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Abstract

A planar set P is said to be cover-decomposable if there is a constant k = k(P )
such that every k-fold covering of the plane with translates of P can be decomposed
into two coverings. It is known that open convex polygons are cover-decomposable.
Here we show that closed, centrally symmetric convex polygons are also cover-
decomposable. We also show that an infinite-fold covering of the plane with trans-
lates of P can be decomposed into two infinite-fold coverings. Both results hold for
coverings of any subset of the plane.
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1 Introduction

The study of multiple coverings was initiated by Davenport and L. Fejes Tóth about 60
years ago [1]. Let S = { Si | i ∈ I } be a collection of sets in the plane. We say that S
is an m-fold covering if every point of the plane is contained in at least m elements of S.
A 1-fold covering is simply called a covering. Clearly, the union of k coverings is always
a k-fold covering, but it is easy to see that the converse is not necessarily true, not even
in the special case when S is a collection of translates of a given set.
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Definition 1. A planar set S is said to be cover-decomposable if there exists a (minimal)
constant k = k(S) such that every k-fold covering of the plane with translates of S can
be decomposed into two coverings.

J. Pach proposed the problem of determining all cover-decomposable sets in 1980 [4].
He conjectured that all planar convex sets are cover-decomposable. Today there is a vast
literature on this subject, partly because of its theoretical interest [6], and partly because
of its applications in the sensor cover problem in sensor network scheduling [3].

Pach verified his conjecture for centrally symmetric open convex polygons [5]. The
next result in this direction was by G. Tardos and G. Tóth [11], they proved that open
triangles are cover-decomposable. Finally, D. Pálvölgyi and G. Tóth [10] proved that all
open convex polygons are cover-decomposable.

Observe, that all of these general positive results hold only for open sets. The reason
is that – based on the ideas of Pach [5] – all proofs reduce the problem to a finite problem,
and that reduction works only for open sets. We believe that in fact all these results can
be generalized for the closed version. The main result of this paper is the first step in this
direction.

Theorem 2. Every centrally symmetric closed convex polygon is cover-decomposable.

From the other direction, J. Pach, G. Tardos, and G. Tóth [7] proved that (open
and closed) concave quadrilaterals are not cover-decomposable. It was generalized by D.
Pálvölgyi [8] who showed for a large class of concave polygons that they are not cover-
decomposable. It is still not known whether there exists a cover-decomposable concave
polygon. Very recently, D. Pálvölgyi [9] refuted Pach’s conjecture. He proved that open
and closed sets with smooth boundary are not cover-decomposable. In particular, the
unit disc is not cover-decomposable.

Splitting infinite-fold coverings can lead to very deep problems. Elekes, Mátrai and
Soukup [2] constructed an infinite-fold covering of the line by translates of a closed set,
whose decomposability is independent of ZFC. We believe that it is not the case for
coverings of the plane with translates of a convex closed set.

It follows directly from Theorem 2 that an infinite-fold covering of the plane with
translates of a closed, convex, centrally symmetric polygon is decomposable into two
coverings. We prove the following stronger result.

Theorem 3. Let S be a closed, convex, centrally symmetric polygon. Then every infinite-
fold covering of the plane with translates of S can be decomposed into two infinite-fold
coverings.

Cover-decomposability has many other versions, instead of the plane, we can investi-
gate, and decompose coverings of an arbitrary subset of the plane. We can consider only
coverings with finite, countably many, or arbitrarily many translates. In the last section
we review some of these versions of cover-decomposability. Our Theorems 2 and 3 hold
for each of these versions, with the same proof.
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2 Centrally symmetric closed convex polygons; Proof of Thm. 2

2.1 Taking the dual, reduction to wedges

Just like in most of the papers about cover-decomposability, we formulate and solve the
problem in its dual form. The idea is originally due to J. Pach [5]. Suppose that S is
an open or closed, centrally symmetric convex polygon, its vertices are v1, v2, . . ., v2n,
ordered clockwise. Indices are understood modulo 2n.

Definition 4. For any two points, a and b, let
−→
ab denote the halfline whose endpoint is

a and goes through b. Let arg(
−→
ab) denote the counterclockwise angle from the positive x

axis to
−→
ab.

Definition 5. For every i, 1 6 i 6 2n, let Ei denote the convex wedge whose bounding
halflines are the translates of −−−→vivi−1 and −−−→vivi+1. If S is closed (resp. open), then let Ei

also be closed (resp. open). Ei is called the wedge that belongs to vertex vi of S. We say
that a wedge E belongs to S, or E is an S-wedge, if it belongs to one of its vertices. For
any point p, let Ei(p) denote the translate of Ei such that its apex is in p.

A planar point set is bounded, if it is contained in a disc. Now we can state the dual
version of Theorem 2.

