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Abstract

In this paper the number of standard Young tableaux (SYT) is evaluated by
the methods of multiple integrals and combinatorial summations. We obtain the
product formulas of the numbers of skew SYT of certain truncated shapes, including
the skew SYT ((n + k)""1, n™~1)/(n — 1) truncated by a rectangle or nearly a
rectangle, the skew SYT of truncated shape ((n+1)3,n™"2)/(n —2)\ (22), and the
SYT of truncated shape ((n + 1)2,n™=2)\ (2).

Keywords: truncated shapes; standard Young tableaux; order statistics; Selberg
integral

1 Introduction

The enumeration of standard Young tableaux (SYT) is a fundamental problem in enumer-
ative combinatorics. The number of SYT is given by the well-known hook-length formulas
[5]. However hook-length formulas cannot give the number of SYTs of truncated shapes.
Two recent papers [1, 8] counted the number of SYT of certain truncated shapes, includ-
ing a rectangle truncated by a shifted staircase and a rectangle truncated by a square
minus a box. The corresponding product formulas are derived by different combinatorial
methods: Adin et al’s pivoting theory in [1] and Panova’s bijective arguments with Schur
functions identities in [8].

Recall that a partition A of a positive integer n is a non-increasing sequence of non-
negative integers A = (Ay, -+, \g) such that n = A\; + --- 4+ Ag. A Ferrers diagram of
shape A is a left-justified array of n boxes, with row ¢ (from top to bottom) containing \;
boxes. A is used to represent both the partition and the shape, while (i, j) denotes the
box in row ¢ and column j.

Let A = (A, Aoy +-+), = (1, t2,-++) and v = (vy,1,--+) be integer partitions
such that A\; > p;, Ay > v;. A skew shape A/u is an array of boxes where p; boxes are
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deleted from the beginning of row . A standard Young tableau of shape A is a labeling
by {1,2,--- ,|A|} of the boxes in the Ferrers diagram such that each row and column is
increasing (from left to right and from top to bottom respectively). The standard shifted
Young tableau of shape A is like the ordinary shape except that row i starts with its
leftmost box in position (¢,7) if A; > Ay > -+ > A;. The number of SYT of shape \ is
denoted by f*. (More properties of SYT can be found in [12])

A diagram of truncated shape A\v is a left-justified array of boxes where v; boxes
are deleted from the end of row 7. A SYT of truncated shape A\v is a filling of the
corresponding truncated diagram with the integers from 1 to |A| — |v| such that each
row and column is increasing. Generally, a SYT-type chart of shape A is a labeling
by {1,2,---,|\|} in a collection of boxes which may not be left-justified or connected,
preserving the property that each row and column is increasing. SYT, skew SYT and
SYT of truncated shape are SYT-type charts. For example, the SYT-type chart of shape
(42,3)/(1%)\(1,3) U (2,2), which is the skew SYT of shape (42,3)/(1?) with (1,3) and
(2,2) removed, is illustrated as

2 [3] 1] [[] 2] [6] 1 [3]
7 G 7 G
s [2[3[7 145 Ik

O >

This paper is organized as follows. In Section 2 we introduce an order statistics
model of SYT-type chart and present several multiple integral formulas applying to the
enumeration of SYT-type chart. In Section 3 we give some enumerating results implied
directly by Selberg integral, including two results of Adin et al., Panova, and the numbers
of skew SYT of shape (n + k)™ n™1)/(n — 1)" truncated by a rectangle or nearly a
rectangle. In Section 4 we derive several combinatorial identities, which are used to the
enumerations of the skew SYT of truncated shape ((n+ 1)%,n™"2)/(n — 2)\ (2*) and the
SYT of truncated shape ((n + 1)%,n™~2)\ (2). All the corresponding product formulas
are given.

2 Order statistics, multiple integrals and enumeration of SYT-
type charts

It is known that integration methods for enumeration have been used by A. Regev [9], R.
P. Stanley [11] and others [4, 2], which may be called “order polytope” model because the
number of SYT of a given shape (or alternating permutation) is interpreted as a volume
of a corresponding order polytope. From the point of view of statistics, each row of a
SYT-type chart corresponds to a group of independent order statistics. Then the number
of SYT-type chart will also be interpreted as distribution of nested order statistics in this
paper.

