On a refinement of Wilf-equivalence for permutations

Sherry H. F. Yan*
Department of Mathematics
Zhejiang Normal University Jinhua 321004, P.R. China
huifangyan@hotmail.com

Huiyun Ge
Department of Mathematics Zhejiang Normal University
Jinhua 321004, P.R. China

Yaqiu Zhang
Department of Mathematics
Zhejiang Normal University Jinhua 321004, P.R. China

Submitted: Jun 14, 2014; Accepted: Jan 1, 2015; Published: Feb 9, 2015
Mathematics Subject Classifications: 05A05, 05C30

Abstract

Recently, Dokos et al. conjectured that for all $k, m \geqslant 1$, the patterns $12 \ldots k(k+$ $m+1) \ldots(k+2)(k+1)$ and $(m+1)(m+2) \ldots(k+m+1) m \ldots 21$ are maj-Wilfequivalent. In this paper, we confirm this conjecture for all $k \geqslant 1$ and $m=1$. In fact, we construct a descent set preserving bijection between $12 \ldots k(k-1)$-avoiding permutations and $23 \ldots k 1$-avoiding permutations for all $k \geqslant 3$. As a corollary, our bijection enables us to settle a conjecture of Gowravaram and Jagadeesan concerning the Wilf-equivalence for permutations with given descent sets.

Keywords: maj-Wilf-equivalent; pattern avoiding permutation; bijection.

1 Introduction

Denote by \mathcal{S}_{n} the set of all permutations on [n]. Given a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}$ and a permutation $\tau=\tau_{1} \tau_{2} \ldots \tau_{k} \in \mathcal{S}_{k}$, we say that π contains the pattern τ if there exists a subsequence $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ of π that is order-isomorphic to τ. Otherwise, π is said to avoid the pattern τ or be τ-avoiding. Denote by $\mathcal{S}_{n}(\tau)$ the set of all τ-avoiding permutations in \mathcal{S}_{n}. Pattern avoiding permutations have been extensively studied over last decade. For a thorough summary of the current status of research, see Bóna's book [5] and Kitaev's book [12].

[^0]If two patterns $\sigma, \tau \in \mathcal{S}_{m}$ are said to be Wilf-equivalent if and only if $\left|\mathcal{S}_{n}(\sigma)\right|=\left|\mathcal{S}_{n}(\tau)\right|$. A permutation statistic is defined to be a function $s: \mathcal{S}_{n} \rightarrow T$, where T is any fixed set. The most studied statistics include the inversion number and the major index. Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}$. The set of inversions of π is

$$
\mathcal{I}(\pi)=\left\{(i, j) \mid i<j \text { and } \pi_{i}>\pi_{j}\right\} .
$$

The inversion number of π, denoted by $\operatorname{inv}(\pi)$, is the cardinality of $\mathcal{I}(\pi)$. The decent set of π is

$$
\mathcal{D}(\pi)=\left\{i \mid \pi_{i}>\pi_{i+1}\right\} .
$$

The ascent set of π is

$$
\mathcal{A}(\pi)=\left\{i \mid \pi_{i}<\pi_{i+1}\right\} .
$$

The major index of π, denoted by $\operatorname{maj}(\pi)$, is given by $\operatorname{maj}(\pi)=\sum_{i \in \mathcal{D}(\pi)} i$.
Given a permutation statistic s, we say that σ and τ are s-wilf-equivalent if there exists a bijection $\Theta: \mathcal{S}_{n}(\sigma) \rightarrow \mathcal{S}_{n}(\tau)$ such that $s(\pi)=s(\Theta(\pi))$ for all $\pi \in \mathcal{S}_{n}(\sigma)$. In other words, the statistic s is equally distributed on the sets $\mathcal{S}_{n}(\sigma)$ and $\mathcal{S}_{n}(\tau)$. This refinement of Wilf-equivalence for patterns of length 3 has been extensively studied, see $[2,3,7,8,10,14]$. However, little is known about permutation statistics and patterns of length 4 or greater. Recently, Dokos et al. [9] posed the following two conjectures on the maj-Wilf-equivalence for patterns of length 4 or greater.

Conjecture 1.1. ([9], Conjecture 2.7) For all $k, m \geqslant 1$, the patterns $12 \ldots k(k+m+$ 1) $\ldots(k+2)(k+1)$ and $(m+1)(m+2) \ldots(k+m+1) m \ldots 21$ are maj-Wilf-equivalent.

Conjecture 1.2. ([9], Conjecture 2.8) The major index is equally distributed on the sets $\mathcal{S}_{n}(2413), \mathcal{S}_{n}(1423)$ and $\mathcal{S}_{n}(2314)$

Recently, Bloom [4] confirmed Conjecture 1.2 by providing descent set preserving bijections between the set $\mathcal{S}_{n}(2413)$ and the set $\mathcal{S}_{n}(1423)$, and between the set $\mathcal{S}_{n}(2413)$ and the set $\mathcal{S}_{n}(2314)$. In their paper [9], Dokos et al. showed that Conjecture 1.1 is true for $m=k=1$. The main purpose of this paper is to confirm Conjecture 1.1 for all $k \geqslant 1$ and $m=1$. Actually, we obtain the following stronger result.

Theorem 1.3. For $k \geqslant 3$, there exists a descent set preserving bijection between the set $\mathcal{S}_{n}(12 \ldots k(k-1))$ and the set $\mathcal{S}_{n}(23 \ldots k 1)$.

Denote by $J_{k}=12 \ldots k, F_{k}=23 \ldots k 1$ and $G_{k}=12 \ldots k(k-1)$, respectively. Give a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$, suppose that $\mathcal{D}(\pi)=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$. Then we call the subsequence $\pi_{1} \pi_{2} \ldots \pi_{i_{1}}$ the first block of π, the subsequence $\pi_{i_{1}+1} \pi_{i_{1}+2} \ldots \pi_{i_{2}}$ the second block of π, and so on. We say that a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ contains an occurrence of H_{k} if there exists indices $i_{1}<i_{2}<\ldots<i_{k}$ such that the subsequence $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ is isomorphic to J_{k} and entries $\pi_{i_{k-1}}$ and $\pi_{i_{k}}$ belong to two different blocks. That is, there exists a $j \in \mathcal{D}(\pi)$ with $i_{k-1} \leqslant j<i_{k}$. Otherwise, we say that π avoids H_{k}. For example, the subsequence 13579 of the permutation $\pi=13576894(10) 2(11) \in \mathcal{S}_{11}$ is an occurrence of H_{5}, while the subsequence 13569 is not an occurrence of H_{5}. We say
that a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ contains an occurrence of Q_{k} if there exists indices $i_{1}<i_{2}<\ldots<i_{k}$ such that the subsequence $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ is isomorphic to G_{k} and $\pi_{i_{k-1}}<\pi_{i_{k-1}+1}<\ldots<\pi_{i_{k}-1}>\pi_{i_{k}}$. Otherwise, we say that π avoids Q_{k}. For example, the subsequence 13586 of the permutation $\pi=1358(10) 67492(11) \in \mathcal{S}_{11}$ is an occurrence of Q_{5}, while the subsequence 13587 is not an occurrence of Q_{5}.

In order to prove Theorem 1.3, we obtain the following two theorems.
Theorem 1.4. For $k \geqslant 3$, there is a bijection f between the set $\mathcal{S}_{n}\left(G_{k}\right)$ and the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ such that for any $\pi \in \mathcal{S}_{n}\left(G_{k}\right)$, we have $\mathcal{D}(\pi)=\mathcal{D}(f(\pi))$.

Theorem 1.5. For $k \geqslant 3$, there is a bijection Φ between the set $\mathcal{S}_{n}\left(F_{k}\right)$ and the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ such that for any $\pi \in \mathcal{S}_{n}\left(F_{k}\right)$, we have $\mathcal{D}(\pi)=\mathcal{D}(\Phi(\pi))$.

Combining Theorems 1.4 and 1.5, we are led to Theorem 1.3.
Given a positive integer t, Let $D_{n}^{t}=\{i \mid 1 \leqslant i \leqslant n-1$ and $i \equiv 0 \bmod t\}$. Denote by $\mathcal{S}_{n}^{t}(12 \ldots k(k-1))\left(\right.$ resp. $\left.\mathcal{S}_{n}^{t}(23 \ldots k 1)\right)$ the set of permutations $\pi \in \mathcal{S}_{n}(12 \ldots k(k-1))$ (resp. $\pi \in \mathcal{S}_{n}^{t}(23 \ldots k 1)$) with $\mathcal{D}(\pi)=D_{n}^{t}$. From Theorem 1.3, we obtain the following result as conjectured by Gowravaram and Jagadeesan [11].

Corollary 1.6. ([11], Conjecture 6.2) For $t \geqslant 1$ and $k \geqslant 3$, we have $\left|\mathcal{S}_{n}^{t}(12 \ldots k(k-1))\right|=$ $\left|\mathcal{S}_{n}^{t}(23 \ldots k 1)\right|$.

2 Proof of Theorem 1.4

We begin with some definitions and notations. An entry of a permutation is said to have rank k if the length of the longest increasing subsequence that ends in that entry is k. We now construct a map f from the set $\mathcal{S}_{n}\left(G_{k}\right)$ to the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$. The map f is a slight modification of a classic bijection, which is given by West [15] to prove the equality $\left|\mathcal{S}_{n}\left(J_{k}\right)\right|=\left|\mathcal{S}_{n}\left(G_{k}\right)\right|$ for all $k \geqslant 3$. Recently, Bona [6] proved that West's bijection also induces a bijection between $12 \ldots k$-avoiding alternating permutations and $12 \ldots k(k-1)$-avoiding alternating permutations, thereby proving generalized versions of some conjectures of Lewis [13].

Let $\pi \in \mathcal{S}_{n}\left(G_{k}\right)$. In order to obtain $f(\pi)$, we leave all entries of π that are of rank $k-2$ or less in their place and rearrange the entries of rank $k-1$ or higher. Let $B_{1}, B_{2}, \ldots, B_{s}$ be the blocks of π that are listed from left to right. Let P_{i} be the set of positions of π in which, an entry that has rank $k-1$ or higher and belongs to the block B_{i}, is located. Let R be the set of entries of π that are of rank $k-1$ or higher. Now we fill the positions of $P_{i}^{\prime} s$ as follows.

Step 1. Choose $\left|P_{1}\right|$ largest entries from R and fill the positions of P_{1} with the selected entries from left to right in increasing order.

Step 2. Choose $\left|P_{2}\right|$ largest entries from R that have not been placed yet. Then fill the positions of P_{2} with the selected entries from left to right in increasing order.

Step 3. Fill the positions of $P_{3}, P_{4}, \ldots, P_{s}$ as in Step 2.

Let $f(\pi)$ be the obtained permutation.
Example 2.1. Consider $\pi=13576894(10) 2(11) \in \mathcal{S}_{11}\left(G_{6}\right)$. Then we have $B_{1}=1357$, $B_{2}=689, B_{3}=4(10)$ and $B_{4}=2(11)$. Moreover, we have $P_{1}=\emptyset, P_{2}=\{6,7\}$, $P_{3}=\{9\}, P_{4}=\{11\}$ and $R=\{8,9,10,11\}$. According to the definition of f, we have $f(\pi)=13576(10)(11) 4928$.

Since the existence of π shows that there is at least one way to assign the entries of R to the positions of P_{i}, the definition of f always enables us to create $f(\pi)$.

Notice that if entry π_{i} of π has rank $k-2$ or less, then π_{i} do not move in the above procedure, and the rank of π_{i} do not change. If entry π_{i} of π has rank $k-1$ or higher, then π_{i} may have moved and the rank of π_{i} in $f(\pi)$ is $k-1$ or higher. We claim that if $\pi_{i-1}>\pi_{i}$, then the rank of π_{i} is $k-2$ or less. If not, the longest increasing subsequence that ends in π_{i} combining with π_{i-1} would form a G_{k} in π. This contradicts the fact that π avoids G_{k}.

Now we proceed to show that $\mathcal{D}(\pi)=\mathcal{D}(f(\pi))$. Let $f(\pi)=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$. If $\pi_{i-1}>\pi_{i}$ then the rank of π_{i} is $k-2$ or less and do not move. This implies that $\pi_{i}=\sigma_{i}$ and σ_{i} has rank $k-2$ or less. If π_{i-1} is of rank $k-2$ or less, then we have $\sigma_{i-1}=\pi_{i-1}$. In this case, we have $\sigma_{i-1}=\pi_{i-1}>\pi_{i}=\sigma_{i}$. If π_{i-1} is of rank $k-1$ or higher, then σ_{i-1} is of rank $k-1$ or higher. Since σ_{i} is of rank $k-2$ or less, we have $\sigma_{i-1}>\sigma_{i}$. Thus, we have concluded that if $\pi_{i-1}>\pi_{i}$, then $\sigma_{i-1}>\sigma_{i}$.

Next we aim to show that if $\pi_{i-1}<\pi_{i}$, then we have $\sigma_{i-1}<\sigma_{i}$. We have three cases. If π_{i} is of rank $k-2$ or less in π, then the rank of π_{i-1} is also $k-2$ or less. In this case, we have $\sigma_{i-1}=\pi_{i-1}<\pi_{i}=\sigma_{i}$. If both π_{i} and π_{i-1} are of rank $k-1$ or higher, then according to the definition of f, we have $\sigma_{i-1}<\sigma_{i}$. If π_{i} has rank $k-1$ or higher and π_{i-1} is of rank $k-2$ or less, then the rank of σ_{i-1} is $k-2$ or less and σ_{i} is of rank $k-1$ or higher. This implies that $\sigma_{i-1}<\sigma_{i}$. Thus, we have concluded that if $\pi_{i-1}<\pi_{i}$, then $\sigma_{i-1}<\sigma_{i}$. Therefore, we have $\mathcal{D}(\pi)=\mathcal{D}(f(\pi))$.

