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Abstract

We present new functional equations connecting the counting series of plane
and planar (in the sense of Harary and Palmer) dissections. Simple rigorous expres-
sions for counting symmetric r-dissections of polygons and planar S-dissections are
obtained.
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1 Introduction

Enumeration of triangulations of a regular (n+2)-gon (or ways to dissect a convex (n+2)-
gon into n triangles by drawing n−1 diagonals, no two of which intersect in their interior)
is one of the most well known problems in enumerative combinatorics. Apparently the
first who have solved this problems in the case of a regular (n+2)-gon with a distinguished
and oriented edge (equally, an (n + 2)-gon with marked vertices) were Johann Andreas
von Segner [1] and Leonhard Euler [2]. As a result of their decision they obtained the
sequence

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . ,

nowadays known as the sequence of Catalan numbers Cn (sequence A000108 in OEIS
classification).

There is a big variety of combinatorial objects, enumeration of which can be described
by Cn (see for example [3]). In this article we will be especially interested in another
equivalent combinatorial interpretation of these numbers, and namely, the number of
trivalent plane trees with n+ 2 vertices of degree 1, one of those being selected as a root
(so-called trivalent planted plane trees). The correspondence between the dissections of
an (n + 2)-gon with a distinguished outer edge into triangles and such trees is shown in
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Figure 1: Dual structures

Figure 1(a). Instead of trivalent trees, their dual graphs—so-called plane 2-trees—are
often enumerated [4],[5] (see Figure 1(b)).

Let us now consider the problem of counting the number of triangulations of a reg-
ular (n + 2)-gon in the case when none of its edges is distinguished (so-called unrooted
triangulations of polygons). The number of possible dissections will be reduced owing to
internal symmetry of the polygon (Figure 2). Particularly, there is only one triangulation
of a square (n = 2) and a pentagon (n = 3). Similarly, there are three or four different
triangulations of a regular hexagon depending on the notion of the isomorphism of dissec-
tions we use, i.e. depending on the allowed isometries of the plane, which transform the
hexagon into itself. There are four such dissections in case when two triangulations that
differ only by a rotation are considered the same (so-called unrooted triangulations of
polygons in the plane). And there are only three different triangulations of a (n+ 2)-gon
in case when we allow not only rotations but reflections of polygon too (so called unrooted
triangulations of polygons in space, also known as triangulations of the disc). Trivalent
trees which correspond to these triangulations are shown in Figure 2 with dotted lines.
In the terminology of Harary and Palmer [4] such trees are called plane and planar trees,
respectively.

Figure 2: Triangulations for small values of n

The first solutions of the problems related to enumeration of unrooted triangulations
(or, equivalently, enumeration of plane and planar trees) appeared only in the second half
of the twentieth century. The numerical sequence which describes the number of unrooted
triangulations of polygons in space was first obtained by Motzkin in the article [6]. In
the articles [7], [8] and [9] some special methods of getting a simple analytical expression
for the corresponding numbers were described. Harary and Palmer demonstrated in their
book [4] how to construct the generating function that describes the number of planar
2-trees and, consequently, the number of unrootes triangulations of (n+ 2)-gons in space.
This approach was based on Redfield–Pólya theory [10, 11] and on Otter’s dissimilarity
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theorem [12]. A year later, in 1974, Harary and Palmer [13] generalized the obtained result
to the case of a regular (n(r−2) + 2)-gon dissection into n r-gons or, in other words, they
enumerated all the r-gonal planar 2-trees with n vertices. However, the final expressions
for the generating functions were rather cumbersome, what did not allow them to obtain
explicit expressions for the numbers V r

n of those trees.
The theory of combinatorial species which appeared in the early 1980’s stimulated

progress in the solving the problems of counting planar trees [14],[15]. Reformulation of
Otter’s theorem [12] in terms of combinatorial species opened a route for elegant solutions
for many problems concerning enumeration of tree-like structures. In paper [5] Labelle,
Lamathe and Leroux presented the solution of the 2-tree counting problem in terms of the
species theory and obtained molecular decomposition of those species. Also, the paper
[16] should be mentioned, in which the solution of the problem of counting planar trees
was used to enumerate polyene hydrocarbons with molecular formula CnHn+2.