Theorem 6. Let S be a centrally symmetric closed convex polygon, with vertices v1, v2,
. . ., v2n, ordered clockwise. Then there is an m = m(S) > 0 with the following property.

Any bounded point set H can be colored with red and blue such that for any translate
of an S-wedge, Ei(p), if |Ei(p) ∩H| > m, then Ei(p) ∩H contains points of both colors.

Proof of Theorem 2 from Theorem 6.
Let x = x(S) be a number with the property that a square of side x intersects at

most two consecutive sides of S. Divide the plane into squares of side x, by a square
grid. (Let common vertical boundaries belong to the left squares, common horizontal
boundaries belong to the lower squares.) There is a constant k′ such that any translate
of S intersects at most k′ little squares. For any point p, let S(p) denote the translate of
S so that its center is at p. Let H = { Si | i ∈ I } be a collection of translates of S that
form a k = k′m-fold covering, where m = m(S) from Theorem 6. For every i ∈ I, let ci
be the center of Si. Let H

′ = { ci | i ∈ I } be the set of centers. For any point a, a ∈ Si if
and only if ci ∈ S(a). Therefore, for every point a, S(a) contains at least k points of H′.

The collection H can be decomposed into two coverings if and only if the points of
the set H′ can be colored with two colors, such that every translate of S contains points
of both colors.

Color the points of H′ in each square separately, satisfying the conditions of Theorem
6. Now return to the covering H and color each translate of S in H to the color of its
center. We claim that both the red and the blue translates form a covering. Let p be
an arbitrary point, we have to show that it is covered by a translate of both colors. Or
equivalently, S(p) contains points of H′ of both colors. Since S(p) contains at least k
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points of H′, it contains at least k/k′ = m points in one of the little squares Q. But S(p)
intersects Q “like a wedge” that is, S(p) ∩Q = E(q) ∩Q for some S-wedge E and point
q. Therefore, by Theorem 6, S(p) ∩Q contains points of H′ of both colors. �

Now we “only” have to prove Theorem 6. We need some preparation.

2.2 Some properties of boundary points

Theorem 6 has been proved by J. Pach [5] in the special case when H is finite. Some parts
of our proof are just modifications of his argument, but some other parts are completely
new.

Let S be a centrally symmetric, open or closed convex polygon, its vertices are
v1, v2, . . . , v2n, ordered clockwise, the S-wedges are E1, E2, . . . , E2n, respectively. Indices
are understood mod 2n, e. g. v2n+1 = v1, E2n+1 = E1. Let H be a bounded point set.

Definition 7. If S is closed (resp. open), a point p ∈ H is called an Ei-boundary point
if Ei(p) ∩H = {p} (resp. Ei(p) ∩H = ∅).

Let Bi = Bi(H) denote the set of Ei-boundary points of H. Let B = B(H) = ∪∞

i=1Bi

denote the set of all boundary points of H, it is called the boundary of H. The other
points of H are called interior points.

For every i, 1 6 i 6 2n, we introduce an ordering of the Ei-boundary Bi. These orders
together will give a cyclic ordering of the boundary B, where some boundary vertices may
appear twice. Let ℓi be a line perpendicular to the angular bisector of Ei. Direct ℓi so

that Ei can be translated to the left side of
−→
ℓi . There is a natural ordering of the points

of
−→
ℓi . For x, y ∈

−→
ℓi we say that x precedes y (y follows x) if the vector −→xy points to the

same direction as
−→
ℓi . Orthogonally project the points of Bi to

−→
ℓi , the image of p is π(p).

It is easy to see that for 1 6 i 6 2n, the map πi is injective. If p1, p2 ∈ Bi and
πi(p1) = πi(p2), then either p2 ∈ Ei(p1) or p1 ∈ Ei(p2), but both of them are impossible
since both p1 and p2 are Ei-boundary points.

Definition 8. Let 1 6 i 6 2n. For any two Ei-boundary points p1 and p2, let p1 ≺i p2 if

and only if πi(p1) precedes πi(p2) on
−→
ℓi .

The relation πi is a linear ordering on Bi. Based on πi, we can define intervals on Bi,
for example,

[p1, p2] = {p ∈ Bi : πi(p) ∈ [πi(p1), πi(p2)]}.

We say that the first half of the interval [p1, p2] is

{

p ∈ Bi : πi(p) ∈

[

πi(p1),
π(p1) + πi(p2)

2

]}

.

We define the open interval (p1, p2) similarly as [p1, p2], and we define the second half
of an interval similarly as the first half.
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Claim 9. Suppose that p ∈ Bi and p ∈ Bi+1, that is, p is a boundary point with respect to
both Ei and Ei+1. Let ℓ be the line through p, parallel to vivi+1. Then one of the closed
halfplanes defined by ℓ contains all points of H.