Notice that $f(\pi)$ avoids H_{k} since the existence of such a pattern in $f(\pi)$ would mean that the last two entries of that pattern were not placed according to the rule specified above. Moreover, we have that $f(\pi)$ avoids Q_{k}. If not, suppose that $\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{k}}$ is such a Q_{k}. Then we have $\sigma_{i_{k}-1}>\sigma_{i_{k}}$ and $\sigma_{i_{k}}$ has rank $k-1$ or higher. Since $\mathcal{D}(\pi)=\mathcal{D}(f(\pi))$, we have $\pi_{i_{k}-1}>\pi_{i_{k}}$. Recall that if $\pi_{i-1}>\pi_{i}$, then both π_{i} and σ_{i} have rank $k-2$ or less. This implies that $\sigma_{i_{k}}$ has rank $k-2$ or less, which contradicts the fact that $\sigma_{i_{k}}$ has rank $k-1$ or higher. Thus, we deduce that $f(\pi)$ avoids Q_{k}.

In order to show that the map f is a bijection, we construct a map g from the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ to the set $\mathcal{S}_{n}\left(G_{k}\right)$. Let $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in \mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$. We aim to obtain $g(\sigma)$ by leaving all entries of σ that are of rank $k-2$ or less in their place and rearranging the entries of rank $k-1$ or higher. Label the blocks of σ from left to right by $B_{1}, B_{2}, \ldots, B_{s}$. Let P_{i} be the set of positions of π in which an entry, that has rank $k-1$ or higher and belongs to the block B_{i}, is located, and let R be the set of entries of π that are of rank $k-1$ or higher. Now we fill the positions of P_{i} as follows.

Step 1. Choose $\left|P_{1}\right|$ smallest entries from R that are larger than the closest entry of rank
$k-2$ on the left of the positions of P_{1}, and fill the positions of P_{1} with the selected entries from left to right in increasing order.

Step 2. Choose $\left|P_{2}\right|$ smallest entries from R that have not been placed yet and are larger than the closest entry of rank $k-2$ on the left of the positions of P_{2}. Fill the positions of P_{2} with the selected entries from left to right in increasing order.

Step 3. Fill the positions of $P_{3}, P_{4}, \ldots, P_{s}$ as in Step 2.
Let $g(\sigma)$ be the obtained permutation.
Example 2.2. Consider $\sigma=13487(10)(11) 5926 \in \mathcal{S}_{11}\left(H_{6}, Q_{6}\right)$. Then we have $B_{1}=$ 1348, $B_{2}=7(10)(11), B_{3}=59$ and $B_{4}=26$. Moreover, we have $P_{1}=\emptyset, P_{2}=\{6,7\}$, $P_{3}=\{9\}, P_{4}=\{11\}$ and $R=\{6,9,10,11\}$. According to the definition of g, we have $g(\sigma)=134879(10) 562(11)$.

Since the existence of σ shows that there is at least one way to assign the entries of R to the positions of P_{i}, the definition of g always enables us to create $g(\sigma)$.

Notice that if entry σ_{i} has rank $k-2$ or less, then σ_{i} does not move in the above procedure, and the rank of σ_{i} do not change. If entry σ_{i} has rank $k-1$ or higher, then σ_{i} may have moved and the rank of σ_{i} in $g(\sigma)$ is $k-1$ or higher. We claim that if $\sigma_{i-1}>\sigma_{i}$, then the rank of σ_{i} is $k-2$ or less. If not, there is an increasing subsequence of length $k-1$ that ends in σ_{i}. Such an increasing subsequence combining with σ_{i-1} would form a Q_{k} in σ.

By similar reasoning as in the proof of the equality $\mathcal{D}(\pi)=\mathcal{D}(f(\pi))$, one can verify that $\mathcal{D}(\sigma)=\mathcal{D}(g(\sigma))$. Now we proceed to show that $g(\sigma)$ avoids G_{k}. Let $g(\sigma)=\pi_{1} \pi_{2} \ldots \pi_{n}$. Suppose that the the subsequence $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ is a pattern G_{k} in π with $i_{1}<i_{2}<\ldots<i_{k}$. Without loss of generality, assume that $\pi_{i_{k-2}}$ has rank $k-2$. Clearly, both $\pi_{i_{k-1}}$ and $\pi_{i_{k}}$ have rank $k-1$ or higher in π. Suppose that $i_{k-1} \in P_{j}$ for some j, and σ_{s} is the closest entry of rank $k-2$ on the left of the positions of P_{j} in σ. Recall that the map g does not change the position of entry σ_{i} that has rank $k-2$ or less, and the rank of σ_{i} does not change in π. So we have $\pi_{s}=\sigma_{s}$ and $\pi_{i_{k-2}}=\sigma_{i_{k-2}}$, and the rank of π_{s} (resp. $\sigma_{i_{k-2}}$) is $k-2$ in π (resp. σ). Moreover, since σ_{s} is the closest entry of rank $k-2$ on the left of the positions of P_{j} in σ, we have $i_{k-2} \leqslant s$. This implies that $\sigma_{s} \leqslant \sigma_{i_{k-2}}=\pi_{i_{k-2}}$. Then, we have $\pi_{i_{k}}>\sigma_{s}$, which contradicts the selection of $\pi_{i_{k-1}}$ when filling the positions of P_{j}. Hence, we have $g(\sigma) \in \mathcal{S}_{n}\left(G_{k}\right)$.

In order to show that the map f is a bijection, it suffices to show that the maps f and g are inverses of each other. First, we wish to prove that for any $\pi \in \mathcal{S}_{n}\left(G_{k}\right)$, we have $g(f(\pi))=\pi$. Since $\mathcal{D}(f(\pi))=\mathcal{D}(\pi), \pi$ and $f(\pi)$ have the same number of blocks. Suppose that $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{s}^{\prime}$ are the blocks of $f(\pi)$, that are listed from left to right. Let P_{i}^{\prime} be the set of positions of $f(\pi)$ in which an entry that has rank $k-1$ or higher and belongs to the block B_{i}^{\prime}, is located, and let R^{\prime} be the set of entries of $f(\pi)$ that are of rank $k-1$ or higher. Recall that if the entry π_{i} of π has rank $k-2$ or less, then the map f does not change the position of π_{i}, and the rank of π_{i} do not change. If entry π_{i} of π has rank $k-1$ or higher, then π_{i} may have moved and the rank of π_{i} in $f(\pi)$ is $k-1$ or
higher. So we have $P_{i}=P_{i}^{\prime}$ and $R=R^{\prime}$. Since π avoids G_{k}, the positions of P_{1} in π are filled with $\left|P_{1}\right|$ smallest elements of R in increasing order which are larger than the closet entry of rank $k-2$ on the left of the positions of P_{1}. The positions of P_{2} are filled with the next $\left|P_{2}\right|$ smallest entries of R in increasing order that have not been placed and larger than the closet entry of rank $k-2$ on the left of the positions of P_{2}. And the positions of P_{3}, \ldots, P_{s} are filled in the same manner as the positions of P_{2}. Thus, according to the definition of g, it is easy to check that $g(f(\pi))=\pi$.

Our next goal is to show that for any $\sigma \in \mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$, we have $f(g(\sigma))=\sigma$. Since $\mathcal{D}(g(\sigma))=\mathcal{D}(\sigma), \sigma$ and $f(\sigma)$ have the same number of blocks. Suppose that $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{s}^{\prime}$ are the blocks of $f(\sigma)$, that are listed from left to right. Let P_{i}^{\prime} be the set of positions of $f(\pi)$ in which an entry that has rank $k-1$ or higher and belongs to the block B_{i}^{\prime}, is located, and let R^{\prime} be the set of entries of $f(\pi)$ that are of rank $k-1$ or higher. Recall that if entry σ_{i} of σ has rank $k-2$ or less, then the map g does not change the position of σ_{i}, and the rank of σ_{i} do not change. If entry σ_{i} of σ has rank $k-1$ or higher, then σ_{i} may have moved and the rank of σ_{i} in $g(\sigma)$ is $k-1$ or higher. So we have $P_{i}=P_{i}^{\prime}$ and $R=R^{\prime}$. Since σ avoids H_{k}, the positions of P_{1} in σ are filled with $\left|P_{1}\right|$ largest elements of R in increasing order which are larger than the closet entry of rank $k-2$ on the left of the positions of P_{1}. The positions of P_{2} are filled with the next $\left|P_{2}\right|$ largest entries of R in increasing order that have not been placed and larger than the closet entry of rank $k-2$ on the left of the positions of P_{2}. And the positions of P_{3}, \ldots, P_{s} are filled in the same manner as the positions of P_{2}. Thus, according to the definition of f, it is easy to check that $f(g(\sigma))=\sigma$.

3 Proof of Theorem 1.5

Let us begin with some necessary definitions and notations. We draw Young diagrams in English notation, and number columns from left to right and rows from bottom to up. For example, the square $(1,2)$ is the second square in the bottom row of a Young diagram.

A transversal of a Young diagram $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}\right)$ is a filling of the squares of λ with $1^{\prime} s$ and $0^{\prime} s$ such that every row and column contains exactly one 1 . Denote by $T=\left\{\left(t_{i}, i\right)\right\}_{i=1}^{n}$ the transversal in which the square $\left(t_{i}, i\right)$ is filled with a 1 for all $i \leqslant n$. For example, the transversal $T=\{(1,1),(2,3),(3,4),(4,2),(5,5)\}$ of a Young diagram ($5,4,4,3,1$) is illustrated as Figure 1.

In this section, we will consider permutations as permutation matrices. Given a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}$, its corresponding permutation matrix is a transversal of the square shape $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=n$ in which the square $\left(\pi_{i}, i\right)$ is filled with a 1 for all $1 \leqslant i \leqslant n$ and all the other squares are filled with $0^{\prime} s$.

The notion of pattern avoidance is extended to transversal of a Young diagram in [1]. Given a permutation α of \mathcal{S}_{m}, let M be its permutation matrix. A transversal L of a Young diagram λ will be said to contain α if there exists two subsets of the index set $[n]$, namely, $R=\left\{r_{1}<r_{2}<\ldots<r_{m}\right\}$ and $C=\left\{c_{1}<c_{2}<\ldots<c_{m}\right\}$, such that the matrix on R and C is a copy of M and each of the squares $\left(r_{j}, c_{j}\right)$ falls within the Young diagram.

The remaining part of this section is organized as follows. In Subsection 3.1, we

0	0			1
0	1			
0	0			
0	0			
1				

Figure 1: The transversal $T=\{(1,1),(2,3),(3,4),(4,2),(5,5)\}$.
describe a transformation ϕ that changes every occurrence of H_{k} (or Q_{k}) to an occurrence of F_{k}. Based on the transformation ϕ, we establish a map Φ from the set $\mathcal{S}_{n}\left(F_{k}\right)$ to the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$, that recursively transforms every occurrence of H_{k} (or Q_{k}) into F_{k}. In Subsection 3.2, we define a transformation ψ that changes every occurrence of F_{k} to an occurrence of H_{k} (or Q_{k}). Relying on the transformation ψ, we establish a map Ψ from the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ to the set $\mathcal{S}_{n}\left(F_{k}\right)$, that recursively transforms every occurrence of F_{k} into H_{k} (or Q_{k}). For the purpose of establishing Theorem 1.5, we investigate certain properties of ϕ and ψ in Subsections 3.1 and 3.2, respectively. In Subsection 3.3, we show that the maps Φ and Ψ are well defined and preserve the descent set. Moreover, they are inverses of each other, thereby establishing Theorem 1.5.

3.1 The map Φ from the set $\mathcal{S}_{n}\left(\boldsymbol{F}_{k}\right)$ to the set $\mathcal{S}_{n}\left(\boldsymbol{H}_{k}, Q_{k}\right)$

Before we describe the map Φ, let us review a transformation θ introduced in [1]
Let $\pi=\left\{\left(\pi_{1}, 1\right),\left(\pi_{2}, 2\right), \ldots,\left(\pi_{n}, n\right)\right\}$. Suppose that G is the submatrix of π at columns $c_{1}<c_{2}<\ldots<c_{k-1}<c_{k}$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}<r_{k}$, which is isomorphic to J_{k}. In other words, the square $\left(r_{i}, c_{i}\right)$ is filled with 1 for all $i=1,2, \ldots, k$. Let $\theta(G)$ be the submatrix at the same rows and columns as G, such that the squares $\left(r_{2}, c_{1}\right),\left(r_{3}, c_{2}\right), \ldots$, $\left(r_{k}, c_{k-1}\right),\left(r_{1}, c_{k}\right)$ are filled with $1^{\prime} s$ and all the other squares are filled with $0^{\prime} s$. Clearly, $\theta(G)$ is isomorphic to F_{k}.

Based on the transformation θ, we define the following three transformations, which will play an essential role in the construction of the map Φ.

Suppose that G is the submatrix of π at columns $c_{1}<c_{2}<\ldots<c_{k-1}<s<s+1<$ $\ldots<c_{k}-1<c_{k}$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}<r_{k}>\pi_{c_{k}-1}>\ldots>\pi_{s+1}>\pi_{s}$, in which the squares $\left(r_{i}, c_{i}\right)$ are filled with $1^{\prime} s$ for all $i=1,2, \ldots, k$. Let $\alpha(G)$ be the submatrix at the same rows and columns as G, such that the squares $\left(r_{2}, c_{1}\right),\left(r_{3}, c_{2}\right), \ldots$, $\left(r_{k}, c_{k-1}\right),\left(r_{1}, s\right),\left(\pi_{s}, s+1\right), \ldots,\left(\pi_{c_{k}-1}, c_{k}\right)$ are filled with $1^{\prime} s$ and all the other squares are filled with $0^{\prime} s$. Clearly, the submatrix at columns $c_{1}<c_{2}<\ldots<c_{k-1}<s$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}<r_{k}$ is isomorphic to F_{k}.