Despite the impressive progress in solving the problems described above, the explicit
formulas for the numbers of all unrooted dissections of polygons in space into r-gons
have not been obtained yet. This is primarily due to the complexity of accounting for
reflection symmetry in such problems. Rather simple formulas for generating functions
that describe the number of dissections of a polygon into r-gons while accounting only for
rotational symmetries were obtained in the [13]. Even more simple formulas for this case
can be derived using the theory of combinational species. On the other hand, application
of the dissymmetry theorem to the enumeration of polygon dissections while accounting
for reflection symmetry makes the final results very complicated even in the simplest case
of r = 3 (triangulation of (n+ 2)-gons) [5].

Meanwhile, back in 1964, William G. Brown in his work [17] suggested another rather
simple approach to accounting for reflection symmetry, which was based on the relation-
ship between the number of unrooted dissections of polygons in the plane and in space.
A much more complicated problem of counting the number of triangulations of a regular
(m + 3)-gon with n internal points was considered in that paper. This problem for the
case of triangulations with a distinguished oriented edge was first formulated and solved
by William T. Tutte [18]. In the above-mentioned work [17] his student William G. Brown
generalized the solution of this problem to the case of a regular (m+ 3)-gon triangulation
without distinguished edge, i.e. accounting for all possible symmetries. He also showed
in the article [19] that his approach can be effectively used to solve the counting problem
of non-isomorphic dissections into quadrangles of a regular (2p + 4)-gon with n internal
points.

In the present paper we use the ideas expressed by Brown in the articles [17, 19] to
prove the formulas (14) and (20) which link the number of the unrooted dissections of
polygons in plane and in space.

2 Enumeration of r-dissections

Let us first consider a regular (n(r − 2) + 2)-gon. Adding non-intersecting chords to this
polygon until each inner region becomes an r-gon, we finally get some dissection of the
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original polygon into n r-gons, which we will call an r-dissection. The generating function
fr(x), which describes the number of dissections rooted at an oriented outer edge, satisfies
the functional equation

fr(x) = 1 + xf r−1
r (x). (1)

This equation in rather well-known. In [13] it is stated as formula (2.2) in slightly different
terms: we allow for a dissection to consist of zero inner regions, thus our fr(x) is equal
to Ur(x) + 1 in [13]. Using the Lagrange inversion theorem, one can obtain an explicit

expression for the number F
(r)
n of r-dissections from the equation (1):

F (r)
n =

1

n

(
n(r − 1)

n− 1

)
, n > 0. (2)

In particular, in the case of r = 3 we conclude that the number of triangulations of a
regular (n+2)-gon rooted at an oriented outer edge is described by the Catalan numbers.
In the general case we have the so-called Fuss-Catalan numbers [20].

Let us consider the same problem for unrooted polygons. We denote by ur(x) the

generating function that describes the number U
(r)
n of non-isomorphic dissections of a

regular (n(r−2) + 2)-gon into r-gons considering only rotational symmetry (r-dissections
of unrooted polygons in the plane). This function can be expressed in terms of the
generating function fr(x):

ur(x) = xZ(Cr; fr(x)) + fr(x) +
fr(x

2)− f 2
r (x)

2
. (3)

Here, Z(Cr) is the cyclic index series for the group Cr of rotations of the regular r-gon,

Z(Cr; fr(x)) =
1

r

∑
d\r

ϕ(d) · f r/d
r (xd),

where ϕ(d) is the Euler function. The proof of (3) can be found in [13], where it is stated
as formula (4.3). Recall that fr(x) in the present article stands for Ur(x) + 1 in [13],
that is why the precise forms of the mentioned formulas slightly differ. We just note that
the term xZ(Cr; fr(x)) enumerates the dissections rooted at some r-gon, and this fact is
proved using the famous Pólya theorem.

Using the formula (3) one can obtain the explicit expressions for the number of r-
dissections of a regular (n(r− 2) + 2)-gon in the plane. As an example, for triangulations
of a regular (n+ 2)-gon (case r = 3) we have

u3(x) =
2

3
xf3(x

3) +
1

2
f3(x

2) +
2

3
f3(x)− 1

6x
(f3(x)− 1).

