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Abstract

All linear codes of length 100 over a field F which admit the Higman-Sims simple
group HS in its rank 3 representation are determined. By group representation the-
ory it is proved that they can all be understood as submodules of the permutation
module FΩ where Ω denotes the vertex set of the Higman-Sims graph. This mod-
ule is semisimple if charF 6= 2, 5 and absolutely indecomposable otherwise. Also
if charF ∈ {2, 5} the submodule lattice is determined explicitly. The binary case
F = F2 is studied in detail under coding theoretic aspects. The HS-orbits in the
subcodes of dimension 6 23 are computed explicitly and so also the weight enu-
merators are obtained. The weight enumerators of the dual codes are determined
by MacWilliams transformation. Two fundamental methods are used: Let v be
the endomorphism determined by an adjacency matrix. Then in H22 = Im v the
HS-orbits are determined as v-images of HS-orbits of certain low weight vectors in
FΩ which carry some special graph configurations. The second method consists in
using the fact that H23/H21 is a Klein four group under addition, if H23 denotes
the code generated by H22 and a “Higman vector” x(m) of weight 50 associated
to a heptad m in the shortened Golay code G22, and H21 denotes the doubly even
subcode of H22 6 H78 = H22

⊥. Using the mentioned observation about H23/H21

and the results on the HS-orbits in H23 a model of G. Higman’s geometry is con-
structed, which leads to a direct geometric proof that G. Higman’s simple group is
isomorphic to HS. Finally, it is shown that almost all maximal subgroups of the
Higman-Sims group can be understood as stabilizers in HS of code words in H23.

Keywords: Higman-Sims simple group, rank 3 representation, graph, linear code,
Hamming weight, Higman’s geometry

Introduction

In [20] a systematic program to determine all codes admitting a prescribed permutation
group G has been proposed. Hitherto in many cases good codes have been obtained from
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doubly-transitive permutation groups. In this paper the program of [20] is carried out for
G = HS, the simple group of Higman-Sims in its rank 3 permutation representation of
degree 100. It turns out that any code over a field F admitting G can be obtained as a
submodule of the permutation module FΩ over F , considering Ω as the ambient basis.

The binary codes are of particular interest. There is exactly one G-invariant subcode
H23 of dimension 23 over F2 which may be viewed as an amalgamation of 100 copies of
the (shortened) binary Golay code of length 22. Let v be the endomorphism determined
by an adjacency matrix and let H22 = Im v. Then H22 6 H78 = H22

⊥. Let H21 denote
the doubly even subcode of H22. Then H22 6 H23 and H23/H21 is a Klein four group
under addition. The G-orbits on the weight classes of the codes of dimension at most 23
(which are all contained in H23) are determined by elementary algebraic and combinatorial
arguments. The two G-invariant subcodes H ′22 and H ′′22 of dimension 22 containing H21

and different from H22 are related to the G-orbits on the set of “Higman vectors” x(m)
of weight 50 associated to heptads m in the shortened Golay code G22. Two fundamental
methods are used: the G-orbits in H22 are determined as v-images of G-orbits of certain
low weight vectors in FΩ which carry some special graph configurations. The second
method consists in using the mentioned fact that H23/H21 is a Klein four group under
addition. Also the natural action of the automorphism group G on H23/H21 is considered.
Now, using also MacWilliams transformation, the weight enumerators for all non-trivial
G-invariant binary subcodes are computed; some of them have rather good error correction
capacity.

It turns out that the weight structure of H23 is highly relevant for the combinatorial
properties of the Higman-Sims graph. The structure of the subcodes of H23 allows also
the construction of a model of G. Higman’s geometry [17] admitting an action of G = HS.
Thereby an isomorphism of HS and G. Higman’s simple group is obtained. H23 may also
be used to describe a large part of the subgroup structure of HS in a similar way as it has
been done for the Mathieu group M24 and the (extended) binary Golay code of length 24
by Conway and Curtis. One can check that the parameters of several HS-invariant binary
codes meet the Gilbert-Varšamov bound, see also [5].

The methods developed in this paper are not restricted to the case of the Higman-Sims
simple group. In particular, one may obtain codes of length 77, 56, 50 and 16 from rank
3 groups corresponding to strongly regular subgraphs of the Higman-Sims graph. Note
that N. Loebich has shown in [21] that G100 contains every known strongly regular graph
having a vertex transitive group of automorphisms and no triangles as a subgraph.

Remark

This paper is based on talks of the first author in a research seminar in 1980 at the
university of Tübingen and was completed essentially in 1982, in the time before TEX or
LATEX were available to the authors and before the Group ATLAS [1] and the Atlas of
Brauer Characters [2] appeared. Due to its considerable length it could not be published
at that time. Now, many years later, the first author found the time to rewrite the paper
in LATEX, so also making an electronic version available. Only a few changes of the original
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text were made, in particular some more recent references (e.g. to the ATLASes and to
GAP) were added. It is clear that nowadays many of the results can be obtained easily
just by computing using computer algebra systems like GAP (with packages GRAPE and
GUAVA) or Sage. Note that in the present work only the MacWilliams transformations
of several code enumerators were carried out by computer; all other results are obtained
by arguments and computation by hand. It should be acknowledged that also some
more recent research publications have some overlap with this paper, in particular V.D.
Tonchev’s paper [37]. Moreover, the code H22 represents a particular instance of more
recent general investigations, e.g. by Brouwer and Eijl [4] and Haemers, Peeters and van
Ruckevorsel [12].

We thank the referees for some valuable suggestions.

1 Background and preliminary results

In this paper sets and groups are assumed finite, unless specified otherwise. If Ω is a
set, then P(Ω) denotes the set of all subsets of Ω; SymΩ and AltΩ denote the alternating
and symmetric group of the set Ω, An and Σn the alternating and symmetric group on n
letters. If A and B are groups then AwrB denotes the regular wreath product of order
|B||A||A|. A ∧k B denotes a subdirect product of A and B where a factor group of order
k is identified. M24−i and M12−i denote the Mathieu groups of degree 24− i resp. 12− i.
Epf denotes an elementary abelian group of order pf .

Actions of a group G onto a set Ω are right actions denoted by (α, g) 7→ αg. If G
acts on Ω we write (G,Ω) for this action and - following a suggestion of H.Wielandt - we
denote the set of G-orbits on Ω by Ω : G. If H 6 G then G : H = {Hx | x ∈ G} and
G : (H,H) = {HxH | x ∈ G}.

Fq denotes a finite field of order q. Modules are always assumed to be finitely generated.
If R is a commutative ring with 1 and M a free R-module then rkRM denotes the R-rank
of M . If F is a field and G a group then FG denotes the group algebra of G over F .
If U is an FG-module then U∗ denotes the dual FG-module. U =FG X ⊕ Y denotes a
direct decomposition of the FG-module U into FG-submodules X and Y . J(A) denotes
the Jacobson radical of an algebra A.

All other general notations are standard.
We shall need an elementary result concerning module reductions whose idea of proof

is taken from Thompson [36, Theorem 1].

(1.1) Proposition.
Let R be a principal ideal domain, K its field of fractions, P a maximal ideal of R and
k = R/P its residue class field. Let G be a finite group and V an RG-lattice (i.e. a
finitely generated R-free RG-module). Suppose K ⊗R V =KG X ⊕ Y is a direct sum of
KG-submodules where dimK X = s. Then the following hold:

(1) W = V ∩X is an RG-submodule and a pure R-submodule of X.

(2) rkRV/W = dimK Y = rkRV − s.
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(3) k ⊗RW is a kG-submodule of k ⊗R V of dimension s.

Proof. Clearly W and V are RG-submodules of K ⊗R V . Since V/W ∼= (V + X)/X is
isomorphic to an RG-submodule of Y we see that V/W is torsion free, hence W is a pure
submodule of V . Let t = rkRV . Then, of course, rkRV/W = dimK Y = t − a. By the
theorem of elementary divisors there exists an R-basis (bi)16i6t of V and (ai)16i6t ∈ Rt

such that ai | ai+1 for 1 6 i 6 t − 1 and (aibi)16i6t is an R-basis of W . The fact that
W is a pure submodule entails that we may choose ai = 1 for 1 6 i 6 t − s and ai = 0
for t − s + 1 6 i 6 t. Now it is obvious that k ⊗R W is an s-dimensional subspace of
k ⊗R V . �

Proposition (1.1) is applied in this paper in the case R = Z, K = Q, P = pZ, k = Fp
and V = ZΩ, the integral permutation module of a group G acting (transitively) on a set
Ω. In this case Q⊗Z V = QΩ and Fp ⊗Z V = FpΩ are viewed in the obvious way as the
permutation modules over Q resp. Fp defined by the same action of G on Ω.

(1.2) Lemma.
Let G be a group and let V be an FG-module over a finite field F with dual module V ∗.
Let u1V and u1V

∗ denote the set of all 1-dimensional subspaces of V and V ∗, respectively.
Then the following hold:

(1) |u1V
∗ : G| = |u1V : G|,

(2) If F = F2 then |V ∗ : G| = |V : G|.

Proof. Obviously, (2) is a consequence of (1). The natural G-invariant pairing φ : V ×
V ∗ → F : (x, y) 7→ xy may be used to show that (u1V, u1V

∗, {(Fx, Fy) | xy = 0}) is
a projective space (with the hyperplanes in the rôle of blocks) admitting G as a group
of automorphisms. Brauer’s Lemma ([3, p.933 f]) or the theorem of Dembowski-Hughes-
Parker ([9, p.81]) shows that G has on u1V and on u1V

∗ the same permutation character,
so (1) easily follows. �

We shall use the following concepts from coding theory.
An ordered pair (V,B), where V is a finitely generated free F -module over a commu-

tative ring F and B is an F -basis of V , is called a Hamming space over F . In this paper
F will always be a field. dimF V is called the length of the Hamming space (V,B). A
Hamming space (V,B) carries the following canonical structures.

Let B = (ei) and let x =
∑
xiei for any x ∈ V .

(i) V carries the nondegenerate symmetric bilinear form (x, y) 7→ 〈x, y〉 = 〈x, y〉B =∑
xiyi.

(ii) V is a commutative and associative F -algebra with respect to the coordinatewise
multiplication (x, y) 7→∑

(xiyi)ei.
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(iii) V carries the norm wB : x 7→ w(x) = wB(x) :=
∑ |xi| where | · | denotes the

trivial absolute value of F . w(x) = wB(x) is called the (Hamming) weight of x. Let
supp(x) = suppB(x) = {ei | xi 6= 0} denote the support of x with respect to B.
Then, of course, w(x) = |supp(x)|. To the norm wB there corresponds canonically
the Hamming metric dB defined by dB(x, y) := wB(x− y).

For any subset X of V let Wi(X) denote the set of all vectors in X of weight i.
Furthermore let X⊥ denote the set of all vectors in V orthogonal to every element of X
with respect to 〈·, ·〉. Of course, X⊥ = 〈X〉⊥ is a (linear) subspace of V of dimension
dimV − dim〈X〉.

Any triple (V,B,C) where C is a subspace of V is called a linear code having ambient
space V and ambient basis B. If the Hamming space (V,B) is given by the context we
usually write C = (V,B,C). C is said to be an (n, k)-code if dimV = n and dimC = k.
Throughout the paper we shall follow the convention that a “code” is always understood
to be a linear code.

If C is a code of length n, the (n+ 1)-tuple (|Wi(C)|)06i6n is called the weight distri-
bution of C, and the homogeneous polynomial

∑ |Wi(C)|ξiηn−i ∈ C[ξ, η] of degree n is
called the weight enumerator of C. The weight enumerators of a code C and of its “dual”
C⊥ determine each other via the MacWilliams identities, see e.g. [16].

A morphism (V,B,C) → (V ′, B′, C ′) of codes over F is by definition an injective F -
linear map µ : V → V ′ with Cµ ⊆ C ′ sending any e ∈ B to a scalar multiple of some
e′ ∈ B′. The codes C and C ′ are isomorphic if µ is bijective and Cµ = C ′.

ML(C) denotes the group of all (code) automorphisms from (V,B,C) to itself, the
monomial linear group of C. (ML(C) can be represented by monomial matrices, with
respect to the ambient basis B.) Let B = (ei)i∈Ω. Every µ ∈ ML(C) determines a
permutation µ̄ of Ω by eiµ ∈ 〈eµ̄〉 = Feµ̄. The map µ 7→ µ̄ is an epimorphism of
ML(C) onto a subgroup PML(C) of the symmetric group SymΩ. We call PML(C) the
permutation group of C. The code C is said to admit a permutation group G acting on
Ω if G is a subgroup of PML(C). The elements of ker(µ 7→ µ̄) form the group DL(C) of
diagonal automorphisms of C.

In the following we fix a 3−(22, 6, 1)-designW22 = (P22, B22, I22). It is a result of Witt
[39, 40] that such a design exists and is unique up to isomorphism. W22 may be viewed
as an extension of the projective plane PG(2, 4) = (P21, B21, I21) where P22 = P21 ∪ {∞}
and B22 is the union of B′21 = {{∞} ∪ g | g ∈ B21} and an orbit H1 of PSL(3, 4)
on the set of hyperovals of PG(2, 4), see [15]. The full group of automorphisms is the
automorphism group Aut(M22) = M22 of the Mathieu simple group M22 of order 443, 520
where |M22 : M22| = 2. The permutation group M22 acting on P22 is a transitive extension
of M21 = PSL(3, 4).

The (shortened) binary Golay code of length 22 may be described in terms of W22 as
follows, see also [20, 5.3]. Let V = F2P22 be the F2-vector space with basis P22. Then
(V, P22) is a Hamming space. Let G11 be the subspace of V generated by all characteristic
functions of blocks of W22, i.e. G11 = 〈b• | b ∈ B22〉 where b• =

∑{δ(b, x)x | x ∈ P22}
and δ(b, x) = 0 if x 6 I22b, δ(b, x) = 1 if xI22b.
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It is easily seen that G11 is a (22, 11)-code which is self-dual, i.e. G⊥11 = G11. Moreover
G11 = 〈122〉 ⊕G10 where 122 =

∑
P22 and G10 = 〈b• + c• | {b, c} ⊆ B22〉 = 〈122 + b• | b ∈

B22〉.
Let G12 = G⊥10. Then G12 is called the (shortened) Golay code of length 22. Of course,

G12 is a (22, 12)-code containig G11. There are two more codes G′11 and G′′11 properly
between G10 and G12. The following assertions about the binary Golay code of length 22
are well known and easy to prove.

(1.3) Proposition.
G12 and its subcodes have the following properties.

(1) ML(G12) = ML(G11) = ML(G10) = M22.

(2) ML(G′11) = ML(G′′11) = M22, and M22 interchanges G′11 and G′′11. (G′11)⊥ = G′′11.

(3) M22 acts (as a linear group) irreducibly on G10 and trivially on G12/G10.

(4) The weight distributions of the codes are as follows:

i |Wi(G10)| |Wi(G11)| |Wi(G
′
11)| |Wi(G12)|

0 1 1 1 1
6 − 77 − 77
7 − − 176 352
8 330 330 330 330
10 − 616 − 616
11 − − 672 1, 344
12 616 616 616 616
14 − 330 − 330
15 − − 176 352
16 77 77 77 77
22 − 1 − 1

In the table only occurring weights i are displayed; − is printed in place of 0.

Note that |Wi(G
′
11)| = |Wi(G

′′
11)|, since G′11 and G′′11 are conjugate under M22.

Moreover,

G11 = {x ∈ G12 | w(x) ≡ 0 (mod 2)},
G10 = {x ∈ G12 | w(x) ≡ 0 (mod 4)}.

(5) M22 acts transitively on each nonempty Wi(G12), i 6= 7, 11, 15.

Wi(G12), i ∈ {7, 11, 15}, splits into two M22-orbits Wi(G
′
11) and Wi(G

′′
11) which are

fused under M22.

M22 acts transitively on every nonempty Wi(G12).
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(6) Let x ∈ Wi(G12), 0 6= i 6= 22. Then the stabilizer subgroup (M22)x is a maximal
subgroup of M22 having the following structure:

i structure of (M22)x
6 / 16 E16A6

7 / 15 A7

8 / 14 E8GL(3, 2)
10 / 12 M10

11 PSL(2, 11)

In each case (M22)x acts transitively on supp(x). There are exactly two conju-
gacy classes in M22 of such stabilizers for i ∈ {7, 11, 15} which are fused under
Aut(M22) ∼= M22.

Remark. Of course, (M22)x = (M22)x+122 . There is exactly one more conjugacy class
of maximal subgroups of M22, namely the stabilizers in M22 of 2-subsets of P22. These
maximal subgroups, of index 231, are isomorphic to E16Σ5, see [7, Table 3].

It will be convenient to identify the vectors of F2P22 with their supports in P22. So
F2P22 may be viewed as the (power) set P(P22) of all subsets of P22. We recall the
following notions.

(1.4) Definition.
The elements of Wi(G12), resp. their supports, are called hexads (i = 6), heptads (i = 7),
octads (i = 8), decads (i = 10), endecads (i = 11) and dodecads (i = 12) of W22.

The hexads of the definition are the blocks ofW22. For later use we setM′ = W7(G′11)
and M′′ = W7(G′′11). Then M′ and M′′ are the orbits of M22 in the set of heptads of
W22.

We shall need some more detailed properties of G12. A subset T of P22 is called
independent if there is no hexad of W22 incident with every element of T , otherwise
dependent. Furthermore, we introduce the block graph G77 = (B22,∆77) by taking the 77
blocks of W22 as vertices, joining two vertices by an edge in ∆77 if and only if they are
disjoint. (G77 is a strongly regular graph of valency 16, having M22 in its action on the
blocks of W22 as its group of automorphisms.)

(1.5) Lemma.
Let B be a set of at most 5 blocks of W22 such that

∑{b• | b ∈ B} = 122. Then |B| = 5
and exactly one of the following holds:

(i) There exists a 2-subset T = {x, y} of P22 such that B is the set of all blocks incident
with x and y. G77 induces on B the null graph.

(ii) There exists an independent 4-subset T of P22 such that B is the union of the set
B0 of all blocks defined by the 4 triangles in T and the unique block b1 disjoint from⋃{b | b ∈ B0}. G77 induces on B a 4-claw.
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(iii) There exist two disjoint 2-subsets T1 = {x1, y1} and T2 = {x2, y2} such that T1 ∪ T2

is dependent and B consists of the unique block b0 determined by T1∪T2 and of four
blocks b1, b2, b3, b4 such that b1 intersects b2 in T1, b3 intersects b4 in T2 and b1 ∪ b2

is disjoint from b3 ∪ b4. G77 induces on B a quadrangle and an isolated point.