Suppose that G is the submatrix of π at columns $c_{1}<c_{2}<\ldots<c_{k-1}<c_{k}<$ $c_{k}+1<\ldots<t-1<t$ and rows $r_{1}<r_{2}<\ldots<r_{k}>\pi_{c_{k}+1}>\ldots>\pi_{t-1}>\pi_{t}$, in which the squares $\left(r_{i}, c_{i}\right)$ are filled with $1^{\prime} s$ for all $i=1,2, \ldots, k$. Define $\beta(G)$ to be the
submatrix at the same columns and rows as G, such that the squares $\left(r_{2}, c_{1}\right),\left(r_{3}, c_{2}\right), \ldots$, $\left(r_{k}, c_{k-1}\right),\left(\pi_{c_{k}+1}, c_{k}\right), \ldots,\left(\pi_{t}, t-1\right),\left(r_{1}, t\right)$ are filled with $1^{\prime} s$ and all the other squares are filled with $0^{\prime} s$. Clearly, the submatrix at columns $c_{1}<c_{2}<\ldots<c_{k-1}<t$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}<r_{k}$ is isomorphic to F_{k}.
The transformation ϕ : Suppose that π is a permutation in \mathcal{S}_{n}. First, find the highest square (p_{1}, q_{1}) containing a 1 , such that there is an H_{k} or Q_{k} in π in which the 1 positioned at the square $\left(p_{1}, q_{1}\right)$ is the leftmost entry. Then, find the leftmost square (p_{2}, q_{2}) containing a 1 , such that there is an H_{k} or Q_{k} in π in which the $1^{\prime} s$ positioned at the squares $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ are the leftmost two $1^{\prime} s$. Find $\left(p_{3}, q_{3}\right),\left(p_{4}, q_{4}\right), \ldots,\left(p_{k-1}, q_{k-1}\right)$ one by one as $\left(p_{2}, q_{2}\right)$.

If there is an H_{k} in which the 1 's positioned at the squares $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots$ $\left(p_{k-1}, q_{k-1}\right)$ are the leftmost $k-11^{\prime} s$, then find the highest square $\left(p_{k}, q_{k}\right)$ containing a 1 , such that the $1^{\prime} s$ positioned at the squares $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots\left(p_{k}, q_{k}\right)$ form an H_{k}. Find the largest s such that $s-1 \in \mathcal{D}(\pi)$ and $q_{k-1}<s<q_{k}$. Now we proceed to construct a permutation $\phi(\pi)$ by the following procedure.

Case 1. $q_{k}=n$ or $\pi_{q_{k}-1}>\pi_{q_{k}+1}$. Let G be the submatrix of π at columns $q_{1}<q_{2}<$ $\ldots<q_{k-1}<s<s+1<\ldots<q_{k}-1<q_{k}$ and rows $p_{1}<p_{2}<\ldots<p_{k}>\pi_{q_{k}-1}>$ $\ldots>\pi_{s+1}>\pi_{s}$. Replace G by $\alpha(G)$ and leave all the other squares fixed.

Case 2. $\pi_{q_{k}-1}<\pi_{q_{k}+1}$. Find the least t such that $t>q_{k}$ and $t \in \mathcal{A}(\pi)$. If such t does not exist, set $t=n$. Let G be the submatrix of π at columns $q_{1}<q_{2}<\ldots<q_{k-1}<$ $q_{k}<q_{k}+1<\ldots<t-1<t$ and rows $p_{1}<p_{2}<\ldots<p_{k}>\pi_{q_{k}+1}>\ldots>\pi_{t-1}>\pi_{t}$. Replace G by $\beta(G)$ and leave all the other squares fixed.

If such an H_{k} does not exist, then find the leftmost square (p_{k}, q_{k}) containing a 1 , such that the $1^{\prime} s$ positioned at the squares $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \ldots,\left(p_{k}, q_{k}\right)$ form a Q_{k}. Construct a permutation $\phi(\pi)$ by the following procedure.

Case 3. $q_{k} \in \mathcal{A}(\pi)$. Let G be the submatrix of π at columns $q_{1}<q_{2}<\ldots<q_{k-2}<q_{k}$ and rows $p_{1}<p_{2}<\ldots<p_{k-2}<p_{k}$. Replace G by $\theta(G)$ and leave all the other squares fixed.

Case 4. Otherwise, find the least t such that $t>q_{k}$ and $t \in \mathcal{A}(\pi)$. If such t does not exist, set $t=n$. Let G be the submatrix of π at columns $q_{1}<q_{2}<\ldots<q_{k-2}<$ $q_{k}<q_{k}+1<q_{k}+2<\ldots<t-1<t$ and rows $p_{1}<p_{2}<\ldots<p_{k-2}<p_{k}>\pi_{q_{k}+1}>$ $\pi_{q_{k}+2}>\ldots>\pi_{t-1}>\pi_{t}$. Replace G by $\beta(G)$ and leave all the other squares fixed.

Remark 3.1. Notice that the definition of H_{k} ensures that there exists an such that $s-1 \in \mathcal{D}(\pi)$ and $q_{k-1}<s \leqslant q_{k}$. In fact, we have $q_{k-1}<s<q_{k}$. If not, then the $1^{\prime} s$ positioned at the squares $\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right) \ldots\left(p_{k-1}, q_{k-1}\right),\left(\pi_{q_{k}-1}, q_{k}-1\right),\left(p_{k}, q_{k}\right)$ would form a Q_{k}, which contradicts the selection of $\left(p_{1}, q_{1}\right)$.

Remark 3.2. We denote the resulting permutation in Case 1, Case 2, Case 3 and Case 4 by $\phi_{1}(\pi), \phi_{2}(\pi), \phi_{3}(\pi)$ and $\phi_{4}(\pi)$, respectively.

It is obvious that the transformation ϕ changes every occurrence of H_{k} (or Q_{k}) to an occurrence of F_{k}. Denote by Φ the iterated transformation, that recursively transforms every occurrence of H_{k} (or Q_{k}) into F_{k}.

Using the notation of the algorithm for ϕ_{1}, we label the squares containing $1^{\prime} s$ in G by $a_{1}, a_{2}, \ldots, a_{k-1}, c_{1}, c_{2}, \ldots, c_{q_{k}-s}, a_{k}$, and the squares containing $1^{\prime} s$ in $\alpha(G)$ by $b_{1}, b_{2}, \ldots, b_{k}, d_{1}, d_{2}, \ldots, d_{q_{k}-s}$, from left to right, see Figure 2 for example.

Figure 2: The labelling of squares in $\phi_{1}(\pi)$ for $k=5$.
Using the notation of the algorithm for ϕ_{2}, we label the squares containing 1^{\prime} 's in G by $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}, e_{1}, e_{2}, \ldots, e_{t-q_{k}}$, and the squares containing $1^{\prime} s$ in $\beta(G)$ by $b_{1}, b_{2}, \ldots, b_{k-1}, f_{1}, f_{2}, \ldots, f_{t-q_{k}}, b_{k}$, from left to right. We also label the square $\left(\pi_{s}, s\right)$ by c_{1}, see Figure 3 for example.

Figure 3: The labelling of squares in $\phi_{2}(\pi)$ for $k=5$.
Using the notation of the algorithm for ϕ_{3}, we label the squares containing $1^{\prime} s$ in G by $a_{1}, a_{2}, \ldots, a_{k-2}, a_{k}$, and the squares containing $1^{\prime} s$ in $\theta(G)$ by $b_{1}, b_{2}, \ldots, b_{k-2}, b_{k}$, from left to right. We also label the square $\left(p_{k-1}, q_{k-1}\right)$ by b_{k-1} (or a_{k-1}), see Figure 4 for example.

Using the notation of the algorithm for ϕ_{4}, we label the squares containing $1^{\prime} s$ in G by $a_{1}, a_{2}, \ldots, a_{k-2}, a_{k}, e_{1}, e_{2}, \ldots, e_{t-q_{k}}$, and the squares containing $1^{\prime} s$ in $\beta(G)$ by $b_{1}, b_{2}, \ldots, b_{k-2}, f_{1}, f_{2}, \ldots, f_{t-q_{k}}, b_{k}$, from left to right. We also label the square (p_{k-1}, q_{k-1}) by b_{k-1} (or a_{k-1}), see Figure 5 for example.

Figure 4: The labelling of squares in $\phi_{3}(\pi)$ for $k=6$.

In $\phi_{1}(\pi)$ or $\phi_{2}(\pi)$, we denote by E_{1} the union of the following four parts of the board: the board that is above a_{1} but below b_{1} and to the left of a_{1}, the board that is above a_{k-1} but below b_{k-1}, to the left of c_{1} and to the right of a_{k-1}, the union of the rectangles with corners a_{i} and b_{i+1} for $i=1,2, \ldots, k-2$, and the board that is above a_{k} and to the right of c_{1}, see Figures 2 and 3 for example.

Figure 5: The labelling of squares in $\phi_{4}(\pi)$ for $k=6$.
We claim that there are no $1^{\prime} s$ inside E_{1} in $\pi, \phi_{1}(\pi)$ or $\phi_{2}(\pi)$. By the selection of a_{k}, there is no 1 to the right of c_{1} and above a_{k} in $\pi, \phi_{1}(\pi)$ or $\phi_{2}(\pi)$. Suppose that there is a 1 in the rectangle with corners a_{i} and b_{i+1} for $i=1,2, \ldots, k-2$, then that 1 combining with the 1's positioned at $a_{1}, a_{2}, \ldots, a_{i}, a_{i+2}, \ldots, a_{k}$ would form an H_{k} in π, which contradicts the selection of a_{i+1}. If there is a 1 above a_{1} but below b_{1}, then that 1 , combining with the $1^{\prime} s$ positioned at $a_{2}, a_{3}, \ldots, a_{k}$ would form a H_{k} in π, which contradicts the selection of a_{1}. If there is a 1 above a_{k-1} but below b_{k-1} and to the left of c_{1}, then that 1 , combining with the $1^{\prime} s$ positioned at $a_{2}, a_{3}, \ldots, a_{k}$ would form a H_{k} in π, which contradicts the selection of a_{1}. Thus, all the 1's are to the left of E_{1} or to the right of E_{1} in $\pi, \phi_{1}(\pi)$ or $\phi_{2}(\pi)$.

In $\phi_{3}(\pi)$ and $\phi_{4}(\pi)$, we denote by E_{2} the union of the following four parts of the board: the board that is above a_{1} but below b_{1} and to the left of a_{1}, the board that is above and to the right of a_{k-2} but below a_{k-1}, and to the left of a_{k}, the union of the rectangles with corners a_{i} and b_{i+1} for $i=1,2, \ldots, k-2$, and the board that is above a_{k-1} and to the right of a_{k}, see Figures 4 and 5 for example.

We claim that there are no $1^{\prime} s$ inside E_{2} in $\pi, \phi_{3}(\pi)$ and $\phi_{4}(\pi)$. By similar arguments in E_{1}, one can easily verify that there are no 1 's inside the board that is above a_{1} but below b_{1} and to the left of a_{1}, the union of the rectangles with corners a_{i} and b_{i+1} for $i=1,2, \ldots, k-2$, and the board that is above a_{k-1} and to the right of a_{k}. It remains to show that there are no $1^{\prime} s$ inside the board that is above a_{k-2} but below a_{k-1} and to the left of a_{k}. According to the definition of Q_{k}, all of the $1^{\prime} s$ between a_{k-1} and a_{k} are above a_{k-1}. This implies that there are no $1^{\prime} s$ inside the board that is below and to the right of a_{k-1}, and to the left of a_{k}. Now suppose that there is a 1 inside the rectangle with corners a_{k-2} and a_{k-1}. Suppose that this 1 is at the square $\left(\pi_{g}, g\right)$. If $\left(\pi_{g}, g\right)$ is below a_{k}, then the 1 's positioned at the squares $a_{2}, a_{3}, \ldots, a_{k-2},\left(\pi_{g}, g\right), a_{k-1}, a_{k}$ would form a Q_{k} in π, which contradicts the selection of a_{1}. If $\left(\pi_{g}, g\right)$ is above a_{k}, then we have two cases. If there exists a j such that $g \leqslant j<q_{k}$ and $j \in \mathcal{D}(\pi)$, then the 1 's positioned at $a_{1}, a_{2}, \ldots, a_{k-2},\left(\pi_{g}, g\right), a_{k-1}$ would form an H_{k} in π, which contradicts the selection of a_{k-1}. Otherwise, the 1's positioned at the squares $a_{1}, a_{2}, \ldots, a_{k-2},\left(\pi_{g}, g\right), a_{k}$ would form a Q_{k} in π, which contradicts the selection of a_{k-1}. Hence, we have concluded that there are no $1^{\prime} s$ inside the board that is above a_{k-2} but below a_{k-1} and to the left of a_{k}. Hence, the claim is proved. In other words, all the $1^{\prime} s$ of $\pi, \phi_{3}(\pi)$ or $\phi_{4}(\pi)$ are to the left or to the right of E_{2}.

Definition 3.3. $A 1$ is said to be strictly to the left (resp. right) of E_{1} (or E_{2}) if it is lying to the left (resp. right) of E_{1} (or E_{2}) and does not belong to the boundary of E_{1} (or E_{2}).

In order to show that the transformation ϕ has the desired properties, which are essential in the proof of Theorem 1.5, we introduce vertical slide algorithm and horizontal slide algorithm for ϕ. Before that, we need the following useful properties that will play a crucial role in the construction of vertical slide algorithm and horizontal slide algorithm for ϕ.

Properties

(1) For any $1 \leqslant i \leqslant k-2$, the board that is above a_{1} and below b_{i} cannot contain a J_{i} with all its 1 's strictly to the left of E_{1} (or E_{2}) in $\phi(\pi)$.
(2) For any $1 \leqslant i<j \leqslant k-2$, the rectangle with corners b_{i} and b_{j} cannot contain a J_{j-i} with all its 1 's strictly to the left of E_{1} (or E_{2}) in $\phi(\pi)$. Moreover, the rectangle with corners b_{i} and b_{k-1} cannot contain a J_{k-1-i} with all its 1 's strictly to the left of E_{1} in $\phi_{1}(\pi)$ (or $\phi_{2}(\pi)$).

Proof.
(1) If there is such a J_{i} below b_{i} in $\phi(\pi)$, then it is below a_{i+1}. Therefore these i $1^{\prime} s$, combining with $a_{i+1}, a_{i+2}, \ldots, a_{k}$, will either form an H_{k} or a Q_{k} in π, which contradicts the selection of a_{1}.
(2) If there is a J_{j-i} in this region, then either its leftmost 1 is to the left to b_{i+1} (and hence to the left of a_{i+1}), or else it lies to the right of b_{i+1} (and a_{i+1}). In the first
case, $a_{1}, a_{2}, \ldots, a_{i}$, combining with this J_{j-i} and a_{j+1}, \ldots, a_{k}, will form an H_{k} (or $\left.Q_{k}\right)$ in π, which contradicts the selection of a_{i+1}. In the second case, $a_{2}, a_{3}, \ldots, a_{i+1}$, combining with this J_{j-i} and a_{j+1}, \ldots, a_{k}, will form an H_{k} (or Q_{k}) in π, which contradicts the selection of a_{1}.

