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Abstract

Recently, Dokos et al. conjectured that for all k,m > 1, the patterns 12 . . . k(k+
m+ 1) . . . (k + 2)(k + 1) and (m+ 1)(m+ 2) . . . (k +m+ 1)m. . . 21 are maj-Wilf-
equivalent. In this paper, we confirm this conjecture for all k > 1 and m = 1. In
fact, we construct a descent set preserving bijection between 12 . . . k(k−1)-avoiding
permutations and 23 . . . k1-avoiding permutations for all k > 3. As a corollary, our
bijection enables us to settle a conjecture of Gowravaram and Jagadeesan concerning
the Wilf-equivalence for permutations with given descent sets.

Keywords: maj-Wilf-equivalent; pattern avoiding permutation; bijection.

1 Introduction

Denote by Sn the set of all permutations on [n]. Given a permutation π = π1π2 . . . πn ∈ Sn

and a permutation τ = τ1τ2 . . . τk ∈ Sk, we say that π contains the pattern τ if there exists
a subsequence πi1πi2 . . . πik of π that is order-isomorphic to τ . Otherwise, π is said to avoid
the pattern τ or be τ -avoiding. Denote by Sn(τ) the set of all τ -avoiding permutations in
Sn. Pattern avoiding permutations have been extensively studied over last decade. For
a thorough summary of the current status of research, see Bóna’s book [5] and Kitaev’s
book [12].

∗Corresponding author.
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If two patterns σ, τ ∈ Sm are said to be Wilf-equivalent if and only if |Sn(σ)| = |Sn(τ)|.
A permutation statistic is defined to be a function s : Sn → T , where T is any fixed
set. The most studied statistics include the inversion number and the major index. Let
π = π1π2 . . . πn ∈ Sn. The set of inversions of π is

I(π) = {(i, j)|i < j and πi > πj}.

The inversion number of π, denoted by inv(π), is the cardinality of I(π). The decent set
of π is

D(π) = {i|πi > πi+1}.

The ascent set of π is
A(π) = {i|πi < πi+1}.

The major index of π, denoted by maj(π), is given by maj(π) =
∑

i∈D(π) i.
Given a permutation statistic s, we say that σ and τ are s-wilf-equivalent if there

exists a bijection Θ : Sn(σ) → Sn(τ) such that s(π) = s(Θ(π)) for all π ∈ Sn(σ). In
other words, the statistic s is equally distributed on the sets Sn(σ) and Sn(τ). This
refinement of Wilf-equivalence for patterns of length 3 has been extensively studied, see
[2, 3, 7, 8, 10, 14]. However, little is known about permutation statistics and patterns of
length 4 or greater. Recently, Dokos et al. [9] posed the following two conjectures on the
maj-Wilf-equivalence for patterns of length 4 or greater.

Conjecture 1.1. ([9], Conjecture 2.7) For all k,m > 1, the patterns 12 . . . k(k + m +
1) . . . (k + 2)(k + 1) and (m+ 1)(m+ 2) . . . (k +m+ 1)m. . . 21 are maj-Wilf-equivalent.

Conjecture 1.2. ([9], Conjecture 2.8) The major index is equally distributed on the sets
Sn(2413), Sn(1423) and Sn(2314)

Recently, Bloom [4] confirmed Conjecture 1.2 by providing descent set preserving
bijections between the set Sn(2413) and the set Sn(1423), and between the set Sn(2413)
and the set Sn(2314). In their paper [9], Dokos et al. showed that Conjecture 1.1 is true
for m = k = 1. The main purpose of this paper is to confirm Conjecture 1.1 for all k > 1
and m = 1. Actually, we obtain the following stronger result.

Theorem 1.3. For k > 3, there exists a descent set preserving bijection between the set
Sn(12 . . . k(k − 1)) and the set Sn(23 . . . k1).

Denote by Jk = 12 . . . k, Fk = 23 . . . k1 and Gk = 12 . . . k(k − 1), respectively. Give
a permutation π = π1π2 . . . πn, suppose that D(π) = {i1, i2, . . . , is}. Then we call the
subsequence π1π2 . . . πi1 the first block of π, the subsequence πi1+1πi1+2 . . . πi2 the second
block of π, and so on. We say that a permutation π = π1π2 . . . πn contains an occurrence
of Hk if there exists indices i1 < i2 < . . . < ik such that the subsequence πi1πi2 . . . πik
is isomorphic to Jk and entries πik−1

and πik belong to two different blocks. That is,
there exists a j ∈ D(π) with ik−1 6 j < ik. Otherwise, we say that π avoids Hk. For
example, the subsequence 13579 of the permutation π = 13576894(10)2(11) ∈ S11 is
an occurrence of H5, while the subsequence 13569 is not an occurrence of H5. We say
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that a permutation π = π1π2 . . . πn contains an occurrence of Qk if there exists indices
i1 < i2 < . . . < ik such that the subsequence πi1πi2 . . . πik is isomorphic to Gk and
πik−1

< πik−1+1 < . . . < πik−1 > πik . Otherwise, we say that π avoids Qk. For example,
the subsequence 13586 of the permutation π = 1358(10)67492(11) ∈ S11 is an occurrence
of Q5, while the subsequence 13587 is not an occurrence of Q5.

In order to prove Theorem 1.3, we obtain the following two theorems.

Theorem 1.4. For k > 3, there is a bijection f between the set Sn(Gk) and the set
Sn(Hk, Qk) such that for any π ∈ Sn(Gk), we have D(π) = D(f(π)).

Theorem 1.5. For k > 3, there is a bijection Φ between the set Sn(Fk) and the set
Sn(Hk, Qk) such that for any π ∈ Sn(Fk), we have D(π) = D(Φ(π)).

Combining Theorems 1.4 and 1.5, we are led to Theorem 1.3.
Given a positive integer t, Let Dt

n = {i|1 6 i 6 n − 1 and i ≡ 0mod t}. Denote by
St
n(12 . . . k(k − 1)) (resp. St

n(23 . . . k1)) the set of permutations π ∈ Sn(12 . . . k(k − 1))
(resp. π ∈ St

n(23 . . . k1)) with D(π) = Dt
n. From Theorem 1.3, we obtain the following

result as conjectured by Gowravaram and Jagadeesan [11].

Corollary 1.6. ([11], Conjecture 6.2) For t > 1 and k > 3, we have |St
n(12 . . . k(k−1))| =

|St
n(23 . . . k1)|.

2 Proof of Theorem 1.4

We begin with some definitions and notations. An entry of a permutation is said to
have rank k if the length of the longest increasing subsequence that ends in that entry
is k. We now construct a map f from the set Sn(Gk) to the set Sn(Hk, Qk). The map
f is a slight modification of a classic bijection, which is given by West [15] to prove
the equality |Sn(Jk)| = |Sn(Gk)| for all k > 3. Recently, Bona [6] proved that West’s
bijection also induces a bijection between 12 . . . k-avoiding alternating permutations and
12 . . . k(k− 1)-avoiding alternating permutations, thereby proving generalized versions of
some conjectures of Lewis [13].

Let π ∈ Sn(Gk). In order to obtain f(π), we leave all entries of π that are of rank k−2
or less in their place and rearrange the entries of rank k− 1 or higher. Let B1, B2, . . . , Bs

be the blocks of π that are listed from left to right. Let Pi be the set of positions of π in
which, an entry that has rank k− 1 or higher and belongs to the block Bi, is located. Let
R be the set of entries of π that are of rank k − 1 or higher. Now we fill the positions of
P ′
is as follows.

Step 1. Choose |P1| largest entries from R and fill the positions of P1 with the selected
entries from left to right in increasing order.

Step 2. Choose |P2| largest entries from R that have not been placed yet. Then fill the
positions of P2 with the selected entries from left to right in increasing order.

Step 3. Fill the positions of P3, P4, . . ., Ps as in Step 2.
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Let f(π) be the obtained permutation.

Example 2.1. Consider π = 13576894(10)2(11) ∈ S11(G6). Then we have B1 = 1357,
B2 = 689, B3 = 4(10) and B4 = 2(11). Moreover, we have P1 = ∅, P2 = {6, 7},
P3 = {9}, P4 = {11} and R = {8, 9, 10, 11}. According to the definition of f , we have
f(π) = 13576(10)(11)4928.

Since the existence of π shows that there is at least one way to assign the entries of R
to the positions of Pi, the definition of f always enables us to create f(π).

Notice that if entry πi of π has rank k − 2 or less, then πi do not move in the above
procedure, and the rank of πi do not change. If entry πi of π has rank k − 1 or higher,
then πi may have moved and the rank of πi in f(π) is k − 1 or higher. We claim that if
πi−1 > πi, then the rank of πi is k − 2 or less. If not, the longest increasing subsequence
that ends in πi combining with πi−1 would form a Gk in π. This contradicts the fact that
π avoids Gk.

Now we proceed to show that D(π) = D(f(π)). Let f(π) = σ1σ2 . . . σn. If πi−1 > πi
then the rank of πi is k − 2 or less and do not move. This implies that πi = σi and σi
has rank k − 2 or less. If πi−1 is of rank k − 2 or less, then we have σi−1 = πi−1. In this
case, we have σi−1 = πi−1 > πi = σi. If πi−1 is of rank k − 1 or higher, then σi−1 is of
rank k − 1 or higher. Since σi is of rank k − 2 or less, we have σi−1 > σi. Thus, we have
concluded that if πi−1 > πi, then σi−1 > σi.

Next we aim to show that if πi−1 < πi, then we have σi−1 < σi. We have three cases.
If πi is of rank k − 2 or less in π, then the rank of πi−1 is also k − 2 or less. In this case,
we have σi−1 = πi−1 < πi = σi. If both πi and πi−1 are of rank k − 1 or higher, then
according to the definition of f , we have σi−1 < σi . If πi has rank k − 1 or higher and
πi−1 is of rank k − 2 or less, then the rank of σi−1 is k − 2 or less and σi is of rank k − 1
or higher. This implies that σi−1 < σi. Thus, we have concluded that if πi−1 < πi, then
σi−1 < σi. Therefore, we have D(π) = D(f(π)).