Hence it is easy to see that the number U
(3)
n of triangulations of a regular (n + 2)-gon

considering rotational symmetries is given by

U (3)
n =

1

(n+ 2)
· Cn +

1

2
· C[n/2] +

2

3
· C[(n−1)/3]
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(sequence A001683 in OEIS). Here, C[i] is the Catalan number Ci if i is an integer, and
zero otherwise.

Now let vr(x) be the generating function for the number of unrooted r-dissections of
(n(r − 2) + 2)-gon in space. Our main objective is to find a simple expression for this
function. Now we should take into account both rotational and reflective symmetries of
the polygon. We will use the approach formulated by W. G. Brown in the articles [17]
and [19].

First we define sr(x) to be the generating function for unrooted dissections that have
at least one axis of symmetry. When we start to consider reflections, ur(x) still counts
each dissection that has at least one axis of symmetry only once. But dissections which are
not invariant under any reflection are counted by ur(x) twice: dissection and its reflected
version are considered to be distinct. This is what we need to get rid of in vr(x). So, we
add sr(x) to ur(x) and divide the result by two, thereby counting each dissection exactly
once:

vr(x) =
ur(x) + sr(x)

2
. (4)

Brown introduced a tricky way to express sr(x) through generating functions for two
special kinds of rooted dissections and stated it as Lemma 10.1 in [17] without proof. As
this lemma is central for our enumeration scheme, we state it as Theorem 1 and give a
proof of it.

First we introduce two generating functions, Hr(x) and Kr(x), and define them as
functions which enumerate symmetric dissections rooted at a vertex and at an outer edge,
respectively. By the word “symmetric” we mean that these dissections have an axis of
symmetry that passes through the root, so that it is invariant under this symmetry.

Theorem 1. The following equality holds:

sr(x) =
Hr(x) +Kr(x)

2
. (5)

Proof. Let M be the set of r-dissections that have at least one axis of symmetry.
Each such dissection has a certain number k of axes of symmetry and 2k points, in which
these axes intersect the boundary of a polygon. We call these points symmetry points.
Clearly, symmetry points are located in vertices or in centers of outer edges. Dissections
enumerated by Hr(x) and Kr(x) naturally correspond to dissections from M rooted at
their symmetry points. We claim that each dissection from M can be rooted at its
symmetry point in exactly two inequivalent ways.

In fact, consider an arbitrary dissection of such kind. Its symmetry group is the dihe-
dral group Dk for some k. Particularly, this dissection admits k reflections and k rotations
(including trivial) and 2k its symmetry points are located uniformly on its boundary. Due
to rotational symmetry with period 2π/k, these points are divided into exactly two equiv-
alence classes, each containing k points. So, there are only two inequivalent ways of
rooting, thus Hr(x) + Kr(x) counts each dissection from M twice. This completes the
proof.

Now we substitute (5) into (4) and prove the following formula.
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Proposition 2. The generating function for r-dissections of a regular (n(r− 2) + 2)-gon
is given by

vr(x) =
ur(x)

2
+
Hr(x) +Kr(x)

4
. (6)

This proposition was originally proved by Brown in [17] for triangulations with internal
points. It can be easily generalized to a big variety of different planar structures, since
the proofs of (4) and (5) do not use any specific properties of r-dissections. To get explicit
form of the generating function vr(x) from it, we have to derive formulas for Hr(x) and
Kr(x). It turns out that there is a simple relation they satisfy.

Theorem 3. Half the sum of the generating functions Hr(x) and Kr(x) is expressed in
terms of function fr(x) that describes the number of dissections rooted at an outer oriented
edge, by the formula

Hr(x) +Kr(x)

2
= fr(x

2) + xf br/2cr (x2). (7)

Proof. First, consider the case of r-dissections for odd r, r = 2k + 1, k = 1, 2, . . .. It
is clear that the generating function Kr(x) is expressed by the formula

Kr(x) = 1 + xfk
r (x2). (8)

Indeed, each symmetric dissection with a distinguished edge a is either the trivial dissec-
tion consisting only of a, or has the form shown in Figure 3.