Now we proceed to introduce the vertical slide algorithm and horizontal slide algorithm for ϕ.

Suppose that H is a J_{t} in $\phi(\pi)$. Label the squares containing $1^{\prime} s$ of H by $h_{1}, h_{2}, \ldots, h_{t}$, from left to right.
Vertical slide algorithm for ϕ : When H is in $\phi_{1}(\pi)$ (or $\phi_{2}(\pi)$), find the largest i such that b_{i} falls in H with $i \leqslant k-1$; otherwise, find the largest i such that b_{i} falls in H with $i \leqslant k-2$. If there is a 1 of H which is below b_{i} and to the right of E_{1} (or E_{2}), find the rightmost square containing such a 1 and denote it by h_{y}. Find x such that h_{y} is to the right of b_{x}, and to the left of b_{x+1}. By property (2), there are at most $i-x 1^{\prime} s$ in H, which are above b_{x} but not above b_{i}, and weakly to the left of E_{1} (or E_{2}). So we can replace these $1^{\prime} s$ by $b_{x+1}, b_{x+2}, \ldots, b_{i}$, and hence by $a_{x+1}, a_{x+2}, \ldots, a_{i}$.

We can repeat the vertical slide algorithm until the following two cases appear.
(1) There is no b_{i} that falls in H.
(2) There is such a b_{i}, but h_{y} does not exist. By Property (1), there are at most $i 1^{\prime} s$ of H that are above a_{1} but not above b_{i}, and weakly to the left of E_{1} (or E_{2}). So we can replace these $1^{\prime} s$ by $a_{1}, a_{2}, \ldots, a_{i}$ to form an J_{t} in π.

Suppose that H is a J_{t} in $\phi(\pi)$. Label the squares containing the $1^{\prime} s$ of H by $h_{1}, h_{2}, \ldots, h_{t}$, from left to right. Assume that h_{t} is not above b_{k-1} when H is in $\phi_{1}(\pi)$ (or $\phi_{2}(\pi)$), and not above b_{k-2} when H is in $\phi_{3}(\pi)$ (or $\phi_{4}(\pi)$).
Horizontal slide algorithm for ϕ : When H is in $\phi_{1}(\pi)$ (or $\phi_{2}(\pi)$), find the least i such that b_{i} falls in H with $i \leqslant k-1$; otherwise, find the least i such that b_{i} falls in H with $i \leqslant k-2$. If there is a 1 of H which is above b_{i} and to the right of E_{1} (or E_{2}), find the leftmost square containing such a 1 and denote it by h_{y}. Find x such that h_{y} is above b_{x}, and below b_{x+1}. By property (2), there are at most $x+1-i 1^{\prime} s$ in H, which are below b_{x+1} but not below b_{i}, and weakly to the left of E_{1} (or E_{2}). So we can replace these $1^{\prime} s$ by $b_{i}, b_{i+1}, \ldots, b_{x}$, and hence by $a_{i+1}, a_{i+2}, \ldots, a_{x+1}$.

We can repeat the horizontal slide algorithm until the following two cases appear.
(1) There is no b_{i} that falls in H.
(2) There is such a b_{i}, but h_{y} does not exist. Find the least v such that h_{t} is not above b_{v}. By property (2), we have at most $v-i 1^{\prime} s$ of H that are below b_{v} but not below b_{i} and weakly to the left of E_{1} (or E_{2}). So we can replace these $1^{\prime} s$ by $a_{i+1}, a_{i+2}, \ldots, a_{v}$ to form an J_{t} in π.

Our next goal is to show that the transformation ϕ have the following properties, which are essential in the proof of Theorem 1.5.

Lemma 3.4. If there is no F_{k} with at least one square in a row below a_{1}, then we have $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$.
Proof. Since there are no $1^{\prime} s$ inside E_{1} (or E_{2}) and no F_{k} with at least one square in a row below a_{1}, one can easily verify that $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$. The details are omitted here. I

Lemma 3.5. If π contains no F_{k} with at least one square in a row below a_{1}, then $\phi(\pi)$ contains no such F_{k}.

Proof. If not, suppose that H is such an F_{k} in $\phi(\pi)$. Label the squares containing the 1's of H by $h_{1}, h_{2}, \ldots, h_{k}$, from left to right. Then h_{k} is below a_{1}.

We claim that h_{k} must be positioned to the left of a_{k-1}. If not, then $a_{1}, a_{2}, \ldots, a_{k-1}$, h_{k} would form an F_{k} in π, which contradicts the hypothesis. From the construction of the transformation ϕ, it follows that at least one of $b_{1}, b_{2}, \ldots, b_{k-2}$ must fall in H. Otherwise, H is an F_{k} with at least one square in a row below a_{1} in π, which contradicts the hypothesis.

By applying the vertical slide algorithm repeatedly to the J_{k-1} consisting of $h_{1}, h_{2}, \ldots, h_{k-1}$, we can get a J_{k-1} not below a_{1} in π. Then, that J_{k-1} combining with h_{k} will form on F_{k} in π, which contradicts the hypothesis.

In the remaining part of this subsection, we assume that π contains no F_{k} with at least one square in a row below a_{1}. By Lemma 3.4 , we have $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$.

Lemma 3.6. The board that is to the left of b_{t+1} and above a_{1} cannot contain a J_{t} in $\phi(\pi)$ with its highest 1 below b_{t} for $t=1,2, \ldots, k-1$.

Proof. First we aim to prove the assertion for $1 \leqslant t \leqslant k-2$. Suppose that H is such a J_{t} in $\phi(\pi)$. Label the squares containing the $1^{\prime} s$ of H by $h_{1}, h_{2}, \ldots, h_{t}$ from left to right. We claim that at least one of $b_{1}, b_{2}, \ldots, b_{t-1}$ must fall in H. Otherwise, these $t 1^{\prime} s$, combining with $a_{t+1}, a_{t+2}, \ldots, a_{k}$, would form an H_{k} or Q_{k} in π. This contradicts the selection of a_{1}.

By applying the the horizontal slide algorithm repeatedly to H, we can get a J_{t} in π. It is easy to check that the obtained J_{t} is below and to the left of a_{t+1} and above a_{1}. That J_{t}, combining with $a_{t+1}, a_{t+2}, \ldots, a_{k}$, would form an H_{k} or Q_{k} in π. This contradicts the selection of a_{1}. Thus, we have concluded that the assertion holds for $1 \leqslant t \leqslant k-2$.

Now we proceed to show that the assertion also holds for $t=k-1$. Suppose that G is a J_{k-1} in $\phi(\pi)$, which is to the left of b_{k} and below b_{k-1}. We label the squares containing the $1^{\prime} s$ of G by $g_{1}, g_{2}, \ldots, g_{k-1}$, from left to right. We have three cases.

Case 1. G is in $\phi_{1}(\pi)$. By repeating the horizontal slide algorithm, we can get a J_{k-1} in π, which is to the left of b_{k} and above a_{1}. Since $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$ and $s-1 \in \mathcal{D}(\pi)$, we have $s-1 \in \mathcal{D}(\phi(\pi))$. Recall that b_{k} is at column s. Thus, the obtained J_{k-1} combining with a_{k} would form an H_{k} in π. This contradicts the selection of a_{1}.

Case 2. G is in $\phi_{2}(\pi)$. If $g_{k-1} \neq f_{i}$, we can get a J_{k-1} in π by repeating the horizontal slide algorithm, which is below and to the left of a_{k} and above a_{1}. We label the squares containing the $1^{\prime} s$ of this J_{k-1} by $m_{1}, m_{2}, \ldots, m_{k-1}$, from left to right. If m_{k-1} is below e_{1}, then $m_{2}, m_{3}, \ldots, m_{k-1}$, combining with a_{k}, e_{1}, would form a Q_{k} in π, which contradicts the selection of a_{1}. If m_{k-1} is above e_{1}, then it is positioned to the left of c_{1} in π since all the $1^{\prime} s$ positioned at columns $s, s+1, \ldots, q_{k}-1$ form a $J_{q_{k}-s}$, and $\left(\pi_{q_{k}-1}, q_{k}-1\right)$ is below $e_{1}=\left(\pi_{q_{k}+1}, q_{k}+1\right)$. Moreover, since $s-1 \in \mathcal{D}(\pi)$ and $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$, we have $s-1 \in \mathcal{D}(\phi(\pi))$. Recall that c_{1} is at column s. Thus, $m_{1}, m_{2}, \ldots, m_{k-1}, a_{k}$ will form an H_{k}, which contradicts the selection of a_{1}.

If $g_{k-1}=f_{i}$ for some i, then we can get a J_{k-1} in π by repeating the horizontal slide algorithm and replacing $f_{j}^{\prime} s$ by $e_{j}^{\prime} s$ whenever f_{j} falls in G. Notice that the rightmost 1 of
the obtained J_{k-1} is e_{i}. If $i=1$, then this J_{k-1} combining with a_{k} would form a Q_{k} in π. For $i>1$, this J_{k-1} combining with e_{i-1} would form a Q_{k} in π. In both cases, we get a Q_{k} that is above a_{1}. This contradicts the selection of a_{1}.

Case 3. G is in $\phi_{3}(\pi)$ or $\phi_{4}(\pi)$. When $g_{k-1} \neq f_{i}$, according to the definition of Q_{k}, there contains no 1 's which are below and to the right of a_{k-1}, and to the left of a_{k}. So g_{k-1} is to the left of a_{k-1}. Recall that we have shown that there is no J_{k-2} in $\phi(\pi)$, which is to the left of b_{k-1} and below b_{k-2}. So g_{k-1} is below and to the left of b_{k-1} (and $\left.a_{k-1}\right)$, and above and to the left of b_{k-2}. By repeating the vertical slide algorithm, we can get a J_{k-1} not below a_{1} in π, whose rightmost 1 is positioned at g_{k-1}. Then this J_{k-1} combining with a_{k-1} would form an H_{k} in π, which contradicts the selection of a_{k-1}. When $g_{k-1}=f_{i}$ for some $i \geqslant 1$, by the same way as in Case 2 , we can get a Q_{k} above a_{1} in π. This contradicts the selection of a_{1}.

Thus, we deduce that the assertion also holds for $t=k-1$. This completes the proof.

Lemma 3.7. The rows above a_{1} cannot contain an H_{k} or Q_{k} in $\phi(\pi)$.
In order to prove Lemma 3.7, we need the following two lemmas.
Lemma 3.8. Suppose that G is an H_{k} above a_{1} in $\phi(\pi)$. Label the squares containing the 1^{\prime} s of G by $g_{1}, g_{2}, \ldots, g_{k}$, from left to right. Then the squares g_{k} and g_{k-1} are also filled with 1 's in π.

Proof. Here we only prove the assertion for $\phi_{1}(\pi)$ and $\phi_{4}(\pi)$. All the other cases can be verified by similar arguments. By Lemma 3.6, there is no J_{k-1} below b_{k-1} and to the left of b_{k} in $\phi_{1}(\pi)$ and $\phi_{4}(\pi)$. This implies that neither g_{k-1} nor g_{k} will be any of $b_{i}^{\prime} s$ for $1 \leqslant i \leqslant k-2$ in $\phi_{1}(\pi)$ and $\phi_{4}(\pi)$. Moreover, neither g_{k-1} nor g_{k} will be any of $f_{i}^{\prime} s$ in $\phi_{4}(\pi)$. Thus, we have deduced that the assertion holds for $\phi_{4}(\pi)$.

In order to prove the assertion for $\phi_{1}(\pi)$, it remains to show that neither g_{k} nor g_{k-1} will be any of b_{k-1} and $d_{i}^{\prime} s$ in $\phi_{1}(\pi)$. We have four cases.
(1) If $g_{k}=b_{k-1}$, then $g_{1}, g_{2}, \ldots, g_{k-1}$ form a J_{k-1}, which is to the left of b_{k} and below b_{k-1} in $\phi_{1}(\pi)$. This contradicts Lemma 3.6.
(2) If $g_{k-1}=b_{k-1}$, then g_{k} is above b_{k-1} and to the left of E_{1}. This implies the square g_{k} is also filled with a 1 in π. Since $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$, the $1^{\prime} s$ positioned at b_{k-1} and g_{k} belong to two different blocks of $\phi(\pi)$. This implies that those positioned at a_{k-1} and g_{k} also belong to two different blocks of π. Thus, $a_{1}, a_{2}, \ldots, a_{k-1}, g_{k}$ form an H_{k} in π. This contradicts the selection of a_{k} since g_{k} is above a_{k}.
(3) If $g_{k}=d_{i}$ for some i, then we have that g_{k-1} is to the left of b_{k} since $d_{1}, d_{2}, \ldots, d_{q_{k}-s}$ lie in consecutive columns and form a $J_{q_{k}-s}$. Thus, $g_{1}, g_{2}, \ldots, g_{k-1}$ will form a J_{k-1} in $\phi_{1}(\pi)$, which is to the left of b_{k} and below b_{k-1}. This contradicts Lemma 3.6. Hence, we have $g_{k} \neq d_{i}$ for any $i \geqslant 1$.
(4) If $g_{k-1}=d_{j}$ for some $j \geqslant 1$, then g_{k} is to the right of a_{k} since $d_{1}, d_{2}, \ldots, d_{q_{k}-s}$ lie in consecutive columns and form a $J_{q_{k}-s}$. By repeating the horizontal slide algorithm for ϕ and replacing any of $d_{i}^{\prime} s$ that falls in G by $c_{i}^{\prime} s$, we will get a J_{k-1} in π whose rightmost 1 is c_{j}. Since $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$ and $q_{k} \in \mathcal{D}(\pi)$, we have $q_{k} \in \mathcal{D}(\phi(\pi))$. Thus, this J_{k-1} combining with g_{k} will form an H_{k} in π. This contradicts the selection of a_{1}.

Hence, we have concluded that the assertion also holds for ϕ_{1}, which completes the proof.