Notice that f(π) avoids Hk since the existence of such a pattern in f(π) would mean
that the last two entries of that pattern were not placed according to the rule specified
above. Moreover, we have that f(π) avoids Qk. If not, suppose that σi1σi2 . . . σik is such
a Qk. Then we have σik−1 > σik and σik has rank k− 1 or higher. Since D(π) = D(f(π)),
we have πik−1 > πik . Recall that if πi−1 > πi, then both πi and σi have rank k− 2 or less.
This implies that σik has rank k − 2 or less, which contradicts the fact that σik has rank
k − 1 or higher. Thus, we deduce that f(π) avoids Qk.

In order to show that the map f is a bijection, we construct a map g from the set
Sn(Hk, Qk) to the set Sn(Gk). Let σ = σ1σ2 . . . σn ∈ Sn(Hk, Qk). We aim to obtain g(σ)
by leaving all entries of σ that are of rank k− 2 or less in their place and rearranging the
entries of rank k− 1 or higher. Label the blocks of σ from left to right by B1, B2, . . . , Bs.
Let Pi be the set of positions of π in which an entry, that has rank k − 1 or higher and
belongs to the block Bi, is located, and let R be the set of entries of π that are of rank
k − 1 or higher. Now we fill the positions of Pi as follows.

Step 1. Choose |P1| smallest entries from R that are larger than the closest entry of rank
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k− 2 on the left of the positions of P1, and fill the positions of P1 with the selected
entries from left to right in increasing order.

Step 2. Choose |P2| smallest entries from R that have not been placed yet and are larger
than the closest entry of rank k − 2 on the left of the positions of P2. Fill the
positions of P2 with the selected entries from left to right in increasing order.

Step 3. Fill the positions of P3, P4, . . ., Ps as in Step 2.

Let g(σ) be the obtained permutation.

Example 2.2. Consider σ = 13487(10)(11)5926 ∈ S11(H6, Q6). Then we have B1 =
1348, B2 = 7(10)(11), B3 = 59 and B4 = 26. Moreover, we have P1 = ∅, P2 = {6, 7},
P3 = {9}, P4 = {11} and R = {6, 9, 10, 11}. According to the definition of g, we have
g(σ) = 134879(10)562(11).

Since the existence of σ shows that there is at least one way to assign the entries of R
to the positions of Pi, the definition of g always enables us to create g(σ).

Notice that if entry σi has rank k − 2 or less, then σi does not move in the above
procedure, and the rank of σi do not change. If entry σi has rank k− 1 or higher, then σi
may have moved and the rank of σi in g(σ) is k− 1 or higher. We claim that if σi−1 > σi,
then the rank of σi is k − 2 or less. If not, there is an increasing subsequence of length
k − 1 that ends in σi. Such an increasing subsequence combining with σi−1 would form a
Qk in σ.

By similar reasoning as in the proof of the equalityD(π) = D(f(π)), one can verify that
D(σ) = D(g(σ)). Now we proceed to show that g(σ) avoids Gk. Let g(σ) = π1π2 . . . πn.
Suppose that the the subsequence πi1πi2 . . . πik is a pattern Gk in π with i1 < i2 < . . . < ik.
Without loss of generality, assume that πik−2

has rank k − 2. Clearly, both πik−1
and πik

have rank k − 1 or higher in π. Suppose that ik−1 ∈ Pj for some j, and σs is the closest
entry of rank k − 2 on the left of the positions of Pj in σ. Recall that the map g does
not change the position of entry σi that has rank k − 2 or less, and the rank of σi does
not change in π. So we have πs = σs and πik−2

= σik−2
, and the rank of πs (resp. σik−2

)
is k − 2 in π (resp. σ). Moreover, since σs is the closest entry of rank k − 2 on the left of
the positions of Pj in σ, we have ik−2 6 s. This implies that σs 6 σik−2

= πik−2
. Then,

we have πik > σs, which contradicts the selection of πik−1
when filling the positions of Pj .

Hence, we have g(σ) ∈ Sn(Gk).
In order to show that the map f is a bijection, it suffices to show that the maps f

and g are inverses of each other. First, we wish to prove that for any π ∈ Sn(Gk), we
have g(f(π)) = π. Since D(f(π)) = D(π), π and f(π) have the same number of blocks.
Suppose that B′

1, B
′
2, . . . , B

′
s are the blocks of f(π), that are listed from left to right. Let

P ′
i be the set of positions of f(π) in which an entry that has rank k − 1 or higher and

belongs to the block B′
i, is located, and let R′ be the set of entries of f(π) that are of

rank k− 1 or higher. Recall that if the entry πi of π has rank k− 2 or less, then the map
f does not change the position of πi, and the rank of πi do not change. If entry πi of π
has rank k − 1 or higher, then πi may have moved and the rank of πi in f(π) is k − 1 or
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higher. So we have Pi = P ′
i and R = R′. Since π avoids Gk, the positions of P1 in π are

filled with |P1| smallest elements of R in increasing order which are larger than the closet
entry of rank k−2 on the left of the positions of P1. The positions of P2 are filled with the
next |P2| smallest entries of R in increasing order that have not been placed and larger
than the closet entry of rank k − 2 on the left of the positions of P2. And the positions
of P3, . . . , Ps are filled in the same manner as the positions of P2. Thus, according to the
definition of g, it is easy to check that g(f(π)) = π.

Our next goal is to show that for any σ ∈ Sn(Hk, Qk), we have f(g(σ)) = σ. Since
D(g(σ)) = D(σ), σ and f(σ) have the same number of blocks. Suppose that B′

1, B
′
2, . . . , B

′
s

are the blocks of f(σ), that are listed from left to right. Let P ′
i be the set of positions

of f(π) in which an entry that has rank k − 1 or higher and belongs to the block B′
i, is

located, and let R′ be the set of entries of f(π) that are of rank k − 1 or higher. Recall
that if entry σi of σ has rank k − 2 or less, then the map g does not change the position
of σi, and the rank of σi do not change. If entry σi of σ has rank k− 1 or higher, then σi
may have moved and the rank of σi in g(σ) is k − 1 or higher. So we have Pi = P ′

i and
R = R′. Since σ avoids Hk, the positions of P1 in σ are filled with |P1| largest elements
of R in increasing order which are larger than the closet entry of rank k − 2 on the left
of the positions of P1. The positions of P2 are filled with the next |P2| largest entries of
R in increasing order that have not been placed and larger than the closet entry of rank
k − 2 on the left of the positions of P2. And the positions of P3, . . . , Ps are filled in the
same manner as the positions of P2. Thus, according to the definition of f , it is easy to
check that f(g(σ)) = σ.

3 Proof of Theorem 1.5

Let us begin with some necessary definitions and notations. We draw Young diagrams in
English notation, and number columns from left to right and rows from bottom to up.
For example, the square (1, 2) is the second square in the bottom row of a Young diagram.

A transversal of a Young diagram λ = (λ1 > λ2 > . . . > λn) is a filling of the squares
of λ with 1′s and 0′s such that every row and column contains exactly one 1. Denote by
T = {(ti, i)}

n
i=1 the transversal in which the square (ti, i) is filled with a 1 for all i 6 n.

For example, the transversal T = {(1, 1), (2, 3), (3, 4), (4, 2), (5, 5)} of a Young diagram
(5, 4, 4, 3, 1) is illustrated as Figure 1.

In this section, we will consider permutations as permutation matrices. Given a per-
mutation π = π1π2 . . . πn ∈ Sn, its corresponding permutation matrix is a transversal of
the square shape λ1 = λ2 = . . . = λn = n in which the square (πi, i) is filled with a 1 for
all 1 6 i 6 n and all the other squares are filled with 0′s.

The notion of pattern avoidance is extended to transversal of a Young diagram in [1].
Given a permutation α of Sm, let M be its permutation matrix. A transversal L of a
Young diagram λ will be said to contain α if there exists two subsets of the index set [n],
namely, R = {r1 < r2 < . . . < rm} and C = {c1 < c2 < . . . < cm}, such that the matrix
on R and C is a copy ofM and each of the squares (rj, cj) falls within the Young diagram.

The remaining part of this section is organized as follows. In Subsection 3.1, we
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1

0 0 1

0 0 0 1

0 1 0 0

0 0 0 0 1

Figure 1: The transversal T = {(1, 1), (2, 3), (3, 4), (4, 2), (5, 5)}.

describe a transformation φ that changes every occurrence of Hk (or Qk ) to an occurrence
of Fk. Based on the transformation φ, we establish a map Φ from the set Sn(Fk) to the
set Sn(Hk, Qk), that recursively transforms every occurrence of Hk (or Qk) into Fk. In
Subsection 3.2, we define a transformation ψ that changes every occurrence of Fk to an
occurrence of Hk (or Qk). Relying on the transformation ψ, we establish a map Ψ from
the set Sn(Hk, Qk) to the set Sn(Fk), that recursively transforms every occurrence of Fk

into Hk (or Qk). For the purpose of establishing Theorem 1.5, we investigate certain
properties of φ and ψ in Subsections 3.1 and 3.2, respectively. In Subsection 3.3, we show
that the maps Φ and Ψ are well defined and preserve the descent set. Moreover, they are
inverses of each other, thereby establishing Theorem 1.5.

3.1 The map Φ from the set Sn(Fk) to the set Sn(Hk, Qk)

Before we describe the map Φ, let us review a transformation θ introduced in [1]
Let π = {(π1, 1), (π2, 2), . . . , (πn, n)}. Suppose that G is the submatrix of π at columns

c1 < c2 < . . . < ck−1 < ck and rows r1 < r2 < . . . < rk−1 < rk, which is isomorphic to Jk.
In other words, the square (ri, ci) is filled with 1 for all i = 1, 2, . . . , k. Let θ(G) be the
submatrix at the same rows and columns as G, such that the squares (r2, c1), (r3, c2), . . .,
(rk, ck−1), (r1, ck) are filled with 1′s and all the other squares are filled with 0′s. Clearly,
θ(G) is isomorphic to Fk.

Based on the transformation θ, we define the following three transformations, which
will play an essential role in the construction of the map Φ.

Suppose that G is the submatrix of π at columns c1 < c2 < . . . < ck−1 < s < s + 1 <
. . . < ck − 1 < ck and rows r1 < r2 < . . . < rk−1 < rk > πck−1 > . . . > πs+1 > πs,
in which the squares (ri, ci) are filled with 1′s for all i = 1, 2, . . . , k. Let α(G) be the
submatrix at the same rows and columns as G, such that the squares (r2, c1), (r3, c2), . . .,
(rk, ck−1), (r1, s), (πs, s + 1), . . ., (πck−1, ck) are filled with 1′s and all the other squares
are filled with 0′s. Clearly, the submatrix at columns c1 < c2 < . . . < ck−1 < s and rows
r1 < r2 < . . . < rk−1 < rk is isomorphic to Fk.