Proof. If p is a boundary point with respect to both Ei and Ei+1, then Ei(p) ∩ H =
Ei+1(p) ∩ H = ∅ if S is open, and {p} if S is closed. But since S is convex and centrally
symmetric, Ei(p)∪Ei+1(p) contains an open halfplane bounded by ℓ. This halfplane does
not contain any point of H, therefore, its complement satisfies the conditions.

It is easy to see now that if S is closed, then there is at most one point p ∈ H that is
a boundary point with respect to both Ei and Ei+1. If S is open and both p and q are
such boundary points, then p ≺i q if and only if p ≺i+1 q. It also follows from Claim 9
that if p is a boundary point with respect to both Ei and Ei+1 and q is a boundary point
with respect to Ei but not Ei+1, then p ≺i q.

There could be other types of boundary points with respect to more than one wedge.

Definition 10. A point p ∈ H is a singular boundary point if there are numbers 1 6

i1 < n1 < i2 < n2 6 2n, or 1 6 n1 < i1 < n2 < i2 6 2n such that p is a boundary point
with respect to Ei1 and Ei2 , but not a boundary point with respect to En1

and En2
, see

in Figure 1. Non-singular boundary points are called regular boundary points.

p

E

E

k

n+k

Figure 1: Point p is a singular boundary point

This concept, just like the next two claims, are again basically from [5].

Claim 11. If p is a singular Ei-boundary point, then it is a boundary point with respect
to Ei and Ei+n (the reflection of Ei) and no other wedge.

Proof. Suppose that 1 6 i1 < n1 < i2 < n2 6 2n, p is a boundary point with respect to
Ei1 and Ei2 , but it is not a boundary point with respect to En1

and En2
, and i1 + n 6= i2.

Assume without loss of generality that i1 = 1, i2 = k 6 n. Then E1(p) and Ek(p) do not
contain any point of H, different from p. It follows from the convexity of S, that En1

(p) ⊂
E1(p) ∪ Ek(p), therefore, p is a boundary point with respect to En1

, a contradiction, see
Figure 2. The argument is the same if we have 1 6 n1 < i1 < n2 < i2 6 2n.
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p

Ek

E1

En1

Figure 2: If p is a boundary point with respect to E1 and Ek, then it is also a boundary
point with respect to En1

.

Now we show that all singular boundary points are of the “same type”.

Claim 12. If p is a singular boundary point with respect to Ei and Ei+n, then there is no
singular boundary point with respect to some other pair of wedges.

Proof. It Suppose that p and q are singular boundary points with respect to different pairs
of wedges, say, p with respect to E1 and En+1, q with respect to Ek and En+k, 1 < k 6 n.
Suppose for simplicity, that arg(−−→v1v2) < arg(−−−→v2nv1) and arg(−−−−→vkvk+1) < arg(−−−−→vk−1vk). It
follows that either

arg(−−→v1v2) 6 arg(−→pq) 6 arg(−−−→v2nv1), (1)

or
arg(−−→v1v2) 6 arg(−→qp) 6 arg(−−−→v2nv1). (2)

Suppose without loss of generality that (1) holds. Since q is a boundary point with respect
to Ek and En+k,

arg(−−−−→vkvk+1) 6 arg(−→pq) 6 arg(−−−−→vk−1vk). (3)

(Note, that if S is closed then the above inequalities are strict inequalities.) But, because
of the convexity of S, (1) and (3) can hold simultaneously only if k = 2 and

arg(−−→v1v2) = arg(−→pq).

But in this case, q is also an E1-boundary point, so it is not singular, a contradiction, see
Figure 3.

From now on, suppose, without loss of generality, that all singular boundary points
of H are E1- and En+1-boundary points. Observe, that if p and q are singular boundary
points with respect to E1 and En+1, then p ≺1 q ⇔ q ≺n+1 p. From now on, the type of a
boundary point p is the smallest i such that p is an Ei-boundary point.

In the set B of boundary points, substitute each singular boundary point p by p′ and
p′′, such that p′ is an E1-boundary point, p′′ is an En+1-boundary point. Let B

′ be the
resulting set. For p, q ∈ B

′, let p ≺ q if
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E

E
E

n+1

1

E

k

n+k

p

q

Figure 3: It is impossible that p and q are singular boundary points with respect to
different pairs of opposite wedges.

• p is of type i, q is of type j, and 1 6 i < j 6 2n,

or

• both p and q are of type i, and p ≺i q.

Relation ≺ gives a linear ordering on B
′. We have the elements in the following order:

• Boundary points with respect to both E2n and E1, ordered according to ≺2n and
≺1;

• E1-boundary points, ordered according to ≺1;

• Boundary points with respect to both E1 and E2, ordered according to ≺1 and ≺2;

• E2-boundary points, ordered according to ≺2;

• Boundary points with respect to both E2 and E3, ordered according to ≺2 and ≺3;

• E3-boundary points, ordered according to ≺3;

• . . .