Moreover, any block configuration B described above has the property
∑{b• | b ∈ B} =

122.

Proof. Assume |B| 6 4. Then |B| = 4 since 3 · 6 = 18 < 22. Let B = {b0, b1, b2, b3}. The
bi are not pairwise disjoint. Without loss of generality we may suppose that b1,b2 and b3

intersect in the point ∞ which implies that b1,b2 and b3 correspond to lines of PG(2, 4)
and b0 corresponds to a hyperoval which immediately leads to a contradiction. Therefore
we have |B| = 5.

Let Mi = {x | x ∈ P22 and x is incident with exactly i elements of B} for 0 6 i 6 5.
We have the partition P22 = M1 ]M3 ]M5.

If |M5| > 2 then |M5| = 2 and (i) holds. |M5| = 1 is impossible, as is seen by
considering the projective plane (W22)x where M5 = {x}.

If M5 = ∅ then we have M3 6= ∅ since the blocks of B cannot be pairwise disjoint.
We may assume without loss of generality that ∞ ∈ M3. Let B = {b0, b1, b2, b3, b4} such
that ∞ is incident with {b0, b1, b2}. Then b0, b1, b2 may be viewed as lines and b3, b4 as
hyperovals in PG(2, 4). If b0, b1, b2 are confluent lines then it easily follows that (iii) holds.
If b0, b1, b2 are not confluent it follows that (ii) holds. Note that in both cases |M3| = 4
holds.

It is immediate that all configurations B of types (i), (ii), (iii) have the required
property

∑{b• | b ∈ B} = 122. �

(1.6) Lemma.
Let C be a set of blocks of W22 such that |C| = 4 and

∑{b• | b ∈ C} = 0. Set Mi = {x |
x ∈ P22 and x is incident with exactly i elements of C}, mi = |Mi| for 0 6 i 6 4. Then
m0 = 10 and m2 = 12.

Proof. Of course m0 + m2 + m4 = 22. It is easy to derive a contradiction if m4 6= 0.
Therefore m4 = 0 and we may assume without loss that ∞ ∈M2. In this case C consists
of 2 lines and 2 hyperovals and the assertion is easily verified. (Note that C cannot contain
two disjoint blocks.) �

(1.7) Lemma.
Let C be a set of blocks of W22 such that |C| = 6 and

∑{b• | b ∈ C} = 0. Set Mi = {x |
x ∈ P22 and x is incident with exactly i elements of C}, mi = |Mi| for 0 6 i 6 6.

Then exactly one of the following holds:

(i) Two elements of C are disjoint.

(ii) m6 6= 0.

(iii) m0 = 7,m2 = 12 and m4 = 3.
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Proof. Suppose that m6 = 0 and that no two elements of C are disjoint. Let b ∈ C. The
remaining 5 blocks in C intersect b in exactly 2 points. Counting incidences yields that
b contains exactly 2 elements of M4 and 4 elements of M2. Now it easily follows that
m4 = |M4| = (6 · 2)/4 = 3 and m2 = (6 · 4)/2 = 12. So (iii) holds. �

Note that examples for the cases (ii) and (iii) in (1.7) easily can be constructed. In
case (ii) C is formed by a dual hyperoval in the projective plane PG(2, 4) if ∞ ∈M6.

(1.8) Lemma.
Let C be a set of blocks of W22 such that |C| = 7 and

∑{b• | b ∈ C} = 122. Set
Mi = {x | x ∈ P22 and x is incident with exactly i elements of C}, mi = |Mi| for
0 6 i 6 7. Then either m5 +m7 > 0 or m1 = 12 and m3 = 10.

Proof. Suppose m5 +m7 = 0. Then m1 +m3 = 22, and by counting incidences we obtain
42 = 7 · 6 = m1 + 3m3. It follows m1 = 12 and m3 = 10. �

(1.9) Proposition. (1) The heptads of W22 are exactly the hyperblocks in the sense of
Lüneburg [22, p.98].

(2) Recall that V = F2P22. Let y ∈ W7(V ). Then the following assertions are equivalent:

(a) y is a heptad.

(b) 〈y, b•〉 = 1 for all b ∈ B22.

(c) |supp(y) ∩ b| ∈ {1, 3} for all b ∈ B22.

(3) Let y, z be heptads of W22. Then the following assertions are equivalent:

(a) y and z belong to the same M22-orbit.

(b) 〈y, z〉 = 1.

(c) |supp(y) ∩ supp(z)| ∈ {1, 3, 7}.

(4) Let y, z be heptads of W22. Then the following assertions are equivalent:

(a) y and z belong to distinct M22-orbits.

(b) 〈y, z〉 = 0.

(c) |supp(y) ∩ supp(z)| ∈ {0, 2, 4}.

Proof. (2), (3) and (4) immediately follow from (1.3). (1) is then obvious. �

For any x ∈ V = F2P22 set Bi(x) = {b ∈ B22 | |supp(x) ∩ supp(b)| = i}, 0 6 i 6 6.

(1.10) Lemma.
Let y be a heptad of W22. Then the following hold.

(1) B22 = B1(y) ]B3(y), |B1(y)| = 42 and |B3(y)| = 35.

(2) (M22)y ∼= A7 has the orbits B1(y) and B3(y) in B22.
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Proof. The assertion follows from (1.3) and (1.9), see also [22, 14.12]. �

(1.11) Lemma.
Let y be a heptad of W22, y ∈M′, say. For 0 6 i 6 7 let Di(y) = {z|z a heptad such that
|supp(y) ∩ supp(z)| = i}. Then the following hold:

(1) If Di(y) 6= ∅ then (M22)y ∼= A7 acts transitively on Di(y).

(2) M′ = D1(y) ]D3(y) ]D7(y) and M′′ = D0(y) ]D2(y) ]D4(y).

(3) The cardinalities of Di(y) are given in the following table:

i 0 1 2 3 4 7
|Di(y)| 15 70 126 105 35 1

Proof. (3) may be obtained from the Leech triangle [7, p.226]. It is clear from the defi-
nition that the sets Di(y) are (M22)y-invariant. Inspection of the character table of M22

and Frobenius reciprocity then yield (1) and (2). �

We also need a result on endecads of W22.

(1.12) Lemma.
Let e be an endecad of W22, e = e+ 122 its complement. Then the following hold.

(1) |B1(e)| = |B5(e)| = 11 and |B3(e)| = 55.

(2) B22 = B1(e) ]B3(e) ]B5(e).

(3) B3(e) = B3(e), B1(e) = B5(e) and B5(e) = B1(e).

(4) (M22)e ∼= PSL(2, 11) acts transitively on supp(e), supp(e) and any nonempty Bi(e).

Proof. (1) and (2) may be obtained from (1.3). (3) is obvious from the definition of the
Bi(x). (4) is verified by inspection. (Note that PSL(2, 11) acts 3-homogeneously on 11
points; this forces (M22)e to act transitively on B3(e).) �

We use the original definition of the Higman-Sims graph and group [16, 22] as follows.
Let α 6∈ P22]B22 and set Ω = {α}]P22]B22.Then |Ω| = 1 + 22 + 77 = 100. A graph

G100 = (Ω, E) with vertex set Ω is defined by

E = {{α, x} | x ∈ P22}
] {{x, y} | x ∈ P22, y ∈ B22 and (x, y) ∈ I22}
] {{y, z} | y, z ∈ B22 and y disjoint from z in W22}.
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It is easily shown that G100 is a strongly regular graph with valency k = 22 and
intersection parameters λ = 0, µ = 6 in D.G. Higman’s sense [14]. G100 is called the
Higman-Sims graph.

Let G = Aut(G100). Then G contains a simple normal subgroup G = HS of index 2,
the Higman-Sims simple group of order 44, 352, 000 = 293253 · 7 · 11. G acts as a rank 3
permutation group primitively on Ω. Of course, Gα

∼= M22 and Gα
∼= M22. Moreover,

G ∼= Aut(G).
We need some more detailed notation for the action of G (resp. G) on Ω.
G and G have the orbits ∆0,∆1,∆2 in Ω2 where

∆0 = {(ξ, ξ) | ξ ∈ Ω} is the diagonal,

∆1 = {(ξ, η) | {ξ, η} ∈ E} and

∆2 = {(ξ, η) | ξ, η ∈ Ω, ξ 6= η and {ξ, η} 6∈ E}.

We use the notation ∆i(ξ) = {η | (ξ, η) ∈ ∆i} for the corresponding Gξ-orbits. Of course,
|∆i(ξ)| = 1, 22, 77 respectively.
The matrix Vi in the centralizer algebra of (G,Ω) is defined by

Vi = (fi(ξ, η))(ξ,η)∈Ω2

where fi(ξ, η) = 1 if (ξ, η) ∈ ∆i and fi(ξ, η) = 0 otherwise (i = 0, 1, 2).

Vi may be viewed as a matrix over any integral domain. If F is a field and FΩ denotes
the permutation module of (G,Ω) over F , to each Vi there is naturally associated an
endomorphism vi with the property

ξ 7→ ξvi =
∑
fi(ξ, η)η.

We use the convention ∆ = ∆1 and v = v1 throughout the paper.
It is convenient to identify the F2 vector spaces P(Ω) and F2Ω in the obvious way. We

introduce special names for some interesting elements:
The elements ∆(ξ), ξ ∈ Ω, are called adjacency vectors of G100 ; arranged in a suitable

way they form a (binary) adjacency matrix of G100.
x ∈ F2Ω is called a β-hexad for some β ∈ Ω if and only if there exists a g ∈ G such

that βg = α and xg is a hexad of W22 (viewed as a subset of P22). In the same way
β-heptads, β-octads, β-decads, β-endecads and β-dodecads are defined.

If m is an α-heptad then the vector x(m) = α + m + B1(m) ∈ W50(F2Ω) is called a
Higman vector, see (1.10). (The terminus “Higman vector” refers to G. Higman’s geometry
and will be justified in Section 4.)

Note that if x is a β-hexad and a γ-hexad then β = γ or supp(x) = ∆(β) ∩∆(γ); in
the latter case {β, γ} is uniquely determined by x. For β-heptads, β-octads, β-decads,
β-endecads and β-dodecads y the vertex β is uniquely determined by y.

Let U 6 G = Aut(G100) and let Ω : U = {Φi | 0 6 i 6 t− 1}. Then the matrix of the
Higman-Sims graph with respect to (Φi)06i6t−1 (or less precisely with respect to U) is the
matrix
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A = (aij) ∈ Zt×t where aij = |∆(ξ) ∩ Φj| for ξ ∈ Φi.

Note that A is an adjacency matrix of G100 if U = 1 and the transpose of an intersection
matrix of (Ω, G) in D.G. Higman’s sense [14] if U = Gα.

(1.13) Lemma.
Let m be an α-heptad. Then Gα,m = Gα+m

∼= A7 and the Gα,m-orbits in Ω are

(Ψi)06i64 = ({α},m,B1(m),∆(α) +m,B3(m))

with orbit lengths
(|Ψi|)06i64 = (1, 7, 42, 15, 35).

The matrix of the Higman-Sims graph with respect to (Ψi) is

A =


0 7 0 15 0
1 0 6 0 15
0 1 6 5 10
1 0 14 0 7
0 3 12 3 4

.

Proof. The assertion follows from (1.10) or [22, 14.12]. �

(1.14) Proposition.
Let F2B22 be the permutation module over F2 for M22 of dimension 77 given by the action
on the blocks of W22, 177 =

∑
B22. Then F2B22 =F2M22 〈177〉 ⊕ Y where Y = 〈177〉⊥ is

an indecomposable F2M22-module of dimension 76.

Proof. Since 77 is odd we have the decomposition F2B22 = 〈177〉 ⊕ Y where Y = 〈177〉⊥.
Since M22 acts as a rank 3 permutation group on B22 we infer that either Y is indecom-
posable or E = EndF2M22(F2B22) is semisimple. Now consider the intersection matrix of
M22 acting on B22

S =

 0 1 0
16 0 4
0 15 12


(see [14] for example). It follows that E contains a proper nilpotent element. Hence E is
not semisimple, therefore Y is indecomposable. �

(1.15) Corollary.
Let F2Ω be the permutation module over F2 for G = HS of dimension 100 given by the
action on the vertices of G100, 1 =

∑
Ω. Then 〈1〉⊥/〈1〉 =F2M22 Y ⊕ Z where Y and Z

are indecomposable F2M22-modules of dimension 76 and 22 respectively.

Proof. Restriction of coordinates shows that 〈1〉⊥ ∼= F2P22 ⊕ F2B22 as an F2M22-module.
From (1.3) it follows that F2P22 is indecomposable of dimension 22. Now (1.14) and the
isomorphism theorems for modules yield the assertion. �
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In an appendix to this section for the convenience of the reader two distinct adjacency
matrices of the Higman-Sims graph G100 are displayed. We thank an anonymous referee
for pointing out that an adjacency matrix for G100 is provided also by the graph database
of Sage [34]. An adjacency matrix of G100 can also easily be computed directly by GAP
using the Package AtlasRep. But such a matrix still would have to be transformed by
additional programs to one of the shapes in Figure 1 or Figure 2 which visualize a better
understanding of the graph structure.

In Figure 1 an adjacency matrix in a “canonical” form according to the definition of
G100 is given. Here Ω is ordered according to a particular rank 3 stabilizer series: α is
taken first, then two Singer-cycle orbits separated by a fixed-point follow. In this ordering
of Ω the adjacency matrix displays the well known fact that G100 contains strongly regular
subgraphs with vertex number 77 and valency 16 (the graph G77 mentioned above) and
with vertex number 56 and valency 10 (called the “Gewirtz graph”).

Detached at the bottom of the matrix a Higman vector x(m) in the same ordering of
Ω is printed.

In Figure 2 the ordering of Ω is such that the support of the given Higman vector
x(m) is taken first. The ordering is chosen also such that G100 induces on supp(x(m)) and
on its complement the “same” strongly regular graph of valency 7 (called the “Hoffman-
Singleton graph”). Figure 2 also obviously displays the 2 · 50 cocliques of size 15 of the
Hoffman-Singleton graph in the sense of [6] where they are of fundamental importance
for the code construction. These cocliques were also used by Hafner [13] in his alternative
construction of the Higman-Sims graph from the Hoffman-Singleton graph which is used
in Sage [34].

Note: For better reading in the figures the matrix entries “ 0” are printed as “·” .

2 The codes of length 100 which admit G = HS

In this section all linear codes C of length 100 which admit G in the sense of [20] are
determined.

Let E be a stem cover of G and Eα be the inverse image of the stabilizer Gα. Then by
[20, 3.2], all linear codes over a field F admitting G as a permutation group are obtained
by the following procedure:

Induce up to E all 1-dimensional FEα-modules. The submodules of the resulting
FE-modules provide for a complete list of codes admitting (G,Ω) as permutation group.

In our case G = HS there exists only one 1-dimensional FEα-module, namely the
trivial on F , which induces up to the permutation module. This result is stated in [29]
without reference. Since it is relevant for our purpose, we indicate a proof.

(2.1) Lemma.
Let E be a stem cover of G = HS and let Eα be the inverse image of Gα

∼= M22 under the
canonical epimorphism E → G. Then Eα is a stem extension of Gα.

(Note that H2(M22) ∼= Z12 by a theorem of Mazet [26].)
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Figure 1: An adjacency matrix of the Higman-Sims graph and a Higman vector.

Proof. By [25] G has exactly two conjugacy classes of involutions, say 21 and 22. The
involutions in 21 have exactly 20 fixed-points in Ω while the involutions in 22 act fixed-
point freely on Ω. Thus any involution in 22 moves exactly 100 ≡ 4 (mod 8) points.

Following Griess [11] we consider now the stem cover Â of AltΩ > G, and we conclude

that the inverse image E of G under the canonical epimorphism Â → AltΩ is a stem
extension. By [27] E is the stem cover of G (uniquely determined up to isomorphism).

To be explicit, Griess’ argument shows that any inverse image t̂ of an involution t ∈ 22
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Figure 2: An adjacency matrix of the Higman-Sims graph displaying also the Hoffman-
Singleton graph.

is an element of order 4 such that t̂2 = z, where 〈z〉 = Z(A) = Z(E), see [18]. Now let
Gα = M and let h be an α-hexad. By [25] the stabilizer H of h in G is a semidirect
product of H1

∼= Σ6 by N ∼= Z4
2 such that H2 = H1 ∩M ∼= A6 acts irreducibly on N ; of

course, NH2 = H ∩M and |H : H ∩M | = 2. We claim that there exists an involution
t ∈ 22 such that H = (H ∩M)〈t〉. To see this fact we recall the following results of [25]:

Let S be a Sylow 2-subgroup of G containing a Sylow 2-subgroup S2 of M . S contains
an elementary abelian subgroup V of order 4 whose involutions all belong to 22. Since
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S2 ∩ V = 1 we conclude that S = S2V . S2 is contained in a Sylow 2-subgroup S1 of H,
therefore S1 ∩ V = 〈t〉 for some involution t ∈ 22 and the claim is established.

We denote by ̂ any inverse image under the canonical epimorphism E → G. Since
t̂2 = z we infer that Ĥ is stem extension of H. It is fairly obvious that N̂ is elementary
abelian (recall that N̂/〈z〉 ∼= Z4

2 is an irreducible module). Since Ĥ is a stem extension,

N̂ is an indecomposable Ĥ/N̂ -module where Ĥ/N̂ ∼= Sym6. But then N is also an

indecomposable Ĥ ∩M/N̂ -module where Ĥ ∩M/N̂ ∼= Alt6, as one can see by restricting
the natural permutation module over F2 from Σ6 to A6. Consequently we infer that

Ĥ ∩M is a stem extension of H ∩M and so also M̂ = Eα is a stem extension of Gα. �

As a consequence of (2.1) and [20, (3.2)], every code admitting G = HS may be viewed
as a submodule of the permutation module of (G,Ω). So the next step is to determine
all such submodules. Clearly, we may consider first the case of characteristic 0 and then
proceed by reduction modulo the prime characteristic p. In the modular case we first
determine those submodules which are kernels or images of module endomorphisms; this
type of submodules will be called endo-submodules. The complete lattice of submodules
then is obtained from relations between endo-submodules, their perpendicular spaces and
some extra considerations.