B B

C C

a

Figure 3: Symmetric dissection with a distinguished edge; r = 2k + 1.

For calculating Hr(x) in the case of r = 2k + 1, we consider three types of dissections
shown in Figure 4, differing in the number of r-gons crossed by the axis of symmetry. By
considering these types, we conclude that the generating function Hr(x) is given by

Hr(x) = fr(x
2) + xfk

r (x2) + x2f 2k
r (x2). (9)

Consequently, in the case of odd r, the half-sum of generating functions Hr(x) and
Kr(x) is expressed as follows

Hr(x) +Kr(x)

2
=

1 + fr(x
2) + 2xfk

r (x2) + x2f 2k
r (x2)

2
.

But in virtue of equality (1)

1 + x2f 2k
r (x2) = 1 + x2f r−1

r (x2) = fr(x
2).
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B

A

B a

(a) First type

A

B B

C C

(b) Second type

D D

E E

C

B

C

B

A

(c) Third type

Figure 4: Symmetric dissections with a distinguished vertex; r = 2k + 1.

Therefore, finally, for half the sum of Hr(x) and Kr(x), in the case of r = 2k+ 1, we have

Hr(x) +Kr(x)

2
= fr(x

2) + xfk
r (x2).

Now consider the case of r = 2k, k = 1, 2, . . .. In this case, we consider the types of
dissections shown in Figure 5 and conclude that the generating function Hr(x) satisfies
the equation

Hr(x) = fr(x
2) + xfk

r (x2). (10)

B

A

B a

(a) First type

B B

C C

A

(b) Second type

Figure 5: Symmetric dissections with a distinguished vertex; r = 2k.

It remains to consider the most complicated case: that of a distinguished edge and
even r. In this case, an arbitrary number of r-gons can be crossed by the axis of symmetry
(Figure 6). Therefore, we obtain the expression for Kr(x) in the form of an infinite sum

Kr(x) = 1 + xfk−1
r (x2) + x2f 2k−2

r (x2) + x3f 3k−3
r (x2) + . . . (11)

The right-hand side can be viewed as a geometric series with the first term 1 + xfk−1
r (x2)

and the common ratio x2f 2k−2
r (x2). Thus,

Kr(x) =
1 + xfk−1

r (x2)

1− x2f 2k−2
r (x2)

. (12)

To further simplify this formula for Kr(x), we derive another functional equation for
fr(x) by subtracting xf r−1

r (x) from both sides of (1):

fr(x)(1− xf r−2
r (x)) = 1 ⇒ fr(x) =

1

1− xf r−2
r (x)

=
1

1− xf 2k−2
r (x)

.
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a

B B

a

B

C

B

C

a

B

C

D

B

C

D

Figure 6: Symmetric dissections with a distinguished edge; r = 2k.

Taking this into account, we get rid of the division in the right-hand side of (12) and
obtain the final form of the formula for Kr(x):

Kr(x) = fr(x
2) + xfk

r (x2). (13)

Equality (13) can be proved by a purely combinatorial arguments. Consider the sym-
metric 2k-dissection with a distinguished edge in which the axis of symmetry intersects an
even number of r-gons (Figure 7(a)). We cut this dissection along the axis of symmetry
(α, α), as well as the axis (β, β) perpendicular to it and passing through the central edge
of the dissection. We rotate the lower-left and the upper-right quarter of the figure at
180◦, thus swapping them, and then re-join the four pieces of dissection along the axes
(α, α) and (β, β) (Figure 7(b)). As a result we obtain a pair of dissections rooted at an
outer edge and symmetric about the axis (β, β), the number of which is described by the
generating function fr(x

2).

(a) Symmetric 2k-dissection (b) A pair of equal 2k-dissections

Figure 7: For combinatorial proof of the equality (13).

If the axis of symmetry crosses an odd number of r-gons, we account one of them (say,
the one with a distinguished edge) separately. Together with k − 1 pairs of dissections
attached to its sides, it is enumerated by xfk−1

r (x2). The remaining part of a dissection
has an even number of r-gons intersected by the axis of symmetry, and is enumerated by
fr(x

2), as already proved. Equality (13) follows immediately.
In view of the expressions (10) and (13) for the case of r = 2k we obtain

Hr(x) +Kr(x)

2
= fr(x

2) + xfk
r (x2).
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Substituting expression (7) in Brown’s formula (6), and recalling the explicit expression
(3) for the function ur(x), we obtain the following final result.