• E2n-boundary points, ordered according to ≺2n.

If we project the points of B′ on a circle, then there is a natural way to define intervals
on B

′, and then also on B. Now we define them precisely.
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Definition 13. An I ⊂ B
′ subset is called an interval of B′, if one of the following two

conditions hold.
(i) If p ≺ q ≺ r and p, r ∈ I, then q ∈ I.

(ii) If p ≺ r, p, r ∈ I, and either q ≺ p or r ≺ q, then q ∈ I.
A subset I ⊂ B is called an interval of B if the corresponding subset I ′ ⊂ B

′ is an
interval of B′.

An interval of B or B′ is called homogeneous if all its points are Ei-boundary points,
for some i.

Claim 14. A translate of an S-wedge El intersects B in at most two intervals.

Proof. Consider a translate of an S-wedge, say, El(z), 1 6 l 6 n. Assume for simplicity
that arg(−−−→vlvl−1) < arg(−−−→vlvl+1). Suppose that p is an Ei-boundary point, q is an Ej-
boundary point, l < i, j < n+ l, p ∈ El(z) and q ≺ p. Then

arg(−−−→vlvl−1) 6 arg(−→pq) 6 arg(−−−→vlvl+1),

so q ∈ El(z). We can argue similarly if p and q are on the “other side”, that is, i, j ∈
{n+ l + 1, . . . , 2n, 1 . . . , l − 1}.

Suppose now that p is an Ei-boundary point, q is an El-boundary point, l < i < n+ l,
r is also a boundary point, p, q ∈ El(z) and q ≺ r ≺ p. Then again

arg(−−−→vlvl−1) 6 arg(−→pr) 6 arg(−−−→vlvl+1),

therefore, r ∈ El(z). Just like before, we can argue similarly in the case i ∈ {n + l + 1,
. . ., 2n, 1 . . ., l − 1}.

Finally, suppose that p, q, and r are El-boundary points, p, r ∈ El(z) and r ≺ q ≺ p.
Again, it is easy to check that r ∈ El(z). The same holds if p, q, and r are En+l-boundary
points.

El

q
r p

Figure 4: El intersects B in at most two intervals

It follows from these observations that El(z) intersects B in at most two intervals. See
Figure 4.
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2.3 Coloring algorithm

Two boundary points are neighbors if there is no other boundary point between them.
More precisely:

Definition 15. Two boundary points p, q ∈ B
′ are neighbors if p ≺ q, and either (i) there

is no r for which p ≺ r ≺ q, or (ii) there is no r for which r ≺ p or q ≺ r.
Two boundary points p, q ∈ B are neighbors if the corresponding points in B

′ are
neighbors. Let p ∼ q denote that p and q are neighbors.

Let ≈ be the transitive closure of the relation ∼ on B, that is, p ≈ q if and only if
there is a finite sequence of boundary points, starting with p, ending with q, such that
the consecutive pairs are neighbors. The relation ≈ is an equivalence relation. Those
boundary points p which belong to an equivalence class of size one, are called lonely
boundary points. The others, which have a neighbor, are called social boundary points.

As an illustration, suppose that none of the sides of S are horizontal, and let H be
set of points (x, 0) where 0 6 x 6 10 and x is an integer. Then all points of H are social
boundary points and all belong to same equivalence class. Now let H be set of points
(x, 0) where 0 6 x 6 10 and x is rational. Then all points of H are lonely boundary
points.

First we give a (non-deterministic) coloring procedure which colors the points black
and white. Then we apply it several times to obtain our red-blue coloring.

Black-White-Boundary-Coloring(S,H)

Divide the boundary of H, B, into equivalence classes by relation ≈. First we color
the social boundary points.

Let C be an arbitrary equivalence class, |C| > 1. Take a maximal subset M of the
singular boundary points of C with the property that no two of them are neighbors.
Color them black. Now take a maximal subset M ′ of the uncolored points of C with
the propery that no two points of M ∪ M ′ are neighbors. Color the points of M ′

black, too. Color the remaining points of C white. It is not hard to check, that no
two consecutive boundary points are black and no three consecutive are white. Do
the same for each equivalence class |C| > 1.

Now we color the lonely boundary points, denote their set by Blonely. It is the union
of at most 2n homogeneous intervals, that is, Blonely = ∪2n

i=1Ii where the elements
of Ii are all Ei-boundary points. We color each interval separately. Recall that,
based on projection πi, we defined the midpoint, the first and the second half of a
homogeneous interval.

For each i, consider interval Ii. If it contains infinitely many points, color one of
them black. Then again, for each i, if Ii contains infinitely many points, color an
uncolored one white. If it contains finitely many points, do not color them yet. Now
cut each interval, which contained infinitely many points, in half, and drop (that is,
do not consider anymore) intervals with finitely many points. Let J1, J2, . . ., Jm
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be the set of new intervals. Repeat the previous step, choose an uncolored point
in each of the intervals with infinitely many points, and color them black, then the
same with white. Cut each interval, which contained infinitely many points, in half,
and drop intervals with finitely many points. Repeat this countably infinitely many
times.