Suppose that G is the submatrix of π at columns c1 < c2 < . . . < ck−1 < ck <

ck + 1 < . . . < t − 1 < t and rows r1 < r2 < . . . < rk > πck+1 > . . . > πt−1 > πt, in
which the squares (ri, ci) are filled with 1′s for all i = 1, 2, . . . , k. Define β(G) to be the
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submatrix at the same columns and rows as G, such that the squares (r2, c1), (r3, c2), . . .,
(rk, ck−1), (πck+1, ck), . . ., (πt, t − 1), (r1, t) are filled with 1′s and all the other squares
are filled with 0′s. Clearly, the submatrix at columns c1 < c2 < . . . < ck−1 < t and rows
r1 < r2 < . . . < rk−1 < rk is isomorphic to Fk.
The transformation φ: Suppose that π is a permutation in Sn. First, find the highest
square (p1, q1) containing a 1, such that there is an Hk or Qk in π in which the 1 positioned
at the square(p1, q1) is the leftmost entry. Then, find the leftmost square (p2, q2) containing
a 1, such that there is an Hk or Qk in π in which the 1′s positioned at the squares (p1, q1)
and (p2, q2) are the leftmost two 1′s. Find (p3, q3), (p4, q4), . . . , (pk−1, qk−1) one by one as
(p2, q2).

If there is an Hk in which the 1′s positioned at the squares (p1, q1), (p2, q2), . . .
(pk−1, qk−1) are the leftmost k − 1 1′s, then find the highest square (pk, qk) containing
a 1, such that the 1′s positioned at the squares (p1, q1), (p2, q2), . . . (pk, qk) form an Hk.
Find the largest s such that s−1 ∈ D(π) and qk−1 < s < qk. Now we proceed to construct
a permutation φ(π) by the following procedure.

Case 1. qk = n or πqk−1 > πqk+1. Let G be the submatrix of π at columns q1 < q2 <

. . . < qk−1 < s < s + 1 < . . . < qk − 1 < qk and rows p1 < p2 < . . . < pk > πqk−1 >

. . . > πs+1 > πs. Replace G by α(G) and leave all the other squares fixed.

Case 2. πqk−1 < πqk+1. Find the least t such that t > qk and t ∈ A(π). If such t does
not exist, set t = n. Let G be the submatrix of π at columns q1 < q2 < . . . < qk−1 <

qk < qk+1 < . . . < t−1 < t and rows p1 < p2 < . . . < pk > πqk+1 > . . . > πt−1 > πt.
Replace G by β(G) and leave all the other squares fixed.

If such an Hk does not exist, then find the leftmost square (pk, qk) containing a 1, such
that the 1′s positioned at the squares (p1, q1), (p2, q2) . . . , (pk, qk) form a Qk. Construct a
permutation φ(π) by the following procedure.

Case 3. qk ∈ A(π). Let G be the submatrix of π at columns q1 < q2 < . . . < qk−2 < qk
and rows p1 < p2 < . . . < pk−2 < pk. Replace G by θ(G) and leave all the other
squares fixed.

Case 4. Otherwise, find the least t such that t > qk and t ∈ A(π). If such t does not
exist, set t = n. Let G be the submatrix of π at columns q1 < q2 < . . . < qk−2 <

qk < qk+1 < qk+2 < . . . < t−1 < t and rows p1 < p2 < . . . < pk−2 < pk > πqk+1 >

πqk+2 > . . . > πt−1 > πt. Replace G by β(G) and leave all the other squares fixed.

Remark 3.1. Notice that the definition of Hk ensures that there exists an s such that
s − 1 ∈ D(π) and qk−1 < s 6 qk. In fact, we have qk−1 < s < qk. If not, then the 1′s
positioned at the squares (p2, q2), (p3, q3) . . . (pk−1, qk−1), (πqk−1, qk−1), (pk, qk) would form
a Qk, which contradicts the selection of (p1, q1).

Remark 3.2. We denote the resulting permutation in Case 1, Case 2, Case 3 and Case
4 by φ1(π), φ2(π), φ3(π) and φ4(π), respectively.
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It is obvious that the transformation φ changes every occurrence of Hk (or Qk) to an
occurrence of Fk. Denote by Φ the iterated transformation, that recursively transforms
every occurrence of Hk (or Qk) into Fk.

Using the notation of the algorithm for φ1, we label the squares containing 1′s
in G by a1, a2, . . . , ak−1, c1, c2, . . . , cqk−s, ak, and the squares containing 1′s in α(G) by
b1, b2, . . . , bk, d1, d2, . . . , dqk−s, from left to right, see Figure 2 for example.

E1

E1

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1 d1

c2 d2

Figure 2: The labelling of squares in φ1(π) for k = 5.

Using the notation of the algorithm for φ2, we label the squares containing 1′s
in G by a1, a2, . . . , ak−1, ak, e1, e2, . . . , et−qk , and the squares containing 1′s in β(G) by
b1, b2, . . . , bk−1, f1, f2, . . . , ft−qk , bk, from left to right. We also label the square (πs, s) by
c1, see Figure 3 for example.

E1

E1

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

f1

f2

e1

e2

Figure 3: The labelling of squares in φ2(π) for k = 5.

Using the notation of the algorithm for φ3, we label the squares containing 1′s in G by
a1, a2, . . . , ak−2, ak, and the squares containing 1′s in θ(G) by b1, b2, . . . , bk−2, bk, from left
to right. We also label the square (pk−1, qk−1) by bk−1 (or ak−1), see Figure 4 for example.

Using the notation of the algorithm for φ4, we label the squares containing 1′s in
G by a1, a2, . . . , ak−2, ak, e1, e2, . . . , et−qk , and the squares containing 1′s in β(G) by
b1, b2, . . . , bk−2, f1, f2, . . . , ft−qk , bk, from left to right. We also label the square (pk−1, qk−1)
by bk−1 (or ak−1), see Figure 5 for example.
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E2

E2

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b6

(b5)

Figure 4: The labelling of squares in φ3(π) for k = 6.

In φ1(π) or φ2(π), we denote by E1 the union of the following four parts of the board:
the board that is above a1 but below b1 and to the left of a1, the board that is above ak−1

but below bk−1, to the left of c1 and to the right of ak−1, the union of the rectangles with
corners ai and bi+1 for i = 1, 2, . . . , k− 2, and the board that is above ak and to the right
of c1, see Figures 2 and 3 for example.

E2E2

E2

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

(b5)

b6

e1f1 e2f2

Figure 5: The labelling of squares in φ4(π) for k = 6.

We claim that there are no 1′s inside E1 in π, φ1(π) or φ2(π). By the selection of ak,
there is no 1 to the right of c1 and above ak in π, φ1(π) or φ2(π). Suppose that there is a 1
in the rectangle with corners ai and bi+1 for i = 1, 2, . . . , k−2, then that 1 combining with
the 1′s positioned at a1, a2, . . . , ai, ai+2, . . . , ak would form an Hk in π, which contradicts
the selection of ai+1. If there is a 1 above a1 but below b1, then that 1, combining with the
1′s positioned at a2, a3, . . . , ak would form a Hk in π, which contradicts the selection of a1.
If there is a 1 above ak−1 but below bk−1 and to the left of c1, then that 1, combining with
the 1′s positioned at a2, a3, . . . , ak would form a Hk in π, which contradicts the selection
of a1. Thus, all the 1′s are to the left of E1 or to the right of E1 in π, φ1(π) or φ2(π).

In φ3(π) and φ4(π), we denote by E2 the union of the following four parts of the board:
the board that is above a1 but below b1 and to the left of a1, the board that is above and
to the right of ak−2 but below ak−1, and to the left of ak, the union of the rectangles with
corners ai and bi+1 for i = 1, 2, . . . , k − 2, and the board that is above ak−1 and to the
right of ak, see Figures 4 and 5 for example.
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We claim that there are no 1′s inside E2 in π, φ3(π) and φ4(π). By similar arguments
in E1, one can easily verify that there are no 1′s inside the board that is above a1 but
below b1 and to the left of a1, the union of the rectangles with corners ai and bi+1 for
i = 1, 2, . . . , k − 2, and the board that is above ak−1 and to the right of ak. It remains
to show that there are no 1′s inside the board that is above ak−2 but below ak−1 and to
the left of ak. According to the definition of Qk, all of the 1′s between ak−1 and ak are
above ak−1. This implies that there are no 1′s inside the board that is below and to the
right of ak−1, and to the left of ak. Now suppose that there is a 1 inside the rectangle
with corners ak−2 and ak−1. Suppose that this 1 is at the square (πg, g). If (πg, g) is below
ak, then the 1′s positioned at the squares a2, a3, . . . , ak−2, (πg, g), ak−1, ak would form a
Qk in π, which contradicts the selection of a1. If (πg, g) is above ak, then we have two
cases. If there exists a j such that g 6 j < qk and j ∈ D(π), then the 1′s positioned
at a1, a2, . . . , ak−2, (πg, g), ak−1 would form an Hk in π, which contradicts the selection of
ak−1. Otherwise, the 1′s positioned at the squares a1, a2, . . . , ak−2, (πg, g), ak would form
a Qk in π, which contradicts the selection of ak−1. Hence, we have concluded that there
are no 1′s inside the board that is above ak−2 but below ak−1 and to the left of ak. Hence,
the claim is proved. In other words, all the 1′s of π, φ3(π) or φ4(π) are to the left or to
the right of E2.

Definition 3.3. A 1 is said to be strictly to the left (resp. right) of E1(or E2) if it is
lying to the left (resp. right) of E1 (or E2) and does not belong to the boundary of E1 (or
E2).

In order to show that the transformation φ has the desired properties, which are
essential in the proof of Theorem 1.5, we introduce vertical slide algorithm and horizontal
slide algorithm for φ. Before that, we need the following useful properties that will play a
crucial role in the construction of vertical slide algorithm and horizontal slide algorithm
for φ.
Properties

(1) For any 1 6 i 6 k − 2, the board that is above a1 and below bi cannot contain a Ji
with all its 1′s strictly to the left of E1 (or E2) in φ(π).