We recall from Section 1 the notations: Ω denotes the set of vertices of the Higman-
Sims graph, the Higman-Sims simple group G = HS has the orbitals ∆0,∆1,∆2 where
|∆i(α)| = 1, 22, 77 respectively. V0, V1, V2 are the matrices in the centralizer algebra of
(G,Ω) corresponding to the orbitals ∆0,∆1,∆2 and vi denotes the endomorphism of the
permutation module FΩ associated with the matrix Vi or the orbital ∆i. As a general
convention we write ∆ = ∆1 and v = v1.

Clearly, the endomorphism algebra E(FΩ) := EndFG(FΩ) has basis (v0, v1, v2) where
v0 = idFΩ.

The right regular representation of E(FΩ) on itself defines a faithful matrix represen-
tation of E(FΩ) into F 3×3 by

a 7→ (aik) where via =
∑
aikvk.

The matrices Sj = ((vj)ik) are the intersection matrices of the graphs (Ω,∆j) in the
sense of D.G. Higman [14] if charF = 0. The structure of the Higman-Sims graph gives
the following values:

S0 = I3, S1 =

 0 1 0
22 0 6
0 21 16

, S2 =

 0 0 1
0 21 16
77 56 60

.
(In abuse of notation m also denotes the element m · 1 in the field F for any integer

m.)
S1 has eigenvalues 22,−8, 2 and S2 has eigenvalues 77, 7,−3. By construction, E(FΩ)

is isomorphic to the algebra A generated by S0, S1 (and S2). Therefore we get the follow-
ing.
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(2.2) Proposition.
Suppose F is a field of characteristic 0. Then the following hold:

(1) FΩ =FG C ⊕ X ⊕ Y is the unique decomposition of FΩ into irreducible FG-
submodules, where dimC = 1, dimX = 22 and dimY = 77.

(2) The eigenvalues of the vi are distributed as follows:

v0 v1 v2

C 1 22 77
X 1 −8 7
Y 1 2 −3

(3) The projections in E(FΩ) onto the irreducible submodules C,X, Y are given by

πC =
1

100
(v0 + v1 + v2), πX =

1

100
(22v0 − 8v1 + 2v2), πY =

1

100
(77v0 + 7v1 − 3v2).

Furthermore we have

C = Im(v0 + v1 + v2), X = Im(11v0 − 4v1 + v2), Y = Im(77v0 + 7v1 − 3v2).

Proof. The algebra A is generated by S1 (or S2); A is commutative, semisimple and
3-dimensional over F . The same holds for E(FΩ) ∼= A. Since FΩ is a completely
reducible FG-module and since v1 has 3 distinct eigenvalues, the permutation module
FΩ decomposes into a sum of 3 absolutely irreducible submodules C, X and Y . We
choose the notation so that C is the eigenspace of v1 belonging to the eigenvalue 22
and that X is the eigenspace of v1 belonging to the eigenvalue −8. j = v0 + v1 + v2

is the endomorphism with matrix J = V0 + V1 + V2 whose entries are all 1. Hence we
may conclude that the eigenvalues of the vi are distributed as claimed in (2). Obviously
dimC = 1 holds. Let x = dimX and y = dimY . Then we have 0 = trace v1 = 22−8x+2y
and 2, 200 = trace v2

1 = 484 + 64x+ 4y, since V1 is symmetric (see [38, 28.10]). It follows
that x = 22 and y = 77 as asserted in (1). From (2) it now may be deduced that the
projection idempotents in E(FΩ) onto the irreducible submodules are those given in (3).
The rest follows. �

The submodule structure of FΩ is completely clear by the results of (2.2) if charF =
0. If charF does not divide |G| = 44, 352, 000 = 29 · 32 · 53 · 7 · 11 then we have the
same situation. Note that in all these cases the irreducible submodules are unique and
absolutely irreducible over the prime field.

For notation of characters and Brauer characters we use the following conventions:
If χ denotes a (Brauer) character of G = HS then χm denotes the restriction of χ

to Gα
∼= M22. If there is no ambiguity characters (of any group) are denoted by their

degrees.

(2.3) Lemma.
Let 100 be the permutation character of G = HS acting on Ω and let 1, 22 and 77 denote
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the characters belonging to the modules C, X and Y respectively. Then the following
holds:

(i) 22m = 1 + 21.

(ii) 77m = 1 + 21 + 55.

(iii) 100m = 3 · 1 + 2 · 21 + 55.

Proof. The assertion follows from the well known suborbit structure of G = HS and of
M22 acting on the points and blocks of W22, see Section 1. �

(2.4) Proposition.
If F is a field of prime characteristic p 6= 2, 5 then all assertions of (2.2) hold (with scalars
read modulo p).

Proof. It suffices to consider the case F = Fp for p ∈ {3, 7, 11}. Since p does not divide 100
the reductions modulo p of the projections πC , πX and πY are distinct pairwise orthogonal
idempotents. So it follows that FΩ is the direct sum of the reductions modulo p C, X and
Y of C, X and Y . It is now sufficient to show that C, X and Y are absolutely irreducible.
This is trivial for C. Of course, we have dimX = 22 and dimY = 77.

(i) If p = 11 then X and Y both belong to blocks of defect 0. We immediately conclude
that X and Y are absolutely irreducible.

(ii) Let p = 7. Then Y belongs to a block of defect 0, and again Y must be absolutely
irreducible. Let β denote the Brauer character of X. Then by James’ [19, 5.1], we
have βm = 1+21. Again it follows that X is absolutely irreducible, since C contains
the fixed-points of G in FΩ.

(iii) Let p = 3. By James’ [19, 7.3], the characters 21 and 55 of M22 remain irreducible
when reduced modulo 3. Hence we may conclude from (2.2) that X and Y are again
absolutely irreducible, using the obvious fact that X and Y are self-dual modules.

�

It remains to consider the case that charF divides 100. At first we consider the direct
decomposition of FΩ.

(2.5) Proposition.
If charF = p ∈ {2, 5} then the following hold:

(1) FΩ is absolutely indecomposable.

(2) E(FΩ) is a local F -algebra such that dimE(FΩ)/J(E(FΩ)) = 1.

(3) If p = 5 then J(E(FΩ)) has F -basis (w,w2) where w = 2v0 − v1. If p = 2 then
J(E(FΩ)) has F -basis (v1, v0 + v1 + v2).
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Proof. (1) and (2) follow from (3). (3) may be established by direct computation. �

(2.6) Proposition.
Let charF = 5 and set w = 2v0 − v1 ∈ E(FΩ). Let H100 = FΩ, H0 = 0, H99 = Kerw2,
H1 = Imw2, H77 = Kerw, H23 = Imw, H78 = H77 + H23 and H22 = H77 ∩H23. Then
the following hold.

(1) {Hi|i ∈ {0, 1, 22, 23, 77, 78, 99, 100}} is the complete set of FG-submodules of FΩ
and dimHi = i for all i.

(2) Every composition factor of FΩ remains irreducible when restricted to Gα
∼= M22.

(3) H⊥i = H100−i for all i.

Proof. From James’ [19, 4.3], it follows that the characters 1, 21 and 55 of Gα
∼= M22

remain irreducible when reduced modulo 5. Therefore we conclude from (2.2) that in a
composition series of FΩ viewed as an FG-module we have exactly 3 (trivial) composition
factors of dimension 1, 2 composition factors of dimension 21 and 1 composition factor of
dimension 55.

From (2.5) it follows that the FG-submodules Hi of FΩ defined above are pairwise
distinct and that H1 6 H22 and H78 6 H99. It follows that 0 = H0 < H1 < H22 < Hk <
H78 < H99 < H100 = FΩ, where k ∈ {23, 77} are two composition series of FΩ as an
FG-module. hence (2) holds.

The matrices in the centralizer algebra of FΩ which is spanned by V0, V1 and V2 are
all symmetric. Therefore Ker a = (Im a)⊥ for any a ∈ E(FΩ). Referring to the definition
of the Hi we see that (3) holds.

Using (3), from dimE(FΩ) = 3 it follows that H23 and H100/H77 are uniserial. We
claim that also H77 (and therefore H100/H23

∼= H∗77) is uniserial.
First of all, from (2.5) it follows that H77 is indecomposable. For the claim it is

sufficient to prove that also H77/H1 is indecomposable. Otherwise there would be an
FG-submodule Y of H77 such that H77 = Y + H22 and Y ∩H22 = H1. For M = Gα we
have the double module decomposition

G : (M,M) = {M,MxM,MyM}

for some x, y,∈ G, notation so that |{zM | zM ⊆MxM}| = 22. The FM -Module Y/H1

is irreducible in a block of defect 0, hence Y/H1 is a projective FM -module. It follows that
there must exist an irreducible FM -submodule X of dimension 55 such that Y = X⊕H1.
But then Y0 =

⋂{Xxg | g ∈M} would be a proper FM -submodule of Y of codimension
at most 22 and so it would follow that X = Y0, therefore in particular X = Xx. Since
G = 〈M,x〉, Xwould be an FG-submodule, contradicting the indecomposability of H77.

Now let U be any FG-submodule of FΩ. We have to show that U is one of the Hi:
By taking orthogonal subspaces, if necessary, we may suppose dimU 6 50 because

of (3). Since FΩ/H23 has a unique minimal irreducible submodule of dimension 55, it
follows U 6 H23. But then U = Hi for some i, hence (1) holds. �
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The only remaining case is now charF = 2. Of course, this is the most interesting
case in view of possible applications. It turns out that it is also highly relevant for the
combinatorial properties of the Higman-Sims graph and for the structure of G = HS. We
set again 1 =

∑
Ω ∈ FΩ.

(2.7) Proposition.
If F = F2 the following hold:

(1) FΩ has precisely the following endo-submodules Hi with dimHi = i:

H100 = FΩ, H0 = 0, H99 = Ker(v0 + v1 + v2),

H1 = Im(v0 + v1 + v2), H78 = Ker v1, H22 = Im v1.

These submodules form a series H0 < H1 < H22 < H78 < H99 < H100.

(2) For every a ∈ E(FΩ) we have Ker a = (Im a)⊥, thus H⊥i = H100−i for the endo-
submodules Hi.

(3) H21 = {x | x ∈ H22 and w(x) ≡ 0 (mod 4)} is an FG-submodule of codimension 1
in H22.

Set H79 = H21
⊥. Then dimHi = i for i ∈ {21, 79} and 0 = H0 < H1 < H21 <

H22 < H78 < H79 < H99 < H100 = FΩ is a composition series of FΩ as an FG-
module. The dimensions of the composition factors in this composition series are
1, 20, 1, 56, 1, 20, 1. All composition factors of FΩ are absolutely irreducible.

(4) FΩ has exactly one FG-submodule H23 of dimension 23. Set H77 = H23
⊥; then also

dimH77 = 77. We have H22 < H23 < H79 and H21 < H77 < H78.

Between H21 and H23 there are exactly 3 distinct FG-submodules H22, H ′22 and H ′′22.
Set H ′78 = (H ′22)⊥ and H ′78 = (H ′′22)⊥. Then dimH ′i = i = dimH ′′i for i ∈ {22, 78}
and H78, H

′
78 and H ′′78 are the only FG-submodules between H77 and H79. We have

H ′22 < H ′78 and H ′′22 < H ′′78.

(5) {H0, H1, H21, H22, H
′
22, H

′′
22, H23, H77, H78, H

′
78, H

′′
78, H79, H99, H100} is the complete

set of FG-submodules of FΩ.

(6) H22 is generated by all adjacency vectors ∆(β) of the Higman-Sims graph; H78 is
generated by all β-hexads, β ∈ Ω.

(7) H21 (respectively H77) is the set of all sums of an even number of adjacency vectors
of the Higman-Sims graph (respectively of β-hexads).

(8) H79 \H78 = {x | x ∈ FΩ and (x,∆(β)) = 1 for all β ∈ Ω},

H23 \H22 = {x | x ∈ FΩ and (x, h) = 1 for all β-hexads h, β ∈ Ω}.
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(9) For any heptad m of W22 in the sense of (1.4) let x(m) = α + m + B1(m) be the
corresponding Higman vector. Let M′ and M′′ be the two orbits of Gα

∼= M22 on
the set of heptads in W22 (see Section 1). Then, with appropriate notation, we have

H ′22 = H21 + Fx(m) for any m ∈M′ and H ′′22 = H21 + Fx(m) for any m ∈M′′.

(10) H21 = {x | x ∈ H23 and w(x) ≡ 0 (mod 4)}.

(11) The action of G on FΩ extends in a natural way to G ∼= Aut(G). Every Hi is
invariant under G, but G interchanges the submodules H ′22, H

′′
22 and H ′78, H

′′
78.

In the case of arbitrary fields F ⊇ F2 we have essentially the same situation, since FΩ ∼=
F⊗F2F2Ω and almost all completely reducible factors are multiplicity-free. Only the factors
H23/H21 and H79/H77 yield a number of submodules increasing with the size of the field
F .

Remark. Because of the last statement of the Proposition, and since all composition
factors of F2Ω as an F2G-module are absolutely irreducible, we restrict our attention in
characteristic 2 to the case F = F2. It does not seem promising to consider larger fields
F for code theoretic applications.

Proof.

(i) From (2.5) it follows that R = J(E(FΩ)) = {0, v1, v0 + v2, v0 + v1 + v2}. It is
immediate that R2 = 0. We also see that the submodules Hi defined in (1) are
endo-submodules and that for all a ∈ E(FΩ) Ker a = (Ima)⊥, since the matrix
belonging to a is symmetric. From R2 = 0 we infer that 0 = H0 6 H1, H22 6
H78, H99 6 H100 = FΩ. To establish that there are no other endo-submodules it
suffices to show that Im(v0 + v2) = Im v1 = H22. Clearly H1 = F1 holds. Since
V1 and V 0 + V2 are complementary 0, 1-matrices, we have Im(v0 + v2) + H1 =
Im v1 + H1. So it is sufficient to show that H1 6 Im v1 = H22. If H1 66 H22 then
U = H22 ∩ Im(v0 + v2) ∼= U∗ would be the image of an endomorphism u ∈ R, which
is impossible. Therefore we have Im(v0 + v2) = H22 as claimed. It also follows
that we have a series 0 = H0 < H1 < H22 < H78 < H99 < H100 = FΩ of FG-
submodules. Of course, dimH0 = 0, dimH1 = 1, dimH99 = 99 and dimH100 = 100.
We assert that dimH22 = 22 and dimH78 = 78. From (2.2)(3) it follows that H22

is the reduction modulo 2 of X ∩ ZΩ, hence dimH22 6 dimX = 22. From (1.3) it
follows that the matrix V1 of v1 which is the adjacency matrix of the Higman-Sims
graph over F = F2 has rank at least 22. Therefore we have dimH22 = 22 and
dimH78 = 78. (1) and (2) of the proposition are now proved completely.

(ii) Since H22 6 H22
⊥ = H78 6 H99 = {x | x ∈ FΩ and w(x) ≡ 0 (mod 2)}, we get

that
H21 = {x | x ∈ H22 and w(x) ≡ 0 (mod 4)}

is an FG-submodule of dimension 21, contained in H22. Set H79 = H21
⊥. Of course,

then dimH79 = dimH21
⊥ = 100 − 21 = 79 holds. The series of FG-submodules of
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FΩ 0 = H0 < H1 < H21 < H22 < H78 < H79 < H99 < H100 = FΩ has successive
factors of dimensions 1, 20, 1, 56, 1, 20, 1 respectively. According to J. Thackray [35]
(see also the atlas of Brauer Characters [2]) all these factor modules are absolutely
irreducible. (For the factors of dimension 1 and 20 this is quite elementary; for the
factor of dimension 56 a direct elementary proof should also be possible. Note that
we can use Lemma (2.3).) The proof of (3) is now complete.

(iii) From (2) and (1) it follows that the FG-modules H100/H78 and H22 are self-dual and
uniserial. Proposition (1.1) gives that the reduction modulo 2 of (X +C)∩ZΩ is a
23-dimensional submodule H23 of FΩ. H23 contains H22 which is the reduction of
X ∩ZΩ. Set H77 = H23

⊥. Of course, we then have dimH23 = 23 and dimH77 = 77.
SinceH23∩H78 = H22 we obtain from the structure ofH100/H78 thatH79 = H78+H23

and therefore H77∩H22 = H21. We claim that H77 is uniserial. Otherwise there were
an FG-submodule Y such that H77 = Y +H21 and Y ∩H21 = H1, and we had the
direct decomposition H99/H1 = Y/H1⊕Y/H1 into submodules of dimensions 56 and
42. Viewing H99/H1 as an FGα-module this contradicts (1.15) by the Krull-Schmidt
theorem. Since H100/H23

∼= H77
∗, also H100/H23 is uniserial.

By counting we see that there are besides H22 precisely two further FG-submodules
H ′22 and H ′′22 between H21 and H23. We set H ′78 = (H ′22)⊥ and H ′′78 = (H ′′22)⊥. Then
by duality H78, H ′78 and H ′′78 are precisely the FG-submodules between H77 and H79.
We have H ′22 = H21+Fx′ for some vector x′ of even weight. Since H21

⊥ = H79 > H ′22

it follows that H ′22 6 (H ′22)⊥ = H78
⊥. Similarly, also H ′′22 6 H ′′78.

(iv) Now let X be any FG-submodule of FΩ. We claim that X = Hi or X = H ′i or
X = H ′′i for some i. Since the set of the Hi, H

′
i, H

′′
i is closed under orthogonal

complements, we may assume that dimX 6 50. If X were not contained in H23 we
would have X +H23 > H23 and dim(X +H23/H23) > 56, since H100/H23 contains a
unique minimal FG-submodule of dimension 56, see (iii). This contradicts dimX 6
50. Therefore X 6 H23 holds. Taking into account that H1 = 〈1〉 is the FG-
submodule of FΩ containing all vectors fixed by the perfect group G we now get
immediately that X = Hi or X = H ′i or X = H ′′i for some i 6 23. (4) and (5) are
now proved completely.

(v) Since H22 = Im v1 it is plainly clear that H22 is generated by all the adjacency vectors
of the Higman-Sims graph. From (1) it follows that every β-hexad is orthogonal
to every adjacency vector ∆(β) of the Higman-Sims graph. Therefore the FG-
submodule H of FΩ generated by all β-hexads, β ∈ Ω, is contained in H78 = H22

⊥.
From (1.3) we infer that H22 is contained in H, since ∆(α) is a sum of α-hexads.
We shall show later in Section 3 (independently) that the minimum weight of H22

is 22. Therefore no β-hexad is contained in H22, so it follows that H = H78, since
H78/H22 is irreducible. The proof of (6) is complete; (7) immediately follows from
(3) and (6).