Finally, color all uncolored points white.

Claim 16. If there are infinitely many points in an interval of B, then it contains infinitely
many points of both colors.

Proof. We can assume that interval I is homogeneous, say, all of its points are Ei-boundary
points. Suppose first that I contains a lonely boundary point p in its interior. Then there
is an accumulation point (with respect to the usual Euclidean metric), q, of boundary
points in the interior of I. (Note that q is not necessarily an element of H.) If q is
an accumulation point of lonely boundary points, then our procedure Black-White-
Boundary-Coloring(S,H) will arrive to an interval J ⊂ I which contains infinitely
many lonely boundary points, and it colors one of them white, one black. Moreover, the
procedure will find such intervals in infinitely many steps, so it colors infinitely many
points white, and infinitely many black.

If q is an accumulation point of social boundary points, or if I does not contain a
lonely boundary point p in its interior, then I contains infinitely many social boundary
points. Then either I contains three consecutive such points, or contains two consecutive
that form an equivalence class of size two. In both cases, at least one of them is white
and at least one is black. We can proceed similarly to find infinitely many points of both
colors.

Definition 17. A boundary point p is called rich if there is a translate of an S-wedge Ei,
such that p is the only boundary point in it, but it contains at least one interior point,
see Figure 5.

p

Ei

Figure 5: Point p is a rich boundary point
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2.4 Proof of Theorem 6

Now we are ready to prove Theorem 6. Suppose that S is a closed, centrally symmetric
convex polygon, its vertices are v1, v2, . . . , v2n, ordered clockwise, the S-wedges are E1,
E2, . . ., E2n. Let S

′ be S minus its boundary. Let H be a bounded set of points.
First we color the boundary, B, of H, then we color the boundary B

(1) of the interior
points, and finally we color the remaining points. Very roughly speaking, the first level
will be “responsible” for color blue in wedges which contain many, but finitely many
points, the next level is responsible for color red, and coloring of the remaining points
settles the wedges with infinitely many points.

Red-Blue-Coloring(S,H)

1. Let B be the boundary of H with respect to S. Color B, the first level, with
procedure Black-White-Boundary-Coloring(S,H). Then, let p ∈ B be

– blue, if it is rich or colored white,

– red otherwise.

Now let H(1) = H \ B be the set of interior points.

2. Let B(1) be the boundary of H(1) with respect to S. Color all points of B(1), the
second level, red. Let H(2) = H(1) \ B(1), the set of interior points of H(1).

3. Let B(2) be the third level, boundary of H(2) with respect to S ′. (Watch out, S ′

and not S!) Color the points of B(2) with procedure Black-White-Boundary-
Coloring(S ′,H(2)). Then, let p ∈ B

(2) be

– blue, if it is colored white,

– red if it is colored black.

Finally, let H(3) = H(2) \ B(2), the fourth level, set of interior points of H(2), the set
of still uncolored points.

4. Take a square that contains H(2). If it contains finitely many points of H(2)

(that is, H(2) has finitely many points), color them red and stop. If it contains
infinitely many points of H(2), then color one red and one blue. Divide the square
into four smaller squares. In each of them, if there are finitely many points of H(2),
then color all uncolored points red, and do not consider this square anymore. If
there are infinitely many points in it, then color an uncolored point red and another
uncolored one blue. Then divide it into four little squares. (Let common vertical
boundaries belong to the left squares, common horizontal boundaries belong to the
lower squares.) Repeat this infinitely many times. Finally color all points, which
are still uncolored, red.
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Now we prove that this coloring satisfies the conditions. Suppose that Ei(a) contains
finitely many points of H, but at least 9. Then Ei(a) contains at least one boundary point
of H.

Case 1. Ei(a) contains one point from the first level, that is, |Ei(a) ∩ B| = 1. Then
this point is rich, so it is blue, and Ei(a) contains at least 8 interior points.

Case 2. |Ei(a) ∩ B| = 2. By Claim 14, Ei(a) intersects B in one or two intervals. In
the first case Ei(a) contains two consecutive boundary points, so one of them is blue, and
it contains at least 7 interior points. In the second case both intervals contain one point,
so at least one of them is rich, therefore, it is blue, and Ei(a) contains at least 7 interior
points.

Case 3. 3 6 |Ei(a) ∩ B| 6 8. Since Ei(a) intersects B in at most two intervals, it
contains two consecutive boundary points, so one of them is blue, and Ei(a) contains at
least one interior point.