(2) For any 1 6 i < j 6 k − 2, the rectangle with corners bi and bj cannot contain a
Jj−i with all its 1′s strictly to the left of E1 (or E2) in φ(π). Moreover, the rectangle
with corners bi and bk−1 cannot contain a Jk−1−i with all its 1′s strictly to the left
of E1 in φ1(π) (or φ2(π)).

Proof.

(1) If there is such a Ji below bi in φ(π), then it is below ai+1. Therefore these i
1′s, combining with ai+1, ai+2, . . . , ak, will either form an Hk or a Qk in π, which
contradicts the selection of a1.

(2) If there is a Jj−i in this region, then either its leftmost 1 is to the left to bi+1 (and
hence to the left of ai+1), or else it lies to the right of bi+1 (and ai+1). In the first
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case, a1, a2, . . . , ai, combining with this Jj−i and aj+1, . . . , ak, will form an Hk (or
Qk) in π, which contradicts the selection of ai+1. In the second case, a2, a3, . . . , ai+1,
combining with this Jj−i and aj+1, . . . , ak, will form an Hk (or Qk) in π, which
contradicts the selection of a1.

Now we proceed to introduce the vertical slide algorithm and horizontal slide algorithm
for φ.

Suppose that H is a Jt in φ(π). Label the squares containing 1′s of H by h1, h2, . . . , ht,
from left to right.
Vertical slide algorithm for φ: When H is in φ1(π) (or φ2(π)), find the largest i such that
bi falls in H with i 6 k − 1; otherwise, find the largest i such that bi falls in H with
i 6 k − 2. If there is a 1 of H which is below bi and to the right of E1 (or E2), find the
rightmost square containing such a 1 and denote it by hy. Find x such that hy is to the
right of bx, and to the left of bx+1. By property (2), there are at most i − x 1′s in H,
which are above bx but not above bi, and weakly to the left of E1 (or E2). So we can
replace these 1′s by bx+1, bx+2, . . . , bi, and hence by ax+1, ax+2, . . . , ai.

We can repeat the vertical slide algorithm until the following two cases appear.
(1) There is no bi that falls in H.
(2) There is such a bi, but hy does not exist. By Property (1), there are at most i 1′s of
H that are above a1 but not above bi, and weakly to the left of E1 (or E2). So we can
replace these 1′s by a1, a2, . . . , ai to form an Jt in π.

Suppose that H is a Jt in φ(π). Label the squares containing the 1′s of H by
h1, h2, . . . , ht, from left to right. Assume that ht is not above bk−1 when H is in φ1(π) (or
φ2(π)), and not above bk−2 when H is in φ3(π) (or φ4(π)).
Horizontal slide algorithm for φ: When H is in φ1(π) (or φ2(π)), find the least i such
that bi falls in H with i 6 k − 1; otherwise, find the least i such that bi falls in H with
i 6 k − 2. If there is a 1 of H which is above bi and to the right of E1 (or E2), find the
leftmost square containing such a 1 and denote it by hy. Find x such that hy is above bx,
and below bx+1. By property (2), there are at most x + 1 − i 1′s in H, which are below
bx+1 but not below bi, and weakly to the left of E1 (or E2). So we can replace these 1′s
by bi, bi+1, . . . , bx, and hence by ai+1, ai+2, . . . , ax+1.

We can repeat the horizontal slide algorithm until the following two cases appear.
(1) There is no bi that falls in H.
(2) There is such a bi, but hy does not exist. Find the least v such that ht is not above
bv. By property (2), we have at most v − i 1′s of H that are below bv but not below bi
and weakly to the left of E1(or E2). So we can replace these 1′s by ai+1, ai+2, . . . , av to
form an Jt in π.

Our next goal is to show that the transformation φ have the following properties,
which are essential in the proof of Theorem 1.5.

Lemma 3.4. If there is no Fk with at least one square in a row below a1, then we have
D(π) = D(φ(π)).

Proof. Since there are no 1′s inside E1 (or E2) and no Fk with at least one square in a
row below a1, one can easily verify that D(π) = D(φ(π)). The details are omitted here.
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Lemma 3.5. If π contains no Fk with at least one square in a row below a1, then φ(π)
contains no such Fk.

Proof. If not, suppose that H is such an Fk in φ(π). Label the squares containing the 1′s
of H by h1, h2, . . . , hk, from left to right. Then hk is below a1.

We claim that hk must be positioned to the left of ak−1. If not, then a1, a2, . . . , ak−1,

hk would form an Fk in π, which contradicts the hypothesis. From the construction
of the transformation φ, it follows that at least one of b1, b2, . . . , bk−2 must fall in H.
Otherwise, H is an Fk with at least one square in a row below a1 in π, which contradicts
the hypothesis.

By applying the vertical slide algorithm repeatedly to the Jk−1 consisting of
h1, h2, . . . , hk−1, we can get a Jk−1 not below a1 in π. Then, that Jk−1 combining with hk
will form an Fk in π, which contradicts the hypothesis.

In the remaining part of this subsection, we assume that π contains no Fk with at
least one square in a row below a1. By Lemma 3.4, we have D(π) = D(φ(π)).

Lemma 3.6. The board that is to the left of bt+1 and above a1 cannot contain a Jt in
φ(π) with its highest 1 below bt for t = 1, 2, . . . , k − 1.

Proof. First we aim to prove the assertion for 1 6 t 6 k− 2. Suppose that H is such a Jt
in φ(π). Label the squares containing the 1′s of H by h1, h2, . . . , ht from left to right. We
claim that at least one of b1, b2, . . . , bt−1 must fall in H. Otherwise, these t 1′s, combining
with at+1, at+2, . . . , ak, would form an Hk or Qk in π. This contradicts the selection of a1.

By applying the the horizontal slide algorithm repeatedly to H, we can get a Jt in π.
It is easy to check that the obtained Jt is below and to the left of at+1 and above a1. That
Jt, combining with at+1, at+2, . . . , ak, would form an Hk or Qk in π. This contradicts the
selection of a1. Thus, we have concluded that the assertion holds for 1 6 t 6 k − 2.

Now we proceed to show that the assertion also holds for t = k−1. Suppose that G is
a Jk−1 in φ(π), which is to the left of bk and below bk−1. We label the squares containing
the 1′s of G by g1, g2, . . . , gk−1, from left to right. We have three cases.

Case 1. G is in φ1(π). By repeating the horizontal slide algorithm, we can get a Jk−1

in π, which is to the left of bk and above a1. Since D(π) = D(φ(π)) and s− 1 ∈ D(π), we
have s− 1 ∈ D(φ(π)). Recall that bk is at column s. Thus, the obtained Jk−1 combining
with ak would form an Hk in π. This contradicts the selection of a1.

Case 2. G is in φ2(π). If gk−1 6= fi, we can get a Jk−1 in π by repeating the horizontal
slide algorithm, which is below and to the left of ak and above a1. We label the squares
containing the 1′s of this Jk−1 by m1,m2, . . . ,mk−1, from left to right. If mk−1 is below e1,
then m2,m3, . . . ,mk−1, combining with ak, e1, would form a Qk in π, which contradicts
the selection of a1. If mk−1 is above e1, then it is positioned to the left of c1 in π since
all the 1′s positioned at columns s, s + 1, . . . , qk − 1 form a Jqk−s, and (πqk−1, qk − 1) is
below e1 = (πqk+1, qk + 1). Moreover, since s − 1 ∈ D(π) and D(π) = D(φ(π)), we have
s − 1 ∈ D(φ(π)). Recall that c1 is at column s. Thus, m1,m2, . . . ,mk−1, ak will form an
Hk, which contradicts the selection of a1.

If gk−1 = fi for some i, then we can get a Jk−1 in π by repeating the horizontal slide
algorithm and replacing f ′

js by e
′
js whenever fj falls in G. Notice that the rightmost 1 of
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the obtained Jk−1 is ei. If i = 1, then this Jk−1 combining with ak would form a Qk in π.
For i > 1, this Jk−1 combining with ei−1 would form a Qk in π. In both cases, we get a
Qk that is above a1. This contradicts the selection of a1.

Case 3. G is in φ3(π) or φ4(π). When gk−1 6= fi, according to the definition of Qk,
there contains no 1′s which are below and to the right of ak−1, and to the left of ak.
So gk−1 is to the left of ak−1. Recall that we have shown that there is no Jk−2 in φ(π),
which is to the left of bk−1 and below bk−2. So gk−1 is below and to the left of bk−1 (and
ak−1), and above and to the left of bk−2. By repeating the vertical slide algorithm, we
can get a Jk−1 not below a1 in π, whose rightmost 1 is positioned at gk−1. Then this
Jk−1 combining with ak−1 would form an Hk in π, which contradicts the selection of ak−1.
When gk−1 = fi for some i > 1, by the same way as in Case 2, we can get a Qk above a1
in π. This contradicts the selection of a1.

Thus, we deduce that the assertion also holds for t = k− 1. This completes the proof.

Lemma 3.7. The rows above a1 cannot contain an Hk or Qk in φ(π).

In order to prove Lemma 3.7, we need the following two lemmas.

Lemma 3.8. Suppose that G is an Hk above a1 in φ(π). Label the squares containing the
1′s of G by g1, g2, . . . , gk, from left to right. Then the squares gk and gk−1 are also filled
with 1′s in π.

Proof. Here we only prove the assertion for φ1(π) and φ4(π). All the other cases can be
verified by similar arguments. By Lemma 3.6, there is no Jk−1 below bk−1 and to the
left of bk in φ1(π) and φ4(π). This implies that neither gk−1 nor gk will be any of b′is for
1 6 i 6 k − 2 in φ1(π) and φ4(π). Moreover, neither gk−1 nor gk will be any of f ′

is in
φ4(π). Thus, we have deduced that the assertion holds for φ4(π).

In order to prove the assertion for φ1(π), it remains to show that neither gk nor gk−1

will be any of bk−1 and d′is in φ1(π). We have four cases.

(1) If gk = bk−1, then g1, g2, . . . , gk−1 form a Jk−1, which is to the left of bk and below
bk−1 in φ1(π). This contradicts Lemma 3.6.

(2) If gk−1 = bk−1, then gk is above bk−1 and to the left of E1. This implies the square
gk is also filled with a 1 in π. Since D(π) = D(φ(π)), the 1′s positioned at bk−1 and
gk belong to two different blocks of φ(π). This implies that those positioned at ak−1

and gk also belong to two different blocks of π. Thus, a1, a2, . . . , ak−1, gk form an
Hk in π. This contradicts the selection of ak since gk is above ak.

