbba′, a′a′b′b′b′a′, a′bbbba,
babbba′, b′a′b′b′b′a

7. aabbba, aab′b′b′a′, aa′bbbb, aa′b′b′b′b, a′a′bbba′, a′a′b′b′b′a, a′bbbba, a′b′b′b′b′a′,
babbba′, b′ab′b′b′a

8. aabbba, aab′b′b′a′, aa′bbbb, ab′b′b′b′a, a′ab′b′b′b, a′a′bbba′, a′a′b′b′b′a, a′bbbba,
babbba′, b′a′b′b′b′a′

9. aabbba, aab′b′b′b, aa′bbbb, aa′b′b′b′a, a′ab′b′b′a′, a′a′bbba′, a′bbbba, a′b′b′b′b′a,
babbba′, b′a′b′b′b′a′

10. aabbba, aab′b′b′b, aa′bbbb, aa′b′b′b′a′, a′ab′b′b′a, a′a′bbba′, a′bbbba, a′b′b′b′b′a′,
babbba′, b′a′b′b′b′a

11. aabbba, aa′bbbb, ab′ab′b′a, ab′a′b′b′b, a′a′bbba′, a′bbbba, a′b′a′b′b′a′, a′b′b′b′b′a,
babbba′, b′b′ab′b′a′

12. aabbba, aa′bbbb, ab′ab′b′a, ab′b′b′b′a′, a′a′bbba′, a′bbbba, a′b′ab′b′b, a′b′a′b′b′a′,
babbba′, b′b′a′b′b′a

13. aabbba, aa′bbbb, ab′ab′b′a′, ab′a′b′b′b, a′a′bbba′, a′bbbba, a′b′a′b′b′a, a′b′b′b′b′a′,
babbba′, b′b′ab′b′a

14. aabbba, aa′bbbb, ab′ab′b′a′, ab′b′b′b′a, a′a′bbba′, a′bbbba, a′b′ab′b′b, a′b′a′b′b′a,
babbba′, b′b′a′b′b′a′

15. aabbba, aa′bbbb, a′a′bbba′, a′bbbba, babbba′, b′b′aab′a, b′b′aa′b′b, b′b′a′a′b′a′,
b′b′a′b′b′a, b′b′b′ab′a′

Table 8.

For the same reason as for d = 5 we have the following

Claim 26. Let v = bbbbbb, u = b′b′b′bbb and q = b′b′b′b′b′b. For every Q ∈ Covv,u ∪ Covv,q

the code Q cannot be extended to a polybox code Q ∪ M with twelve words without twin
pairs such that there is a code V without twin pairs which is disjoint with Q ∪ M and
equivalent to it. �

We now can prove our key result on the form of two disjoint and equivalent polybox
codes without twin pairs having twelve words each.
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Theorem 27. Let d ∈ {4, 5, 6}, and let V,W ⊂ Sd be disjoint sets which are equivalent
polybox codes without twin pairs. If |V | = 12, then, up to an isomorphism,

VA = {aa′bb′, abb′a, ab′b′b′, a′ab′b′, a′a′ab′, a′bb′b, babb′, bbbb, bb′a′b, b′aba′, b′a′bb, b′b′b′b},

WA = {a′a′a′b, a′baa′, baa′a, aa′a′a, a′aa′a′, abba′, bbaa, ab′a′a′, b′ab′a, b′a′aa, b′b′aa′, bb′ab′},

where A = {1, 2, 3, 4} ⊆ [d] and VAc = WAc = {rAc} for some r ∈ Sd.

Proof. Let d = 4. We may assume, by (2.4), that bbbb, b′b′b′b ∈ V . By Lemma 19, Claims
23 and 24, the code W must be, up to an isomorphism, of the form

W = {a′a′a′b, a′baa′, baa′a, aa′a′a, a′aa′a′, abba′, bbaa, ab′a′a′, b′ab′a, b′a′aa, b′b′aa′, bb′ab′}.

It can be easily computed that the code W extends to a partition code in only one fashion:

W ∪ {abb′a′, a′a′a′b′, bb′ab, b′aba}. (5.4)

Similarly, the code {abb′a′, a′a′a′b′, bb′ab, b′aba} can be extended to a partition code which
is different from (5.4) in only one fashion:

V ∪ {abb′a′, a′a′a′b′, bb′ab, b′aba}.