Consequence 4. The generating function vr(x) for the number of r-dissections regarding
both the reflections and rotations is calculated by the formula:

vr(x) =
ur(x)

2
+
fr(x

2) + xf
br/2c
r (x2)

2
=

=
1

2
fr(x)− 1

4
f 2
r (x) +

3

4
fr(x

2) +
x

2
f br/2cr (x2) +

x

2r

∑
d\r

ϕ(d)f r/d
r (xd).

(14)

The formula (14) makes it quite easy to express the number V
(r)
n of all the dissections

of a regular (n(r − 2) + 2)-gon into n r-gons in terms of the coefficients

B(n, r, k) =
k

n

(
n(r − 1) + (k − 1)

n− 1

)
, n ∈ Z+;

B(0, r, k) = 1; B(n, r, k) = 0, n /∈ Z+ ∪ {0},

which generalize Fuss-Catalan numbers F
(r)
n = B(n, r, 1), for any fixed value of the pa-

rameter r. Indeed, application of the Lagrange–Bürmann formula to (1) allows us to
conclude that the coefficient of xn in fk

r (x) is equal to B(n, r, k). Thus, for prime r we
have:

V (r)
n =

B(n, r, 1)

2(n(r − 2) + 2)
+

(r − 1)B(n−1
r
, r, 1)

2r
+
B(n−1

2
, r, br/2c)
2

+
3B(n/2, r, 1)

4
.

3 Enumeration of S-dissections

Now we are going to demonstrate the effectiveness of this approach by enumerating the
dissections in which the number of edges of each inner face belongs to a predefined set.

Definition 5. Let S be any subset of Z+\{1, 2}, where Z+ denotes the set of all positive
integers. We define an S-dissection as a dissection, any inner face of which is a polygon
with the number of edges belonging to the set S.

An example of a {3,4,8}-dissection is given in Figure 8. Note that this specific {3,4,8}-
dissection has no octagonal faces.

To enumerate S-dissections regarding all the symmetries, we first consider rooted plane
S-dissections. The problem of enumerating the trees dual to those dissections is described
in detail in [3]. In contrast to r-dissections, we enumerate S-dissections not by the number
of inner regions, but by the number of outer edges. Let gS(x) be the generating function
for the number Gn of plane S-dissections rooted at an oriented outer edge and having
n+ 1 outer edges in total. It is determined by the functional equation

gS(x) = x+
∑
i∈S

gi−1S (x). (15)
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Figure 8: {3,4,8}-dissection.

The following formula for the number of plane S-dissections can be derived either in
the same manner as (3) or by applying the dissymmetry theorem [15, Ch. 4].

Proposition 6. Let uS(x) be the ordinary generating function which describes the number
of all plane S-dissections with n outer edges. Then,

uS(x) =
gS(x2)− g2S(x)

2
+ x · gS(x) +

∑
i∈S

Z(Ci; gS(x)). (16)

Proof. Observing the bijection between unrooted trees and unrooted dissections shown
in Figure 2, one can establish the correspondence between vertex-rooted trees and dissec-
tions that are rooted either at an outer edge or at a polygon, depending on whether leaf
or non-leaf was distinguished in a tree. For these kinds of trees we introduce the generat-
ing function q(x). Edge-rooted trees always correspond to edge-rooted dissections. They
are enumerated by (gS(x2) + g2S(x))/2. Pairs of dissections rooted at an oriented outer
edge are given by g2S(x). Combining these observations, one can rewrite the dissymmetry
theorem for dissections as follows:

q(x) +
gS(x2) + g2S(x)

2
= uS(x) + g2S(x). (17)

Applying Pólya theorem to find q(x), one can get that q(x) =
∑
i∈S

Z(Ci; gS(x)) +x · gS(x).