(3) If gk = di for some i, then we have that gk−1 is to the left of bk since d1, d2, . . . , dqk−s

lie in consecutive columns and form a Jqk−s. Thus, g1, g2, . . . , gk−1 will form a Jk−1

in φ1(π), which is to the left of bk and below bk−1. This contradicts Lemma 3.6.
Hence, we have gk 6= di for any i > 1.
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(4) If gk−1 = dj for some j > 1, then gk is to the right of ak since d1, d2, . . . , dqk−s lie in
consecutive columns and form a Jqk−s. By repeating the horizontal slide algorithm
for φ and replacing any of d′is that falls in G by c′is, we will get a Jk−1 in π whose
rightmost 1 is cj. Since D(π) = D(φ(π)) and qk ∈ D(π), we have qk ∈ D(φ(π)).
Thus, this Jk−1 combining with gk will form an Hk in π. This contradicts the
selection of a1.

Hence, we have concluded that the assertion also holds for φ1, which completes the proof.

Lemma 3.9. Suppose that H is a Qk above a1 in φ(π), in which the last two 1′s lie in
two consecutive columns. Label the squares containing the 1′s of H by h1, h2, . . . , hk, from
left to right. Then the squares hk and hk−1 are also filled with 1′s in π.

Proof. Here we only prove the assertion for φ1 and φ4. All the other cases can be verified
by similar arguments. By Lemma 3.6, there is no Jk−1 below bk−1 and to the left of bk in
φ1(π). This implies that neither hk−1 nor hk will be any of b′is for 1 6 i 6 k − 2 in φ1(π)
and φ4(π). Moreover, neither gk−1 nor gk will be any of f ′

is in φ4(π). Thus, we deduce
that the assertion holds for φ4.

In order to prove the assertion for φ1, it remains to show that neither hk nor hk−1 will
be any of bk−1 and d′is in φ1(π). Since bk, d1, d2, . . . , dqk−s lie in consecutive columns and
form a Jqk−s+1 in φ1(π), neither of d′is can be hk. Moreover, neither of d′is can be hk−1

for 1 6 i 6 qk − s− 1. Thus we have hk−1 = dqk−s, hk−1 = bk−1 or hk = bk−1.
If hk−1 = dqk−s, then by applying the horizontal slide algorithm for φ repeatedly to

h1, h2, . . . , hk−2, hk and replacing any of d′is that falls in h1, h2, . . . , hk−2, hk by c′is, we will
get a Jk−1 above a1 in π. Notice that the rightmost 1 of the obtained Jk−1 is hk. This
Jk−1, combining with ak, will form a Qk in π, which contradicts the selection of a1. If
hk = bk−1, then a1, a2, . . . , ak−2, combining with hk−1 and ak−1, will form a Qk in π, which
contradicts the selection of ak−1. If hk−1 = bk−1, then hk is below ak−1 and to the left of
bk. Then h1, h2, . . . , hk−2, hk form a Jk−1 in φ1(π), which is to the left of bk and below
bk−1. This contradicts Lemma 3.6. Hence, we have proved that the assertion also holds
for φ1.
The proof of Lemma 3.7. If not, suppose that G is an Hk above a1 in φ(π). Label
the squares containing 1′s of G by g1, g2, . . . , gk, from left to right. Moreover, let H be a
Qk above a1 in φ(π) such that the rightmost two 1′s lie in two consecutive columns. We
label the squares containing the 1′s of H by h1, h2, . . . , hk. According to the definition of
Qk, there is a Qk above a1 in φ(π) if and only if there exists such an H.

We wish to replace some 1′s of G (resp. H) to form an Hk (resp. Qk) in π. Here we
only consider the case when G (resp. H) is in φ1(π). The other cases can be verified by
the similar arguments. Since the transformation φ1 does not change the positions of any
other 1′s, one of b′is and d′is must fall in G (resp. H).

First, replace each di by ci whenever di falls in g1, g2, . . . , gk−2 (resp. h1, h2, . . . , hk−2).
Then, find the largest i such that bi falls in g1, g2, . . . , gk−2 (resp. h1, h2, . . . , hk−2). We
can apply the vertical slide algorithm repeatedly to g1, g2, . . . , gk−2 (resp. h1, h2, . . . , hk−2)
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until the following two cases appear.
(1) There is no bi that falls in g1, g2, . . . , gk−2 (resp. h1, h2, . . . , hk−2).
(2) There is such a bi, but there is no 1 positioned at the squares g1, g2, . . . , gk−2 (resp.
h1, h2, . . . , hk−2) that is to the left of bi and to the right of E1. Since there are at most i
1′s positioned at g1, g2, . . . , gk−2 (resp. h1, h2, . . . , hk−2) that are not above bi and to the
left of E1, we can replace these 1′s by a1, a2, . . . , ai.

In both cases, we get a Jk−2 not below a1 in π. From Lemmas 3.8 and 3.9, the squares
gk and gk−1 (resp. hk and hk−1) are also filled with 1′s in π. Recall that D(π) = D(φ(π))
and the 1′s positioned at gk−1 and gk belong to two different blocks of φ(π). This yields
that the 1′s positioned at gk−1 and gk also belong to two different blocks of π. Thus, the
obtained Jk−2, combining with gk−1 and gk (resp. hk−1 and hk) forms an Hk (resp. Qk)
in π. In the first case, the obtained Hk (resp. Qk) is above a1, which contradicts the
selection of a1. In the second case, suppose that gz(resp. hz) is the first square containing
a 1 of the obtained Hk (resp. Qk) that is to the right of ai. Clearly, gz (resp. hz) is
above bi and ai+1. If gz (resp. hz) is to the left of ai+1, then the obtained Hk (or Qk)
contradicts the selection of ai+1. Otherwise, a2, a3, . . . , ai+1, combining with the 1′s of the
obtained Hk (resp. Qk) that are to the right of ai, would form an Hk (or Qk ) in π. This
contradicts the selection of a1, which completes the proof.

3.2 The map Ψ from the set Sn(Hk, Qk) to the set Sn(Fk)

Before we describe the map Ψ we define three transformations, which will play an essential
role in the construction of the map Ψ.

Let σ = {(σ1, 1), (σ2, 2), . . . , (σn, n)}. Suppose that G is the submatrix of σ at columns
c1 < c2 < . . . < ck < ck + 1 < ck + 2 < . . . < t and rows r1 < r2 < . . . < rk−1 >

rk < σck+1 < σck+2 < . . . < σt, in which the squares (ri, ci) are filled with 1′s for all
i = 1, 2, . . . , k. Let δ(G) be the submatrix at the same rows and columns as G, such that
the squares (rk, c1), (r1, c2), . . ., (rk−2, ck−1), (σck+1, ck), (σck+2, ck + 1), . . ., (σt, t − 1),
(rk−1, t) are filled with 1′s and all the other squares are filled with 0′s.

Suppose that H is the submatrix of σ at columns c1 < c2 < . . . < ck−1 < t < t + 1 <
. . . < ck and rows r1 < r2 < . . . < rk−1 > σt > σt+1 > . . . > σck = rk, in which the squares
(ri, ci) are filled with 1′s for all i = 1, 2, . . . , k. Define γ(H) to be the submatrix at the
same columns and rows as H, such that the squares (rk, c1), (r1, c2), . . ., (rk−2, ck−1),
(rk−1, t), (σt, t+1), (σt+1, t+2), . . ., (σck−1, ck) are filled with 1′s and all the other squares
are filled with 0′s.
The transformation ψ: Suppose that σ = σ1σ2 . . . σn is a permutation in Sn. First, find the
lowest square (pk, qk) containing a 1, such that there is an Fk in σ in which the 1 positioned
at (pk, qk) is its rightmost 1. Then, find the lowest square (pk−1, qk−1) containing a 1, such
that there is an Fk in σ in which the 1′ positioned at (pk, qk) and (pk−1, qk−1) are the
rightmost two 1′s. Find (pk−2, qk−2), (pk−3, qk−3), . . . , (p1, q1) one by one as (pk−1, qk−1).
Assume that there is no Hk or Qk above row pk in σ.

If σqk−1 > σqk+1, then we wish to generate a permutation π from σ by the considering
the following two cases.
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Case 1. pk−1 = σqk−1
< σqk−1+1 < . . . < σqk−1 > σqk = pk and σqk+1 > pk−2. In this

case, let G be the submatrix of σ at columns q1 < q2 < . . . < qk−2 < qk and rows
pk < p1 < p2 < . . . < pk−2. Replace G by θ−1(G) and leave all the other rows and
columns fixed.

Case 2. Otherwise, find the least t such that t > qk and t ∈ D(σ). If such t does not
exist, set t = n. In this case, let G be the submatrix of σ at columns q1 < q2 < . . . <

qk < qk + 1 < . . . < t and rows p1 < p2 < . . . pk−1 > pk < σqk+1 < σqk+2 < . . . < σt.
Replace G by δ(G) the other rows and columns fixed.

If qk = n or σqk−1 < σqk+1, then we wish to generate a permutation π from σ by considering
the following two cases.

Case 3. If there exists an s such that qk−1 < s < qk and σs−1 > σs < σs+1. Find the
largest t such that qk−1 < t 6 qk and t − 1 ∈ A(σ). Let G be the submatrix of σ
at columns q1 < q2 < . . . < qk−1 < t < t + 1 < . . . < qk and rows p1 < p2 < . . . <

pk−1 > σt > σt+1 > . . . > pk. Replace G with γ(G) and leave all the other rows and
columns fixed.

Case 4. Otherwise, we have pk−1 = σqk−1
< σqk−1+1 < . . . < σt−1 > σt > σt+1 >

. . . > σqk = pk for some t with qk−1 < t 6 qk. Let G be the submatrix of σ
at columns q1 < q2 < . . . < qk−2 < qk−1 < t < t + 1 < . . . < qk and rows
p1 < p2 < . . . < pk−2 < pk−1 > σt > σt+1 > . . . > pk. Replace G with γ(G) and
leave all the other rows and columns fixed.