Let &, -+ ,&, be n independent and identically distributed random variables with
uniform distribution on interval (0, 1), the corresponding order statistics are obtained by
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arranging these n £’s in nondecreasing order, and are denoted by (&4, - , &) such that

Ein < -+ < &up (For details, see [3]). Suppose that there are d groups of independent
. ) . . o .
order statistics (&3, -+, &) (1 < g' d) from uniform distribution on (0, 1), they will
be nested if there be ; > j such that éﬂj < f,i?; for1<j<d—1.
) k) ’7']'

Counsider the distribution of nest order statistics

d—1
Py =P{\(, <&, & < & <o}

j=1

where ¢; may be fi(jsj)? (sj = ;) or 1, illustrated as the following
b Sj

(1) (1) (1)
Eia; < <Eia, < <& N
A . A - A
(2) (2) (2)
P &1,>\2 < ......... < §J‘A2 < ......... < 5>\2‘>\2
A e A e A
(d) (d) @

Siag < <&y, < <8,

Let Sy denote the corresponding nested simplex of nested order statistics:

O<mly,\1 < <wiang <<y < 1
A A A
0< o < PR < <1
S}\ _ y1,>\‘2“ Yj, Ao Yxo, Ao ’
A e A e A
O<Zl’)‘d<'<Zkv)‘d<'<z’\d’)‘d<l
: . o . : 1) (d)
it follows from the joint probability density function of (£ ,---,&, ) [3] that

d
P>\:H)\i!/"'\/de)\l”'dZAdvAd'
=1
Sx

On the other hand, for each sample point w, the event

d—1
A={w: [ER W <& ), € ) <, &) W) <))
j=1

corresponds to a filling of the SYT-type chart of shape A, the property of independent
and identically distributed makes sure that all the outcomes of event A are equally likely.
Based on this discrete structure, there is

N

()\1,>\|2),\~|-' ,Ad) 7

where N, is the number of SYT-type chart of shape \.
Therefore, Ny could be evaluated by

P, =

Ny = [All Vol(Sy), (1)

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.2 3



where Vol(S)) is the volume of the corresponding nested simplex of SYT-type chart of
shape \.

The formula (1) shows that not only the number of regular SYT, but also the number of
SYT of truncated shape and other variations can be obtained by evaluating some specific
multiple integrals. For example, Consider three groups of independent order statistics
(€12,622), (M12,M2.2),(T1.3, T23, T3,3) from uniform distribution on (0, 1), the number of the
SYT-type chart of shape (4%, 3)/(1%)\(1, 3) U (2,2) is given by 61 [ed

11,212,2

72,473 3

7
(2 5 3>P{§1,2 < M2, &12 < Tos, E22 < Mo2, The < T3} [

= 7' dlL‘Ll"'dl'&g = 5]_,

€1,2<T2,3, 1,2<x3,2, 2,3<3,3,21,4<T2,4
0<z1,2<®1,4<], 0<z2 3<x2,4<1, O0<z3 1 <x3,2<T3,3<1

where z; ; is the corresponding variable of the box (7, ) in the SYT-type chart of shape

(4%,3)/(1)\(1,3) U (2,2).

This paper considers the enumeration of skew SY'T of truncated shapes by using of
(1). For convenient, we use the following notation as in [1, §]:

n—1

F,=]]" R=1

=1

Aij, 1<Z<k )m

If necessary, det(a;;);"—; may be written to be det ( a k+1<i<m

j=1
The following Lemma 1 presents two multiple integrals which are evaluated by inte-
grating over the lower left corner of a rectangular shape, illustrated as

2
, @
. @ "
m n
R(t1, -+ ,tm) Ry (t1,--- ,tk)

Lemma 1. Form > 2, r >0, 0 < t; < --- < t,, < 1, we have the following multiple
integral formula