(vi) By the homomorphism theorem for FG-modules we have H79 \ H78 = {x ∈ FΩ |
xv = 1}. Since v is the linear extension of the map β 7→ ∆(β) from (6) and
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(7) it follows that H79 \ H78 = {x ∈ FΩ | (x,∆(β)) = 1 for all β ∈ Ω}. Clearly
A = {x ∈ FΩ | (x, h) = 1 for all β-hexads} is contained in H23 \H22 by (7). Also
A+H22 = A holds. Since 1 ∈ H78 from (6) and elementary linear algebra it follows
that A 6= ∅ and hence A = H23 \H22. The proof of (8) is complete.

(vii) Let m be any heptad ofW22 in the sense of Section 1 and let x(m) = α+m+B1(m)
be the corresponding Higman vector. From (1.10) it follows that (x(m), h) = 1 for
all β-hexads h, β ∈ Ω. Therefore x(m) ∈ H23 \H22 follows from (8). Consequently
we have H23 = H22 + Fx(m) and H21 + Fx(m) ∈ {H ′22, H

′′
22}.

G = HS has two orbitsM′ andM′′ in the set of heptads of W22. Independently, it
will be shown later in (4.1), that if m′ ∈ M′ and m′′ ∈ M′′ then x(m′) + x(m′′) ∈
H22 \ H21. Hence we may choose the notation so that H ′22 = H21 + Fx(m′) if
m′ ∈ M′ and H ′′22 = H21 + Fx(m′′) if m′′ ∈ M′′. Since the G-orbits M′ and M′′

are interchanged by M22
∼= Aut(M22) we also conclude that G interchanges H ′22 and

H ′′22.

The assertions (9) and (11) now readily follow. The rest of the Proposition is clear.

�

We may collect the results of this section:

(2.8) Theorem.
Let G = HS be the Higman-Sims simple group in its rank 3 representation on Ω of degree
100. Then every linear code C over a field F admitting G is obtained within isomorphy
from one of the FG-submodules of the permutation module FΩ which are given in the
propositions (2.2), (2.4), (2.6) and (2.7).

Proof. The theorem follows from [20, (3.2)], Lemma (2.1) and the preceding propositions.
�

The submodule structure of H100 = F2Ω is displayed in Figure 3.

3 The binary linear codes of length 100 admitting G = HS and
their relation to the combinatorial structure of the Higman-
Sims graph

Our aim is to determine the weight structure of the binary linear codes of length 100
which admit the Higman-Sims group G = HS and to discuss its combinatorial meaning.
Throughout this section let F = F2. We may tacitly assume that FΩ is always the
ambient space and that Ω is the ambient basis. By abuse of notation we denote these
linear codes by the corresponding submodules of FΩ, as introduced in Section 2. We may
identify FΩ with the power set P(Ω) in the canonical way whenever it is convenient.

Let 1 =
∑

Ω =
∑{β | β ∈ Ω} denote the all 1 vector in FΩ. We recall from Section

1 the notation Wi(X) = {x ∈ X | w(x) = i} for X ⊆ FΩ and 0 6 i 6 100. Set
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Figure 3: The binary permutation module of G = HS and its submodules.
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wi(X) := |Wi(X)|. Let m(X) denote the minimum (non-zero) weight of X (whenever it
is defined).

We begin by studying the vectors of small weight in H79, H78 and H22. It will be
useful for this purpose to have a classification of vectors in FΩ of weight at most 4 under
the action of G = HS.

(3.1) Proposition.
The G-orbits in Wi(FΩ) for 1 6 i 6 4 are as follows:

(1) G acts transitively on W1(FΩ) = Φ1, |Φ1| = 100.

(2) W2(FΩ) : G = {Φ21,Φ22}, where |Φ21| = 1, 100 and |Φ22| = 3, 850.

(3) W3(FΩ) : G = {Φ31,Φ32,Π33}, where |Φ31| = 77, 000, |Φ32| = 61, 000 and |Φ33| =
23, 100.

(4) W4(FΩ) : G = {Φ4,i | 1 6 i 6 9}, where |Φ41| = 57, 750, |Φ42| = 616, 000, |Φ43| =
231, 000. |Φ44| = 1, 386, 000, |Φ45| = 154, 000, |Φ46| = 924, 000. |Φ47| = 369, 600,
|Φ48| = 154, 000 and |Φ49| = 28, 875.

Representatives of the orbits are given in the table on the following page.
In the table • • indicates two vertices not joined by an edge in the Higman-Sims

graph, •−• indicates two vertices joined by an edge in the Higman-Sims graph and • < ••
as well as

•
• > • indicate a vertex joined by edges to two distinct vertices etc.

The type of an element x ∈ FΩ has the obvious meaning indicated by the edges and
non-edges in the support of x.

The term “i-vertical” for some x ∈ FΩ means that the maximum number of vertices
ξ ∈ Ω such that supp(x) ⊆ ∆(ξ) is precisely i.

orbit type of orbit element orbit length
Φ1 • 100
Φ21 • − • 1, 100
Φ22 • • 3, 850
Φ31 • • • 77, 000
Φ32 • − • • 61, 600
Φ33 • − • − • 23, 100
Φ41 • • • • 2-vertical 57, 750
Φ42 • • • • 1-vertical 616, 000
Φ43 • • • • 0-vertical 231, 000
Φ44 • − • • • 1, 386, 000
Φ45 • − • • −• 154, 000
Φ46 • − • − • • 924, 000
Φ47 • − • − • − • 369, 600

Φ48 • − • < •• 154, 000

Φ49 • < •• > • 28, 875
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Proof. Since the Higman-Sims graph is triangle-free (λ = 0) it is readily shown that all
the vectors x ∈ Wi(FΩ)(1 6 i 6 4) belong to one of the types shown in the table. The
known facts about the action of Gα

∼= M22 ([16, 22]) are now sufficient to establish the
proposition. �

It is fairly easy to compute the weight of the images xv ∈ H22 of the vectors x given
in (3.1). Of course, the weight depends only on the G-orbit.

(3.2) Lemma.
The Hamming weight w(xv) of the vectors xv for x ∈ Wi(FΩ)(1 6 i 6 4) is given by the
following table where x is contained in the indicated G-orbit.

orbit Φ1 Φ21 Φ22 Φ31 Φ32 Φ33

w(xv) 22 44 32 38 42 54

orbit Φ41 Φ42 Φ43 Φ44 Φ45 Φ46 Φ47 Φ48 Φ49

w(xv) 32 40 48 44 40 48 52 60 64

Proof. If x =
∑
xββ then xv =

∑{∆(β) | xβ 6= 0}. Elementary calculations in the
Higman-Sims graph easily give the weights. �

As a consequence of (3.2) we immediately get the minimum weight vectors of H79 and
H78.

(3.3) Proposition. (1) m(H79) = m(H78) = 6.

(2) W6(H79) = W6(H78) is the set of all β-hexads, β ∈ Ω.

(3) |W6(H79)| = |W6(H78)| = 3, 850.

Proof. From (2.7) we have H78 6 H79 6 H99 = {x ∈ FΩ | w(x) even }. Since H78

is generated by all β-hexads, we also have m(H78) 6 6. Now suppose 0 6= x ∈ H79

and w(x) 6 6. Since H79 is mapped by v onto H1 = F1 it follows w(xv) ∈ {0, 100}.
From (3.2) follows that w(x) = 6, hence (1) holds. Since G100 is triangle-free there
exist x1 ∈ Φ22 and x2 ∈ W4(FΩ) such that x = x1 + x2, hence xv = x1v + x2v. It
follows by (3.2) that w(xv) 6 w(x1v) + w(x2v) 6 32 + 64 = 96 < 100, thus necessarily
xv = 0, so x ∈ Ker v = H78. So we also have x1v = x2v and 32 = w(x1v) = w(x2v),
hence x2 ∈ Φ41 according to (3.2). Consequently there exist distinct γ, β ∈ Ω such that
supp(x2) ⊆ ∆(β) ∩∆(γ). Since m(H78) = 6 and y = ∆(β)∆(γ) (written with pointwise
multiplication in FΩ) is a β-hexad belonging to H78 we have necessarily x = y, so also
(2) holds. (3) follows from (2). �

We shall also need a classification of weight 8 vectors in H78. For this purpose and
for later use it is convenient to introduce the following notation for vectors x ∈ FΩ and
0 6 i 6 22:

Λi(x) = {β ∈ Ω | |supp(x) ∩∆(β)| = i} and λi(x) = |Λi(x)|.
Call two vectors x, y ∈ FΩ G100-disjoint iff supp(x) ∩ supp(y) = ∅ and G100 has no edge
joining a vertex in supp(x) and a vertex in supp(y).
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(3.4) Proposition. (1) w8(H78) = 119, 625.

(2) W8(H78) : G = {Φ81,Φ82} where |Φ81| = 33, 000 and |Φ82| = 86, 625. Φ81 is the set
of β-octads, β ∈ Ω. The elements of Φ82 are called skew octads ; they are sums of
two G100-disjoint vectors in Φ49 and any such sum is a skew octad.

(3) The stabilizer in G of a skew octad is a Sylow 2-subgroup of G.

Proof. (1) and (3) are straightforward consequences of (2). Let Φ81 denote the set of
all β-octads, β ∈ Ω. Then clearly |Φ81| = 100 · 330 = 33, 000, and Φ81 is a G-orbit in
W8(H78). Let Φ82 := W8(H78) \ Φ81 and call the elements of Φ82 skew octads.

Let z be a skew octad. We set λi = λi(z). Counting the edges of the Higman-Sims
graph between then vertices in supp(z) and Ω gives the equations

λ0 + λ2 + λ4 + λ6 + λ8 = 100 and 2λ2 + 4λ4 + 6λ6 + 8λ8 = 8 · 22 = 176.

(i) λ8 = λ6 = 0.

For, if λ8 6= 0 then z would be a β-octad for some β ∈ Λ8(z) against the choice of
z. If λ6 6= 0 there existed a γ ∈ Λ6(z); taking the trace of zv on ∆(γ) we see that
zv 6= 0 against z ∈ H78 = Ker v.)

(ii) The Higman-Sims graph does not induce the null graph on supp(z), i.e. supp(z) 6⊆
Λ0(z).

Otherwise from (1.8) we deduce that for every ξ ∈ supp(z) the set ∆(ξ) is the
disjoint union of te 10-set ∆(ξ) ∩ Λ4(z) and the 12-set ∆(ξ) ∩ Λ2(z). Consequently
λ4 = (8 · 10)/4 = 20, λ2 = (8 · 12)/2 = 48 and λ0 = 32. We consider the G100-edges
between Λ4(z) and supp(z). Call a subset of supp(z) hexadic iff it is contained in
the support of a β-hexad, β ∈ Ω. Any 3-subset T of supp(z) is contained in exactly
one β-hexad where β ∈ Λ4(z) since ∆(β)∩ supp(z) > 3; therefore T is contained in
exactly one hexadic 4-subset ∆(β)∩∆(γ) where β, γ ∈ Λ4(z). Any hexadic 4-subset
contains exactly 4 distinct 3-subsets. Double counting now gives for the number
h of all hexadic 4-subsets of supp(z) that 4h =

(
8
3

)
· 1 = 56, so h = 14. For each

hexadic 4-subset H = ∆(βH) ∩∆(γH) there are distinct βH , γH ∈ Λ4(z) such that
∆(βH) ∩ supp(z) = ∆(γH) ∩ supp(z) = H; moreover the map H 7→ {βH , γH} has
the property that {βH , γH} ∩ {βH′ , γH′} = ∅ if H 6= H ′. So we may deduce the
absurdity 28 = 2 · 14 6 20. Therefore the Higman-Sims graph does not induce the
null graph on supp(z).

(iii) supp(z) ∩ Λ4(z) = ∅.

If there were a β ∈ supp(z) ∩ Λ4(z) we would obtain a contradiction from (1.5) by
considering the trace of zv on ∆(β).
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(iv) From (ii) and (iii) it follows that supp(z) ⊆ Λ0(z)∪Λ2(z) and Λ2(z)∩ supp(z) 6= ∅.
Without loss we may assume that α ∈ Λ2(z) ∩ supp(z). From (1.5) we now derive
that z is the sum of two vectors in Φ49 which are G100-disjoint. Let z = x + y be
the sum of two G100-disjoint vectors x, y ∈ Φ49. From (1.5) we infer that supp(zv)∩
∆(β) = ∅ for all β ∈ supp(z). Since supp(zv) ⊆ ⋃{∆(β) | β ∈ supp(z)} it follows
zv = 0, hence z ∈ H78 is a skew octad.
From the properties of G100 resp. W22 we deduce via (1.5) that the support of
any element in Φ49 is contained in the support of exactly 6 distinct skew octads.
Since the support of each skew octad contains exactly two different 4-sets which are
supports of vectors in Φ49 we have

|Φ82| = (6|Φ49|)/2 = 3 · 28, 875 = 86, 825

which is also the index of a Sylow 2-subgroup in G = HS. To complete the proof it
now suffices to prove that the stabilizer Gz in G of a skew octad z is a 2-group. Let
K be the largest normal subgroup of Gz fixing every vertex in supp(z). Then Gz/K
is isomorphic to a subgroup of Z2 wrD8, hence |Gz : K| is a power of 2. But it is
straightforward from the definition of the Higman-Sims graph that K is a 2-group
(see (1.5)(iii)). Therefore Gz is a Sylow 2-subgroup and Φ82 is a G-orbit. The proof
is complete.

�

Remark. The arguments in the preceding proofs show that there are precisely
|Φ49|/7 = 4, 125 distinct elements u ∈ W28(FΩ) such that u is the sum of 7 pairwise G100-
disjoint elements of Φ49. Of course, such a u does not belong to H79 since u is congruent to
an element of Φ49 modulo H78. In fact uv = xv for any x ∈ Φ49 with supp(x) ⊆ supp(u)
and supp(x) ⊆ supp(u) holds for any x ∈ Φ49 such that uv = xv.

(3.5) Theorem.
The weight distribution of H21 and the orbits of G = HS in H21 are as described in the
following table.

i wi(H21) length of G-orbits in Wi(H21)
0/100 1 1
32/68 3, 850 3, 850
36/64 4, 125 4, 125
40/60 92, 400 15, 400 and 77, 000
44/56 347, 600 1, 100 and 346, 500
48/52 600, 600 231, 000 and 369, 600

In particular m(H21) = 32 and G has precisely 18 orbits in H21.

Proof. Since 1 ∈ H21 vectors and also G-orbits occur in complementary pairs belonging to
weights i and 100−i. From (2.7) we infer that xv ∈ H21 for all x ∈ H99, therefore xv ∈ H21

for all x ∈ Φ2j ∪ Φ4k by (3.2). We recall that xv = yv if and only if x+ y ∈ H78 = Ker v.
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Of course, v maps G-orbits to G-orbits.
It immediately follows that Ψ1 = {xv | x ∈ Φ21} is a G-orbit in W44(H21) of length |Ψ1| =
1, 100 and that Ψ2 = {xv | x ∈ Φ22} is a G-orbit in W32(H21) of length |Ψ2| = 3, 850.
In counting with the orbits Φ4j we have to take care of multiple preimages when using
Propositions (3.3) and (3.4). From Proposition (3.4) and the remark following its proof
we infer that Ψ3 = {xv | x ∈ Φ49} has exactly |Φ49|/7 = 4, 125 elements and by (3.2) we
have Ψ3 ⊆ W64(H21). The support of any skew octad contains also exactly 16 distinct
4-subsets of type • − • • • which are supports of vectors in Φ44. From (3.1) it
hence follows that the support of any x ∈ Φ44 is contained in the support of exactly one
skew octad. An elementary consideration shows that for any x ∈ Φ44 there exist also two
distinct β-hexads z, β ∈ Ω, such that z = x + y where y ∈ Φ44. Hence from (3.3) and
(3.4) it follows that Ψ6 = {xv | x ∈ Φ44} has exactly |Φ44|/4 = 346, 500 elements and we
have Ψ6 ⊆ W44(H21) by (3.2).
The support of every skew octad contains 32 distinct 4-subsets of type • − • − • •
which are supports of vectors in Φ46. Hence the support of any x ∈ Φ46 is contained in
the support of exactly 3 distinct skew octads. From (3.3) and (3.4) it now follows that
Ψ7 = {xv | x ∈ Φ46} has exactly |Φ46|/4 = 231, 000 elements and we have Ψ7 ⊆ W48(H21)
by (3.2).
From (3.3) and (3.4) it also follows that Ψ8 = {xv | x ∈ Φ47} has exactly |Φ47| = 369, 600
elements and from (3.2) we have Ψ8 ⊆ W52(H21).
Taking into account that dimH21 = 21 the remarks at the beginning of the proof now
show that the weight distribution of H21 and the G-orbits in H21 are as asserted in the
theorem. �

In order to determine the weight distribution of H23 and its remaining subcodes it
will be useful to get some information about the projection of H23 to the neighborhoods
∆(β), β ∈ Ω. Since G acts transitively on Ω we may restrict our attention to ∆(α) = P22.
We recall from Section 1 that G12 denotes the shortened Golay code, G10 = G⊥12 its dual
and G11, G

′
11 and G′′11 are the subcodes between G10 and G12 where G11 = G10 + F122 is

generated by all hexads of W22.

(3.6) Proposition.
Let pα : x 7→ x∆(α) denote the coordinate restriction of H23 to ∆(α) = P22 and let
K = Ker pα. Then the following hold:

(1) The sequence 0 −→ K
incl−→ H23

pα−→ G12 −→ 0 is exact.

(2) K is contained in H22, but not in H21. pα maps H21 and H22 onto G11 and
H ′22, H

′′
22, H23 onto G12.

(3) K has the weight distribution
i 0/78 22/56 32/46 38/40

wi(K) 1 22 231 770
.