Thus, in dimension four the pair V,W is the only pair of polybox codes, up to an isomor-
phism, which are disjoint, equivalent and do not contain a twin pair.

For d = 5, 6, by Claims 25 and 26, every cover of a pair of words

{v, u} ∈ {{bbbbb, b′b′b′bb}, {bbbbb, b′b′b′b′b′}, {bbbbbb, b′b′b′bbb}, {bbbbbb, b′b′b′b′b′b}}

by pairwise dichotomous words without twin pairs cannot be completed to a twin pair
free polybox code W with twelve words which has all siblings. Therefore, in dimensions
five and six we have, by Lemma 19, VAc = WAc = {rAc} for some r ∈ Sd, where the codes
VA, WA are as in dimension four. �

Remark 28. The codes V and W were used by Lagarias and Shor[12, 13] and later on by
Mackey[17] to construct the counterexamples to Keller’s cube tiling conjecture. In the
context of this conjecture one of these codes was given first by Corrádi and Szabó in [3],
as an example of the maximum clique in a 4-dimensional Keller graph.

6 Twin pairs in cube tilings of R7

From Theorem 15 and 27 we obtain the following

Theorem 29. Let U ⊂ S7 be a partition code. If there are i ∈ [7] and l ∈ S such that
|U i,l| 6 12, then there is a twin pair in U .
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Proof. Without loss of generality we may assume that i = 7 and l = a. Since
⋃

E(U7,a ∪

U7,a′) is a 7-cylinder in (ES)7, the codes U7,a
7c and U7,a′

7c are equivalent, where recall that

U7,a
7c = (U7,a)7c and U7,a′

7c = (U7,a′)7c . If U7,a or U7,a′ contains a twin pair, then clearly U

does. Thus, we assume that these two codes do not contain a twin pair. If U7,a
7c ∩U7,a′

7c 6= ∅

and v7c ∈ U7,a
7c ∩U7,a′

7c , then the words w ∈ U7,a and p ∈ U7,a′ such that v7c = w7c = p7c are

a twin pair. Therefore, we may assume that U7,a
7c and U7,a′

7c are disjoint and do not contain
a twin pair. It follows from Theorem 15 that |U7,a| = 12, and Theorem 27 precisely

describes the structure of the codes U7,a
7c and U7,a′

7c . Thus, we may assume that U7,a
7c = W ,

A = {1, 2, 3, 4} and rAc = aa, where W,A and r are as in Theorem 27.
From U7,a we choose four words:

v = a a′ a′ a a a a
u = a′ a a′ a′ a a a
p = b a a′ a a a a
q = b′ a b′ a a a a

Since U is a partition code, there is a set Q ⊂ U1,b′ such that p1c ⊑ Q1c and w̆1c ∩ p̆1c 6= ∅
for every w ∈ Q. Clearly, for every i ∈ {2, . . . , 7} and w ∈ Q we have wi 6= p′i, for
otherwise w̆1c ∩ p̆1c = ∅ which contradicts the definition of Q. Every w ∈ Q \ {q} is
dichotomous to the words v, u and q, and therefore w1 = b′, w2 = a, w3 = b and w4 = a
for every w ∈ Q \ {q}. Let P = Q \ {q}. Then

aaa ⊑ P{5,6,7}.

To show this, suppose on the contrary that it is not so. Then there is a point (x5, x6, x7) ∈
Ea × Ea × Ea such that (x5, x6, x7) 6∈

⋃

E(P{5,6,7}). Taking x1 ∈ Eb, x2 ∈ Ea, x3 ∈
Ea′ \ Eb′ and x4 ∈ Ea we obtain the point x = (x1, . . . , x7) which belongs to p̆ and
x1c 6∈

⋃

E(Q1c). Then, p1c 6⊑ Q1c , a contradiction.
If aaa ∈ P{5,6,7}, then the words b′abaaaa ∈ P and q form a twin pair.
Let aaa 6∈ P{5,6,7}. If P{5,6,7} does not contain a twin pair, then its structure is as in

Lemma 9 (the case d = 3):