Lemma 3.9. Suppose that H is a Q_{k} above a_{1} in $\phi(\pi)$, in which the last two 1's lie in two consecutive columns. Label the squares containing the 1 's of H by $h_{1}, h_{2}, \ldots, h_{k}$, from left to right. Then the squares h_{k} and h_{k-1} are also filled with $1^{\prime} s$ in π.

Proof. Here we only prove the assertion for ϕ_{1} and ϕ_{4}. All the other cases can be verified by similar arguments. By Lemma 3.6, there is no J_{k-1} below b_{k-1} and to the left of b_{k} in $\phi_{1}(\pi)$. This implies that neither h_{k-1} nor h_{k} will be any of $b_{i}^{\prime} s$ for $1 \leqslant i \leqslant k-2$ in $\phi_{1}(\pi)$ and $\phi_{4}(\pi)$. Moreover, neither g_{k-1} nor g_{k} will be any of $f_{i}^{\prime} s$ in $\phi_{4}(\pi)$. Thus, we deduce that the assertion holds for ϕ_{4}.

In order to prove the assertion for ϕ_{1}, it remains to show that neither h_{k} nor h_{k-1} will be any of b_{k-1} and $d_{i}^{\prime} s$ in $\phi_{1}(\pi)$. Since $b_{k}, d_{1}, d_{2}, \ldots, d_{q_{k}-s}$ lie in consecutive columns and form a $J_{q_{k}-s+1}$ in $\phi_{1}(\pi)$, neither of $d_{i}^{\prime} s$ can be h_{k}. Moreover, neither of $d_{i}^{\prime} s$ can be h_{k-1} for $1 \leqslant i \leqslant q_{k}-s-1$. Thus we have $h_{k-1}=d_{q_{k}-s}, h_{k-1}=b_{k-1}$ or $h_{k}=b_{k-1}$.

If $h_{k-1}=d_{q_{k}-s}$, then by applying the horizontal slide algorithm for ϕ repeatedly to $h_{1}, h_{2}, \ldots, h_{k-2}, h_{k}$ and replacing any of $d_{i}^{\prime} s$ that falls in $h_{1}, h_{2}, \ldots, h_{k-2}, h_{k}$ by $c_{i}^{\prime} s$, we will get a J_{k-1} above a_{1} in π. Notice that the rightmost 1 of the obtained J_{k-1} is h_{k}. This J_{k-1}, combining with a_{k}, will form a Q_{k} in π, which contradicts the selection of a_{1}. If $h_{k}=b_{k-1}$, then $a_{1}, a_{2}, \ldots, a_{k-2}$, combining with h_{k-1} and a_{k-1}, will form a Q_{k} in π, which contradicts the selection of a_{k-1}. If $h_{k-1}=b_{k-1}$, then h_{k} is below a_{k-1} and to the left of b_{k}. Then $h_{1}, h_{2}, \ldots, h_{k-2}, h_{k}$ form a J_{k-1} in $\phi_{1}(\pi)$, which is to the left of b_{k} and below b_{k-1}. This contradicts Lemma 3.6. Hence, we have proved that the assertion also holds for ϕ_{1}.
The proof of Lemma 3.7. If not, suppose that G is an H_{k} above a_{1} in $\phi(\pi)$. Label the squares containing $1^{\prime} s$ of G by $g_{1}, g_{2}, \ldots, g_{k}$, from left to right. Moreover, let H be a Q_{k} above a_{1} in $\phi(\pi)$ such that the rightmost two $1^{\prime} s$ lie in two consecutive columns. We label the squares containing the $1^{\prime} s$ of H by $h_{1}, h_{2}, \ldots, h_{k}$. According to the definition of Q_{k}, there is a Q_{k} above a_{1} in $\phi(\pi)$ if and only if there exists such an H.

We wish to replace some 1's of G (resp. H) to form an H_{k} (resp. Q_{k}) in π. Here we only consider the case when G (resp. H) is in $\phi_{1}(\pi)$. The other cases can be verified by the similar arguments. Since the transformation ϕ_{1} does not change the positions of any other $1^{\prime} s$, one of $b_{i}^{\prime} s$ and $d_{i}^{\prime} s$ must fall in G (resp. H).

First, replace each d_{i} by c_{i} whenever d_{i} falls in $g_{1}, g_{2}, \ldots, g_{k-2}\left(\right.$ resp. $\left.h_{1}, h_{2}, \ldots, h_{k-2}\right)$. Then, find the largest i such that b_{i} falls in $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp. $h_{1}, h_{2}, \ldots, h_{k-2}$). We can apply the vertical slide algorithm repeatedly to $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp. $h_{1}, h_{2}, \ldots, h_{k-2}$)
until the following two cases appear.
(1) There is no b_{i} that falls in $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp. $h_{1}, h_{2}, \ldots, h_{k-2}$).
(2) There is such a b_{i}, but there is no 1 positioned at the squares $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp. $\left.h_{1}, h_{2}, \ldots, h_{k-2}\right)$ that is to the left of b_{i} and to the right of E_{1}. Since there are at most i $1^{\prime} s$ positioned at $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp. $h_{1}, h_{2}, \ldots, h_{k-2}$) that are not above b_{i} and to the left of E_{1}, we can replace these $1^{\prime} s$ by $a_{1}, a_{2}, \ldots, a_{i}$.

In both cases, we get a J_{k-2} not below a_{1} in π. From Lemmas 3.8 and 3.9, the squares g_{k} and g_{k-1} (resp. h_{k} and h_{k-1}) are also filled with $1^{\prime} s$ in π. Recall that $\mathcal{D}(\pi)=\mathcal{D}(\phi(\pi))$ and the 1 's positioned at g_{k-1} and g_{k} belong to two different blocks of $\phi(\pi)$. This yields that the 1 's positioned at g_{k-1} and g_{k} also belong to two different blocks of π. Thus, the obtained J_{k-2}, combining with g_{k-1} and g_{k} (resp. h_{k-1} and h_{k}) forms an H_{k} (resp. Q_{k}) in π. In the first case, the obtained H_{k} (resp. Q_{k}) is above a_{1}, which contradicts the selection of a_{1}. In the second case, suppose that g_{z} (resp. h_{z}) is the first square containing a 1 of the obtained H_{k} (resp. Q_{k}) that is to the right of a_{i}. Clearly, g_{z} (resp. h_{z}) is above b_{i} and a_{i+1}. If $g_{z}\left(\right.$ resp. h_{z}) is to the left of a_{i+1}, then the obtained H_{k} (or Q_{k}) contradicts the selection of a_{i+1}. Otherwise, $a_{2}, a_{3}, \ldots, a_{i+1}$, combining with the $1^{\prime} s$ of the obtained H_{k} (resp. Q_{k}) that are to the right of a_{i}, would form on H_{k} (or Q_{k}) in π. This contradicts the selection of a_{1}, which completes the proof.

3.2 The map Ψ from the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ to the set $\mathcal{S}_{n}\left(F_{k}\right)$

Before we describe the map Ψ we define three transformations, which will play an essential role in the construction of the map Ψ.

Let $\sigma=\left\{\left(\sigma_{1}, 1\right),\left(\sigma_{2}, 2\right), \ldots,\left(\sigma_{n}, n\right)\right\}$. Suppose that G is the submatrix of σ at columns $c_{1}<c_{2}<\ldots<c_{k}<c_{k}+1<c_{k}+2<\ldots<t$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}>$ $r_{k}<\sigma_{c_{k}+1}<\sigma_{c_{k}+2}<\ldots<\sigma_{t}$, in which the squares $\left(r_{i}, c_{i}\right)$ are filled with 1's for all $i=1,2, \ldots, k$. Let $\delta(G)$ be the submatrix at the same rows and columns as G, such that the squares $\left(r_{k}, c_{1}\right),\left(r_{1}, c_{2}\right), \ldots,\left(r_{k-2}, c_{k-1}\right),\left(\sigma_{c_{k}+1}, c_{k}\right),\left(\sigma_{c_{k}+2}, c_{k}+1\right), \ldots,\left(\sigma_{t}, t-1\right)$, $\left(r_{k-1}, t\right)$ are filled with $1^{\prime} s$ and all the other squares are filled with $0^{\prime} s$.

Suppose that H is the submatrix of σ at columns $c_{1}<c_{2}<\ldots<c_{k-1}<t<t+1<$ $\ldots<c_{k}$ and rows $r_{1}<r_{2}<\ldots<r_{k-1}>\sigma_{t}>\sigma_{t+1}>\ldots>\sigma_{c_{k}}=r_{k}$, in which the squares $\left(r_{i}, c_{i}\right)$ are filled with $1^{\prime} s$ for all $i=1,2, \ldots, k$. Define $\gamma(H)$ to be the submatrix at the same columns and rows as H, such that the squares $\left(r_{k}, c_{1}\right),\left(r_{1}, c_{2}\right), \ldots,\left(r_{k-2}, c_{k-1}\right)$, $\left(r_{k-1}, t\right),\left(\sigma_{t}, t+1\right),\left(\sigma_{t+1}, t+2\right), \ldots,\left(\sigma_{c_{k}-1}, c_{k}\right)$ are filled with $1^{\prime} s$ and all the other squares are filled with $0^{\prime} s$.
The transformation ψ : Suppose that $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ is a permutation in \mathcal{S}_{n}. First, find the lowest square (p_{k}, q_{k}) containing a 1 , such that there is an F_{k} in σ in which the 1 positioned at $\left(p_{k}, q_{k}\right)$ is its rightmost 1 . Then, find the lowest square $\left(p_{k-1}, q_{k-1}\right)$ containing a 1 , such that there is an F_{k} in σ in which the 1^{\prime} positioned at $\left(p_{k}, q_{k}\right)$ and $\left(p_{k-1}, q_{k-1}\right)$ are the rightmost two $1^{\prime} s$. Find $\left(p_{k-2}, q_{k-2}\right),\left(p_{k-3}, q_{k-3}\right), \ldots,\left(p_{1}, q_{1}\right)$ one by one as $\left(p_{k-1}, q_{k-1}\right)$. Assume that there is no H_{k} or Q_{k} above row p_{k} in σ.

If $\sigma_{q_{k}-1}>\sigma_{q_{k}+1}$, then we wish to generate a permutation π from σ by the considering the following two cases.

Case 1. $p_{k-1}=\sigma_{q_{k-1}}<\sigma_{q_{k-1}+1}<\ldots<\sigma_{q_{k}-1}>\sigma_{q_{k}}=p_{k}$ and $\sigma_{q_{k}+1}>p_{k-2}$. In this case, let G be the submatrix of σ at columns $q_{1}<q_{2}<\ldots<q_{k-2}<q_{k}$ and rows $p_{k}<p_{1}<p_{2}<\ldots<p_{k-2}$. Replace G by $\theta^{-1}(G)$ and leave all the other rows and columns fixed.

Case 2. Otherwise, find the least t such that $t>q_{k}$ and $t \in \mathcal{D}(\sigma)$. If such t does not exist, set $t=n$. In this case, let G be the submatrix of σ at columns $q_{1}<q_{2}<\ldots<$ $q_{k}<q_{k}+1<\ldots<t$ and rows $p_{1}<p_{2}<\ldots p_{k-1}>p_{k}<\sigma_{q_{k}+1}<\sigma_{q_{k}+2}<\ldots<\sigma_{t}$. Replace G by $\delta(G)$ the other rows and columns fixed.

If $q_{k}=n$ or $\sigma_{q_{k}-1}<\sigma_{q_{k}+1}$, then we wish to generate a permutation π from σ by considering the following two cases.

Case 3. If there exists an s such that $q_{k-1}<s<q_{k}$ and $\sigma_{s-1}>\sigma_{s}<\sigma_{s+1}$. Find the largest t such that $q_{k-1}<t \leqslant q_{k}$ and $t-1 \in \mathcal{A}(\sigma)$. Let G be the submatrix of σ at columns $q_{1}<q_{2}<\ldots<q_{k-1}<t<t+1<\ldots<q_{k}$ and rows $p_{1}<p_{2}<\ldots<$ $p_{k-1}>\sigma_{t}>\sigma_{t+1}>\ldots>p_{k}$. Replace G with $\gamma(G)$ and leave all the other rows and columns fixed.

Case 4. Otherwise, we have $p_{k-1}=\sigma_{q_{k-1}}<\sigma_{q_{k-1}+1}<\ldots<\sigma_{t-1}>\sigma_{t}>\sigma_{t+1}>$ $\ldots>\sigma_{q_{k}}=p_{k}$ for some t with $q_{k-1}<t \leqslant q_{k}$. Let G be the submatrix of σ at columns $q_{1}<q_{2}<\ldots<q_{k-2}<q_{k-1}<t<t+1<\ldots<q_{k}$ and rows $p_{1}<p_{2}<\ldots<p_{k-2}<p_{k-1}>\sigma_{t}>\sigma_{t+1}>\ldots>p_{k}$. Replace G with $\gamma(G)$ and leave all the other rows and columns fixed.

Remark 3.10. In Case 2, the selection of $\left(p_{k}, q_{k}\right)$ ensures that $p_{k}<\sigma_{q_{k}+1}$. If not, the the 1's positioned at $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k-1}, q_{k-1}\right),\left(\sigma_{q_{k}+1}, q_{k}+1\right)$ would form an F_{k}, which contradicts the selection of $\left(p_{k}, q_{k}\right)$. In Case 3, the existence of such s and the hypothesis that there is no H_{k} above row p_{k} ensure that $p_{k-1}>\sigma_{t}$. If not, then the 1's positioned at $\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right), \ldots,\left(p_{k-1}, q_{k-1}\right),\left(\sigma_{t}, t\right)$ would form an H_{k} above row p_{k} in σ. In Case 4 , the hypothesis that there is no Q_{k} above row p_{k} ensures that $p_{k-1}>\sigma_{t}$. If not, then the 1 's positioned at $\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right), \ldots,\left(p_{k-1}, q_{k-1}\right),\left(\sigma_{t-1}, t-1\right),\left(\sigma_{t}, t\right)$ would form a Q_{k} above row p_{k} in σ.

Remark 3.11. We denote the resulting permutation in Case 1, Case 2, Case 3 and Case 4 by $\psi_{1}(\sigma), \psi_{2}(\sigma), \psi_{3}(\sigma)$ and $\psi_{4}(\sigma)$, respectively.