Proof. Since H22 is generated by all adjacency vectors ∆(β), β ∈ Ω, it follows from (1.3)
that pα maps H22 onto G11. Furthermore x(m)pα = m ∈ G12 \ G11 for any heptad m of
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W22. Therefore pα maps H23 onto G12 and (1) is established. Since H22 is mapped by pα
onto a proper subspace of G12, K must be contained in H22. Evidently K contains the
vector 1 + ∆(α) of weight 78 6≡ 0 mod 4. Hence K is not contained in H21. The rest of
(2) now easily follows. It remains to determine the weight distribution of K. We use the
fact that K ⊆ H22 = Im v. If xv = yv then (x+ y)v = 0, i.e. x+ y ∈ Ker v = H78. From
this remark it follows by (3.2) that K contains 22 vectors βv = ∆(β), β ∈ P22, of weight
22,
(

22
2

)
= 231 vectors xv of weight 32 where supp(x) is a 2-subset of P22 and

(
22
3

)
/2 = 770

vectors yv of weight 28 where supp(y) is a 3-subset of P22. Since 1 + ∆(α) is the only
vector in K of weight 78, assertion (3) now follows from dimK = 11. �

(3.7) Corollary.
Let x ∈ H22 and β ∈ Ω. Then w(x∆(β)) ∈ {0, 6, 8, 10, 12, 14, 16, 22}.

Proof. The assertion follows from (3.6) and (1.2) since G acts transitively on Ω. �

(3.8) Lemma.
Let u ∈ Φ49. Then Gu induces the dihedral group D8 on the 4 vertices in supp(u).

Proof. The largest subgroup of Gu fixing every vertex in supp(u) has index 8 in Gu by
(3.1). �

(3.9) Proposition.
Let x ∈ W36(H21) and x = x+ 1 its complementary vector.
Then Ω : Gx = {Λ6(x),Λ14(x),Λ8(x)} where supp(x) = Λ6(x) ∪ Λ14(x), supp(x) = Λ8(x)
and λ6(x) = 8, λ14(x) = 28, λ8(x) = 64. The matrix of the Higman-Sims graph with
respect to Gx is  0 14 8

4 2 16
1 7 14

.
Moreover, (

∑
Λ6(x))v = x holds.

Proof. From (3.5) and (3.2) it follows that there exists a u0 ∈ Φ49 such that u0v = x, and
one easily checks that u0 ∩ supp(x) = ∅. From the remark following the proof of (3.4) we
infer that the union of all supp(u), u ∈ Φ49 such that uv = x, forms a set B of cardinality
28, disjoint from supp(x) and therefore contained in supp(x).

Clearly (
∑
B)v = x holds. Set A = supp(x) \ B and Γ = supp(x̄). Obviously, A, B

and Γ are fixed by Gx ; we show that Gx acts transitively on A, B and Γ. The elements
of order 7 in G have exactly 2 fixed-points in Ω. Since |Gx| does not divide |M22| the
subgroup Gx has no fixed-point in Ω. From 7 | |Gx| we readily conclude that Gx acts 2-
transitively on A and that Gx permutes transitively the 7 elements of Φ49 whose supports
are contained in B. Let u ∈ Φ49 be such that supp(u) is contained in B. Since v is a
G-homomorphism Gu 6 Guv = Gx̄ = Gx. So from (3.8) it follows that Gx acts transitively
on B.

Let Gu̇ denote the largest subgroup of Gu fixing every vertex in supp(u). From the
fundamental properties of the Higman-Sims graph it follows that Gu̇ has exactly 4 orbits
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of length 16 which are conjugate under Gu by (3.8). Hence Gu acts transitively on Γ.
Since Gx acts doubly-transitively on A the Higman-Sims graph induces on A the null
graph. Moreover, the preceding discussion shows that for β ∈ B we have |∆(β) ∩B| = 2
and |∆(β) ∩ Γ| = 16. It easily follows that the matrix of the Higman-Sims graph with
respect to Gx is as asserted; in particular, A = Λ14(x), B = Λ6(x) and Γ = Λ8(x). �

(3.10) Proposition. (1) wi(H22) = 0 for 0 < i < 32 and i 6= 22, 30.

(2) w22(H22) = 100 and w30(H22) = 1, 100.

(3) W22(H22) = {∆(γ) | γ ∈ Ω} is a G-orbit; G∆(γ) = Gγ for γ ∈ Ω.

(4) W30(H22) is a G-orbit. For x ∈ W30(H22) we have Ω : Gx = {Λ8(x),Λ6(x)} where
supp(x) = Λ8(x), supp(x+ 1) = Λ6(x). In particular, λ8(x) = 30 and λ6(x) = 70.

Proof. H22 6 H99 = 〈1〉⊥ implies that wi(H22) = 0 for every odd i. Let 0 6= x ∈ H22 such
that w(x) < 32. From (3.5) it follows that either w(x) = 30 or w(x) 6 26. Set λj = λj(x).

(i) Suppose that w(x) 6= 30. We claim that in this case w(x) = 22 and x = ∆(γ) for
some γ ∈ Ω.

Assume the contrary. We may choose x as a counterexample of minimal weight. If
λ22 6= 0 there would exist a γ ∈ Λ22(x) and then w(x) > 22 and w(x + ∆(γ)) 6 4,
consequently x + ∆(γ) = 0 and x = ∆(γ) by (3.3), contrary to the assumption.
If λ0 6= 0 we would have also λ22 6= 0 by (3.6). Hence we may suppose that
λ22 = 0 = λ0. We have w(x + ∆(β)) > w(x) for all β ∈ Ω. For, otherwise,
x + ∆(β) = ∆(γ) by the minimal choice of x, so x = ∆(β) + ∆(γ) = (β + γ)v
which contradicts (3.5) because of β + γ ∈ Φ21 ∪ Φ22, see (3.2). For β ∈ Λj(x) we
therefore have w(x) + 22− 2j > w(x) and j 6 11 follows. Therefore λj 6= 0 implies
j ∈ {6, 8, 10} by (3.7). Counting the edges of the Higman-Sims graph between
supp(x) and Ω now yields the equations

22w(x) = 6λ6 + 8λ8 + 10λ10 and 100 = λ6 + λ8 + λ10.

From these equations we deduce 11w(x) = 300 + λ8 + 2λ10 > 300 and w(x) > 27,
again a contradiction.

So the claim is proved and (1) holds. By the arguments above we also have obtained
that W22(H22) is precisely the set of all adjacency vectors ∆(β), β ∈ Ω. Hence (3)
holds and w22(H22) = 100.

(ii) Suppose w(x) = 30. Our first claim is that λ8 = 30 and λ6 = 70.

Since w8(H22) = 0 by (1) we have λ22 = 0. From (3.6) we infer that λ0 = 0.
Furthermore, for all β ∈ Ω we have w(x + ∆(β)) > 30 since otherwise x + ∆(β) =
∆(γ) for some γ ∈ Ω and x ∈ H21 which is impossible. Therefore we have again
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λj 6= 0 only possibly for j ∈ {6, 8, 10} by (3.7). We assert that also λ10 = 0. For, if
β ∈ Λ10(x) we had w(x + ∆(β)) = 32, hence x + ∆(β) = ∆(γ) + ∆(δ) for suitable
γ, δ ∈ Ω by (3.5) and (3.7), which entails that

x = ∆(β) + ∆(γ) + ∆(δ) = (β + γ + δ)v,

a contradiction against (3.2). Counting edges now yields the equations

6λ6 + 8λ8 = 22 · 30 = 660 and λ6 + λ8 = 100

which have the unique solution λ6 = 70 and λ8 = 30.

(iii) For every x ∈ W30(H22) and every β ∈ Λ8(x) we have x + ∆(β) ∈ W36(H22) =
W36(H21) which is a G-orbit of length 4, 125. On the other hand for every z ∈
W36(H22) = W36(H21) and γ ∈ Λ14(z) we have z + ∆(γ) ∈ W30(H22). Hence
W30(H22) 6= ∅. We consider the incidence structure

I = (W30(H22),W36(H22), I)

where I = {(x, z) | x ∈ W30(H22), z ∈ W36(H22) and x+ z ∈ W22(H22)}. It follows
from (3.9) that G acts transitively on I. Since G acts transitively on W36(H21) we
conclude that also W30(H22) is a G-orbit and that Gx acts transitively on Λ8(x) for
x ∈ W36(H22). Double counting of I then gives

w30(H22) · 30 = |I| = w36(H22) · 8 = 4, 125 · 8 = 33, 000,

hence w30(H22) = 1, 100. From (3.9) we may deduce that for x ∈ W30(H22) we have
Λ8(x) ∩ supp(x + 1) = ∅, hence Λ8(x) = supp(x) and Λ6(x) = supp(x + 1). One
checks by inspection that for z ∈ W36(H22) and β ∈ Λ14(z) the subgroup Gz,β has
an orbit of length 14 in supp(z + ∆(β) + 1). It again follows by counting of edges
that for x ∈ W30(H22) the subgroup Gx acts transitively on supp(x+ 1) = Λ6(x).

�

Remark. It will be shown in (4.9) that Gx
∼= Σ8 for x ∈ W30(H22).

The results we have yet obtained are sufficient to determine the weight distribution of
the code H22 via the MacWilliams identities.

(3.11) Theorem.
The weight distribution of H22 and the orbits of G in H22 are as described in Table 1. In
particular, G has precisely 34 orbits in H22. Complementary vectors of weight 50 are in
the same G-orbit.

Proof. Let ai = wi(H22) and bi = wi(H78). We recall that H78 = H22
⊥. Hence the families

(ai) and (bi) are related to each other by the MacWilliams identities.
We have H22 6 H78 6 H99; hence ai = bi = 0 holds for every odd i. Since 1 ∈ H22 we

have ai = a100−i for all i. From (3.10) we have the information that

ai = 0 for 0 < i < 32 with the exceptions a22 = 100, a30 = 1, 100.
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i wi(H22) length of G-orbits in Wi(H22).
0/100 1 1
22/78 100 100
30/70 1, 100 1, 100
32/68 3, 850 3, 850
36/64 4, 125 4, 125
38/62 38, 500 38, 500
40/60 92, 400 15, 400 and 77, 000
42/58 193, 600 61, 600 and 132, 000
44/56 347, 600 1, 100 and 346, 500
46/54 485, 100 23, 100 and 462, 000
48/52 600, 600 231, 000 and 369, 600

50 660, 352 44, 352 and 616, 000

Table 1: The weight distribution of H22 and the orbits of G in H22.

Furthermore a0 = a100 = 1 trivially holds, and from (3.5) every ai with i ≡ 0 (mod 4) is
known. So the only unknown weight numbers of H22 with i 6 50 are

a34, a38, a42, a46 and a50.

On the other hand we know from (3.3) and (3.4) the values

b0 = 1, b2 = b4 = 0, b6 = 3, 850, b8 = 119, 625.

It follows from the general theory of MacWilliams identities that the weight distribution
(ai) is uniquely determined by the known values of the ai, and bj, see e.g. [28]. Explicit
calculations yield the values asserted in the theorem.

It remains to determine the G-orbits in H22 \ H21. It is convenient to consider first
the factor module H22/H1 which consists of pairs {x, x+ 1} = x+H1 of complementary
vectors, x ∈ H22. Because of H79 = H⊥21 we clearly have H22/H1

∼=FG H100/H79
∼=FG H21

∗.
Since F = F2, by Lemma (1.2) G has the same number of orbits in H∗21 as in H21. By

(3.5) therefore G has exactly 18 orbits in H21/H1. By (3.5) G also has 9 orbits in H21/H1,
so G has exactly 9 orbits in H22/H1 \H21/H1.

For x+H1 ∈ FΩ/H1 we define the weight w(x+H1) = {w(x), w(x+1)}. From (3.10)
it follows that G has in H22/H1 one orbit of elements of weight {22, 78} of length 100 and
one orbit of elements of weight {30, 70} and length 1, 100. From (3.1), (3.2), and (3.3) it
follows that G has in H22/H1 an orbit of elements of weight {38, 62} and length 38, 500.
The weight distribution of H22 which we have determined tells us that all remaining pairs
x+H1 have weight {i, 100− i} where i ∈ {42, 46, 50}. From (3.1), (3.2) and (3.3) we also
obtain that G has in H22/H1 an orbit of elements of weight {42, 58} and length 61, 600
and an orbit of elements of weight {46, 54} and length 23, 100. Since a50/2 = 330, 176
is not a divisor of the order of G we have at least two G-orbits of elements of weight
{50, 50} in H22/H1. Since G has exactly 9 orbits in H22/H1 \ H21/H1 it follows that
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G has precisely two more orbits: one of length 132, 000 consisting of elements of weight
{42, 58} and one of length 462, 000 consisting of elements of weight {46, 54}. To complete
the proof of the theorem we have to consider vectors of weight 50. We claim that there
are even only 2 G-orbits in W50(H22), i.e. that complementary vectors in W50(H22) are
in the same G-orbit. This assertion and the length of the two G-orbits in W50(H22) are
obtained in the following lemma. �

(3.12) Lemma.
Let P,Q be two distinct elements of ∆(α) and h, k, ` ∈ ∆2(α) such that

Q ∈ h,Q 6∈ k ∪ `, h ∩ k = ∅, h ∩ ` 6= ∅ and P ∈ k ∩ `.

Set u = α+P +Q+h, u1 = u+k and u2 = u+` and let 50i denote the G-orbit containing
xi = uiv (i = 1, 2). Then the following hold.

(1) W50(H22) = 501 ∪ 502.

(2) |501| = 44, 352 and |502| = 616, 000.

Proof. Set x = uv and x = x + 1. By construction u ∈ Φ47 and from (3.2) it follows
that x ∈ 482 where 482 denotes the G-orbit in W48(H22) of length 369, 600 as above.
Furthermore, we have Gx = Gx = Gu

∼= Σ5 (by considering a hexad stabilizer). Elemen-
tary considerations show that Λ10(x) splits into a unique Gx-orbit Ψ1 of length 6 and its
complement Ψ2 of cardinality 30. Moreover, k ∈ Ψ1 and ` ∈ Ψ2.

It is easy to show that Gx1 acts transitively on supp(x1) = Λ12(x1). We therefore can
count the incidences in the incidence structure I1 = (482, 501, I1) where

I1 = {(w, z) | w ∈ 482, z ∈ 501 and w + ∆(γ) = z such that |γGw| = 6},

obtaining 369, 600 · 6 = |501| · 50, hence |501| = 44, 352. (It easily follows that Gx1 acts
transitively also on supp(x1) = Λ10(x1) where x1 = x1 + 1 and that x1 and x1 are in the
same G-orbit.)

The preceding arguments also show that 502 6= 501. Since G has exactly 2 orbits of
vectors of weight {50, 50} in H22/H1 we have either |502| = 616, 000 or |502| = 308, 000.
In order to decide this alternative we consider Λ16(x2) and we find |Λ16(x2)| = 2 by direct
examination. If γ ∈ Λ16(x2) then x2 +∆(γ) ∈ W40(H22) = 401∪402 where 401 denotes the
G-orbit of length 15, 400 and 402 denotes the G-orbit of length 77, 000, see (3.11). From
(3.5) we infer that for y ∈ 402 the set Λ6(y) is a Gy-orbit of length 16 and that Λ6(z) = ∅
for any z ∈ 401. Therefore we consider the incidence structure

I2 = (401, 502, I2) where I2 = {(w, z) | w ∈ 401, z ∈ 502 and w + ∆(γ) = z for some γ}.

Counting incidences gives |401| · 16 = |502| · 2, hence |502| = |401| · 8 = 616, 000 which
completes the proof of the lemma. �
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The argumentation in (3.12) (and in (3.9)) may be extended to all G-orbits in H22

in order to obtain results concerning the “set connectivity” in the Higman-Sims graph.
We list the results in the following proposition, omitting proofs which tend to be tedious
calculations.

G-orbits consisting of vectors of weight k are denoted by k or k1, k2 using the convention
that |k1| < |k2|. We give the relevant information in the graph matrix of the G-orbits
in H22 which is defined as follows:

The row and colomn indices are the G-orbits in H22. The entry m;n belonging to
the ordered index pair (k, `) tells that there are exactly m vertices β ∈ Ω such that
x + ∆(β) ∈ ` for any x ∈ k and that there are exactly n vertices γ ∈ Ω such that
y + ∆(γ) ∈ k for any y ∈ `. The entry 0; 0 is replaced by −− for better readability.

We give the graph matrix in a reduced form from which the complete matrix is easily
derived by considering complementary vectors.

(3.13) Proposition.
The graph matrix of the G-orbits in H22 is given by the following submatrix.

22 30 38 421 422 461 462 501 502

0 100; 1 −− −− −− −− −− −− −− −−
32 2; 77 −− 60; 6 32; 2 −− −− −− −− −−
68 −− −− −− −− −− 6; 1 −− −− −−
36 −− 8; 30 −− −− 64; 2 28; 5 −− −− −−
401 −− −− −− 40; 10 −− −− 60; 2 −− −−
402 −− 1; 70 16; 32 −− 24; 14 6; 20 36; 6 −− 16; 2
602 −− −− 1; 2 −− −− −− −− −− 16; 2
441 2; 22 −− −− 56; 1 −− −− −− −− −−
561 −− −− −− −− −− 42; 2 −− −− −−
442 −− −− 4; 36 8; 45 16; 42 −− 32; 24 −− 32; 18
562 −− −− −− −− −− −− 8; 6 −− 32; 18
481 −− −− 4; 24 8; 30 −− −− 32; 16 −− 32; 12
521 −− −− −− −− 8; 14 4; 40 12; 6 −− 32; 12
482 −− −− −− −− 10; 28 2; 32 30; 24 6; 50 30; 18
522 −− −− −− 2; 12 −− −− 20; 16 6; 50 30; 18

Proof. Omitted. �

From (3.13) (or other elementary considerations) we can derive for any G-orbit k the
minimum weight m(k) of a vector u ∈ FΩ such that uv ∈ k.

(3.14) Corollary.
The values m(k) for the G-orbits k in H22 are given in Table 2. Moreover, every x ∈ FΩ
is congruent to a vector of weight at most 8 modulo H78 and to a vector of weight at most
5 modulo H79. Hence every coset leader of H78 has weight at most 8.

Now we may use the MacWilliams transformation to obtain the weight distributions
of the codes H78 = H22

⊥ and H79 = H21
⊥. (This computation has been carried out first
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k m(k) k m(k)
0 0 100 8
32 2 68 6
36 6 64 4
401 4 601 4
402 4 602 4
441 2 561 6
481 4 521 6
482 6 522 4

22 1 78 7
30 5 70 5
38 3 62 5
421 3 581 7
422 5 52 5
461 5 541 3
462 5 542 5
501 5 502 5

Table 2: The values m(k) for the G-orbits k in H22.

in 1980 by F.H Florian at the Rechenzentrum of Tübingen University using the ALDES
program for computing with large numbers; nowadays it is easy to obtain the result by
suitable computer algebra software like e.g. GAP [10].)