Case 4. |Ei(a) ∩ B| > 9. Then Ei(a) contains at least 5 consecutive boundary points,
say, p1, p2, . . ., p5. At least two of them are blue. Suppose that all of them are blue.
Procedure Black-White-Boundary-Coloring(S,H) did not color three consecutive
points white, therefore, at least one of p2, p3 and p4 got color blue, because it is rich. It is
not hard to see that Ei(a) contains the interior points corresponding to this rich boundary
point.

Summarizing, if Ei(a) contains at least 9 but finitely many points of H, then either it
contains points of both colors, or it contains a blue point on the boundary, and at least
one interior point. But in this case it contains a point of B(1), the boundary of the interior
points, which is red, so we are done in this case.

Now suppose that Ei(a) contains infinitely many points of H, and suppose for contra-
diction that it does not contain points of both colors.

Case 1. Ei(a) contains infinitely many points from the boundary of H. By Claim
14, Ei(a) ∩ B consists of at most two intervals, one of the intervals, say I, is infinite.
Procedure Black-White-Boundary-Coloring(S,H) colors infinitely many points of
I to both colors. It follows immediately, that there are infinitely many blue points in
Ei(a). Therefore, by our assumption, all points of I got color blue. Then infinitely many
of them are rich. But then the infinitely many interior points that correspond to these
rich points, are also in Ei(a).

Case 2. Ei(a) contains finitely many points from the boundary of H, but at least one.
Then, just like in the finite case, it is not hard to see that Ei(a) contains at least one blue
point from the boundary, and infinitely many interior points.

Case 3. Ei(a) does not contain boundary points. Obviously, it contains infinitely
many interior points.

So we can conclude that if Ei(a) contains infinitely many points of H, than it con-
tains infinitely many interior points, and either it contains a blue boundary point, or no
boundary points at all. Since we colored the boundary of the interior points, B(1), red and
we assumed that Ei(a) does not contain points of both colors, either Ei(a) ∩ B = ∅, or
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Ei(a)∩B
(1) = ∅. By the definition of the boundary, if Ei(a)∩B = ∅, then Ei(a)∩B

(1) = ∅
as well. It follows, that Ei(a) ∩ B

(1) = ∅, therefore, Ei(a) contains infinitely many points
from H(2), the set of interior points of H(1). We distinguish two cases.

Case 1. Ei(a) contains infinitely many points from B
(2), the boundary of H(2) with

respect to S ′. The set Ei(a) ∩ B
(2) is again the union of at most two intervals, therefore,

one of them contain infinitely many points, so by Claim 16 it contains infinitely many
points of both colors.

Case 2. Ei(a) contains finitely many points from B
(2). Then it contains infinitely

many points from the set H(3), the interior points of H(2), with respect to S ′. We claim
that in this case Ei(a) contains a point in its interior. Suppose not. Then all points in
Ei(a) ∩ H(2) are on the boundary of Ei(a), so they all belong to B

(2), a contradiction.
Therefore, there is a point a0 ∈ H in the interior of Ei(a). Clearly, Ei(a0) is also in the
interior of Ei(a). Ei(a)∩B = ∅, hence a0 is not a boundary point of H, so there is a point
a1 in Ei(a0). Since a1 is not a boundary point either, there is an a2 in Ei(a1). This way
we get an infinite sequence a0, a1, . . . of points in Ei(a0). With the exception of finitely
many, they belong to H(3). They have an accumulation point x. The point x ∈ Ei(a0)
since Ei(a0) is closed, so x is in the interior of Ei(a). Therefore, when we colored H(3),
in step 4 of procedure Red-Blue-Coloring(S,H), once we arrived to a little square
which is in Ei(a), contains x, and contains infinitely many points. So we colored one of
them blue and one of them red. This concludes the proof of Theorem 6

3 Infinite-fold coverings; Proof of Theorem 3

Just like in the proof of Theorem 2, we can take the dual of the problem, and divide the
plane into small squares. Therefore, it is enough to prove the following result.

Theorem 18. Let S be a closed, convex, centrally symmetric polygon, its vertices are v1,
v2, . . . , v2n, oriented clockwise. Then any bounded point set H can be colored with red and
blue such that for any translate of an S-wedge Ei(p), if |Ei(p) ∩H| = ∞, then Ei(p) ∩H
contains infinitely many red and infinitely many blue points.

Let S ′ be S minus its boundary and for 1 6 i 6 2n, let E ′

i be Ei minus its boundary.
That is, E ′

1, E
′

2, . . ., E
′

2n are the S ′-wedges.
From now on, boundary of a point set is understood according to S ′, and not S. (As

an illustration, if our poit set is a closed segment parallel to a side of S, then it has two
boundary points with respect to S, but all of the points are boundary points with respect
to S ′.)

• Let B = B
(0) be the set of boundary points of H. Its interior points H(1) = H\B(0).

• Let B(1) be the set of boundary points of H(1). Its interior points H(2) = H(1) \B(1).

• . . .