It is obvious that the transformation ψ changes every occurrence of F_{k} to an occurrence of H_{k} (or Q_{k}). Denote by Ψ the iterated transformation, that recursively transforms every occurrence of F_{k} into H_{k} (or Q_{k}).

Using the notation of the algorithm for ψ_{1}, we label the squares containing $1^{\prime} s$ in G by $b_{1}, b_{2}, \ldots, b_{k}$, and the squares containing $1^{\prime} s$ in $\theta^{-1}(G)$ by $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}$, from left to right, see Figure 4 for example.

Using the notation of the algorithm for ψ_{2}, we label the squares containing 1^{\prime} 's in G by $b_{1}, b_{2}, \ldots, b_{k-1}, b_{k}, d_{1}, d_{2}, \ldots, d_{t-q_{k}}$, and the squares containing $1^{\prime} s$ in $\delta(G)$ by $a_{1}, a_{2}, \ldots, a_{k-1}, c_{1}, c_{2}, \ldots, c_{t-q_{k}}, a_{k}$, from left to right, see Figure 2 for example.

Using the notation of the algorithm for ψ_{3}, we label the squares containing 1^{\prime} 's in G by $b_{1}, b_{2}, \ldots, b_{k-1}, f_{1}, f_{2}, \ldots, f_{q_{k}-t}, b_{k}$, and the squares containing $1^{\prime} s$ in $\gamma(G)$ by $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}, e_{1}, e_{2}, \ldots, e_{q_{k}-t}$, from left to right. We also label the minimum entry of the block to which f_{1} belongs by c_{1}, see Figure 3 for example.

Using the notation of the algorithm for ψ_{4}, we label the squares containing 1^{\prime} 's in G by $b_{1}, b_{2}, \ldots, b_{k-1}, f_{1}, f_{2}, \ldots, f_{q_{k}-t}, b_{k}$, and the squares containing $1^{\prime} s$ in $\gamma(G)$ by $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}, e_{1}, e_{2}, \ldots, e_{q_{k}-t}$, from left to right, see Figure 5 for example.

In $\psi_{2}(\sigma)$ and $\psi_{3}(\sigma)$, let E_{1} be the same board defined in $\phi_{1}(\pi)$ and $\phi_{2}(\pi)$. Similarly, in $\psi_{1}(\sigma)$ and $\psi_{4}(\sigma)$, let E_{2} be the same board defined in $\phi_{3}(\pi)$ and $\phi_{4}(\pi)$. From the selection of $b_{i}^{\prime} s$ and the hypothesis that there is no H_{k} above a_{1}, it follows that there are no $1^{\prime} s$ inside E_{1} (or E_{2}). In other words, all the 1's are to the left or to the right of E_{1} (or E_{2}) in $\psi(\pi)$.

Now we proceed to prove that the transformation ψ have the following properties, which are essential in the proof of Theorem 1.5.

Lemma 3.12. If there is no H_{k} or Q_{k} above a_{1} in σ, then we have $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$.
Proof. Since there are no $1^{\prime} s$ inside E_{1} (or E_{2}) and no H_{k} or Q_{k} above a_{1}, one can easily verify that $\mathcal{D}(\pi)=\mathcal{D}(\psi(\sigma))$. The details are omitted here.

Properties

(1') For any $1 \leqslant i<j \leqslant k-1$, the rectangle with corners a_{i} and a_{j} cannot contain a J_{j-i} with all its $1^{\prime} s$ strictly to the right of $E_{1}\left(\right.$ or $\left.E_{2}\right)$ in $\psi(\sigma)$.
(2') For any $1 \leqslant i \leqslant k-2$, the rectangle with corners a_{i} and a_{k} cannot contain a J_{k-i-1} with all its 1 's strictly to the right of E_{2} in $\psi_{1}(\sigma)$ (or $\psi_{4}(\sigma)$).

Proof.
(1^{\prime}) If there is a J_{j-i} in this region, then $b_{1}, b_{2}, \ldots, b_{i-1}$, combining with this J_{j-i} and $b_{j}, b_{j+1}, b_{j+2}, \ldots, b_{k}$, will form an F_{k} in σ, which contradicts the selection of b_{j-1}.
(2') If there is a J_{k-1-i} in this region, then the rightmost 1 of this J_{k-1-i} is to the left of b_{k-1} since all the 1's lying between b_{k-1} and a_{k} are to the left of E_{2}. Clearly, the rightmost 1 of this J_{k-1-i} is below b_{k-2}. So $b_{1}, b_{2}, \ldots, b_{i-1}$, combining with this J_{k-1-i} and b_{k-1}, b_{k}, will form an F_{k} in σ, which contradicts the selection of b_{k-2}.

Lemma 3.13. $\psi(\sigma)$ contains no F_{k} with at least one square in a row below a_{1}.
Proof. If not, suppose H is such an F_{k} in $\psi(\sigma)$. Label the squares containing the 1's of H by $h_{1}, h_{2}, \ldots, h_{k}$ from left to right. Then h_{k} is below a_{1}. As in the proof of Lemma 3.5, we shall replace some 1's of H (except h_{k}) to form an F_{k} in π, which contradicts the selection of b_{k}.

By the selection of b_{k}, we have that h_{k} must be at the left side of b_{k-1}. From the construction of $\psi(\sigma)$, at least one of $a_{1}, a_{2}, \ldots, a_{k-2}$ must fall in H. Otherwise, H is also an F_{k} in σ, which contradicts the selection of b_{k}.

Find the least i such that a_{i} falls in H.
Vertical slide algorithm for ψ : If there is a 1 of H which is above a_{i} and to the left of E, find the leftmost square containing such a 1 and denote it by h_{y}. find x such that h_{y} is to the right of a_{x} and to the left of a_{x+1}. Then by property (1^{\prime}), there are at most $x+1-i$ $1^{\prime} s$ in H that are below a_{x+1} but not below a_{i}, and to the right of E_{1} (or E_{2}). So we can replace these $1^{\prime} s$ by $a_{i}, a_{i+1}, \ldots, a_{x}$, and hence by those positioned at $b_{i}, b_{i+1}, \ldots, b_{x}$.

We can repeat the vertical slide algorithm until one of the following two cases appears.
(1) There is no a_{i} that falls in H. This ends the proof.
(2) There is such an a_{i}, but h_{y} does not exist. Then suppose a_{v} is the first square to the right of h_{k}. By property (1^{\prime}), there are at most $v-i 1^{\prime} s$ in H that are below and to the left of a_{v}, but not below a_{i}, and to the right of E_{1} (or E_{2}). So we can replace these 1's by $a_{i}, a_{i+1}, \ldots, a_{v-1}$, and hence by $b_{i}, b_{i+1}, \ldots, b_{v-1}$. Then we have an F_{k} in σ with a square h_{k} below a_{1}.

Lemma 3.14. If σ contains no H_{k} or Q_{k} that is above a_{1}, neither does $\psi(\sigma)$.
In order to prove Lemma 3.14, we need the following two lemmas.
Lemma 3.15. Suppose that G is an H_{k} above a_{1} in $\psi(\sigma)$. Label the squares containing the 1^{\prime} s of G by $g_{1}, g_{2}, \ldots, g_{k}$, from left to right. If σ contains no H_{k} or Q_{k} that is above a_{1}, then the squares g_{k} and g_{k-1} are also filled with 1 's in σ.

Lemma 3.16. Suppose that H is a Q_{k} above a_{1} in $\psi(\sigma)$, in which the last two 1's lie in two consecutive columns. Label the squares containing the 1's of H by $h_{1}, h_{2}, \ldots, h_{k}$, from left to right. If σ contains no H_{k} or Q_{k} that is above a_{1}, then the squares h_{k} and h_{k-1} are also filled with 1 's in σ.

Before we prove Lemmas 3.15 and 3.16, we introduce the following horizontal slide algorithm for ψ.

Suppose H is a J_{k} in $\psi(\sigma)$. Label the squares containing the $1^{\prime} s$ of H by $h_{1}, h_{2}, \ldots, h_{k}$ from left to right.
Horizontal slide algorithm for ψ_{2} (or ψ_{3}): Find the largest i such that a_{i} falls in H with $i \leqslant k-1$. If there is a 1 of H which is below a_{i} to the left of E_{1}, find the rightmost squares containing such a 1 and denote it by h_{y}. Find x such that h_{y} is below a_{x}, and above a_{x-1}. Then by property (1^{\prime}), there are $i-x+11^{\prime} s$ in H that are above a_{x-1} but not above a_{i}, and to the right of E_{1}. So we can replace these $1^{\prime} s$ by $a_{x}, a_{x+1}, \ldots, a_{i}$, and hence by $b_{x-1}, b_{x}, \ldots, b_{i-1}$.

We can repeat this horizontal slide algorithm until one of the following two cases appears.
(1) There is no a_{i} that falls in H.
(2) There is such an a_{i}, but h_{y} does not exist. Find x such that h_{1} is below a_{x+1} and above a_{x}. Then by property (1^{\prime}), there are $i-x 1^{\prime} s$ in H that are above a_{x} but not above a_{i}. So we can replace these $1^{\prime} s$ by $a_{x+1}, a_{x+2}, \ldots, a_{i}$, and hence by $b_{x}, b_{x+1}, \ldots, b_{i-1}$.

Horizontal slide algorithm for $\psi_{1}\left(\right.$ or ψ_{4}). Find the largest i such that a_{i} falls in H with $i \leqslant k-2$ or $i=k$. If there is a 1 of H which is below a_{i} to the left of E_{2}, find the rightmost square containing such a 1 and denote it by h_{y}. Find x such that h_{y} is below a_{x}, and above a_{x-1}. If $i \leqslant k-2$, then by property $\left(1^{\prime}\right)$, there are $i-x+11^{\prime} s$ in H that are above a_{x-1} but not above a_{i}, and to the right of E_{2}. So we can replace these $1^{\prime} s$ by those positioned at $a_{x}, a_{x+1}, \ldots, a_{i}$, and hence by $b_{x-1}, b_{x}, \ldots, b_{i-1}$. If $i=k$, then by property $\left(2^{\prime}\right)$, there are $k-x 1^{\prime} s$ in H that are above a_{x-1} but not above a_{k}, and to the right of E_{2}. So we can replace these $1^{\prime} s$ by $a_{x}, a_{x+1}, \ldots, a_{k-2}, a_{k}$, and hence by $b_{x-1}, b_{x}, \ldots, b_{k-2}$.

We can repeat this horizontal slide algorithm until one of the following two cases appears.
(1) There is no a_{i} that falls in H.
(2) There is such an a_{i}, but h_{y} does not exist. Find x such that h_{1} is below a_{x+1} and above a_{x}. If $i<k-2$, then by property (1^{\prime}), there are $i-x 1^{\prime} s$ in H that are above a_{x} but not above a_{i}. So we can replace these $1^{\prime} s$ by $a_{x+1}, a_{x+2}, \ldots, a_{i}$, and hence by $b_{x}, b_{x+1}, \ldots, b_{i-1}$. If $i=k$, then by property (2^{\prime}), there are $k-1-x 1^{\prime} s$ in H that are above a_{x} but not above a_{k}. So we can replace these 1's by $a_{x+1}, a_{x+2}, \ldots, a_{k-2}, a_{k}$, and hence by $b_{x}, b_{x+1}, \ldots, b_{k-2}$.

The proof of Lemma 3.15. Here we only prove the assertion for $\psi_{2}(\sigma)$ and $\psi_{4}(\sigma)$. The other cases can be verified by similar arguments. In order to prove the assertion, it suffices to show that neither g_{k} nor g_{k-1} will be any of the $a_{i}^{\prime} s$ and $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$, and be any of the $a_{i}^{\prime} s$ for $i=1,2, \ldots, k-2, k$ and $e_{i}^{\prime} s$ in $\psi_{4}(\sigma)$.

We claim there is no J_{k-1} which is below b_{k-1} but above a_{1}, and not to the right of b_{k} in $\psi_{2}(\sigma)$ (or $\left.\psi_{4}(\sigma)\right)$. If not, suppose that R is such a J_{k-1}. When J_{k-1} is in $\psi_{2}(G)$, we can get a J_{k-1} from R by repeating the horizontal slide algorithm for ψ_{2}. When J_{k-1} is in $\psi_{4}(G)$, we can get a J_{k-1} from R by repeating the horizontal slide algorithm for ψ_{4} and replacing any e_{i} by f_{i} whenever e_{i} fall in R. In both cases, the obtained J_{k-1} is below b_{k-1} but above a_{1}, and to the left of b_{k}. Then Then this J_{k-1} combining with b_{k} will form an F_{k} in σ, which contradicts the selection of b_{k-1}. Hence, the claim is proved.

From the claim, it follows that neither g_{k} nor g_{k-1} will be any of the $a_{i}^{\prime} s$ in $\psi_{2}(\sigma)$ for $i \leqslant k-1$. In order to prove the assertion for $\psi_{2}(\sigma)$, it remains to show that neither g_{k} or g_{k-1} will be any of a_{k} and $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$. Clearly, g_{k-1} cannot be a_{k} since there is no $1^{\prime} s$ above and to the right of a_{k}.
(1) If g_{k} is either a_{k} or one of $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$, then $g_{1}, g_{2}, \ldots, g_{k-1}$ form a J_{k-1} which is to the left of b_{k} and below b_{k-1} in $\phi_{2}(\sigma)$ since $c_{1}, c_{2}, \ldots, c_{t-q_{k}}, a_{k}$ lie in consecutive columns and form a $J_{t-q_{k}+1}$. This contradicts the claim proved above.
(2) If g_{k-1} is one of $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$, then g_{k} is to the right of a_{k} since $c_{1}, c_{2}, \ldots, c_{t-q_{k}}, a_{k}$ lie in consecutive columns and form a $J_{t-q_{k}+1}$. By repeating the horizontal slide algorithm for ψ_{2} and replacing any c_{i} falling in G by d_{i}, we can get a J_{k} above a_{1} in σ from G. Notice that if $g_{k-1}=c_{j}$, then the rightmost two $1^{\prime} s$ of the obtained J_{k} are g_{k} and d_{j}. Recall that a_{k} is positioned at column t. Since σ contains no H_{k} or Q_{k}
that is above a_{1}, we have $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$ by Lemma 3.12. The fact that $t \in \mathcal{D}(\sigma)$ ensures that $t \in \mathcal{D}(\psi(\sigma))$. Thus, the obtained J_{k} is an H_{k}. This contradicts the fact that there contains no H_{k} above a_{1} in σ.