(3.15) Proposition.
The weight distributions of H78 and of H79 are as given in Table 3.

Proof. The assertion follows from (3.11) and (3.5) by the MacWilliams transformation.
�

Our next purpose is to determine the weight distribution and the G-orbits of the codes
H ′22 and H ′′22. These codes are conjugate under the permutation group G ∼= Aut(G); hence
they have the same weight distribution and the same G-orbit structure so that they can
be discussed simultaneously. Since H23 = H22 ∪H ′22 ∪H ′′22 we obtain all information also
about H23.

At first, we complete the classification of vectors in W8(H79).

(3.16) Lemma.
For every x ∈ H79 \H78 and every β ∈ Ω w(x∆(β)) = |supp(x) ∩∆(β)| is odd.

Proof. This is an immediate consequence of (2.7)(8). �

(3.17) Proposition.
W8(H79) \ W8(H78) consists precisely of all vectors β + m where m is a β-heptad. In
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i wi(H78) wi(H79)
0/100 1 1
6/94 3, 850 3, 850
8/92 119, 625 154, 825
10/90 8, 625, 540 16, 387, 140
12/88 504, 741, 475 1, 003, 835, 875
14/86 21, 060, 732, 550 42, 133, 634, 950
16/84 641, 604, 305, 375 1, 283, 480, 881, 375
18/82 14, 622, 264, 133, 400 29, 244, 271, 163, 800
20/80 255, 578, 801, 503, 795 511, 152, 645, 567, 795
22/78 3, 496, 197, 414, 021, 950 6, 992, 403, 401, 202, 750
24/76 38, 040, 184, 865, 580, 975 76, 080, 408, 035, 945, 775
26/74 333, 583, 288, 959, 605, 300 667, 166, 480, 352, 256, 500
28/72 2, 383, 620, 258, 950, 558, 925 4, 767, 240, 353, 068, 238, 925
30/70 14, 005, 822, 677, 643, 540, 370 28, 011, 646, 019, 961, 809, 810
32/68 68, 193, 674, 451, 079, 227, 050 136, 387, 349, 145, 968, 724, 650
34/66 276, 907, 651, 030, 419, 444, 000 553, 815, 299, 356, 210, 253, 600
36/64 942, 804, 612, 331, 379, 390, 725 1, 885, 609, 223, 857, 102, 552, 325
38/62 2, 703, 690, 041, 528, 811, 696, 900 5, 407, 380, 102, 022, 140, 311, 300
40/60 6, 554, 715, 235, 199, 646, 035, 290 13, 109, 430, 428, 316, 832, 071, 770
42/58 13, 474, 850, 115, 575, 617, 584, 200 26, 949, 700, 280, 870, 672, 877, 000
44/66 23, 545, 377, 618, 939, 915, 393, 150 47, 090, 755, 183, 602, 450, 042, 750
46/64 35, 033, 702, 002, 644, 035, 359, 900 70, 067, 404, 105, 299, 389, 919, 900
48/52 44, 444, 350, 668, 327, 576, 562, 750 88, 888, 701, 152, 233, 082, 111, 550

50 48, 108, 741, 996, 656, 177, 342, 352 96, 217, 484, 223, 130, 147, 456, 656

Table 3: The weight distributions of H77 and H78.

particular w8(H79) = w8(H78)+35, 2000 and G has exactly two orbits Φ′8 and Φ′′8 of length
17, 600 in W8(H79) \W8(H78). These G-orbits are conjugate under G ∼= Aut(G).

Choosing suitable notation we have Φ′8 ⊆ H ′78 and Φ′′8 ⊆ H ′′78.

Proof. Let m be a β-heptad, β ∈ Ω. Then we have (β + m)v = 1, as follows from (1.9).
Hence β + m ∈ W8(H79) \ H78. From (1.3) we infer that Gα

∼= M22 has two orbits on
the set of α-heptads, the orbits being conjugate under the action of Gα

∼= Aut(M22). It
follows that G has two orbits Φ′8 and Φ′′8 of length 17, 600 in W8(H79) \W8(H78) which
are conjugate under G ∼= Aut(G), where Φ′8 and Φ′′8 consist of vectors β + m where m is
a β-heptad.

If m is an α-heptad we have 〈α + m,x(m)〉 = 0 for the Higman vector x(m) =
α + m + B1(m), see (1.10) and (2.7). Hence we conclude from (2.7) that we may choose
the notation so that Φ′8 ⊆ H ′78 and Φ′′8 ⊆ H ′′78. From (3.15) we have w8(H79) = w8(H78) +
35, 200 and the assertion follows.

However, it is easy to avoid the use of (3.15) in order to obtain the result. We give a
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sketch of a short direct proof:
Let y ∈ W8(H79) \ H78 and let k(y) = max{|∆(ξ) ∩ supp(y)| | ξ ∈ supp(y)}. Then

k(y) ∈ {1, 3, 5, 7} by (3.16). The possibility k(y) ∈ {1, 3, 5} is ruled out by easy contra-
dictions. Therefore k(y) = 7 and it follows that y = β+m for a vector m of weight 7 such
that supp(m) ⊆ ∆(β). Without loss we may assume β = α; then we obtain from (1.3)
that m is a heptad in W22 from the fact that 〈y,∆(γ)〉 = 1 for every γ ∈ ∆2(α). �

(3.18) Lemma.
Let x ∈ H23 \H22 and β ∈ Ω. Then w(x∆(β)) = |supp(x) ∩∆(β)| ∈ {7, 11, 15}.

Proof. The assertion follows from (3.6) and (1.3) since G acts transitively on Ω. �

(3.19) Proposition.
The code H ′22 has minimum weight 32.

Proof. H21 is the subcode of H ′22 consisting of all vectors of weight divisible by 4. Since
32 is the minimum weight of H21 by (3.5) it suffices to show that wi(H

′
22) = 0 for all

0 < i < 32. Let x ∈ Wi(H
′
22) where 0 < i 6 32. Let λj = λj(x) for 0 6 j 6 22. Counting

the edges of the Higman-Sims graph between supp(x) and Ω gives by (3.18) the equations

w(x) · 22 = 7λ7 +11λ11 +15λ15

100 = λ7 + λ11 + λ15.

It follows w(x) · 22 = 700 + 4λ11 + 8λ15 > 700 and w(x) > 31, hence w(x) = 32. �

We are now in a position to obtain the weight distributions of H ′22 and H23 using the
MacWilliams or Pless identities.

(3.20) Theorem.
The weight distribution of H ′22 and the orbits of G in H ′22 are as described in the following
table.

i wi(H
′
22) length of G-orbits in Wi(H

′
22).

0/100 1 1
32/68 3, 850 3, 850
34/66 5, 600 5, 600
36/64 4, 125 4, 125
38/62 38, 500 38, 500
40/60 92, 400 15, 400 and 77, 000
42/58 387, 200 17, 600 and 369, 600
44/56 347, 600 1, 100 and 346, 500
48/52 600, 600 231, 000 and 369, 600

50 1, 311, 552 352, 123, 200, 264, 000 and 924, 000

In particular, G has precisely 30 orbits in H ′22. Complementary vectors of weight 50
are in the same G-orbit.
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Proof. Let ai = wi(H
′
22) and bi = wi(H

′
78). We recall that H ′78 = (H ′22)⊥. Hence the

families (ai) and (bi) are related to each other by the MacWilliams identities.
We have H ′22 6 H ′78 6 H99, as follows from (2.7); hence for every odd i we have ai =

bi = 0. Since 1 ∈ H ′22 we have ai = a100−i for all i. Moreover, {x | x ∈ H ′22 and w(x) ≡ 0
(mod 4)} = H21. In view of (3.19) we therefore have the following information:

ai = 0 for 0 < i < 32 and 78 < i < 100,
a0 = a100 = 1 and from (3.5) every ai with i ≡ 0 (mod 4) is known.

So the only unknown weight numbers of H ′22 with i 6 50 are

a34, a38, a42, a46 and a50.

On the other hand we know from (3.3) and (3.18) the values

b0 = 1, b2 = b4 = b6 = 0 and b8 = 17, 600.

It follows from the general theory of MacWilliams identities that the weight distribution
(ai) is uniquely determined by the known values of the ai and bj, see e.g. [28]. Explicit
calculations yield the values asserted in the theorem.

It remains to determine the G-orbits in H ′22 \H21. This will be done in a sequence of
lemmas, as some detailed investigations are required. Note that the fact that all G-orbits
in W50(H ′22) have different length implies that complementary vectors of weight 50 are in
the same G-orbit. �

Recall from Section 2 that the permutation group G ∼= Aut(G) interchanges the
codes H ′22 and H ′′22 and leaves H21 invariant. Therefore we have a natural involutory
correspondence between the G-orbits in H ′22 \H21 and those in H ′′22 \H21. We agree that
X ′ and X ′′ will always denote G-orbits corresponding in this sense.

We start by considering the Higman vectors x(m) = α + m + B1(m) which we know
to belong to H23 \ H22 from (2.7). Recall that we denote the Gα-orbits M′ and M′′ on
the heptads of W22 in such a way that x(m) ∈ H ′22 if and only if m ∈M′.

(3.21) Proposition.
Let X ′0 = {x(m) | m ∈M′} ∪ {x(m) + 1 | m ∈M′}. Then the following hold.

(1) X ′0 is a G-orbit in W50(H ′22) \H21.

(2) Gx(m)
∼= PSU(3, 52) = U3(5) acts as a rank 3 group on the supports of x(m) and

x(m) + 1; the supports of x(m) and x(m) + 1 are nonisomorphic Gx(m)-spaces.
G{x(m),x(m)+1} ∼= PΣU(3, 52) acts transitively on Ω.

(3) supp(x(m)) = Λ7(x(m)) and supp(x(m) + 1) = Λ15(x(m)).

(4) The mapping m 7→ {x(m), x(m) + 1} of M′ onto X ′0/H1 is bijective and a Gα-
morphism. In particular |X ′0| = 2 · 176 = 352.
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Proof. It follows from (2.7) and (1.9) that X ′0/H1 = {{x, x + 1} | x ∈ W50(H ′22) and
the Higman-Sims graph induces on supp(x) and on supp(x+ 1) a strongly regular graph
of valency 7}. Therefore X ′0/H1 and X ′0 are invariant under G. It is immediate that
m 7→ {x(m), x(m)+1} is a bijective morphism ofGα-spaces. It follows that |X ′0/H1| = 176
and that G acts transitively on X ′0. From (1.3) and (1.9) we infer that Gx(m),β

∼= A7 for all
β ∈ Ω and that Gx(m),β acts as a rank 3 group on the supports of x(m) and x(m) +1, the
supports being nonisomorphic Gx(m)-spaces. From D.G. Higman’s result [14, 6.1], we may
conclude that G{x(m),x(m)+1} ∼= PΣU(3, 52). The rest of the assertion easily follows. �

Remark. Note that G{x(m),x(m)+1} ∼= PΣU(3, 52) does not leave invariant the strongly
regular graphs induced on x(m) and x(m)+1, but interchanges them blockwise. It follows
from (2.7) that G{x(m),x(m)+1} = G{x(m),x(m)+1} where G ∼= Aut(G) is the automorphism
group of the Higman-Sims graph. Hence even G induces on the supports of x(m) and
of x(m) + 1 only the group PSU(3, 52), and not the complete automorphism group ∼=
PΣU(3, 52) of the strongly regular graph of valency 7 on 50 vertices.

By the convention above there is aG-orbitX ′′0 inW50(H ′′22\H21) which shares analogous
properties. X ′0 and X ′′0 are interchanged by G ∼= Aut(G).

It is more complicated to deal with the remaining G-orbits. We use the connections
in the Higman-Sims graph as a guide.

(3.22) Lemma.
Let x = x(m) ∈ X ′0 ; then α ∈ Λ15(x+ 1). We have y = (x+ 1) + ∆(α) ∈ W42(H ′′22) and
y has the following properties.

(1) Gy = Gx,α
∼= A7.

(2) Gy has the following orbits in Ω:

Φ0 = {α} = supp(x) ∩ Λ7(y), |Φ0| = 1,
Φ1 = supp(m) = supp(x) ∩ Λ15(y), |Φ1| = 7,
Φ2 = B1(m) = supp(x) ∩ Λ11(y), |Φ2| = 42,
Φ3 = ∆(α) +m = supp(y + 1) ∩ supp(x+ 1) ⊆ Λ7(y), |Φ3| = 15,
Φ4 = B3(m) = supp(y) ∩ Λ7(y), |Φ4| = 35.

(3) The matrix of the Higman-Sims graph with respect to (Φi)06i64 is
0 7 0 15 0
1 0 6 0 15
0 1 6 5 10
1 0 14 0 7
0 3 12 3 4

 .

Proof. The assertion follows from (1.13) since Gy must leave invariant supp(y) and all
Λi(y). �
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(3.23) Proposition.
Let x = x(m) ∈ X ′0 and y = (x + 1) + ∆(α). Denote by Y ′′0 the G-orbit containing y.
Then |Y ′′0 | = 17, 600.

Proof. It follows from (3.21) that |Y ′′0 | = |G : Gy| = 352 · 50 = 17, 600. �

Note that every vector in Y ′′0 (and Y ′0) shares the properties of y described in (3.22).
In particular Λ15(y) is a unique Gy-orbit of length 7 for any y ∈ Y ′′0 . If y ∈ Y ′′0 and
β ∈ Λ15(y) then z = y+ ∆(β) ∈ W34(H ′22) and Gz contains a subgroup isomorphic to A6.
We show that G acts transitively on W34(H ′22) by arguments independent of the preceding
discussion.

(3.24) Lemma.
Let z ∈ W34(H ′22) and λi = |Λi(z)|. Then the following hold.

(1) λ11 = 12 and λ7 = 88.

(2) Gz does not fix any point in Ω.

Proof. λ15 = 0 holds since H ′22 has minimum weight 32. The canonical equations by
counting edges

34 · 22 = 7λ7 + 11λ11

100 = λ7 + λ11

yield (1).
Assume that Gz fixes a point β ∈ Ω. From the first part of Theorem (3.20) follows

5, 600 > |G : Gz| = |G : Gβ||Gβ : Gz| = 100|Gβ : Gz| and |Gβ : Gz| 6 56. Since Gβ
∼= M22

either Gβ = Gz or Gz = Gβγ for some point β 6= γ. By considering the action of Gβ and
of Gβγ on Ω we see that |Λ11(z)| = 12 is impossible, a contradiction against (1). Thus (2)
holds. �

(3.25) Proposition.
G acts transitively on W34(H ′22) = Z ′. Let z ∈ Z ′. Then the following hold.

(1) Gz
∼= M11, the simple group of order 7, 920.

(2) Λ11(z) ⊆ supp(z) and Gz acts triply-transitively on Λ11(z). If β ∈ Λ11(z) then
Gz,β

∼= PSL(2, 11). The orbits of Gz in Ω are Φ0 = Λ11(z),Φ1 = supp(z) ∩ Λ7(z)
and Φ2 = supp(z + 1) of lengths 12, 22 and 66.

(3) The matrix of the Higman-Sims graph with respect to (Φi)06i62 is 0 11 11
6 1 15
2 5 15

 .
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Proof. (i) From the first part of Theorem (3.20) we have w34(H ′22) = 5, 600 6≡ 0
(mod 11). Therefore there exists z ∈ W34(H ′22) such that 11 divides |Gz|. From
(3.24) we infer that any element of Gz of order 11 fixes exactly one point in Λ11(z)
and acts fixed-point-freely on Λ7(z). Since Gz does not fix any point in Ω by (3.24)
it follows that Gz acts doubly-transitively on Λ11(z).

(ii) Let β ∈ Λ11(z). Then |Gz : Gz,β| = 12 and we obtain that |Gz,β| = |G|/(12|G :
Gz|) > 44, 352, 000/(12 · 5, 600) = 660. On the other hand it follows from (1.3)
that Gz,β is isomorphic to a subgroup of PSL(2, 11) whose order is 660. Hence
Gz,β

∼= PSL(2, 11). Consequently Gz acts faithfully and triply-transitively on Λ11(z)
and Gz

∼= M11 by [31]. Another consequence is |G : Gz| = 5, 600 which implies that
Z ′ = W34(H ′22) is an orbit of G.

(iii) Since any element of Gz of order 11 fixes exactly one point in Ω it follows that
Λ11(z) ⊆ supp(z). From the properties of the Higman-Sims graph we infer that Gz

acts transitively on supp(z)∩Λ7(z). Without loss we may assume that α ∈ Λ11(z).
Using the notation of (1.12) we then may conclude that for the endecad e = ∆(α)z
we have B3(e) ⊆ supp(z + 1). Since Gz,α acts transitively on B3(e), it now easily
follows that Gz acts transitively on supp(z+1) of cardinality 66. The graph matrix
in the assertion is now obtained simply by counting.

�

Remark. A vector z ∈ Z ′ may be constructed explicitly as follows: Let e be an
endecad such that e and any heptad m ∈ M′ generate the same M22-invariant subcode
of the (shortened) Golay code of length 22. Then z = α + e + B1(e) + B5(e) ∈ Z ′ and
z + 1 = (e+ ∆(α)) +B3(e), see (1.12).

It is now quite obvious how the G-orbits Z ′ and Y ′′0 are linked by the Higman-Sims
graph:

Y ′′0 = {z + ∆(β) | z ∈ Z ′ and β ∈ supp(z) ∩ Λ7(z)} and
Z ′ = {y + ∆(γ) | y ∈ Y ′′0 and γ ∈ Λ15(y)}.

It is clear that we may construct a second orbit Y ′′1 in W42(H ′′22) starting from Z ′ by
making use of the Gz-orbit supp(z + 1) instead of supp(z) ∩ Λ7(z).

(3.26) Proposition.
Let z ∈ Z ′ = W34(H ′22) and let γ ∈ supp(z + 1). Then y = z + ∆(γ) ∈ W42(H ′′22). Denote
by Y ′′1 the G-orbit containing y. The following assertions hold.

(1) Gy = Gz,γ
∼= Σ5.