R<t17 . 7tm> — / . / d$1,1 . dIm,r+m—1

0<wi 1 << r4i-1<t;, 1<i<m
21,5 < <Tm,j, 1<<r
ti—r<Tj_rt1,;<<Tm,j, T+I<F<r+m—1

gt A\ F
1,5=1

r+m i=1
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Furthermore, formn >m >k > 1,

Rk(tl’... 7tk) — /.../ del...dxm’n

0<z;, 1<+ <Tj p—ppi—1<ti, 1<i<k
0<z;1 < <x3 n <1, k+1<i<m; 21, <-<Tpn,j, 1<j<N—k
tj—n+k<l’j—n+k+1,j<"'<l’m,jv n—k+1<j<n

gnkti—1 ' m
= det G?ﬁjmlélgk
(n—it5) E+1<i<m .
k
Fntebm-r n—k m—k
— F—Htl (1—t¢) . H (ij—ti)' (3)
e 1<i<j<k
Proof. We observe that
Th_21
/f'm,2 d(E L= 1 xm—l,l _ él) xmi271 xT
Fm—1,1 " 1 Lm,2 m—1,1 |
| O 1 xm,Q

then,

/// dil?m,l d$m71,1 dIm,Q

Tm—1,1<Tm,1<Tm,2
Tmn—2,1<Tm—1,1<Tm—1,2<Tm,2<Tm,3

:Efn_ xfn_
1 2 91 Tr o1 | 7 5
X m—2, a:f,i'l ] 0 1 Tm2.1 $m27'2,1
— Lon— : = 2 )
m—1,2 xg! 0 1 T 19 xm7|1’2
1 Tm,3 72n!’3 ’ mrgn 3
0 1 Tm,3 2!’
and we have
-1\
dxm,l s dl’271 d(Eg?g s dxmm_l = det L' s
G-/
Ti—1,5 <Ti j <Tij+1 3,j=1
2<i<m, 1<j<m—1
which gives the determinant representation for R(tq,--- ,t,) in case of r = 0. Further-
more, integrating respect to i j, 22 41, , Tmj+m—1(j = 1,2,---,r) gives the determi-
nant representation for R(tq, - - ,t,,). Finally, (2) follows from Vandermonde determinant.
A similar argument shows that the determinant representation for Ry(¢y, - - ,tx) holds,
therefore we have
k ; m
Fo s it 1<i<k
Ri(ty, - tg) = —=2 T det i ST
(1 ) Fn+m_ki11“ m—k+7j—1) k1, k+1<i<m i1
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Noticing that (z), == z(x —1)---(x —r +1) = >0, s(r, i)z’ and (x)y = 1, where
s(r, 1) is Stirling numbers of the first kind. For any real number z,

det aija 1<Z<k " _det ayjj, 1<Z<k "
(@ + fickor, k+1<i<m ) (x+4)~" k+1<i<m )

and the second determinant in above is easy to be simplified to triangular form:

i 1<i<k "
det . ! . )
(= Dik1, E+1<i<m )

To prove (3), it suffices to evaluate the following determinant

7 1<i<k \"
Dm—det((]_l) et k+1<2<m>17
D,, is simplified by the i-th row subtracting the (k+ 1)-th row for 1 < i < k, and then
the (j + 1)-th column subtracting the j-th column for 2 < j <m — 1. Therefore,
k k
Dp=(m—k-W[[A=t:)x Dpy =+ = Fup J[JA =t ] & 1)
i=1 i=1 1<i<j<k
The proof of lemma 1 is complete.
O
Furthermore, Selberg’s integral which is a generalization of Euler’s beta integral
1
_ - ['(a)I'(B)
a—1 B-1 _
x 1—x dr = ——=, a>0,8>0
et marntae = el ’
is shown to be useful in this paper.
Lemma 2. [10, 6] For Re(a) > 0,Re(8) > 0,Re(y) > —min{3, Re_(l), P;e_(f)},
1 1k
S (Oévﬂ/)/) :/ / Ht?_l(l_ti>ﬂ_1 H |t2_t]|2’ydt1dtk
0 0 =1 1<i<j<k
'II [+ I8+ 30T (v + Jv)
Lla+ B+ (k+j— 1))
Specially, the equivalent form of Selberg integral used in this paper is
k
/ o / thqfl(l — ;)" H (t; — )™ dty - - - dty
0<ty < <tk<1 =1 1<i<j<k
—II Lla+ B+ (y +57) (1)