Hence, we have concluded that the assertion holds for $\psi_{2}(\sigma)$.
From the claim that is no J_{k-1} which is below b_{k-1} but above a_{1}, and not to the right of b_{k} in $\psi_{4}(\sigma)$, it follows that neither g_{k} nor g_{k-1} will be any of the $a_{i}^{\prime} s$ for $i=1,2, \ldots, k-2, k$ and $e_{i}^{\prime} s$ in $\psi_{1}(\sigma)$. Hence, we deduce that the assertion also holds for $\psi_{4}(\sigma)$, which completes the proof.
The proof of Lemma 3.16. Here we only prove the assertion for $\psi_{2}(\sigma)$ and $\psi_{4}(\sigma)$. The other cases can be verified by similar arguments. In order to prove the assertion, it suffices to show that neither h_{k} nor h_{k-1} will be any of the $a_{i}^{\prime} s$ and $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$, and be any of the $a_{i}^{\prime} s$ for $i=1,2, \ldots, k-2, k$ and $e_{i}^{\prime} s$ in $\psi_{4}(\sigma)$.

Recall that we have proved the claim in the proof of Lemma 3.15 that there is no J_{k-1} which is below b_{k-1} but above a_{1}, and not to the right of b_{k} in $\psi_{4}(\sigma)$. It follows that neither h_{k} nor h_{k-1} will be any of the $a_{i}^{\prime} s$ for $i=1,2, \ldots, k-2, k$ and $e_{i}^{\prime} s$ in $\psi_{4}(\sigma)$. Thus, the assertion holds for $\psi_{4}(\sigma)$.

Similarly, from the claim proved in the proof of Lemma 3.15, it follows that neither h_{k} nor h_{k-1} will be any of the $a_{i}^{\prime} s$ for $i=1,2, \ldots, k-1$ in $\psi_{2}(\sigma)$. In order to prove the assertion for $\psi_{2}(\sigma)$, it remains to verify that neither h_{k} nor h_{k-1} will be any of a_{k} and $c_{i}^{\prime} s$ in $\psi_{2}(\sigma)$. Recall that $c_{1}, c_{2}, \ldots, c_{q_{k}-t}, a_{k}$ lie in consecutive columns and form a $J_{q_{k}-t+1}$ in $\psi_{1}(\sigma)$. It implies that if h_{k} or h_{k-1} is one of $c_{1}, c_{2}, \ldots, c_{q_{k}-t}, a_{k}$, then we have either $h_{k-1}=a_{k}$ or $h_{k}=c_{1}$.

In the former case, we can get a J_{k-1} above a_{1} in σ from the J_{k-1} consisting of $h_{1}, h_{2}, \ldots, h_{k-2}, h_{k}$, by repeating the horizontal slide algorithm for ψ_{2} and replacing any c_{i} by d_{i}. Since σ contains no H_{k} or Q_{k} above a_{1}, we have $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$ by Lemma 3.12. Recall that a_{k} is above h_{k}. From the equality $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$, it follows that $d_{t-q_{k}}$ is above h_{k}. Notice that the rightmost 1 of the obtained J_{k-1} is h_{k}. Thus, this J_{k-1}, combining with $d_{t-q_{k}}$, will form a Q_{k} above a_{1} in σ, which contradicts the hypothesis that σ contains no Q_{k} above a_{1}.

In the latter case, h_{k-2} is not above a_{k-1} since c_{1} is below $a_{k}\left(\right.$ and $\left.b_{k-1}\right)$ and there is no $1^{\prime} s$ inside E_{1}. If h_{k-2} is to the left of a_{k-1} (and b_{k-1}), then by repeating the horizontal slide algorithm, we can obtain a J_{k-2} above a_{1} in σ from the J_{k-2} consisting of $h_{1}, h_{2}, \ldots, h_{k-2}$. Notice that the rightmost 1 of the resulting J_{k-2} is below b_{k-2} and to the left of b_{k-1}. Then, this J_{k-2}, combining with b_{k-1} and b_{k}, will form an F_{k} in σ. This contradicts the selection of b_{k-2}.

Now suppose that h_{k-2} is either equal to a_{k-1} or is at the right of a_{k-1} (and b_{k-1}), then by the claim obtained in the proof of Lemma 3.15, h_{k-1} is above b_{k-1} and to the left of E_{1}. If $h_{k-2} \neq a_{k-1}$, then $b_{1}, b_{2}, \ldots, b_{k-1}, h_{k-1}$ form an H_{k} above a_{1} in σ, which contradicts the hypothesis. If $h_{k-2}=a_{k-1}$, then we have c_{1} is above b_{k-2} (and a_{k-1}). Thus, according to the definition of ψ_{2}, there must exists s such that $s \in \mathcal{D}(\sigma)$ and $q_{k-1} \leqslant s<q_{k}-1$. Recall that c_{1} and h_{k-1} lie in columns q_{k} and q_{k-1}, respectively. From the equality $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$, it follows that $b_{1}, b_{2}, \ldots, b_{k-1}, h_{k-1}$ form an H_{k} above a_{1}
in σ, which contradicts the hypothesis. Hence, we have concluded that the assertion also holds for $\psi_{2}(\sigma)$.
The proof of Lemma 3.14. If not, suppose that G is an H_{k} above a_{1} in $\psi(\sigma)$. Label the $1^{\prime} s$ in G by $g_{1}, g_{2}, \ldots, g_{k}$, from left to right. Moreover, let H be a Q_{k} above a_{1} in $\psi(\sigma)$ such that the rightmost two $1^{\prime} s$ lie in two consecutive columns. We label its 1 's in H by $h_{1}, h_{2}, \ldots, h_{k}$. According to the definition of Q_{k}, there is a Q_{k} above a_{1} in $\psi(\sigma)$ if and only if there exists such an H.

We wish to replace some $1^{\prime} s$ of G (resp. H) to form an H_{k} (resp. Q_{k}) above a_{1} in σ, which contradicts the hypothesis that there is no H_{k} (resp. Q_{k}) above a_{1} in σ. Here we only consider the case when G (resp. H) is in $\psi_{2}(\sigma)$. The other cases can be verified by the similar arguments. Since the map ψ_{2} does not change the positions of any other $1^{\prime} s$, one of $a_{i}^{\prime} s$ and $c_{i}^{\prime} s$ must fall in G (resp. H).

We can get a J_{k-2} above a_{1} in σ from the J_{k-2} consisting of $g_{1}, g_{2}, \ldots, g_{k-2}$ (resp, $h_{1}, h_{2}, \ldots, h_{k-2}$), by repeating the horizontal slide algorithm and replacing each c_{j} by d_{j} whenever c_{j} falls in G (resp. H). From Lemmas 3.15 and 3.16, it follows that the squares g_{k} and g_{k-1} (resp. h_{k} and h_{k-1}) are also filled with $1^{\prime} s$ in σ. Hence, the obtained J_{k-2} combining with g_{k} and g_{k-1} (resp. h_{k} and h_{k-1}) will form a J_{k} (resp, G_{k}) in σ. Since h_{k-1} and h_{k} lie in two consecutive columns, the obtained G_{k} is a Q_{k}. Recall that $\mathcal{D}(\pi)=\mathcal{D}(\psi(\sigma))$ and the $1^{\prime} s$ positioned at g_{k-1} and g_{k} belong to two different blocks of $\psi(\sigma)$. This yields that the $1^{\prime} s$ positioned at g_{k-1} and g_{k} also belong to two different blocks of π. Thus, the obtained J_{k} is an H_{k}. This completes the proof.

Lemma 3.17. If σ contains no H_{k} or Q_{k} that is above a_{1}, then
(1) there exists no 1 that is above and to the left of a_{k} such that this 1 , combining with $a_{1}, a_{2}, \ldots, a_{k-1}$, forms an H_{k} in $\psi(\sigma)$;
(2) there exists no 1 that is to the left of a_{k} in $\psi_{1}(\sigma)$ (or $\left.\psi_{4}(\sigma)\right)$, such that this 1, combining with $a_{1}, a_{2}, \ldots, a_{k-1}$, forms a Q_{k} in $\psi_{1}(\sigma)\left(\right.$ or $\left.\psi_{4}(\sigma)\right)$;
(3) for $1 \leqslant t \leqslant k-2$, the board that is above and to the right of a_{t} cannot contain an H_{k-t} or Q_{k-t} in $\psi(\sigma)$ such that the lowest 1 of this H_{k-t} or Q_{k-t} is to the left of a_{t+1}, and this H_{k-t} or Q_{k-t}, combining with $a_{1}, a_{2}, \ldots, a_{t}$, forms an H_{k} or Q_{k} in $\psi(\sigma)$.

Proof. (1) Since σ contains no H_{k} or Q_{k} that is above a_{1}, we have $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$ by Lemma 3.12. If there is such a 1 , then this 1 , combining with $b_{1}, b_{2}, \ldots, b_{k-1}$, forms an H_{k} in σ since $\mathcal{D}(\sigma)=\mathcal{D}(\psi(\sigma))$. This contradicts the hypothesis that there is no H_{k} above a_{1} in σ.
(2) The result follows immediately from the fact that there is no $1^{\prime} s$ below and to the right of $b_{k-1}\left(\right.$ and $\left.a_{k-1}\right)$, and the left of a_{k}.
(3) If not, suppose that G is such an H_{k-t} (or Q_{k-t}) in $\psi(T)$. Label its 1's by $g_{t+1}, g_{t+2}, \ldots, g_{k}$, from left to right. By hypothesis, g_{t+1} is to the left of a_{t+1}. By the same reasoning as in the proof of Lemmas 3.15 and 3.16 , one can verify that both the
squares g_{k} and g_{k-1} are also filled with $1^{\prime} s$ in σ. This ensures that by repeating the horizontal slide algorithm and replacing each c_{j} (resp. e_{j}) by d_{j} (resp. f_{j}) in $\psi_{2}(\sigma)$ (resp. $\psi_{3}(\pi)$ and $\psi_{4}(\pi)$), we can get an H_{k-t} (or Q_{k-t}) in σ, in which g_{t+1} is leftmost 1. This H_{k-t} (or Q_{k-t}), combining with $b_{1}, b_{2}, \ldots, b_{t}$, forms an H_{k} (or Q_{k}) in σ, which is above a_{1}. This contradicts the hypothesis that there is no H_{k} or Q_{k} above a_{1}. This completes the proof.

3.3 Correctness of the bijection

First, we aim to show that the map Φ is well defined, that is, after finitely many iterations of ϕ, there will be no occurrences of H_{k} or Q_{k}. Suppose that we start with some $\tau \in$ $\mathcal{S}_{n}\left(F_{k}\right)$. At the t th application of ϕ we select a copy of H_{k} (or Q_{k}) in $\phi^{t-1}(\tau)$. This has its lowest 1 in some row r. By Lemma 3.7, the H_{k} (or Q_{k}) we will select in $\phi^{t}(\tau)$ cannot have its lowest 1 anywhere above row r. If it is in row r, then we know it is further to the right than at the previous iteration, because there is only one 1 in that row, and we have just moved it to the right,from a_{1} to b_{k}. It follows that each iteration the selection of a_{1} can only go down or slide right, and therefore the map Φ is well defined.

Next we aim to show that $\mathcal{D}(\tau)=\mathcal{D}(\Phi(\tau))$. We prove by induction on t. Suppose that for any $j<t$, we have $\mathcal{D}\left(\phi^{j-1}(\tau)\right)=\mathcal{D}\left(\phi^{j}(\tau)\right)$. We wish to show that $\mathcal{D}\left(\phi^{t-1}(\tau)\right)=$ $\mathcal{D}\left(\phi^{t}(\tau)\right)$. At the t th application of ϕ we select a copy of H_{k} (or Q_{k}) in $\phi^{t-1}(\tau)$. This has its lowest 1 in some row a_{1}. Recall that we have shown that each iteration the selection of lowest square of the selected H_{k} (or Q_{k}) can only go down or slide right. By Lemma 3.5, there is no F_{k} with at least one square below a_{1} in $\phi^{t-1}(\tau)$. From Lemma 3.4, it follow that $\mathcal{D}\left(\phi^{t-1}(\tau)\right)=\mathcal{D}\left(\phi^{t}(\tau)\right)$.

Now we proceed to show that the map Ψ is the inverse of the map Φ. To this end, it suffices to show that $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$. For our convenience, let $\pi=\phi^{t-1}(\tau)$ and $\sigma=\phi^{t}(\tau)$. Suppose that at the t th application of ϕ we select a copy of H_{k} (or Q_{k}) in π, in which the $1^{\prime} s$ are positioned in the squares $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)$, from left to right. We have four cases.

Case 1. The selected 1's form a copy of H_{k}, and $\pi_{q_{k}-1}>\pi_{q_{k}+1}$ or $q_{k}=n$. In this case, find the largest s such that $q_{k-1}<s<q_{k}$ and $s-1 \in \mathcal{D}(\pi)$. By the construction of the transformation ϕ, the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, s\right),\left(\pi_{s}, s+\right.$ $1), \ldots,\left(\pi_{q_{k}-1}, q_{k}\right)$ are filled with $1^{\prime} s$ in σ, and all the other rows and columns are the same as π. Note that the 1 's positioned at the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, s\right)$ form an F_{k} in σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we selected are just $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, s\right)$. By Lemma 3.7, there is no H_{k} or Q_{k} above row p_{1}. This implies that $\psi(\sigma)$ is well defined. Suppose that $\sigma=\left\{\left(\sigma_{1}, 1\right),\left(\sigma_{2}, 2\right), \ldots,\left(\sigma_{n}, n\right)\right\}$. Clearly, we have $\sigma_{q_{i}}=p_{i+1}$ for $i=1,2, \ldots, k-1$, $\sigma_{s}=p_{1}$ and $\sigma_{j}=\pi_{j-1}$ for $j=s+1, s+2, \ldots, q_{k}$.