(2) |Y ′′1 | = 369, 600.
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(3) Gy has exactly 9 orbits (Ψi)06i68 in Ω which are defined as follows:

Ψ0 = Λ11(z) ∩∆(γ); |Ψ0| = 2 and Ψ0 ⊆ Λ11(y).
Ψ1 = Λ11(z) \Ψ0; |Ψ1| = 10 and Ψ1 ⊆ Λ11(y).
Ψ2 = Λ7(z) ∩ supp(z) ∩∆(γ); |Ψ2| = 5 and Ψ2 ⊆ Λ7(y).

Ψ3,Ψ4 ⊆ Λ7(z) ∩ supp(z) \∆(γ) such that |Ψ3| = 5 and |Ψ4| = 12;
Ψ3 ⊆ Λ7(y) and Ψ4 ⊆ Λ11(y).

Ψ5 = {γ} = Λ15(y).
Ψ6 = supp(z + 1) ∩∆(γ); |Ψ6| = 15 and Ψ6 ⊆ Λ7(y).

Ψ7,Ψ8 ⊆ supp(z + 1) \∆(γ) such that |Ψ7| = 20 and |Ψ8| = 30;
Ψ7 ⊆ Λ7(y) and Ψ8 ⊆ Λ11(y).

(4) supp(y) = Ψ1 ∪Ψ3 ∪Ψ4 ∪Ψ6 and Λ7(y) = Ψ2 ∪Ψ3 ∪Ψ6 ∪Ψ7.

(5) The matrix of the Higman-Sims graph with respect to (Ψi)06i68 is

0 0 0 5 6 1 0 10 0
0 0 3 2 6 0 3 2 6
0 6 0 1 0 1 0 8 6
2 4 1 0 0 0 3 0 12
1 5 0 0 1 0 5 5 5
2 0 5 0 0 0 15 0 0
0 2 0 1 4 1 0 4 10
1 1 2 0 3 0 3 3 9
0 2 1 2 2 0 5 6 4


.

Proof. It follows from (3.25) and [7, Table 3], that Gz,γ
∼= Σ5. Using the character table

of M11 we obtain that Gz,γ has the nine orbits (Ψi)06i68 in Ω as described in assertion (3).
From (3.25) we derive the graph matrix given in (5) and it follows that Λ15(y) = {γ} = Ψ5.
Therefore Gy = Gz,γ and the rest of the proposition easily follows. �

Since w42(H ′′22) = 17, 600 + 369, 600 by the first part of Theorem (3.20) only the
remaining G-orbits in W50(H ′22) have to be determined. We use for the construction of
these orbits the same ideas as for the construction of Y ′′1 . At first we prove a general
lemma.

(3.27) Lemma.
Let x ∈ W50(H ′22) and λi = |Λi(x)|. Then λ7 = λ15.

Proof. Counting the edges of the Higman-Sims graph between supp(x) and Ω yields the
equations

1, 100 = 50 · 22 = 7λ7 + 11λ11 + 15λ15

100 = λ7 + λ11 + λ15.

It follows λ7 = λ15. �
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Next we consider the incidence structure

I = (W42(H ′′22),W50(H ′22), I)

where I = {(y, x) | y ∈ W42(H ′′22) and there exists a β ∈ Ω such that x+ y = ∆(β)}.
Note that (x, y) ∈ I implies that x+ y = ∆(β) where β ∈ Λ7(y) ∩ Λ15(x).

It is obvious from the definition of I that G acts on I as a group of automorphisms. We
know that G has exactly 2 orbits Y ′′0 and Y ′′1 in W42(H ′′22) of lengths 17, 600 and 369, 600
respectively. It is our goal to determine the G-orbits in W50(H ′22) via the G-orbits in I.

(3.28) Proposition.
G has precisely 7 orbits in I:

I00 = {(y, y + ∆(β)) | y ∈ Y ′′0 and β ∈ Φ0(y)},
I01 = {(y, y + ∆(β)) | y ∈ Y ′′0 and β ∈ Φ3(y)},
I02 = {(y, y + ∆(β)) | y ∈ Y ′′0 and β ∈ Φ4(y)},
I10 = {(y, y + ∆(β)) | y ∈ Y ′′1 and β ∈ Ψ2(y)},
I11 = {(y, y + ∆(β)) | y ∈ Y ′′1 and β ∈ Ψ3(y)},
I12 = {(y, y + ∆(β)) | y ∈ Y ′′1 and β ∈ Ψ6(y)},
I13 = {(y, y + ∆(β)) | y ∈ Y ′′1 and β ∈ Ψ7(y)}.

(Here we write Φi(y) = Φi in the sense of (3.22) and Ψi(y) = Ψi in the sense of (3.26)
for the sake of clarity.)

The orbit lengths are

|I00| = 17, 600 · 1 = 17, 600,
|I01| = 17, 600 · 15 = 264, 000,
|I02| = 17, 600 · 35 = 616, 000,
|I10| = 369, 600 · 5 = 1, 848, 000,
|I11| = 369, 600 · 5 = 1, 848, 000,
|I12| = 369, 600 · 15 = 5, 544, 000,
|I13| = 369, 600 · 20 = 7, 392, 000.

Proof. The assertion is a straightforward consequence of (3.22) and (3.26). Note that for
y ∈ W42(H ′′22) we have y + ∆(β) ∈ W50(H ′22) if and only if β ∈ Λ7(y). �

An immediate consequence of (3.28) is that there are at most 7 G-orbits in W50(H ′22).
We know one of these G-orbits, X ′0, from (3.21). X ′0 corresponds uniquely to I00, as follows
from (3.21). From the first part of Theorem (3.20) we know that w50(H ′22) = 1, 311, 552.
We construct now the remaining G-orbits by considering some particular vectors.

(3.29) Proposition.
Let y = (x(m) + 1) + ∆(α) ∈ Y ′′0 as defined in (3.22), let β ∈ Φ3(y) = Φ3 and let
x = y + ∆(β). Set X ′1 = {xg | g ∈ G}. Then the following hold.

(1) Gx = Gy,β
∼= PSL(2, 7).
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(2) |X ′1| = 264, 000.

(3) Gx has precisely 8 orbits (Θi)06i67 in Ω.

Θ0 = {α}, |Θ0| = 1 and Θ0 ⊆ Λ7(x);
Θ1 = supp(m), |Θ1| = 7 and Θ1 ⊆ Λ15(x);
Θ2 = supp(y) ∩∆(β) \ {α}, |Θ2| = 14 and Θ2 ⊆ Λ11(x);
Θ3 = B1(m) \∆(β), |Θ3| = 28 and Θ3 ⊆ Λ11(x);
Θ4 = {β}, |Θ4| = 1 and Θ4 ⊆ Λ15(x);
Θ5 = ∆(α) \ supp(m) \ {β}, |Θ5| = 14 and Θ5 ⊆ Λ11(x);
Θ6 = ∆(β) ∩ supp(y), |Θ6| = 7 and Θ6 ⊆ Λ7(x);
Θ7 = B3(m) \∆(β), |Θ7| = 28 and Θ7 ⊆ Λ11(x).

supp(x) = Θ0 ∪Θ1 ∪Θ2 ∪Θ7.

(4) The matrix of the Higman-Sims graph with respect to (Θi)06i67 is

0 7 0 0 1 14 0 0
1 0 2 4 0 0 3 12
0 1 0 6 1 4 0 10
0 1 3 3 0 5 3 7
1 0 14 0 0 0 7 0
1 0 4 10 0 0 1 6
0 3 0 12 1 2 0 4
0 3 5 7 0 3 1 3


.

Proof. We make use of the results of (3.22) : Gy
∼= A7 and |Gy : Gy,β| = 15, hence

Gy,β
∼= PSL(2, 7). Using the information given in (3.22) we easily obtain that Gy,β has

the orbits (Θi)06i67 in Ω. Counting the edges of the Higman-Sims graph yields the graph
matrix in (4) and shows that every Θi is left invariant by Gx. It follows Gx = Gy,β, and
hence |X ′1| = 264, 000. The rest of the assertion is now obvious. �

Remark. It can be deduced from (3.21) and (3.22) that x and x+ 1 are in the same
G-orbit X ′1. This will follow also by simple numerical reasons when the proof of Theorem
(3.20) is complete. It should be noted that the Higman-Sims graph induces on Θ1 ∪ Θ6

the incidence graph of the projective plane of order 2, displaying in this way the well
known isomorphy PSL(2, 7) ∼= PSL(3, 2) and PGL(2, 7) acting as correlation group of the
projective plane of order 2.

(3.30) Lemma.
Let y = (x(m) + 1) + ∆(α) ∈ Y ′′0 as defined in (3.22), let γ ∈ Φ4(y) = Φ4 and let
x = y + ∆(γ). Set X ′2 = {xg | g ∈ G}. Let a = |Gx : Gy,γ|. Then the following hold.

(1) Gy,γ
∼= Σ4 ∧2 Σ3.

(2) |X ′2| = 616, 000/a.
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(3) Gy,γ has precisely 12 orbits (Ξi)06i611 in Ω:

Ξ0 = {α}, |Ξ0| = 1 and Ξ0 ⊆ Λ7(x);

Ξ1 and Ξ2 are the orbits of Gy,γ in m such that|Ξ1| = 4 and |Ξ2| = 3;

Ξ1 ∪ Ξ2 ⊆ Λ15(x);

Ξ3 = ∆(γ) ∩B1(m), |Ξ3| = 12 and Ξ3 ⊆ Λ11(x);

Ξ4 and Ξ5 are the orbits of Gy,γ in B1(m) \∆(γ) such that |Ξ4| = 12 and |Ξ5| = 18;

Ξ6 and Ξ7 are the orbits of Gy,γ in ∆(α) \m such that |Ξ6| = 12 and |Ξ7| = 3;

Ξ8 = {γ}, |Ξ8| = 1 and Ξ8 ⊆ Λ15(x);

Ξ9 = ∆(γ) ∩B3(m), |Ξ9| = 4 and Ξ9 ⊆ Λ7(x);

Ξ10 and Ξ11 are the orbits of Gy,γ in B3(m) \ (γ ∪∆(γ)) such that

|Ξ10| = 12 and |Ξ11| = 18;

supp(x) = Ξ1 ∪ Ξ3 ∪ Ξ7 ∪ Ξ8 ∪ Ξ10 ∪ Ξ11.

(4) The matrix of the Higman-Sims graph with respect to (Ξi)06i611 is

0 4 3 0 0 0 12 3 0 0 0 0
1 0 0 3 3 0 0 0 0 3 3 9
1 0 0 0 0 6 0 0 1 0 8 6
0 1 0 0 3 3 5 0 1 0 3 6
0 1 0 3 0 3 3 2 0 1 3 6
0 0 1 2 2 2 4 1 0 2 4 4
1 0 0 5 3 6 0 0 0 1 3 3
1 0 0 0 8 6 0 0 1 0 0 6
0 0 3 12 0 0 0 3 0 4 0 0
0 3 0 0 3 9 3 0 1 0 3 0
0 1 2 3 3 6 3 0 0 1 0 3
0 2 1 4 4 4 2 1 0 0 2 2



.

(5) Λ15(x) ∩ supp(x) = Ξ1 ∪ Ξ8 has 5 points. Λ15(x) ∩ supp(x + 1) = Ξ2 ∪ Ξ4 has 15
points. Gx has at least 2 orbits in Λ15(x).

(6) |Λ7(x)| = |Λ15(x)| = 20 and |Λ11(x)| = 60.

Proof. (1) follows from (3.22) since γ ∈ Φ4(y). (2) follows from (1). The orbits Ξi and
the graph matrix are obtained by studying the action of Gy,γ

∼= Σ4 ∧2 Σ3 using (3.22).
The remaining part of the assertion follows by inspection. �

(3.31) Lemma.
Let y ∈ Y ′′1 as defined in (3.26) and let δ ∈ Ψ6(y) = Ψ6. Let b = |Gx : Gy,δ|. Set
x = y + ∆(δ) and X ′3 = {xg | g ∈ G}. Then the following hold.

(1) Gy,δ
∼= D8.
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(2) |X ′3| = 5, 544, 000/b.

(3) Gy,δ has precisely 26 orbits in Ω, 13 in supp(x) and 13 in supp(x+ 1).

(4) x+ 1 ∈ X ′3.

(5) |Λ15(x) ∩ supp(x)| = 6 and |Λ15(x) ∩ supp(x + 1)| = 8, |Λ7(x)| = |Λ15(x)| =
14 and |Λ11(x)| = 72. Gx has at least 2 orbits in Λ15(x).

Proof. It follows from (3.26) that Gy,δ
∼= D8; hence (1) holds and because of Gy,δ 6 Gx

we have also (2).
From (3.26) we also infer thatGy,δ has 13 orbits (of lengths 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 8, 8)

in supp(x) and 13 orbits (with the same lengths) in supp(x+ 1). One easily checks that
Λ7(x) ∩ supp(x) 6= ∅ and Λ7(x) ∩ supp(x + 1) 6= ∅. Therefore Gx has at least 2 orbits
in Λ7(x). It now follows from (3.28) that G has exactly the orbits X ′0, X

′
1, X

′
2 and X ′3 in

W50(H ′22) and that every x ∈ W50(H ′22) is in the same G-orbit as its complementary vector
x + 1. One checks with the help of (3.26) that Λ7(x) ∩ supp(x) contains two Gy,δ-orbits
of length 4 each and that Λ15(x) ∩ supp(x) contains 3 Gy,δ-orbits of lengths 1, 1, 4. All
remaining Gy,δ-orbits in supp(x) are in Λ11(x). Since x+ 1 ∈ X ′3 we obtain (5). �

Remark. For the proof of (3.31) it is not necessary to compute completely the
matrix of the Higman-Sims Graph with respect to the orbits of Gy,δ; indirect arguments
are sufficient.

As a side result of the proof of (3.31) we note the following:

(3.32) Proposition.
The G-orbits in W50(H ′22) are X ′0, X

′
1, X

′
2, X

′
3. For all x ∈ W50(H ′22) the complementary

vectors x and x+ 1 are in the same G-orbit.

It remains to determine the lengths of the orbits X ′2 and X ′3 and the structure of the
corresponding point stabilizers.

(3.33) Proposition.
|X ′3| = 924, 000 and Gx

∼= GL(2, 3) for x ∈ X ′3. The center Z(Gx) ∼= Z2 is spanned by an
involution with fixed-points, thus Gx is contained in the centralizer in G = HS of a unique
involution which has 10 fixed-points in supp(x) and 10 fixed-points in supp(x+ 1).

Gx = Gx+1 has exactly 2 orbits in Λ15(x), namely Λ15(x) ∩ supp(x) of length 6 and
Λ15(x)∩supp(x+1) of length 8, correspondingly exactly 2 orbits in Λ7(x), namely Λ7(x)∩
supp(x) of length 8 and Λ7(x) ∩ supp(x + 1) of length 6. The orbit lengths of Gx in
Λ11(x) ∩ supp(x) resp. in Λ11(x) ∩ supp(x+ 1) are 4, 8, 24.

Proof. Let x ∈ X ′3 as defined in (3.31). It follows from (3.28) and the known properties of
Y ′′i and X ′j that Gx has the orbits Λ15(x) ∩ supp(x) of length 6 and Λ15(x) ∩ supp(x+ 1)
of length 8 in Λ15(x). It follows that b = |Gx : Gy,δ| = 6, therefore |X ′3| = 924, 000 and
|Gx| = 48. (Note that δ ∈ Λ15(x) ∩ supp(x), hence Gy,δ = Gx,δ.)

An explicit computation of a vector x ∈ X ′3 which may also be carried out with GAP
[10] verifies the remaining assertions. Note that an involution in G which is not fixed-point
free has exactly 20 fixed-points by the character table of G = HS, see the ATLAS [1]. �

the electronic journal of combinatorics 22(1) (2015), #P1.19 47



(3.34) Proposition.
|X ′2| = 123, 200 and Gx

∼= Σ5 ∧2 Σ3 for x ∈ X ′2. Gx has exactly 2 orbits in Λ15(x), namely
Λ15(x) ∩ supp(x) of length 5 and Λ15(x) ∩ supp(x+ 1) of length 15.

Proof. We may assume that x ∈ X ′2 is as defined in (3.30). The assertion is now easily
obtained using (3.28), (3.30) and (3.32). �

Remark. It is not hard to show that in (3.34) the stabilizer Gx has the orbits

Λ15(x) ∩ supp(x) of length 5,
Λ7(x) ∩ supp(x) of length 15,
Λ11(x) ∩ supp(x) of length 30,

Λ7(x) ∩ supp(x+ 1) of length 5,
Λ15(x) ∩ supp(x+ 1) of length 15 and
Λ11(x) ∩ supp(x+ 1) of length 30.

The matrix of the Higman-Sims graph with respect to these Gx-orbits (in the given
order) is 

0 3 12 4 3 0
1 0 6 1 8 6
2 3 6 0 3 8
4 3 0 0 3 12
1 8 6 1 0 6
0 3 8 2 3 6

 .

One may check that this assertion agrees with Lemma (3.30).
The proof of Theorem (3.20) is now complete.

We conclude this discussion by a diagram (Figure 4) which displays the G-invariant
relations between the orbits Z ′, Y ′′i andX ′j given by addition of adjacency vectors ∆(ξ), ξ ∈
Ω. The strokes indicate the G-invariant relations; the numbers at the end of the strokes
indicate the length of the stabilizer orbit belonging to the relation orbit of G. Note that
Y ′′1 is joined to X ′2 via the stabilizer orbit Ψ2, see (3.26) and (3.28).

(3.35) Corollary.
The weight distribution of H23 is as described in the following table:

i 0/100 22/78 30/70 32/68 34/66 36/64 38/62
wi(H23) 1 100 1, 100 3, 850 11, 200 4, 125 38, 500

i 40/60 42/58 44/56 46/54 48/52 50
wi(H23) 92, 400 968, 000 347, 600 485, 100 600, 600 3, 283, 456

Proof. The assertion follows from the known structure of H23/H21 together with (3.11)
and (3.20). �

the electronic journal of combinatorics 22(1) (2015), #P1.19 48



Figure 4: The G-invariant relations between Z ′, Y ′′i and X ′j.

The weight enumerators ofH77, H
′
78 and H ′′78 finally can be determined by MacWilliams

transformation. (These computations have been carried out first in 1980 by F.H Florian
at the Rechenzentrum of Tübingen University using the ALDES program for computing
with large numbers; nowadays it is easy to obtain the result by suitable computer algebra
software like e.g. GAP [10].)