Do+ B+ (k+7—1y)I(vy)
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3 Some enumerative results implied by Selberg integral

We note that lemma 1 directly implies several known results by Selberg integral (4). For
examples, the number of SYT of rectangular shape n'™ is

m_ (nm)! Fy_1Fpaq /1 P11 gyt — (nm)! F, Fy
0

fn )

Fn+m— 1 Fn+m

and the number of standard shifted Young tableaux §,, = (n,n —1,n —2,--- /1) is

n+1
fén _ fnn\(snfl — ( —2i_ )' / . / H (t] _tl)dtl 1

I 1<i<§<
0<ty <<ty <] TSESISP

B ";llﬁFQ +1)r(E) n+1 ﬁ
— I Pn+]+3 () - 2]+1

n

Q

the last equality is from I'(k + %) = (2’“).’1“(%).

3.1 Panova’s and Adin et al.’s results

Adin et al. [1] and G. Panova [8] derived the product formula of the number of SYT of
truncated shape (n + k)™**\ (k*~1 k — 1), while Panova obtained the number of SYT of
truncated shape n™\ 0. These two truncated shapes are illustrated as follows

n\ (4 k)™ (BF1 K — i)

Using schur function and computing the volume of a polytope, Panova obtained the
following product formula of the number of a rectangle truncated by a staircase.

Proposition 3. [8, Thm.2] The number of standard tableauz of truncated straight shape
n"\ox (n < m) is

e

m(n —k

El(k;—i—l,m,()) ’

)) f(””“*l)mg(m,m_l,... k)

where fM=F=D™ s the number of SYT of rectangle (n — k — 1)™, G(mm—1, ;m—k) 15 the

number of standard tableauzx of shifted shape (m,m —1,--- m —k), and
1 ) |

Ey(r.p,s) = 12“1;/221:3'” @297 HKKT ((t2s)2p_lt2t2s)l2rs I EVen,

| WEI(T—]_,]%S)’ r Odd
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Combining (1) and (3)—(4), we immediately obtain the following simplified form of
Panova’s product formula (5).

Theorem 4. The number of SYT of truncated shape n'™\0y_1 is

(nm — () P Foni ’i_[l T(n—k+1+H0(m—k+1+HI (L)
T(n+m-—2k+2+52rd)

Fn+m—k

=0
Proof. 1t is clear that
f”m\5k71
k k
(nm — (5)) Foi Fn / / —k —k
= k(1 — )™ ti—t)dty - - dty,
a— [Teta—e I =t --do

O<ty < <tp<1 =1 1<i<y<k

and the multiple integral in above is Selberg integral %Sk(n —k+1m—-—k+1, %) n

Similarly, there is a simple proof of the number of SYT of rectangle truncated by
nearly a square.

Proposition 5. [1, Cor.5.6][8, Thm.3]
The number of SYT of truncated shape (n + k)™ *\(k*1 k —1) is

FoFoFy  (nm+ nk +mk + 1)!(nk)!(mk)!

(7)

Proof. For the rectangle truncated by a square minus a box, we write the variable ¢
corresponding to the reminder box (k,n + 1). From (3) we have

1
FOFRTTNEETED — (4 nk 4 mk 4 1)) / Do (t)dt
0

where
gn—i+i i m—+k
prtwan (5 150
[ +lstsm+ i1
Similar to the proof of (3), it is not difficult to derive
EF.F F
Dipip(t) = =5 " (1 — )™
Fn+m+k
by induction. Therefore (7) is implied by Euler’s beta integral. O
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3.2 Skew SYT ((n + k)™, n™1)/(n — 1)" truncated by a rectangle

Consider the skew SYT S = ((n + k)", n™ 1) /(n — 1)", n,m > 2;k,r > 0. Write the
variable ¢ corresponding to the box (r + 1,n), illustrated as

k+1

r4+1

n

From the hook-length formula or Lemma 1, the number f* is known to be

FoaFno1 FF, (nm+k+r+kr)l(n+r—1)(m+Ek—1)!
Fn+m—l Fk+7‘+1 (n“‘m‘i‘k"’?"— 1)‘ ’

In this section we consider three truncated shapes of S, illustrated as

[ T[] [ 1] [ 1]

S\ k7, S\ (k"1 k—1), S\ (k—1)".