Equality (16) follows from (17) after some simplification.
Now we are going to use Brown’s approach to enumerate S-dissections regarding all

of the symmetries. Let us denote by vS(x) the generating function for planar dissections.
Our goal is to express vS(x) in terms of uS(x) and gS(x). First, one can see, that Brown’s
formula also holds for the generating function vS(x) for planar S-dissections with n outer
edges:

vS(x) =
uS(x)

2
+
HS(x) +KS(x)

4
. (18)

Here, the generating functions HS(x) and KS(x) correspond to S-dissections of a regular
n-gon with a distinguished vertex or outer edge, respectively, lying on one of the axes of
symmetry. To enumerate planar S-dissections, we should find the expressions for those
generating functions.

First we introduce the following auxiliary generating functions:
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RS(x) =
∑

i∈Sodd

g
(i−1)/2
S (x2) and QS(x) =

∑
i∈Seven

g
i/2−1
S (x2). (19)

Here, Sodd and Seven are the sets consisting of, respectively, odd and even elements of
set S. Let us describe the types of dissections the functions RS(x) and QS(x) enumerate.

Dissections that have n+1 outer edges, a distinguished outer edge a lying on the axis of
symmetry, and a single i-gon with odd number of edges crossed by this axis (Figure 9(a)),
are enumerated by RS(x). Summation in the expression for RS(x) stands for looking
over all the possible i-gons on the axis of symmetry. For a fixed i, we have to choose
(i−1)/2 pairs of S-dissections, and glue them to the edges of a central i-gon. To preserve
the symmetry, each such pair should consist of two dissections, which are mirror images
of each other. Clearly, the generating function for each pair is gS(x2), and the given
expression for RS(x) immediately follows.

Q(x) enumerates similar structures, with the only difference, that the central i-gon
has even number of edges (Figure 9(b)), and the total number of outer edges is n+ 2.

The representative of the other type of dissections also enumerated by RS(x) is shown
in Figure 9(c). Dissections of this type have n + 1 outer edges, a distinguished vertex A
lying on the axis of symmetry, and a single i-gon (i = 2k + 1) crossed by this axis.

D D

B B

C C

a

(a) RS(x)

B B

C C

a

(b) QS(x)

D D

B B

C C

A

(c) RS(x)

Figure 9: Types of dissections enumerated by QS(x) and RS(x).

Now we claim that

KS(x) = x · 1

1−QS(x)
· (x+RS(x)).

Indeed, each S-dissection, rooted at an outer edge that lies on the axis of symmetry
(Figure 10), consists of three parts. The first part is an outer edge that is a root. It
is enumerated just by x. The second part is a (possibly empty) sequence of structures,
each of which is enumerated by QS(x). The generating function for the whole sequence
is 1 + QS(x) + Q2

S(x) + · · · = 1/(1 − QS(x)). The third part is either an outer edge
(Figure 10(a)) or an odd-sided polygon with pairs of dissections glued to it (Figure 10(b)).
As we already observed, the latter case corresponds to generating function RS(x).

We also claim that

HS(x) = gS(x2) +
∑

i∈Seven

g
i/2
S (x2) +RS(x)

KS(x)

x
.
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C

B B

C

D D

a

(a) First type

C

B B

C

D D

a

E E

(b) Second type

Figure 10: Types of S-dissections with a distinguished edge.

To prove this statement, we observe that dissections with a distinguished vertex that lies
on the axis of symmetry, naturally fall into three groups. Each group corresponds to
one summand in the equality. The first group consists of dissections that have an edge
coinciding with the axis of symmetry (Figure 11(a)). These structures are enumerated by
gS(x2). Dissections from the second group have only one 2k-gon on the axis of symmetry

(Figure 11(b)). This group is enumerated by
∑

i∈Seven

g
i/2
S (x2), as the number of sides i = 2k

of the central polygon can be arbitrary even number from set S. Finally, the third group
consists of the dissections in which the distinguished vertex is a vertex of the polygon
that is crossed by the axis of symmetry, and has an odd number of sides (Figure 11(c)).
This polygon, together with pairs of dissections, attached to it, is described by RS(x), as
observed previously. The remaining part of the dissection can be viewed as a dissection
rooted at outer edge, which is described by KS(x). Division by x accounts that the root
of this dissection is not outer, but inner edge in the resulting structure.