• Let B(n) be the set of boundary points ofH(n). Its interior pointsH(n+1) = H(n)\B(n).
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• . . .

Moreover, let B∗ =
⋃

n∈N B
(n), and H∗ = H \ B∗.

We call B(n) the n-th boundary level of H. Let B
(n)
i be the set of E ′

i-boundary points

of B(n), and let B∗

i =
⋃

n∈N B
(n)
i . For each p ∈ B

∗ let h(p) = n if and only if p ∈ B
(n). That

is, each p is on the h(p)-th level. Now we are ready to give the coloring algorithm.

Multiple-Red-Blue-Coloring(S,H)

Step 1. We color a subset of B∗ so that we color at most one point from each four
consecutive levels. Take a square Q1 which contains B

∗. Divide it into four little
squares, these are Q2, Q3, Q4 and Q5. Then divide Q2 into four little squares, these
are Q6, Q7, Q8, Q9. Similarly, divide Q3 to get Q10, . . . , Q13, and continue similarly.
Eventually we divide each square in the list into four little squares, and put them
in the list. This way we obtain an infinite list Q1, Q2, . . . of squares.

In Step 1.1, if Q1 contains infinitely many points of B∗, then color one of them,
p1, red. Otherwise, we stop. In Step 1.2, if Q1 contains infinitely many points of
B

∗ \
⋃

l<h(p1)+3 B
(l), then color one of them, p2, blue. Otherwise, we stop.

In general, in Step 1.(2k − 1), if Qk contains infinitely many points of the set
B

∗\
⋃

l<h(p2k−1)+3 B
(l), then color one of them, p2k−1, red. Otherwise, we stop. Then,

in Step 1.2k, if Qk contains infinitely many points of the set B∗ \
⋃

l<h(p2k−2)+3 B
(l),

then color one of them, p2k, blue. Otherwise, we stop.

After countably infinite many steps, we are done with Step 1.

In the following steps we color the uncolored points.

Step 2. For each even n, color B
(n) with procedure Black-White-Boundary-

Coloring(S ′,H(n)). Now a boundary point p ∈ B
(n) will be

– blue, if it is rich or colored white,

– red otherwise.

Step 3. For each odd n, color B
(n) with procedure Black-White-Boundary-

Coloring(S ′,H(n)). Now a boundary point p ∈ B
(n) will be

– red, if it is rich or colored white,

– blue otherwise.

That is, we change the roles of the colors.
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Step 4. Take a square which contains H∗. If it contains infinitely many points from
H∗, (that is, H∗ has infinitely many points) then color one of them blue and one
of them red. Divide the square into four little squares. In each of them, which
contains infinitely many points from H∗, color one of the uncolored points blue and
one of them red, and divide it into four smaller squares. (Again, let common vertical
boundaries belong to the left squares, common horizontal boundaries belong to the
lower squares.) Continue recursively. Once we obtain a square which contains only
finitely many points from H∗, color all uncolored points red, and do not divide it
into smaller squares.

Step 5. Color all uncolored points red.

Suppose thatH is colored by procedureMultiple-Red-Blue-Coloring(S,H). We
show that if a translate of an S-wedge contains infinitely many points of H, then it
contains infinitely many points of both colors. First we show that a wedge contains an
accumulation point in its interior, then it contains infinitely many points of both colors.

Lemma 19. Suppose that Ei(a) ∩ H is infinite and this set has an accumulation point t
in the interior of Ei(a). Then Ei(a) contains infinitely many points of both colors.

Proof. We have several cases according to the types of points that converge to t.
Case 1. Point t is the accumulation point of the interior points (H∗). In this case, in

Step 4, we found infinitely many little squares that contain infinitely many points of H∗

but contained in Ei(a). Therefore, Ei(a) contains infinitely many points of both colors.
Case 2. There are infinitely many boundary levels whose points converge to t. In this

case we can argue similarly as in the previous case. In Step 1 of the procedure we produce
a red and a blue sequence of points that converge to t. Ei(a) contains infinitely many
points of both sequences.

Case 3. Suppose now that there are only finitely many boundary levels whose points
converge to t, and t is not the accumulation point of the interior points (H∗). Let n be
the largest number with the property that t is an accumulation point of B(n).

Then it follows from Claim 16 that Ei(a) contains infinitely many black and white
points. If Ei(a) does not contain infinitely many red and blue points, then there is a
sequence p1, p2, . . . of rich boundary points that converge to t. For each rich boundary
point pj ∈ B

(n), there is a point p′j ∈ H(n+1) which “proves its richness”, that is, there is

a translate E
(j)
i of Ei which contains pj and no other boundary point of H(n), and also

contains p′j of H(n+1). Since the sequence p1, p2, . . . converges to t, the distance between
pj and pj+1 also goes to 0 as j goes to infinity. Therefore, the distance between pj and p′j
also goes to 0, so the sequence p′1, p

′

2, . . . converges to t as well. But this contradicts our
assumptions.