Remark 3.10. In Case 2, the selection of (pk, qk) ensures that pk < σqk+1. If not, the the
1′s positioned at (p1, q1), (p2, q2), . . . , (pk−1, qk−1), (σqk+1, qk + 1) would form an Fk, which
contradicts the selection of (pk, qk). In Case 3, the existence of such s and the hypothesis
that there is no Hk above row pk ensure that pk−1 > σt. If not, then the 1′s positioned
at (p2, q2), (p3, q3), . . . , (pk−1, qk−1), (σt, t) would form an Hk above row pk in σ. In Case
4, the hypothesis that there is no Qk above row pk ensures that pk−1 > σt. If not, then
the 1′s positioned at (p2, q2), (p3, q3), . . . , (pk−1, qk−1), (σt−1, t− 1), (σt, t) would form a Qk

above row pk in σ.

Remark 3.11. We denote the resulting permutation in Case 1, Case 2, Case 3 and Case
4 by ψ1(σ), ψ2(σ), ψ3(σ) and ψ4(σ), respectively.

It is obvious that the transformation ψ changes every occurrence of Fk to an occurrence
of Hk (or Qk). Denote by Ψ the iterated transformation, that recursively transforms every
occurrence of Fk into Hk (or Qk).

Using the notation of the algorithm for ψ1, we label the squares containing 1′s in G
by b1, b2, . . . , bk, and the squares containing 1′s in θ−1(G) by a1, a2, . . . , ak−1, ak, from left
to right, see Figure 4 for example.

Using the notation of the algorithm for ψ2, we label the squares containing 1′s
in G by b1, b2, . . . , bk−1, bk, d1, d2, . . . , dt−qk , and the squares containing 1′s in δ(G) by
a1, a2, . . . , ak−1, c1, c2, . . . , ct−qk , ak, from left to right, see Figure 2 for example.
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Using the notation of the algorithm for ψ3, we label the squares containing 1′s
in G by b1, b2, . . . , bk−1, f1, f2, . . . , fqk−t, bk, and the squares containing 1′s in γ(G) by
a1, a2, . . . , ak−1, ak, e1, e2, . . . , eqk−t, from left to right. We also label the minimum entry
of the block to which f1 belongs by c1, see Figure 3 for example.

Using the notation of the algorithm for ψ4, we label the squares containing 1′s
in G by b1, b2, . . . , bk−1, f1, f2, . . . , fqk−t, bk, and the squares containing 1′s in γ(G) by
a1, a2, . . . , ak−1, ak, e1, e2, . . . , eqk−t, from left to right, see Figure 5 for example.

In ψ2(σ) and ψ3(σ), let E1 be the same board defined in φ1(π) and φ2(π). Similarly, in
ψ1(σ) and ψ4(σ), let E2 be the same board defined in φ3(π) and φ4(π). From the selection
of b′is and the hypothesis that there is no Hk above a1, it follows that there are no 1′s
inside E1 (or E2). In other words, all the 1′s are to the left or to the right of E1 (or E2)
in ψ(π).

Now we proceed to prove that the transformation ψ have the following properties,
which are essential in the proof of Theorem 1.5.

Lemma 3.12. If there is no Hk or Qk above a1 in σ, then we have D(σ) = D(ψ(σ)).

Proof. Since there are no 1′s inside E1 (or E2) and no Hk or Qk above a1, one can easily
verify that D(π) = D(ψ(σ)). The details are omitted here.
Properties

(1′) For any 1 6 i < j 6 k − 1, the rectangle with corners ai and aj cannot contain a
Jj−i with all its 1′s strictly to the right of E1 (or E2) in ψ(σ).

(2′) For any 1 6 i 6 k− 2, the rectangle with corners ai and ak cannot contain a Jk−i−1

with all its 1′s strictly to the right of E2 in ψ1(σ) (or ψ4(σ)).

Proof.

(1′) If there is a Jj−i in this region, then b1, b2, . . . , bi−1, combining with this Jj−i and
bj, bj+1, bj+2, . . . , bk, will form an Fk in σ, which contradicts the selection of bj−1.

(2′) If there is a Jk−1−i in this region, then the rightmost 1 of this Jk−1−i is to the left
of bk−1 since all the 1′s lying between bk−1 and ak are to the left of E2. Clearly,
the rightmost 1 of this Jk−1−i is below bk−2. So b1, b2, . . . , bi−1, combining with this
Jk−1−i and bk−1, bk, will form an Fk in σ, which contradicts the selection of bk−2.

Lemma 3.13. ψ(σ) contains no Fk with at least one square in a row below a1.

Proof. If not, suppose H is such an Fk in ψ(σ). Label the squares containing the 1′s of
H by h1, h2, . . . , hk from left to right. Then hk is below a1. As in the proof of Lemma
3.5, we shall replace some 1′s of H (except hk) to form an Fk in π, which contradicts the
selection of bk.

By the selection of bk, we have that hk must be at the left side of bk−1. From the
construction of ψ(σ), at least one of a1, a2, . . . , ak−2 must fall in H. Otherwise, H is also
an Fk in σ, which contradicts the selection of bk.
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Find the least i such that ai falls in H.
Vertical slide algorithm for ψ: If there is a 1 of H which is above ai and to the left of E,
find the leftmost square containing such a 1 and denote it by hy. find x such that hy is to
the right of ax and to the left of ax+1. Then by property (1′), there are at most x+ 1− i

1′s in H that are below ax+1 but not below ai, and to the right of E1 (or E2). So we can
replace these 1′s by ai, ai+1, . . . , ax, and hence by those positioned at bi, bi+1, . . . , bx.

We can repeat the vertical slide algorithm until one of the following two cases appears.

(1) There is no ai that falls in H. This ends the proof.

(2) There is such an ai, but hy does not exist. Then suppose av is the first square to
the right of hk. By property (1′) , there are at most v − i 1′s in H that are below
and to the left of av, but not below ai, and to the right of E1 (or E2). So we can
replace these 1′s by ai, ai+1, . . . , av−1, and hence by bi, bi+1, . . . , bv−1. Then we have
an Fk in σ with a square hk below a1.

Lemma 3.14. If σ contains no Hk or Qk that is above a1, neither does ψ(σ).

In order to prove Lemma 3.14, we need the following two lemmas.

Lemma 3.15. Suppose that G is an Hk above a1 in ψ(σ). Label the squares containing
the 1′s of G by g1, g2, . . . , gk, from left to right. If σ contains no Hk or Qk that is above
a1, then the squares gk and gk−1 are also filled with 1′s in σ.

Lemma 3.16. Suppose that H is a Qk above a1 in ψ(σ), in which the last two 1′s lie in
two consecutive columns. Label the squares containing the 1′s of H by h1, h2, . . . , hk, from
left to right. If σ contains no Hk or Qk that is above a1, then the squares hk and hk−1 are
also filled with 1′s in σ.

Before we prove Lemmas 3.15 and 3.16, we introduce the following horizontal slide
algorithm for ψ.

Suppose H is a Jk in ψ(σ). Label the squares containing the 1′s of H by h1, h2, . . . , hk
from left to right.
Horizontal slide algorithm for ψ2 (or ψ3): Find the largest i such that ai falls in H with
i 6 k − 1. If there is a 1 of H which is below ai to the left of E1, find the rightmost
squares containing such a 1 and denote it by hy. Find x such that hy is below ax, and
above ax−1. Then by property (1′), there are i− x + 1 1′s in H that are above ax−1 but
not above ai, and to the right of E1. So we can replace these 1′s by ax, ax+1, . . . , ai, and
hence by bx−1, bx, . . . , bi−1.

We can repeat this horizontal slide algorithm until one of the following two cases
appears.

(1) There is no ai that falls in H.

(2) There is such an ai, but hy does not exist. Find x such that h1 is below ax+1

and above ax. Then by property (1′), there are i − x 1′s in H that are above ax
but not above ai. So we can replace these 1′s by ax+1, ax+2, . . . , ai, and hence by
bx, bx+1, . . . , bi−1.

the electronic journal of combinatorics 22(1) (2015), #P1.20 19



Horizontal slide algorithm for ψ1 (or ψ4). Find the largest i such that ai falls in H with
i 6 k − 2 or i = k. If there is a 1 of H which is below ai to the left of E2, find the
rightmost square containing such a 1 and denote it by hy. Find x such that hy is below
ax, and above ax−1. If i 6 k−2, then by property (1′), there are i−x+1 1′s in H that are
above ax−1 but not above ai, and to the right of E2. So we can replace these 1′s by those
positioned at ax, ax+1, . . . , ai, and hence by bx−1, bx, . . . , bi−1. If i = k, then by property
(2′), there are k − x 1′s in H that are above ax−1 but not above ak, and to the right of
E2. So we can replace these 1′s by ax, ax+1, . . . , ak−2, ak, and hence by bx−1, bx, . . . , bk−2.

We can repeat this horizontal slide algorithm until one of the following two cases
appears.

(1) There is no ai that falls in H.

(2) There is such an ai, but hy does not exist. Find x such that h1 is below ax+1 and
above ax. If i < k− 2, then by property (1′), there are i−x 1′s in H that are above
ax but not above ai. So we can replace these 1′s by ax+1, ax+2, . . . , ai, and hence by
bx, bx+1, . . . , bi−1. If i = k, then by property (2′), there are k−1−x 1′s in H that are
above ax but not above ak. So we can replace these 1′s by ax+1, ax+2, . . . , ak−2, ak,
and hence by bx, bx+1, . . . , bk−2.

The proof of Lemma 3.15. Here we only prove the assertion for ψ2(σ) and ψ4(σ).
The other cases can be verified by similar arguments. In order to prove the assertion, it
suffices to show that neither gk nor gk−1 will be any of the a′is and c′is in ψ2(σ), and be
any of the a′is for i = 1, 2, . . . , k − 2, k and e′is in ψ4(σ).

We claim there is no Jk−1 which is below bk−1 but above a1, and not to the right of
bk in ψ2(σ) (or ψ4(σ)). If not, suppose that R is such a Jk−1. When Jk−1 is in ψ2(G), we
can get a Jk−1 from R by repeating the horizontal slide algorithm for ψ2. When Jk−1 is in
ψ4(G), we can get a Jk−1 from R by repeating the horizontal slide algorithm for ψ4 and
replacing any ei by fi whenever ei fall in R. In both cases, the obtained Jk−1 is below
bk−1 but above a1, and to the left of bk. Then Then this Jk−1 combining with bk will form
an Fk in σ, which contradicts the selection of bk−1. Hence, the claim is proved.