B

A

B a

(a) First type

B B

C C

A

(b) Second type

D

C C

D

E E

A

F F

B B

(c) Third type

Figure 11: Symmetric S-dissections with a distinguished vertex.

Now we can substitute the obtained expressions for HS(x) and KS(x) into equation
(18) and obtain the following result.

Theorem 7. The generating function vS(x) for planar S-dissections enumerated by the
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number of outer edges satisfies the following equality:

vS(x) =
uS(x)

2
+

gS(x2) +
∑

i∈Seven

g
i/2
S (x2) + (x+RS(x))2/(1−QS(x))

4
. (20)

Now we are going to consider some special values of S. The formula (20) has the
simplest form in the case Seven = ∅. For such S

vS(x) =
uS(x)

2
+
gS(x2) + (x+RS(x))2

4
.

Consider, for example, S = {3, 5}. For {3, 5}-dissections, gS(x) satisfies the following
functional equation:

gS(x) = x+ g2S(x) + g4S(x).

The function RS(x) is given by

RS(x) = gS(x2) + g2S(x2) = gS(x2)(1 + gS(x2)),

and the generation function for planar {3, 5}-dissections is equal to

vS(x) =
uS(x)

2
+ gS(x2)

1 + x+ x · gS(x2) + g2S(x2)

2
=

=
gS(x3)

3
+

2gS(x5)

5
− 3g2S(x)

20
+

2xgS(x)

5
+
g3S(x)

15
+ gS(x2)

3 + 2x+ 2xgS(x2) + 2g2S(x2)

4
.

n\S {3,5} {3,4} {4,6,8,. . . } {3,5,7,. . . } {3,4,5,. . . }

3 1 1 0 1 1
4 1 2 1 1 2
5 2 2 0 2 3
6 4 7 2 4 9
7 7 14 0 8 20
8 22 53 4 23 75
9 60 171 0 65 262
10 208 691 13 223 1117
11 695 2738 0 757 4783
12 2566 11720 48 2824 21971
13 9451 50486 0 10559 102249
14 36158 224012 238 40994 489077
15 139574 1005468 0 160734 2370142

Table 1: The numbers of planar S-dissections of n-gon.
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Formula (20) also allows us to count the number of S-dissections in the case when S
is infinite. So, one can consider the dissections of a polygon into odd-sided polygons:

S = {3, 5, 7, 9, 11, . . .}.

In this case
QS(x) = 0, RS(x) = gS(x2)/(1− gS(x2)),

and the generating function for rooted dissections is described by the functional equation

gS(x) = x+ g2S(x) + g4S(x) + . . . = x+ g2S(x)/(1− g2S(x)).

Using this equation, it is possible to simplify the expression for RS(x):

RS(x) = 2gS(x2) + g2S(x2)− x2 − x2gS(x2).

As a consequence, we have the following equation for the generating function for the
dissections of a polygon into odd-sided polygons:

vS(x) =
uS(x)

2
+
gS(x2) + (2gS(x2) + g2S(x2)− x2 − x2gS(x2) + x)2

4
.

Finally, we consider the most general case

S = {3, 4, 5, . . .} = Z+\{1, 2}.

For this kind of S, the rooted dissections are enumerated by the function

gS(x) = x+ g2S(x) + g3S(x) + . . . = x+ g2S(x)/(1− gS(x)).

The number Gn of such dissections is nothing else than small Schroeder numbers (sequence
A001003 in OEIS). For vS(x) we have the following relation:

vS(x) =
uS(x)

2
+
RS(x) + (RS(x) + x)2/(1−RS(x))

4
, RS(x) = 2gS(x2)− x2.

The corresponding numerical sequence describes the number of arbitrary planar dissec-
tions of (n+ 2)-gon (sequence A001004 in OEIS).

The first terms for three considered special cases of S and for two others can be found
in Table 1. They were computed using the obtained expressions for vS(x).