So, we are done if the points in Ei(a) have an accumulation point in the interior of it.
Suppose now that there is no such accumulation point.
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I. Assume that Ei(a) ∩ B
∗

i is infinite. Observe that if Ei(a) ∩ B
(n)
i 6= ∅, then, by the

definition of the boundary levels, for every k < n, Ei(a) ∩ B
(k)
i 6= ∅.

We distinguish two subcases.
(a) Suppose that for every n, Ei(a) ∩ B

(n)
i 6= ∅. Then, since we changed the roles of

the colors for the even and odd numbered levels, for n even, the sets Ei(a)∩B
(n)
i contain

infinitely many blue points, for n odd, they contain infinitely many red points.
(b) Suppose now, that Ei(a)∩B

(n)
i 6= ∅ holds only for finitely many levels. Let n be the

largest number such that Ei(a)∩B
(n) is infinite. By Claim 16, procedure Black-White-

Boundary-Coloring(S,H(n)) colors infinitely many points of Ei(a) ∩ B
(n) black and

white. So, the only problem could be, that infinitely many black points among these are
rich. Now we can argue similarly as in Case 3. Let p1, p2, . . . be a sequence of of rich
boundary points in B

(n). For each pj ∈ B
(n), there is a point p′j ∈ H(n+1), and a translate

of E
(j)
i of Ei which “proves its richness”. But then Ei(a) also contains the sequence

p′1, p
′

2, . . .. Since n is the largest number such that Ei(a) ∩ B
(n) is infinite, only finitely

many of p′1, p
′

2, . . . could belong to B
∗

i . On the other hand, if any E
(j)
i contains infinitely

many points of H(n+1), then they have an accumulation point which is in the interior of
Ei(a), contradicting our assumption. Therefore, each E

(j)
i contains only finitely many

points of H(n+1). But then they all belong to some boundary level greater than n. It is a
contradiction again, since we assumed that there are only finitely boundary levels greater
than n which contain a point in Ei(a) and each contain only finitely many.

II. Finally, suppose that Ei(a)∩B
∗

i is finite. We can assume without loss of generality
that it is empty. We assumed that there is no accumulation point in the interior of Ei(a).
If Ei(a) does not contain any point in its interior, we have a contradiction, since in this
case all points in Ei(a) are Ei-boundary points. If it contains a point p0 in its interior,
then, since it is not an Ei-boundary point, Ei(p0) contains a point p1. Since it is not an
Ei-boundary point either, Ei(p1) also contains a point p2. We get an infinite sequence
p1, p2, . . . in Ei(p0), so they have an accumulation point t in the interior of Ei(a). It is
again a contradiction.

This concludes the proof of Theorem 18, and therefore we also proved Theorem 3.

4 Remarks; Other versions of cover-decomposability

1. The concept of cover-decomposability has many other versions, instead of the plane, we
can consider multiple coverings of an arbitrary set, we can assume that we have finitely
many, countably many, or arbitrary many translates in the covering. These versions
are sometimes confused in the literature, moreover, there are some incorrect statements
because not the correct version of cover-decomposability is used. See [8] and [6] for an
overview.

Every covering in the sequel is a family of translates of a planar set S.

Definition 20. (a) A covering is finite, if it contains finitely many translates.
(b) A covering is locally finite, if any compact set intersects only finitely many trans-

lates.
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(c) A covering is countable, if it contains countably many translates.

Now we define eight different versions of cover-decomposability.

Definition 21. A planar set S is
{finite, locally finite, countable, or arbitrary}
{plane- or total-}
cover-decomposable, if there is a constant k such that any
{finite, locally finite, countable, or arbitrary}
k-fold covering of
{the plane, or any planar set}
can be decomposed into two coverings.

Our Theorem 2 states that every centrally symmetric closed convex polygon is plane-
arbitrary-cover-decomposable. It is not hard to see, that our proof works also for the
other versions of cover-decomposability. Cover-decomposability was known only for those
versions which could be reduced to a finite problem. The next table summarizes the
references for all positive results for centrally symmetric closed convex polygons. [KT]
refers to the present paper.

finite locally finite countable arbitrary many

the plane − [5] [KT] [KT]

any planar set [5] [5] [KT] [KT]

Our proof, with very little modification, implies the same results for open centrally
symmetric convex polygons. In this case it is easier to reduce the problem to the finite
case, therefore, cover-decomposability was proved for more versions. The next table
summarizes the situation for centrally symmetric open convex polygons.

finite locally finite countable arbitrary many
the plane − [5] [5] [5]

any planar set [5] [5] [KT] [KT]

2. In the proof of Theorems 2 and 3 we used different colorings. In fact, there is a
single coloring algorithm which can be used in both proofs, but we found it too technical
to present it.
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