From the claim, it follows that neither gk nor gk−1 will be any of the a′is in ψ2(σ) for
i 6 k− 1. In order to prove the assertion for ψ2(σ), it remains to show that neither gk or
gk−1 will be any of ak and c′is in ψ2(σ). Clearly, gk−1 cannot be ak since there is no 1′s
above and to the right of ak.

(1) If gk is either ak or one of c′is in ψ2(σ), then g1, g2, . . . , gk−1 form a Jk−1 which is
to the left of bk and below bk−1 in φ2(σ) since c1, c2, . . . , ct−qk , ak lie in consecutive
columns and form a Jt−qk+1. This contradicts the claim proved above.

(2) If gk−1 is one of c′is in ψ2(σ), then gk is to the right of ak since c1, c2, . . . , ct−qk , ak
lie in consecutive columns and form a Jt−qk+1. By repeating the horizontal slide
algorithm for ψ2 and replacing any ci falling in G by di, we can get a Jk above a1 in
σ from G. Notice that if gk−1 = cj, then the rightmost two 1′s of the obtained Jk are
gk and dj. Recall that ak is positioned at column t. Since σ contains no Hk or Qk
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that is above a1, we have D(σ) = D(ψ(σ)) by Lemma 3.12. The fact that t ∈ D(σ)
ensures that t ∈ D(ψ(σ)). Thus, the obtained Jk is an Hk. This contradicts the
fact that there contains no Hk above a1 in σ.

Hence, we have concluded that the assertion holds for ψ2(σ).
From the claim that is no Jk−1 which is below bk−1 but above a1, and not to the right of

bk in ψ4(σ), it follows that neither gk nor gk−1 will be any of the a′is for i = 1, 2, . . . , k−2, k
and e′is in ψ1(σ). Hence, we deduce that the assertion also holds for ψ4(σ), which completes
the proof.
The proof of Lemma 3.16. Here we only prove the assertion for ψ2(σ) and ψ4(σ).
The other cases can be verified by similar arguments. In order to prove the assertion, it
suffices to show that neither hk nor hk−1 will be any of the a′is and c′is in ψ2(σ), and be
any of the a′is for i = 1, 2, . . . , k − 2, k and e′is in ψ4(σ).

Recall that we have proved the claim in the proof of Lemma 3.15 that there is no Jk−1

which is below bk−1 but above a1, and not to the right of bk in ψ4(σ). It follows that
neither hk nor hk−1 will be any of the a′is for i = 1, 2, . . . , k− 2, k and e′is in ψ4(σ). Thus,
the assertion holds for ψ4(σ).

Similarly, from the claim proved in the proof of Lemma 3.15, it follows that neither
hk nor hk−1 will be any of the a′is for i = 1, 2, . . . , k − 1 in ψ2(σ). In order to prove the
assertion for ψ2(σ), it remains to verify that neither hk nor hk−1 will be any of ak and
c′is in ψ2(σ). Recall that c1, c2, . . . , cqk−t, ak lie in consecutive columns and form a Jqk−t+1

in ψ1(σ). It implies that if hk or hk−1 is one of c1, c2, . . . , cqk−t, ak, then we have either
hk−1 = ak or hk = c1.

In the former case, we can get a Jk−1 above a1 in σ from the Jk−1 consisting of
h1, h2, . . . , hk−2, hk, by repeating the horizontal slide algorithm for ψ2 and replacing any
ci by di. Since σ contains no Hk or Qk above a1, we have D(σ) = D(ψ(σ)) by Lemma
3.12. Recall that ak is above hk. From the equality D(σ) = D(ψ(σ)), it follows that dt−qk

is above hk. Notice that the rightmost 1 of the obtained Jk−1 is hk. Thus, this Jk−1,
combining with dt−qk , will form a Qk above a1 in σ, which contradicts the hypothesis that
σ contains no Qk above a1.

In the latter case, hk−2 is not above ak−1 since c1 is below ak (and bk−1) and there is no
1′s inside E1. If hk−2 is to the left of ak−1 (and bk−1), then by repeating the horizontal slide
algorithm, we can obtain a Jk−2 above a1 in σ from the Jk−2 consisting of h1, h2, . . . , hk−2.
Notice that the rightmost 1 of the resulting Jk−2 is below bk−2 and to the left of bk−1.
Then, this Jk−2, combining with bk−1 and bk, will form an Fk in σ. This contradicts the
selection of bk−2.

Now suppose that hk−2 is either equal to ak−1 or is at the right of ak−1 (and bk−1),
then by the claim obtained in the proof of Lemma 3.15, hk−1 is above bk−1 and to the
left of E1. If hk−2 6= ak−1, then b1, b2, . . . , bk−1, hk−1 form an Hk above a1 in σ, which
contradicts the hypothesis. If hk−2 = ak−1, then we have c1 is above bk−2 (and ak−1).
Thus, according to the definition of ψ2, there must exists s such that s ∈ D(σ) and
qk−1 6 s < qk − 1. Recall that c1 and hk−1 lie in columns qk and qk−1, respectively. From
the equality D(σ) = D(ψ(σ)), it follows that b1, b2, . . . , bk−1, hk−1 form an Hk above a1
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in σ, which contradicts the hypothesis. Hence, we have concluded that the assertion also
holds for ψ2(σ).
The proof of Lemma 3.14. If not, suppose that G is an Hk above a1 in ψ(σ). Label
the 1′s in G by g1, g2, . . . , gk, from left to right. Moreover, let H be a Qk above a1 in ψ(σ)
such that the rightmost two 1′s lie in two consecutive columns. We label its 1′s in H by
h1, h2, . . . , hk. According to the definition of Qk, there is a Qk above a1 in ψ(σ) if and
only if there exists such an H.

We wish to replace some 1′s of G (resp. H ) to form an Hk (resp. Qk) above a1 in σ,
which contradicts the hypothesis that there is no Hk (resp. Qk) above a1 in σ. Here we
only consider the case when G (resp. H) is in ψ2(σ). The other cases can be verified by
the similar arguments. Since the map ψ2 does not change the positions of any other 1′s,
one of a′is and c′is must fall in G (resp. H).

We can get a Jk−2 above a1 in σ from the Jk−2 consisting of g1, g2, . . . , gk−2 (resp,
h1, h2, . . . , hk−2), by repeating the horizontal slide algorithm and replacing each cj by
dj whenever cj falls in G (resp. H). From Lemmas 3.15 and 3.16, it follows that the
squares gk and gk−1 (resp. hk and hk−1) are also filled with 1′s in σ. Hence, the obtained
Jk−2 combining with gk and gk−1 (resp. hk and hk−1) will form a Jk (resp, Gk) in σ.
Since hk−1 and hk lie in two consecutive columns, the obtained Gk is a Qk. Recall that
D(π) = D(ψ(σ)) and the 1′s positioned at gk−1 and gk belong to two different blocks of
ψ(σ). This yields that the 1′s positioned at gk−1 and gk also belong to two different blocks
of π. Thus, the obtained Jk is an Hk. This completes the proof.

Lemma 3.17. If σ contains no Hk or Qk that is above a1, then

(1) there exists no 1 that is above and to the left of ak such that this 1, combining with
a1, a2, . . . , ak−1, forms an Hk in ψ(σ);

(2) there exists no 1 that is to the left of ak in ψ1(σ) (or ψ4(σ)), such that this 1,
combining with a1, a2, . . . , ak−1, forms a Qk in ψ1(σ) ( or ψ4(σ));

(3) for 1 6 t 6 k − 2, the board that is above and to the right of at cannot contain an
Hk−t or Qk−t in ψ(σ) such that the lowest 1 of this Hk−t or Qk−t is to the left of
at+1, and this Hk−t or Qk−t , combining with a1, a2, . . . , at, forms an Hk or Qk in
ψ(σ).

Proof. (1) Since σ contains no Hk or Qk that is above a1, we have D(σ) = D(ψ(σ)) by
Lemma 3.12. If there is such a 1, then this 1, combining with b1, b2, . . . , bk−1, forms an Hk

in σ since D(σ) = D(ψ(σ)). This contradicts the hypothesis that there is no Hk above a1
in σ.

(2) The result follows immediately from the fact that there is no 1′s below and to the
right of bk−1 (and ak−1), and the left of ak.

(3) If not, suppose that G is such an Hk−t (or Qk−t) in ψ(T ). Label its 1′s by
gt+1, gt+2, . . . , gk, from left to right. By hypothesis, gt+1 is to the left of at+1. By the
same reasoning as in the proof of Lemmas 3.15 and 3.16, one can verify that both the
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squares gk and gk−1 are also filled with 1′s in σ. This ensures that by repeating the hor-
izontal slide algorithm and replacing each cj (resp. ej) by dj (resp. fj) in ψ2(σ) (resp.
ψ3(π) and ψ4(π)), we can get an Hk−t (or Qk−t) in σ, in which gt+1 is leftmost 1. This
Hk−t (or Qk−t), combining with b1, b2, . . . , bt, forms an Hk (or Qk) in σ, which is above
a1. This contradicts the hypothesis that there is no Hk or Qk above a1. This completes
the proof.

3.3 Correctness of the bijection

First, we aim to show that the map Φ is well defined, that is, after finitely many iterations
of φ, there will be no occurrences of Hk or Qk. Suppose that we start with some τ ∈
Sn(Fk). At the tth application of φ we select a copy of Hk (or Qk) in φ

t−1(τ). This has
its lowest 1 in some row r. By Lemma 3.7, the Hk (or Qk) we will select in φt(τ) cannot
have its lowest 1 anywhere above row r. If it is in row r, then we know it is further to
the right than at the previous iteration, because there is only one 1 in that row, and we
have just moved it to the right,from a1 to bk. It follows that each iteration the selection
of a1 can only go down or slide right, and therefore the map Φ is well defined.

Next we aim to show that D(τ) = D(Φ(τ)). We prove by induction on t. Suppose
that for any j < t, we have D(φj−1(τ)) = D(φj(τ)). We wish to show that D(φt−1(τ)) =
D(φt(τ)). At the tth application of φ we select a copy of Hk (or Qk) in φ

t−1(τ). This has
its lowest 1 in some row a1. Recall that we have shown that each iteration the selection of
lowest square of the selected Hk (or Qk) can only go down or slide right. By Lemma 3.5,
there is no Fk with at least one square below a1 in φt−1(τ). From Lemma 3.4, it follow
that D(φt−1(τ)) = D(φt(τ)).