(3.36) Proposition.
The weight distributions of H77, H ′78 and H ′′78 are as given in Table 4.

Proof. The assertion follows from (3.35) and (3.20) by the MacWilliams transformation.
�

Remark. From (2.7) it directly follows that there exist G-invariant linear forms f ′,
f ′′ of H79 such that xf ′ 6= 0 6= xf ′′ for all x ∈ H78 \H77 and all x ∈ H22 \H21. The results
of Section 3 therefore imply that we may obtain by adding two “parity checks” a (binary)
(102, 78)-code of minimum weight 8 and a (102, 22)-code of minimum weight 24.

4 A model of G. Higman’s geometry

In this section we consider the embedding of the Higman vectors x(m) = α+m+B1(m)
in the code H23 (where m is a heptad of W22) and derive in this way a natural model
of G. Higman’s geometry [17] on which the Higman-Sims group G = HS acts as a group
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i wi(H77) wi(H
′
78) = wi(H

′′
78)

0/100 1 1
8/92 119, 625 137, 225
10/90 3, 351, 040 7, 231, 840
12/88 262, 194, 275 511, 741, 475
14/86 10, 460, 595, 200 20, 997, 046, 400
16/84 321, 165, 892, 575 642, 104, 180, 575
18/82 7, 309, 692, 544, 000 14, 620, 696, 059, 200
20/80 127, 793, 807, 058, 995 255, 580, 729, 090, 995
22/78 1, 748, 088, 230, 732, 800 3, 496, 191, 224, 323, 200
24/76 19, 020, 111, 451, 577, 775 38, 040, 223, 036, 760, 175
26/74 166, 791, 619, 843, 340, 800 333, 583, 215, 539, 666, 400
28/72 1, 191, 810, 146, 845, 445, 325 2, 383, 620, 193, 904, 285, 325
30/70 7, 002, 911, 342, 735, 052, 800 14, 005, 823, 013, 894, 187, 520
32/68 34, 096, 837, 242, 289, 671, 850 68, 193, 674, 589, 734, 420, 650
34/66 138, 453, 825, 199, 499, 980, 800 276, 907, 649, 363, 395, 385, 600
36/64 471, 402, 307, 704, 520, 229, 125 942, 804, 613, 467, 381, 809, 925
38/62 1, 351, 845, 015, 778, 272, 153, 600 2, 703, 690, 046, 024, 936, 460, 800
40/60 3, 277, 357, 630, 135, 281, 557, 850 6, 554, 715, 226, 694, 274, 576, 090
42/58 6, 737, 425, 031, 963, 982, 617, 600 13, 474, 850, 114, 631, 510, 262, 000
44/66 11, 772, 688, 854, 024, 011, 418, 750 23, 545, 377, 636, 355, 278, 743, 550
46/64 17, 516, 850, 935, 961, 851, 443, 200 35, 003, 701, 987, 289, 528, 723, 200
48/52 22, 222, 175, 416, 214, 614, 898, 750 44, 444, 350, 658, 167, 367, 673, 150

50 24, 054, 370, 909, 850, 203, 084, 800 48, 108, 742, 023, 087, 188, 141, 952

Table 4: The weight distributions of H77, H
′
78 and H ′′78.

of automorphisms. We thereby obtain an easy direct proof that G. Higman’s simple
group [17] is in fact isomorphic to the Higman-Sims group. Former proofs of this well
known fact involve computer calculations [30], the use of the Leech lattice [7] or rather
complicated combinatorial investigations, see [32, 33]; for another elementary proof of the
isomorphy see [7]. The code theoretic construction of G. Higman’s geometry also provides
for a simple explanation of G. Higman’s “natural correspondence” between the unordered
pairs of points and quadrics, not induced by a bijection.

We shall consider all possible sums x(m1) + x(m2) of Higman vectors. Recall that the
M22-orbits on the set of heptads ofW22 are denoted byM′ andM′′ and that the notation
for the codes is chosen so that x(m) ∈ H ′22 if and only if m ∈M′. The additive structure
of H23/H21 leads to the following fact.

(4.1) Lemma.
Let m1,m2 ∈M′ ∪M′′. Then the following hold.

(1) x(m1) + x(m2) ∈ H21 if and only if |{m1,m2} ∩M′| is even.

the electronic journal of combinatorics 22(1) (2015), #P1.19 50



(2) x(m1) + x(m2) ∈ H22 \H21 if and only if |{m1,m2} ∩M′| = 1.

Proof. The assertions follow from (2.7). �

More precise information is given by computing the weights:

(4.2) Lemma.
Let m1,m2 ∈ M′ ∪ M′′ and let d = w(m1m2) = |supp(m1) ∩ supp(m2)|. Then w =
w(x(m1) + x(m2)) is given by the following table.

d 0 1 2 3 4 7
w 70 60 50 40 30 0

.

Proof. The assertion easily follows from the definition of x(mi) by using the Leech triangle,
[7, p.226]. (Observe that the heptads may be considered as shortened octads of the
(extended) Golay code of length 24.) �

The results in (4.2) become more symmetrical when we pass to the factor space H23/H1

of complementary vectors. For convenience of notation let x̂ = {x, x + 1} ∈ H23/H1 for

x ∈ H23 and let x̂(m) = x̂(m). As before in Section 3 the weight w(x̂) of x̂ is defined by
w(x̂) = {w(x), w(x+ 1)}.

(4.3) Corollary.
Let m1,m2 ∈ M′ ∪ M′′. Then the weight ŵ = w(x̂(m1) + x̂(m2)) as a function of
d = w(m1m2) is given by the following table

d 0 4 2 1 3 7
ŵ {30, 70} {30, 70} {50, 50} {40, 60} {40, 60} {0, 100} .

Proof. The assertion is essentially a restatement of (4.2) using an ordering according to
(4.1). �

In (4.3) we see that the cases d = 0 and d = 4 (resp. d = 1 and d = 3) yield the
same weights. In the following we shall use the G-orbits structure known from Section 3
to explain this observation.

From Section 3 we know that G has exactly one orbit X in H23/H1 of elements of
weights {30, 70} of length |X| = 1, 100 and that G has exactly 2 orbits in H23/H1 of
elements of weight {40, 60}, one of them – say Y – of length 15, 400, the other of length
77, 000. Both orbits are in fact contained in H22/H1. Moreover, G has exactly 2 orbits in
H22/H1 of elements of weight {50, 50}, one of them – say Z – of length |Z| = 22, 176, the
other of length 308, 000. All these orbits are also G-invariant.

In addition we set X ′ = X ′0/H1 and X ′′ = X ′′0 /H1 where X0′ and X ′′0 are the G-orbits
of Higman vectors such that X ′0 ⊆ H ′22 and X ′′0 ⊆ H ′′22, the modulo notation /H1 having
the obvious meaning. Then |X ′| = |X ′′| = 176. Note that G acts transitively on X ′ and
X ′′ and that the stabilizer in G of an element of X ′ ∪ X ′′ is isomorphic to PΣU(3, 52).
G ∼= Aut(G) acts transitively on X ′ ∪X ′′.
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(4.4) Lemma.
Let x1, x2 ∈ X ′ ∪X ′′. Then x1 + x2 ∈ X ∪ Y ∪ Z ∪ {0}.

Proof. In view of Corollary (4.3) we only have to show that x1 + x2 does not belong to
the orbit of length 77, 000 of elements of weight {40, 60} and not to the orbit of length
308, 000 of elements of weight {50, 50}. But this claim follows from (1.3) and (4.3), as
176(105 + 70) < 77, 000 and 176 · 126 < 308, 000. �

As a consequence of (4.4) we may study the ternary relation R = {(x1, x2, x1 + x2) |
x1, x2 ∈ X ′ ∪ X ′′} ⊆ (X ′ ∪ X ′′)2 × (X ∪ Y ∪ Z ∪ {0}) in some detail. Of course, this
relation is G-invariant.

(4.5) Proposition. (1) R′ = {(x1, x2, x1 + x2) | x1, x2 ∈ X ′ and x1 6= x2} is a G-orbit
in (X ′)2 × Y of length 176 · 175 = 30, 800 = 2 · 15, 400.

(2) R′′ = {(x1, x2, x1 + x2) | x1, x2 ∈ X ′′ and x1 6= x2} is a G-orbit in (X ′′)2 × Y of
length 176 · 175 = 30, 800 = 2 · 15, 400.

(3) X ′ and X ′′ are interchanged by G.

Proof. The assertion follows from (4.4), (3.11) and (3.20). �

(4.6) Corollary.
G acts doubly-transitively on X ′ and X ′′.

Proof. G acts transitively on Y . From (4.5) it follows that G is 2-homogeneous on X ′

and X ′′. Therefore, since G is even, G is doubly-transitive. �

(4.7) Corollary.

There is a G-invariant natural correspondence Θ : X ′{2} → X ′′{2} given by {x1, x2}Θ =
{y1, y2} where y1 + y2 = x1 + x2.

Proof. The assertion follows also from (4.5). �

Note that Θ is not induced by a bijection X ′ → X ′′ since X ′ and X ′′ are nonisomorphic
G-sets.

Another particular G-orbit in R can be used to construct a model of G. Higman’s
geometry.

(4.8) Proposition. (1) R1 = {(x1, x2, x) | x1 ∈ X ′, x2 ∈ X ′′, x ∈ X and x = x1 +x2} is
a G-orbit in X ′×X ′′×X of length 176 · 50 = 8, 800 = 8 · 1, 100. R2 = {(x1, x2, x) |
x1 ∈ X ′′, x2 ∈ X ′, x ∈ X and x = x1 + x2} is a G-orbit in X ′′ ×X ′ ×X of length
176 · 50 = 8, 800 = 8 · 1, 100.

(2) R1 and R2 are interchanged by G.

Proof. The assertion follows from (4.4) and Section 3. �
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(4.9) Corollary.
The stabilizer in G of an element x ∈ X is isomorphic to the symmetric group Σ8.

Proof. |X| = 1, 100 implies |Gx| = 40, 320 = 8! = |Σ8|. The assertion now follows from
(4.8). �

We are now in a position to define a model of G. Higman’s geometry: Call the elements
of X ′ points, the elements of X conics and the elements of X ′′ quadrics.

The G-invariant relation R1 (or equivalently R2) induces the following incidence struc-
tures by coordinate restriction:

I ′ = (X ′, X, Iind) (point-conic structure)
I ′′ = (X ′′, X, Iind) (quadric-conic structure)
I = (X ′, X ′′, Iind) (point-quadric structure)

where Iind denotes in each case the incidence relation induced by R1 (or R2) in the obvious
sense.

(4.10) Theorem. (1) I ′ and I ′′ are 2− (176, 8, 2) designs on which G acts as a group
of automorphisms. G induces naturally an isomorphism between I ′ and I ′′.

(2) I is a symmetric 2 − (176, 50, 14) design on which G acts as a group of automor-
phisms. G acts on I as a group of correlations interchanging points and quadrics.

(3) (X ′, X ′′, X;R1) provides for a model of G. Higman’s geometry defined in [17]. G acts
on this model as a group of automorphisms, G acts on I as a group of correlations
interchanging points and quadrics and leaving the set of conics invariant.

Proof. Since G acts doubly-transitively on X ′ and X ′′ and transitively on X we immedi-
ately obtain that I ′ is a 2 − (176, k′, λ′) design, that I ′′ is a 2 − (176, k′′, λ′′) design and
that I is a 2− (176, k, λ) design. From (4.8) it follows that k′ = k′′ = 8 and that k = 50.
The canonical equations for the design parameters now yield λ′ = 2 = λ′′ and λ = 14. It
is clear from the definition that G acts on I ′, I ′′ and I as a group of automorphisms. It
follows also from (4.8) that G induces an isomorphism between I ′ and I ′′ and acts as a
group of correlations (inducing a polarity). It is now straightforward to verify that the
“axioms” of G. Higman’s geometry are fulfilled, see [17]. (Note that the mapping Θ of
(4.7) is intimately related to the “conic correspondence” required in G. Higman’s property
(vi) in an obvious way.) �

The assertion of (4.10) is illustrated by the following diagram, following the conventions
used in Section 3.
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X

X ′ X ′′

1, 100

176 176

50 50

50 50

8 8

(4.11) Corollary.
The Higman-Sims group G = HS is isomorphic to the automorphism group of G. Higman’s
geometry.

Proof. By (4.10) G is isomorphic to a subgroup of the automorphism group of G. Higman’s
geometry. Comparison of group orders now gives the result. �

Remark. It is plainly clear that – as a general principle of construction – the additive
structure of a subquotient of a linear code left pointwise invariant by a group G of code
automorphisms may be used to define incidence structures admitting G acting as a group
of automorphisms.

5 Subgroups of G = HS given by the code H23

It has been shown by Conway [7] and Curtis [8] that the major part of the maximal
subgroups of the maximal subgroups of the Mathieu group M24 may be described in
terms of the binary Golay code of length 24. In this section we will show that the code
H23 serves for this purpose as well in the case of the Higman-Sims group.

We start with the following general concept.

(5.1) Definition.
Let a group G act on a set X.

(1) A subgroup U of G is called an X-subgroup if and only if U = Gx for some x ∈ X.

(2) The set of all X-subgroups of G is denoted by subX(G). subX is a union of conjugacy
classes of subgroups of G.

(3) subX(G) is partially ordered under inclusion. A subgroup U of G is called X-
maximal if and only if U 6= G and U 6 V ∈ subX(G) implies V ∈ {U,G}.
the set of all X-maximal subgroups of G is denoted by maxX(G).

Note that maxX(G) = ∅ if and only if G acts trivially on X.
In the following we retain the notation of the previous sections. In particular G = HS

denotes the Higman-Sims simple group and F = F2. We consider the action of G on the
FG-module H23.
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(5.2) Theorem.
Every H23-maximal subgroup of G is conjugate to exactly one subgroup in the following
list.

(a) Gα
∼= M22 of index 100;

(b) G{α,β} ∼= PΣL(3, 4) of index 1, 100 where α and β are joined in the Higman-Sims
graph;

(c) G{α,γ} ∼= E16Σ6 of index 3, 850 where α and γ are not joined in the Higman-Sims
graph;

(d) Gx30
∼= Σ8 of index 1, 100 where x30 ∈ W30(H23), a conic stabilizer in G. Higman’s

geometry;

(e) Gx36
∼= 26GL(3, 2) of index 4, 125 where x36 ∈ W36(H23);

(f) Gx40
∼= Z2 × PΓL(2, 9) of index 15, 400 where x40 ∈ 401, the centralizer in G of a

fixed-point free involution;

(g′) Gx′34
∼= M11 of index 5, 600 where x′34 ∈ W34(H ′22);

(g′′) Gx′′34
∼= M11 of index 5, 600 where x′′34 ∈ W34(H ′′22);

(h′) Gx′50
∼= PSU(3, 52) of index 352 where x′50 ∈ X ′0;

(h′′) Gx′′50
∼= PSU(3, 52) of index 352 where x′′50 ∈ X ′′0 .

Proof. The assertion of the theorem follows essentially from (3.11), (3.20), (3.21) and its
proofs. Some arguments of the omitted proof of (3.13) are also required concerning the
orbits in Ω of the stabilizers Gx, x ∈ H22. Since these arguments are elementary and
tedious we omit the details. �

Note that G ∼= Aut(G) fuses the conjugacy classes (g′) and (g′′), resp. (h′) and (h′′).
It can be shown that all H23-maximal subgroups of G = HS are in fact maximal

subgroups of G with exception of the cases (h′) and (h′′). The H23-maximal subgroups
of G of types (h′) and (h′′) are contained with index 2 in maximal subgroups isomorphic
to PΣU(3, 52) as easily follows from Section 4. From (3.21) we know that these maximal
subgroups are H23/H1-groups. More precisely we have the following result.

(5.3) Theorem.
Every H23/H1-maximal subgroup of G is either H23-maximal or a maximal subgroup of
index 176 conjugate to a point-stabilizer or a quadric-stabilizer in G. Higman’s geometry.

Proof. The assertion follows from (5.2), (3.20), (3.21) and Section 4, in particular Theorem
(4.10). �
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It is not difficult to show that the subgroups of types (a) . . . (g′′) are in fact maximal
subgroups of G. Of course, this follows from Magliveras [25] where reference is given to his
unpublished dissertation [24]. We give an example for an independent direct argument.

(5.4) Lemma.
Let x ∈ W30(H23). Then Gx

∼= Σ8 is a maximal subgroup of G.

Proof. Suppose Gx < H 6 G. Then Gx has just 2 orbits in Ω: supp(x) = Λ8(x) and
Λ6(x) = supp(x+ 1), see (3.10). So we conclude that H acts transitively on Ω.

It follows from (3.10) that (Gx)β has orbits of length 8 and 14 in ∆(β) if β ∈ Λ8(x) and
that (Gx)γ has orbits of length 16 and 6 in ∆(γ) if γ ∈ Λ6(x). Moreover, (Gx)γ contains
a Sylow 7-subgroup of G for γ ∈ Λ6(x). We easily conclude that Hξ acts primitively on
∆(ξ) for ξ ∈ Ω. By a theorem of Wielandt [38, 31.1], the subgroup Hξ acts 2-transitively
on ∆(ξ) (and it follows that Hξ has the orbits {ξ},∆(ξ) and ∆◦∆(ξ) = ∆2(ξ) in Ω ) since
M22 has no proper subgroup acting doubly-transitively on 22 points. Hence H = G. �

It is a result of Magliveras [24, 25] that G has only two conjugacy classes of maximal
subgroups which are not H23/H1-maximal:

(i) The centralizer of an involution with fixed-points (induced by an elation in PSL(3, 4)
= M21), of index 5, 775 with structure 26Σ5, acting intransitively on Ω with two
orbits of lengths 20 and 80.

(ii) The normalizer of the cyclic group generated by an element of order 5 whose cen-
tralizer in G is of order 300, of index 36, 960 and acting transitively on Ω with a
system of imprimitivity of type 205, in ATLAS notation: 5 : 4× S5. see [1].

We recall that by Proposition (3.33) the groups in class (i) contain H23-subgroups
isomorphic to GL(2, 3) with index 160.

It is easy to show that the groups in the class (i) are H78-maximal subgroups of G.
Note that H79 is the inverse image under v of H1 = 〈1〉 and that H22 = Im v 6 H79, hence
a forteriori every intransitive subgroup of G fixes a vector in H79 \H1.
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