4 Asymptotics

To obtain the asymptotic estimates for the number of S-trees we follow [21, Ch. 7]. One
can see that (15) can be rewritten as

gS(x) =
x

1−
∑
i∈S

gi−2S (x)
= x · φ(gS(x)), (21)
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where φ(x) = 1/(1−
∑
i∈S

xi−2). Now, let S be equal to {3, 5}. Then it can be easily verified,

that gS(x) belongs to the smooth inverse-function schema in the aperiodic case (in terms
of [21, Ch. 7]), and therefore,

[xn]gS(x) =

√
φ(τ)

2φ′′(τ)

ρ−n√
πn3

(
1 +O(1/n)

)
.

Here, τ is the unique positive solution of φ(τ)− τ ·φ′(τ) = 0 that lies within the open disc
of convergence of φ at 0, and ρ = τ/φ(τ). One can compute the values τ = 0.3854584 . . .
and ρ = 0.2148047 . . .. As a consequence,

[xn]gS(x) ∼ A · n−3/2 · Cn,

where A = 0.0950642 . . ., C = 4.6553906 . . .. Recall that this is the asymptotic estimate
for the number of S-dissections rooted at an oriented outer edge, which have n+ 1 outer
edges in total. But we are interested in [xn]vS(x), the number of planar S-dissections
with n outer edges. It is easy to see that, as n tends to infinity, the ratio of the number of
asymmetric planar dissections to the number of all planar dissections tends to 1 (almost
all dissections are asymmetric). Each asymmetric planar dissection corresponds to 2n
rooted dissections, thus

[xn]vS(x) ∼ [xn−1]gS(x)

2n
.

We finally obtain the following asymptotic estimate for the case S = {3, 5}:

[xn]vS(x) ∼ B · n−5/2 · Cn, where B =
A

2C
= 0.0102101 . . . , C = 4.6553906 . . . .

The same computations can be performed for three out of four remaining considered
cases: S = {3, 4}, S = {3, 5, 7, . . . } and S = {3, 4, 5, . . . }.

The case S = {4, 6, 8, . . . } needs a little bit more attention, because it corresponds to
the function φ(x) = (x2− 1)/(2x2− 1), which is periodic (in the sense of [21, Ch. 4]). We
have

gS(x) = x+
g3S(x)

1− g2S(x)
.

Let g̃S(x) = gS(
√
x)/
√
x − 1 (thus, [xk]g̃S(x) = [x2k+1]gS(x) for k > 0). The generating

function g̃S(x) satisfies

g̃S(x) = x · (2 · (g̃S(x) + 1)3 − (g̃S(x) + 1)2),

again belongs to the smooth inverse-function schema, but now the corresponding function
φ(x) = 2·(x+1)3−(x+1)2 is aperiodic. Applying general method, we find the asymptotics
for the coefficients of g̃S(x):

[xn]g̃S(x) ∼ A · n−3/2 ·Dn, where A = 0.1931607 . . . , D = 8.8182997 . . . .
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Turning back to the function gS(x), one can obtain:

[xn]gS(x) ∼ [xn/2−1]g̃S(x)

2n
∼ B · n−5/2 · Cn,

where B = A
√

2/D = 0.0309776 . . ., C =
√
D = 2.9695622 . . ., and n is even.

So, we have asymptotics in the form B · n−5/2 · Cn for all five considered types of
S-dissections. The corresponding values of B and C are summarized in the Table 2.

S {3,5} {3,4} {4,6,8,. . . } {3,5,7,. . . } {3,4,5,. . . }

B 0.0102101. . . 0.0079480. . . 0.0309776. . . 0.0090465. . . 0.0059602. . .
C 4.6553906. . . 5.4000000. . . 2.9695622. . . 4.7305769. . . 5.8284271. . .

Table 2: The coefficients of the asymptotic estimates for the number of S-dissections.

Conclusion

The problem of enumerating unrooted planar r-dissections is rather well-known. Harary
solved this problem [13] for arbitrary r and noted that the number of planar r-dissections
is expressed through the number of plane r-dissections in two different ways, depending
on the parity or r. In this article it is shown that, by using Brown’s approach, one can
obtain a surprisingly simple formula (7) that unifies these two cases. The corresponding
approach has also been used for enumerating S-dissections for arbitrary S and led to the
formula (20) that can be used for computing the number of those dissections. Asymptotic
estimates for the growth of the corresponding sequences are given for some special values
of S.
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