Now we proceed to show that the map Ψ is the inverse of the map Φ. To this end,
it suffices to show that ψ(φt(τ)) = φt−1(τ). For our convenience, let π = φt−1(τ) and
σ = φt(τ). Suppose that at the tth application of φ we select a copy of Hk (or Qk) in
π, in which the 1′s are positioned in the squares (p1, q1), (p2, q2), . . . , (pk, qk), from left to
right. We have four cases.

Case 1. The selected 1′s form a copy of Hk, and πqk−1 > πqk+1 or qk = n. In this
case, find the largest s such that qk−1 < s < qk and s − 1 ∈ D(π). By the construc-
tion of the transformation φ, the squares (p2, q1)(p3, q2), . . . , (pk, qk−1), (p1, s), (πs, s +
1), . . . , (πqk−1, qk) are filled with 1′s in σ, and all the other rows and columns are the same
as π. Note that the 1′s positioned at the squares (p2, q1)(p3, q2), . . . , (pk, qk−1), (p1, s)
form an Fk in σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the
squares we selected are just (p2, q1)(p3, q2), . . . , (pk, qk−1), (p1, s). By Lemma 3.7, there
is no Hk or Qk above row p1. This implies that ψ(σ) is well defined. Suppose that
σ = {(σ1, 1), (σ2, 2), . . . , (σn, n)}. Clearly, we have σqi = pi+1 for i = 1, 2, . . . , k − 1,
σs = p1 and σj = πj−1 for j = s+ 1, s+ 2, . . . , qk.

We claim that σs−1 > σs+1. If s − 1 6= qk−1, then we have σs−1 = πs−1. Since
s − 1 ∈ D(π), we have πs−1 > πs. In this case, we have σs−1 = πs−1 > πs = σs+1. If
s − 1 = qk−1, then we have σs−1 = pk. Recall that we have πs < πs+1 < . . . < pk. This
implies that σs−1 = pk > πs = σs+1. Hence, we have concluded that σs−1 > σs+1.
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We claim that if σqk−1
< σqk−1+1 < . . . < σs−1 > σs, then we have σqk−2

> σs+1. If not,
since σqk−2

= pk−1 = πqk−1
and s−1 ∈ D(π), we have s−1 6= qk−1. Then the 1′s positioned

at the squares (p2, q2), (p3, q3), . . . , (pk−1, qk−1), (πs−1, s − 1), (πs, s) will form a Qk above
row p1 in π, which contradicts the selection of (p1, q1). Hence the claim is proved.

Then, according to the definition of map ψ, we have ψ(σ) = ψ2(σ). Since we have
D(π) = D(σ) and πs < πs+1 < . . . < pk, we have σs < σs+1 < . . . < σqk . Recall that
there are no 1′s inside E1, we have either qk = n or qk ∈ D(π). This yields that we have
either qk = n or qk ∈ D(φ(π)) Hence, when we apply the the map ψ2 to σ, qk is the
largest integer m such that m > s and m ∈ D(σ) or m = n. Thus, it is easily seen that
ψ2(σ) = π, that is, ψ(φt(τ)) = φt−1(τ).

Case 2. The selected 1′s form a copy of Hk and πqk−1 < πqk+1. In this case, find
the least t such that t > qk and t ∈ A(π) or t = n. By the construction of the map φ,
the squares (p2, q1)(p3, q2), . . . , (pk, qk−1), (πqk+1, qk), (πqk+2, qk+1), . . . , (πt, t−1)(p1, t) are
filled with 1′s in σ, and all the other rows and columns are the same as π. Note that the
1′s positioned at the squares (p2, q1)(p3, q2), . . . , (pk, qk−1), (p1, t) form an Fk in σ. Lemmas
3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we selected are just
(p2, q1)(p3, q2), . . . , (pk, qk−1), (p1, t). By Lemma 3.7, there is no Hk or Qk above row p1.
This implies that ψ(σ) is well defined. Clearly, we have σqi = pi+1 for i = 1, 2, . . . , k − 1,
σt = p1 and σj = πj+1 for j = qk, qk + 1, . . . , t− 1.

Since t ∈ A(π) or t = n, we have πt < πt+1 or t = n. This implies that σt−1 = πt <

πt+1 = σt+1 or t = n. By Remark 3.1, we see that there exits an s such that s− 1 ∈ D(π)
and qk−1 < s < qk. This implies that πs−1 > πs < πs+1. Since D(π) = D(σ), we have
σs−1 > σs < σs+1 and pk−1 < s < qk < t. Then, according to the definition of map ψ, we
have ψ(σ) = ψ3(σ). When we apply the the map ψ3 to σ, since we have D(π) = D(σ)
and πqk−1 < πqk > πqk+1 > . . . > πt, qk is the largest integer m such that m − 1 ∈ A(σ)
and qk−1 < m 6 t. Thus, it is easily seen that ψ3(σ) = π, that is, ψ(φt(τ)) = φt−1(τ).

Case 3. The selected 1′s form a copy of Qk and qk ∈ A(π). By the construction of
the map φ, the squares (p2, q1)(p3, q2), . . . , (pk, qk−2), (p1, qk) are filled with 1′s in σ, and
all the other rows and columns are the same as π. Note that the 1′s positioned at the
squares (p2, q1)(p3, q2), . . . , (pk, qk−2), (p1, qk) form an Fk in σ. Lemmas 3.5 and 3.6 ensure
that when we apply the map ψ to σ, the squares we selected are just (p2, q1)(p3, q2), . . . ,
(pk, qk−2), (p1, qk). By Lemma 3.7, there is no Hk or Qk above row p1. This implies that
ψ(σ) is well defined. Clearly, we have σqi = pi+1 for i = 1, 2, . . . , k − 3, σqk−2

= pk and
σqk = p1.

According to the definition of Qk, we have πqk−1
< πqk−1+1 < . . . < πqk−1 > πqk .

Moreover, we have σj = πj for j = qk−1, qk−1 + 1, . . . , qk − 1. Thus, we have σqk−1
<

σqk−1+1 < . . . < σqk−1 > p1 = σqk and σqk−2
= pk = πqk < πqk+1 = σqk+1. Then, according

to the definition of map ψ, we have ψ(σ) = ψ1(σ). Thus, it is easily seen that ψ1(σ) = π,
that is, ψ(φt(τ)) = φt−1(τ).

Case 4. The selected 1′s form a copy of Qk, and πqk > πqk+1 or qk = n. In this case,
let t be the least such that t > qk and t ∈ A(π) or t = n. By the construction of the map
φ, the squares (p2, q1)(p3, q2), . . . , (pk, qk−2), (πqk+1, qk), (πqk+2, qk +1), . . . , (πt, t− 1)(p1, t)
are filled with 1′s in σ, and all the other rows and columns are the same as π. Note
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that the 1′s positioned at the squares (p2, q1)(p3, q2), . . . , (pk, qk−2), (p1, t) form an Fk in
σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we
selected are just (q2, p1)(q3, p2), . . . , (pk, qk−1), (p1, t). By Lemma 3.7, there is no Hk or
Qk above row p1. This implies that ψ(σ) is well defined. Clearly, we have σqi = pi+1 for
i = 1, 2, . . . , k − 3, σqk−2

= pk, σt = p1 and σj = πj+1 for j = qk, qk + 1, . . . , t− 1.
Since t ∈ A(π) or t = n, we have πt < πt+1 or t = n. This implies that σt−1 = πt <

πt+1 = σt+1 or t = n. According to the definition of Qk, we have πqk−1
< πqk−1+1 < . . . <

πqk−1 > πqk . Thus, we have σqk−1
< σqk−1+1 < . . . < σqk−1 > σqk > σqk+1 > . . . > σt = p1.

Then, according to the definition of map ψ, we have ψ(σ) = ψ4(σ). Thus, it is easily seen
that ψ4(σ) = π, that is, ψ(φt(τ)) = φt−1(τ).

So far, we have deduced that ψ(φt(τ)) = φt−1(τ).
Now we proceed to to show that the map Ψ is well defined, that is, after finitely many

iterations of ψ, there will be no occurrences of Fk. Suppose that we start with some
τ ∈ Sn(Hk, Qk). At the tth application of ψ we select a copy of Fk in ψt−1(τ). This has
its lowest 1 in some row r. By Lemma 3.13, the Fk we will select in φt(τ) cannot have
its lowest 1 anywhere below row r. If it in row r, then we know it is further to the left
than at the previous iteration, because there is only one 1 in that row, and we have just
moved it to the left, from bk to a1. It follows that at each iteration the selection of bk can
only go up or slide left. Moreover, Lemma 3.14 implies that there is no Hk or Qk above
bk. Therefore, after finitely many iterations of ψ, there will be no occurrences of Fk.

Next we aim to show that D(τ) = D(Ψ(τ)). We prove by induction on t. Suppose
that for any j < t, we have D(ψj−1(τ)) = D(ψj(τ)). We wish to show that D(ψt−1(τ)) =
D(ψt(τ)). At the tth application of ψ we select a copy of Fk in ψ

t−1(τ). This has its lowest
1 in some row bk. Recall that we have shown that each iteration the selection of lowest
square of the selected Fk can only go up or slide left. By Lemma 3.14, there is no Hk or
Qk above bk in ψt−1(τ). Hence, from Lemma 3.12, it follow that D(ψt−1(τ)) = D(ψt(τ)).

By the same reasoning as in the proof of the equality ψ(φt(τ)) = φt−1(τ), we can
prove the equality φ(ψt(τ)) = ψt−1(τ) relying on Lemmas 3.14 and 3.17, and the equality
D(ψt−1(τ)) = D(ψt(τ)). The details are omitted here.

So far, we have concluded that the maps Φ and Ψ are well defined and preserve the
descent set. Moreover, the map Φ and Ψ are inverses of each other. Thus, the map Φ is
the desired bijection between Sn(Fk) and Sn(Hk, Qk) as claimed in Theorem 1.5.

To conclude this section, we remark that the method presented here seems not so
attractive for the purpose of establishing Conjecture 1.1 for all m > 1. Our proof of
Conjecture 1.1 for all k > 1 and m = 1 relies on the descent set preserving bijection f

between the set Sn(Gk) and the set Sn(Hk, Qk), and the descent set preserving bijection
Φ between the set Sn(Fk) and the set Sn(Hk, Qk). However, it is difficult to figure out
whether there exist analogous descent set preserving bijections for the case when m > 1.
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