P{5,6,7} = {s1s2s3, s
′
1s

′
2s

′
3, as

′
2s3, s1as

′
3, s

′
1s2a},

where si 6∈ {a, a′} for i = 1, 2, 3. But then b′abas′1s2a ∈ U7,a which is not true because
s2 6= a. Therefore, by Lemma 9 (the case d = 3), the code P{5,6,7} contains a twin pair,
and hence the code P contains a twin pair because w1 = b′, w2 = a, w3 = b and w4 = a
for every w ∈ P . Since P ⊂ U , the code U contains a twin pair. �

We now prove Theorem 1

Proof of Theorem 1 As it was showed in Section 2.3, the set of boxes Fx = {([0, 1)7 + t)∩
([0, 1]7+x) 6= ∅ : t ∈ T} is a minimal partition of [0, 1]7+x. Let U be a partition code such
that Fx is an exact realization of U (this code can be obtained in the manner described in
Section 2.7). Since r+(T ) = 5, there is i ∈ [7] such that U = U i,l1 ∪U i,l′1 ∪ · · ·∪U i,l5 ∪U i,l′5

and |U i,lj | 6 12 for some j ∈ [5] because |U | = 128. By Theorem 29, there is a twin pair
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in U and consequently there is a twin pair in Fx. Then the tiling [0, 1)7 + T contains a
twin pair. �

From the result of Debroni et al., [10, Theorem 1.1] and Theorm 1 we obtain the
following

Corollary 30. If [0, 1)7 + T is a counterexample to Keller’s conjecture in dimension
seven, then r−(T ), r+(T ) ∈ {3, 4}.

Proof. Theorem 1.1 in [10] says that every cube tiling [0, 1)7+T of R7 such that r+(T ) > 6
contains a twin pair, and the result of Debroni et al. says that a cube tiling [0, 1)7 + T
with r−(T ) 6 2 contains a twin pair. Since, by just proved Theorem 1.1, there is a twin
pair in every cube tiling [0, 1)7 + T of R7 such that r+(T ) = 5, in a counterexample tiling
[0, 1)7 + T to Keller’s conjecture it must be r−(T ), r+(T ) ∈ {3, 4}. �

Theorem 27 can be extended to all dimensions d > 4. Since in the presented paper
we did not need this result for d > 7 we give this theorem with only a brief sketch of the
proof.

Theorem 31. Let d > 4, and let V,W ⊂ Sd be disjoint sets which are equivalent polybox
codes without twin pairs. If |V | = 12, then, up to an isomorphism,

VA = {aa′bb′, abb′a, ab′b′b′, a′ab′b′, a′a′ab′, a′bb′b, babb′, bbbb, bb′a′b, b′aba′, b′a′bb, b′b′b′b},

WA = {a′a′a′b, a′baa′, baa′a, aa′a′a, a′aa′a′, abba′, bbaa, ab′a′a′, b′ab′a, b′a′aa, b′b′aa′, bb′ab′},

where A = {1, 2, 3, 4} ⊆ [d] and VAc = WAc = {rAc} for some r ∈ Sd.

A sketch of the proof. We procced by induction on d. By Theorem 27 the theorem is
true for d ∈ {4, 5, 6}. Let d > 7 and assume that for every i ∈ [d] there are two letters
l, s ∈ S such that V i,l and V i,s are non-empty sets. Then, by Theorem 19, we may assume
that V has all siblings (by Theorem 21 we assume that V and W are written down in
the alphabet {a, a′b, b′}). We now consider a graph G = (V,E ) of siblings on V . Let
u0, v0 ∈ V be such that

d(v0) + d(u0) = max{d(v) + d(u) : v, u ∈ V and v, u are adjacent}.

If d(v0) + d(u0) > 10, then in the similar manner as in the proof of Lemma 16 we show
that the polybox code V does not contain all siblings, and then, by Theorem 19, |V | > 12,
a contradiction.

If d(v0) + d(u0) 6 9, then, by Lemma 6, d(G) 6 9/2. Since d(G)|V | = 2|E | and
2|E | > 8d > 56 (recall that |E | > 4d), we have |V | > 12, which is a contradiction.