Lemma 1 directly implies the following results.

Theorem 6. Forn > m > 2;k,r > 0, the number of skew SYT of truncated shape
((n+ k)00 /(0 — 1)\ K s

FoaFn oy (mm4k+nm)!(n+r—1m+Ek—1)!
Frim-a m+m+k+r—1klrl

(9)

Proof. Write the variable t corresponding to the box (r 4+ 1,n), then

. \Fyo1Fpey [! T(1—t)*
0

Fn+m—1 7! k!

(9) follows from Euler’s beta integral. ]

the number of skew SYT of truncated shape

Theorem 7. Forn > m > 2;k,r > 1,
—1) s

((n+ k)0 )/ (n = 1)\ (K &
sty S| A [ () R VY | Gty | LT
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Proof. Write the variables z, ¢, y corresponding to the boxes (r,n), (r+1,n),(r+1,n+1)
respectively, then

n+m 1
q:r—l (1 _ y)kz—l
1=t — x)dx dy dt
/// RIS
O<z<t<y<l
and the triple integral in above is easy to evaluate by Euler’s beta integral. O
Theorem 8. Forn >m > 2,k > 1,r > 0, the number of skew SYT of truncated shape

((n+ &), m”ﬂn—UW(h—U
(nm +k +2r)|F, F,
m+m+k+2r—1)F,

C = Zr—l—l—z r—?—z’ n+7"—‘1—|—i m+k+r—.1—i .
—~ r+1 ? T+ k+r—i
Proof. Similar to Theorem 7, write the variables x, ¢,y corresponding to the boxes (r,n),

(r+1,n), (r +1,n + 1) respectively, then
k+2r)F, 1 F—
FEN G- _(nm+Fk+2r) 1 1

x Cy, (11)

where

n—l—m 1

1 1 1— k—1 :L,'r—l r " r—1
/// " ((k: —y)1)! [@«_f{!r! - r!(ry— Tyl dy dt.

O<z<t<y<l

Therefore, (11) follows from the well-known incomplete beta integral:

1,7 k—1 L) kdr—i

y (1-y) t'(1—1)

———dy = ———, <t < 1.
[ S e

4 New enumerative results of SYT of truncated shapes

In this section we use Lemma 1 and combinatorial summation to derive the number of
SYT of truncated shapes. Consider the following two shapes:

((n+1)%,nm72)/(n — 2)\ (2%), ((n+1)2,nm72)\ (2).
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Theorem 9. For n > m > 2, the number of skew SYT of truncated shape ((n +
1)%,nm72) /(n = 2)\ (22) is

(nm+ 1)IF, F,,
2Fn+m

] G 1]

(")

Theorem 10. Forn > m > 2, the number of SYT of truncated shape ((n+1)% n™ %)\ (2)
18

()L, Fy [ (2m = D) . (13)
2Fn+m (zn;§$_4) '

4.1 Combinatorial identities

First, we prove the following combinatorial identity.
Lemma 11. For any 1 < M < N,
M-1 . .
Z M—-1+4\(2N-M—4\ _1(2N\ _ (2N -1 (14)
g i N—i S 2\N) U N )
Proof. From the classical identity [7, (3.2)]
z”: c+k\(y+n—k\ [(z+y+n+1
—~\ k n—k B n ’

we have

(V) -2 (") ()

It is clear that Catalan identity [7, (3.165)]:

SO £

3 (M —il + z) <2N]; K— z) _ ]§4 <2M ;szlk + 1) ((QN i]\;]\jl)Zf/[(]_Vk— M))

implies

i=M k=0
_Z OIM —2—k\ (2N —2M + k+1\  N= (M —1+i\ (2N — M —i
N M—-1—k N-M I i N —i ’
k=0 =0
the proof of Lemma 11 is complete. O
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Corollary 12. (1). Forany 1 < M < N — 1,
Ml( —1+z)(2N—M—1—i)
N —1
=0
1 /2N -1 M (2M — 1\ (2N —2M —1 (15)
2\ N N\ M N-M )
(2). For any1 < M < N — 2,
— M =147\ (2N = M —2—i
— N —1
1 /2N =2 M (2M — 1\ (2N —2M — 1 (16)
2\ N N\ M N-M )
Proof. Notice that the left side of (15) is equal to
M—1 : M- :
N—-—M M—-1+73\ (2N — M—z MZ M—i—z 2N —-—M —-1—1
IN 4= i N - ON £ N—i !

then, the equality (15) is implied by (14).

The equality (16) follows from

2N —M—2—4\ (2N—-M—1—i ON —M —2—14
N —i n N —i N-—1—i '

4.2 Proofs of Theorem 9-10

Proof of Theorem 9. Write the variable z corresponding to the box (2, n— 1), and y

corresponding to (3, n) respectively. From Lemma 1, we know that f((+1D%n™7)/(n=2)\ (2%)
is equal to
(nm + 1)!Fn—2Fm—2 n— m—2, n— m—
7 2" L= 2)" (L= )" (y — 2)d dy.
n+m—2
O<zr<y<l

Noticing that incomplete beta integral

1 r—1 . \n—r T k . n—k
/ J (1=y) dy = x—& 0<x<1
. (r=1! (n—r)! ! !
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implies

/y:ﬂﬂ—xVﬂfﬂ—yW”@%y

O<z<y<l

_al(n—a)!bl(m —b)! i a+ n+m+1—a—1
B (n+m +2)! m+1—i

1=

which follows that
(nm+ 1)IF, F,,
(2n+2m — 3) Fyimo

FADTAT2) -2\ (22) x [(n = 1) Ay — nAy)]

where
n—1 . . n—2 . .
n—1+\(n+2m—3—1 n+i\n+2m—4—1
Al = Ay = :
! ;( i >(n+m—1—i)’ 2 ;( i )(n—l—m—Q—i)
Taking M =n, N =n+m — 1 in (15), then
A 1 /2n+2m -3 n 2n—1\ [2m — 3
"olnem—1 n+m—1\ n m—1)"
Similarly, (14) and (15) imply that
2n—1\ [(2m — 3 2n\ (2m —4
Ay + +
n—1 m—1 n m— 2
~(n+i\(n+2m—3—i jé n41i\ (n+2m—4—i
N i n+m—1-i) =\ i n+m—1-1i

_1 2n+2m—3 . n—+1 2n +1 2m — 5
2\ n+m—1 n+m—1\n+1 m—2)’
therefore,

nm 2n—1\ (2m —1 1(2n+2m -3
— 1A —nAy = —m— — = .
(n = 1A = nd, 2(n—|—m—1)< n )( m ) 2<n—|—m—1)

We complete the proof of (12). O

Proof of Theorem 10. A similar argument to that above shows that

(nm)\F,, F,
(277, +2m — 4)!Fn+m—2

P22\ (2) _ X [A; — Ay

where
A—nz_l n—2+1\/n+2m—3—1 2 n—l—i—z n+2m—4—1
P4 i nt+m—1-—i a ntm—2-i)
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Taking M =n, N =n+m — 2 in (14), then

A _1 2n+2m —4 2n — 2\ (2m — 3
"o\ n+tm—2 n—1 m—1)

On the other hand, Taking M =n —1and N =n+m — 1 in (16) implies

A 1 2n+2m —4 n m-—n 2n—2\ (2m — 2
"o\l n+m—1 2(n+m—1)\n—1 m—1)

Therefore,

2m —1 2n —2\ [(2m — 2 1 2n+2m —4
A —Ay=—— Ry .
2(n+m—1)\n—1 m—1 2(n+m—1)\ n+m—2

The proof of (13) is complete. O
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