Therefore, there is i ∈ [d] and a letter l ∈ S such that V = V i,l. By the inductive
hypothesis, Vic and Wic are of the forms given in the theorem. �

A set V ⊂ {0, 1, 2, 3}d is a clique in a d-dimensional Keller graph if and only if V
is a polybox code without twin pairs (recall that in the alphabet S = {0, 1, 2, 3} the
complementation is given by 0′ = 2 and 1′ = 3). Thus, we may speak about equivalent
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cliques in a d-dimensional Keller graph ([10]): Cliques V and W in a d-dimensional Keller
graph are equivalent if

∑

v∈V g(v, w) = 2d for every w ∈ W and
∑

w∈W g(w, v) = 2d for
every v ∈ V .

Theorem 31 for cliques in a d-dimensional Keller graph reads as follows:

Theorem 32. Let d > 4, and let V,W ⊂ {0, 1, 2, 3}d be two disjoint sets which are equiv-
alent cliques in the d-dimensional Keller graph. If |V | = 12, then, up to an isomorphism
(of polybox codes),

VA = {0213, 0130, 0333, 2033, 2203, 2131, 1013, 1111, 1321, 3012, 3211, 3331},

WA = {2221, 2102, 1020, 0220, 2022, 0112, 1100, 0322, 3030, 3200, 3302, 1303},

where A = {1, 2, 3, 4} ⊆ [d] and VAc = WAc = {rAc} for some r ∈ {0, 1, 2, 3}d. �

In [10] we extended the notion of a d-dimensional Keller graph: If S is an alphabet
with a complementation, then a d-dimensional Keller graph on the set Sd is the graph in
which two vertices u, v ∈ Sd are adjacent if they are dichotomous but do not form a twin
pair.

From Theorem 29 we obtain the following

Corollary 33. Every clique in a 7-dimensional Keller graph on S7 which contains at
least five vertices u1, . . . , u5 such that un

i 6∈ {um
i , (u

m
i )′} for some i ∈ [7] and every n,m ∈

{1, . . . , 5}, n 6= m, has less than 27 elements.

Proof. Assume on the contrary that there is a clique U containing vertices u1, . . . , u5 and
|U | = 27. Thus, U is a partition code without twin pairs. Since un

i 6∈ {um
i , (u

m
i )′} for every

n,m ∈ {1, . . . , 5}, n 6= m, it follows that |U i,um
i | 6 12 for some m ∈ [5]. By Theorem 29,

there is a twin pair in U , a contradiction. �

Remark 34. What next? Our computer experiments made together with our colleague
Krzysztof Przes lawski show that there is a chance that the case r+(T ) = 4 can be resolve
using the same methods as the case r+(T ) = 5, but a scale of the computations will be
much more larger than that for r+(T ) = 5. Moreover, to obtain initial configurations for
the computations we need some new results on the rigidity of polyboxes.
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Angew. Math. 163 (1930), 231–248.

[8] A. P. Kisielewicz, On the structure of cube tilings in R
3 and R

4, J. Combin. Theory
Ser. A 120 (2013), 1–10.

[9] A. P. Kisielewicz, Partitions and balanced matchngs if an n-dimensional cube, Eu-
ropean J. Combin. 40 (2014), 93–107.

[10] A. P. Kisielewicz, Rigid polyboxes and Keller’s conjecture, submitted,
arXiv:1304.1639v5

[11] A. P. Kisielewicz, K. Przes lawski, Polyboxes, cube tilings and rigidity, Discrete
Comput. Geom. 40 (2008), 1–30.

[12] J. C. Lagarias and P. W. Shor, Keller’s cube-tiling conjecture is false in high dimen-
sions, Bull. Amer. Math. Soc. 27 (1992), 279–287.

[13] J. C. Lagarias and P. W. Shor, Cube tilings of R
d and nonlinear codes, Discrete

Comput. Geom. 11 (1994), 359–391.

[14] J. Lawrence, Tiling R
d by translates of orthants, Convexity and Related Comb.

Geometry Proc. of the Second Univ. of Oklahoma Conf. (1982), 203–207.

[15] M.  Lysakowska and K. Przes lawski, Keller’s conjecture on the existence of columns
in cube tilings of Rn, Adv. Geom. 12 (2012), 329–352.

[16] M.  Lysakowska and K. Przes lawski, On the structure of cube tilings and unex-
tendible systems of cubes in low dimension, European J. Combin. 32 (2011), 1417–
1427.

[17] J. Mackey, A cube tiling of dimension eight with no facesharing, Discrete Comput.
Geom. 28 (2002), 275–279.

[18] H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907.
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