We claim that $\sigma_{s-1}>\sigma_{s+1}$. If $s-1 \neq q_{k-1}$, then we have $\sigma_{s-1}=\pi_{s-1}$. Since $s-1 \in \mathcal{D}(\pi)$, we have $\pi_{s-1}>\pi_{s}$. In this case, we have $\sigma_{s-1}=\pi_{s-1}>\pi_{s}=\sigma_{s+1}$. If $s-1=q_{k-1}$, then we have $\sigma_{s-1}=p_{k}$. Recall that we have $\pi_{s}<\pi_{s+1}<\ldots<p_{k}$. This implies that $\sigma_{s-1}=p_{k}>\pi_{s}=\sigma_{s+1}$. Hence, we have concluded that $\sigma_{s-1}>\sigma_{s+1}$.

We claim that if $\sigma_{q_{k-1}}<\sigma_{q_{k-1}+1}<\ldots<\sigma_{s-1}>\sigma_{s}$, then we have $\sigma_{q_{k-2}}>\sigma_{s+1}$. If not, since $\sigma_{q_{k-2}}=p_{k-1}=\pi_{q_{k-1}}$ and $s-1 \in \mathcal{D}(\pi)$, we have $s-1 \neq q_{k-1}$. Then the $1^{\prime} s$ positioned at the squares $\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right), \ldots,\left(p_{k-1}, q_{k-1}\right),\left(\pi_{s-1}, s-1\right),\left(\pi_{s}, s\right)$ will form a Q_{k} above row p_{1} in π, which contradicts the selection of $\left(p_{1}, q_{1}\right)$. Hence the claim is proved.

Then, according to the definition of map ψ, we have $\psi(\sigma)=\psi_{2}(\sigma)$. Since we have $\mathcal{D}(\pi)=\mathcal{D}(\sigma)$ and $\pi_{s}<\pi_{s+1}<\ldots<p_{k}$, we have $\sigma_{s}<\sigma_{s+1}<\ldots<\sigma_{q_{k}}$. Recall that there are no $1^{\prime} s$ inside E_{1}, we have either $q_{k}=n$ or $q_{k} \in \mathcal{D}(\pi)$. This yields that we have either $q_{k}=n$ or $q_{k} \in \mathcal{D}(\phi(\pi))$ Hence, when we apply the the map ψ_{2} to σ, q_{k} is the largest integer m such that $m>s$ and $m \in \mathcal{D}(\sigma)$ or $m=n$. Thus, it is easily seen that $\psi_{2}(\sigma)=\pi$, that is, $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$.

Case 2. The selected 1's form a copy of H_{k} and $\pi_{q_{k}-1}<\pi_{q_{k}+1}$. In this case, find the least t such that $t>q_{k}$ and $t \in \mathcal{A}(\pi)$ or $t=n$. By the construction of the map ϕ, the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(\pi_{q_{k}+1}, q_{k}\right),\left(\pi_{q_{k}+2}, q_{k}+1\right), \ldots,\left(\pi_{t}, t-1\right)\left(p_{1}, t\right)$ are filled with 1 's in σ, and all the other rows and columns are the same as π. Note that the $1^{\prime} s$ positioned at the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, t\right)$ form an F_{k} in σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we selected are just $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, t\right)$. By Lemma 3.7, there is no H_{k} or Q_{k} above row p_{1}. This implies that $\psi(\sigma)$ is well defined. Clearly, we have $\sigma_{q_{i}}=p_{i+1}$ for $i=1,2, \ldots, k-1$, $\sigma_{t}=p_{1}$ and $\sigma_{j}=\pi_{j+1}$ for $j=q_{k}, q_{k}+1, \ldots, t-1$.

Since $t \in \mathcal{A}(\pi)$ or $t=n$, we have $\pi_{t}<\pi_{t+1}$ or $t=n$. This implies that $\sigma_{t-1}=\pi_{t}<$ $\pi_{t+1}=\sigma_{t+1}$ or $t=n$. By Remark 3.1, we see that there exits an s such that $s-1 \in \mathcal{D}(\pi)$ and $q_{k-1}<s<q_{k}$. This implies that $\pi_{s-1}>\pi_{s}<\pi_{s+1}$. Since $\mathcal{D}(\pi)=\mathcal{D}(\sigma)$, we have $\sigma_{s-1}>\sigma_{s}<\sigma_{s+1}$ and $p_{k-1}<s<q_{k}<t$. Then, according to the definition of map ψ, we have $\psi(\sigma)=\psi_{3}(\sigma)$. When we apply the the map ψ_{3} to σ, since we have $\mathcal{D}(\pi)=\mathcal{D}(\sigma)$ and $\pi_{q_{k}-1}<\pi_{q_{k}}>\pi_{q_{k}+1}>\ldots>\pi_{t}, q_{k}$ is the largest integer m such that $m-1 \in \mathcal{A}(\sigma)$ and $q_{k-1}<m \leqslant t$. Thus, it is easily seen that $\psi_{3}(\sigma)=\pi$, that is, $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$.

Case 3. The selected 1's form a copy of Q_{k} and $q_{k} \in \mathcal{A}(\pi)$. By the construction of the map ϕ, the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-2}\right),\left(p_{1}, q_{k}\right)$ are filled with $1^{\prime} s$ in σ, and all the other rows and columns are the same as π. Note that the 1's positioned at the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-2}\right),\left(p_{1}, q_{k}\right)$ form an F_{k} in σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we selected are just $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots$, $\left(p_{k}, q_{k-2}\right),\left(p_{1}, q_{k}\right)$. By Lemma 3.7, there is no H_{k} or Q_{k} above row p_{1}. This implies that $\psi(\sigma)$ is well defined. Clearly, we have $\sigma_{q_{i}}=p_{i+1}$ for $i=1,2, \ldots, k-3, \sigma_{q_{k-2}}=p_{k}$ and $\sigma_{q_{k}}=p_{1}$.

According to the definition of Q_{k}, we have $\pi_{q_{k-1}}<\pi_{q_{k-1}+1}<\ldots<\pi_{q_{k}-1}>\pi_{q_{k}}$. Moreover, we have $\sigma_{j}=\pi_{j}$ for $j=q_{k-1}, q_{k-1}+1, \ldots, q_{k}-1$. Thus, we have $\sigma_{q_{k-1}}<$ $\sigma_{q_{k-1}+1}<\ldots<\sigma_{q_{k}-1}>p_{1}=\sigma_{q_{k}}$ and $\sigma_{q_{k-2}}=p_{k}=\pi_{q_{k}}<\pi_{q_{k}+1}=\sigma_{q_{k}+1}$. Then, according to the definition of map ψ, we have $\psi(\sigma)=\psi_{1}(\sigma)$. Thus, it is easily seen that $\psi_{1}(\sigma)=\pi$, that is, $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$.

Case 4. The selected 1's form a copy of Q_{k}, and $\pi_{q_{k}}>\pi_{q_{k}+1}$ or $q_{k}=n$. In this case, let t be the least such that $t>q_{k}$ and $t \in \mathcal{A}(\pi)$ or $t=n$. By the construction of the map ϕ, the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-2}\right),\left(\pi_{q_{k}+1}, q_{k}\right),\left(\pi_{q_{k}+2}, q_{k}+1\right), \ldots,\left(\pi_{t}, t-1\right)\left(p_{1}, t\right)$ are filled with $1^{\prime} s$ in σ, and all the other rows and columns are the same as π. Note
that the 1 's positioned at the squares $\left(p_{2}, q_{1}\right)\left(p_{3}, q_{2}\right), \ldots,\left(p_{k}, q_{k-2}\right),\left(p_{1}, t\right)$ form an F_{k} in σ. Lemmas 3.5 and 3.6 ensure that when we apply the map ψ to σ, the squares we selected are just $\left(q_{2}, p_{1}\right)\left(q_{3}, p_{2}\right), \ldots,\left(p_{k}, q_{k-1}\right),\left(p_{1}, t\right)$. By Lemma 3.7, there is no H_{k} or Q_{k} above row p_{1}. This implies that $\psi(\sigma)$ is well defined. Clearly, we have $\sigma_{q_{i}}=p_{i+1}$ for $i=1,2, \ldots, k-3, \sigma_{q_{k-2}}=p_{k}, \sigma_{t}=p_{1}$ and $\sigma_{j}=\pi_{j+1}$ for $j=q_{k}, q_{k}+1, \ldots, t-1$.

Since $t \in \mathcal{A}(\pi)$ or $t=n$, we have $\pi_{t}<\pi_{t+1}$ or $t=n$. This implies that $\sigma_{t-1}=\pi_{t}<$ $\pi_{t+1}=\sigma_{t+1}$ or $t=n$. According to the definition of Q_{k}, we have $\pi_{q_{k-1}}<\pi_{q_{k-1}+1}<\ldots<$ $\pi_{q_{k}-1}>\pi_{q_{k}}$. Thus, we have $\sigma_{q_{k-1}}<\sigma_{q_{k-1}+1}<\ldots<\sigma_{q_{k}-1}>\sigma_{q_{k}}>\sigma_{q_{k}+1}>\ldots>\sigma_{t}=p_{1}$. Then, according to the definition of $\operatorname{map} \psi$, we have $\psi(\sigma)=\psi_{4}(\sigma)$. Thus, it is easily seen that $\psi_{4}(\sigma)=\pi$, that is, $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$.

So far, we have deduced that $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$.
Now we proceed to to show that the map Ψ is well defined, that is, after finitely many iterations of ψ, there will be no occurrences of F_{k}. Suppose that we start with some $\tau \in \mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$. At the t th application of ψ we select a copy of F_{k} in $\psi^{t-1}(\tau)$. This has its lowest 1 in some row r. By Lemma 3.13, the F_{k} we will select in $\phi^{t}(\tau)$ cannot have its lowest 1 anywhere below row r. If it in row r, then we know it is further to the left than at the previous iteration, because there is only one 1 in that row, and we have just moved it to the left, from b_{k} to a_{1}. It follows that at each iteration the selection of b_{k} can only go up or slide left. Moreover, Lemma 3.14 implies that there is no H_{k} or Q_{k} above b_{k}. Therefore, after finitely many iterations of ψ, there will be no occurrences of F_{k}.

Next we aim to show that $\mathcal{D}(\tau)=\mathcal{D}(\Psi(\tau))$. We prove by induction on t. Suppose that for any $j<t$, we have $\mathcal{D}\left(\psi^{j-1}(\tau)\right)=\mathcal{D}\left(\psi^{j}(\tau)\right)$. We wish to show that $\mathcal{D}\left(\psi^{t-1}(\tau)\right)=$ $\mathcal{D}\left(\psi^{t}(\tau)\right)$. At the t th application of ψ we select a copy of F_{k} in $\psi^{t-1}(\tau)$. This has its lowest 1 in some row b_{k}. Recall that we have shown that each iteration the selection of lowest square of the selected F_{k} can only go up or slide left. By Lemma 3.14, there is no H_{k} or Q_{k} above b_{k} in $\psi^{t-1}(\tau)$. Hence, from Lemma 3.12, it follow that $\mathcal{D}\left(\psi^{t-1}(\tau)\right)=\mathcal{D}\left(\psi^{t}(\tau)\right)$.

By the same reasoning as in the proof of the equality $\psi\left(\phi^{t}(\tau)\right)=\phi^{t-1}(\tau)$, we can prove the equality $\phi\left(\psi^{t}(\tau)\right)=\psi^{t-1}(\tau)$ relying on Lemmas 3.14 and 3.17 , and the equality $\mathcal{D}\left(\psi^{t-1}(\tau)\right)=\mathcal{D}\left(\psi^{t}(\tau)\right)$. The details are omitted here.

So far, we have concluded that the maps Φ and Ψ are well defined and preserve the descent set. Moreover, the map Φ and Ψ are inverses of each other. Thus, the map Φ is the desired bijection between $\mathcal{S}_{n}\left(F_{k}\right)$ and $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$ as claimed in Theorem 1.5.

To conclude this section, we remark that the method presented here seems not so attractive for the purpose of establishing Conjecture 1.1 for all $m>1$. Our proof of Conjecture 1.1 for all $k \geqslant 1$ and $m=1$ relies on the descent set preserving bijection f between the set $\mathcal{S}_{n}\left(G_{k}\right)$ and the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$, and the descent set preserving bijection Φ between the set $\mathcal{S}_{n}\left(F_{k}\right)$ and the set $\mathcal{S}_{n}\left(H_{k}, Q_{k}\right)$. However, it is difficult to figure out whether there exist analogous descent set preserving bijections for the case when $m>1$.

Acknowledgments.

The authors are very grateful to the referee for valuable comments and suggestions which helped to improve the presentation of the paper. This work was supported by Zhejiang Provincial Natural Science Foundation of China (LY14A010009).

References

[1] E. Babson, J. West, and G. Xin. Wilf-equivalence for singleton classes. Adv. Appl. Math., 38:133-148, 2007.
[2] J. Bloom, D. Saracino. On bijections for pattern-avoiding permutations. J. Combin. Theory Ser. A, 116:1271-1284, 2009.
[3] J. Bloom, D. Saracino. Another look at bijections for pattern-avoiding permutations. Adv. Appl. Math., 45:395-409, 2010.
[4] J. Bloom. A refinement of Wilf-equivalence for patterns of length 4. J. Combin. Theory Ser. A, 124:166-177, 2014.
[5] M. Bóna. Combinatorics of Permutations. CRC Press, 2004.
[6] M. Bóna. On a family of conjectures of Joel Lewis on alternating Permutations. Graphs Combin., 30:521-526, 2014.
[7] A. Claesson, S. Kitaev. Classification of bijections between 321-and 132-avoiding permutations. Sém. Lothar. Combin., 60: Art. B60d, 2008/09.
[8] E. Deutsch, A. Robertson, D. Saracino. Refined restricted involutions. European J. Combin., 28:481-498, 2007.
[9] T. Dokos, T. Dwyer, B. P. Johnson, B.E. Sagan, K. Selsor. Permutation patterns and statistics. Discrete Math., 312: 2760-2775, 2012.
[10] S. Elizalde. Fixed points and exceedances in restricted permutations. Electron. J. Combin., 18: P29, 2011.
[11] N. Gowravaram and R. Jagadeesan. Beyond alternating permutations: Pattern avoidance in Young diagrams and tableaux. Electron. J. Combin., 20(4): \#P17, 2013.
[12] S. Kitaev. Patterns in permutations and words. Springer Verlag (EATCS monographs in Theoretical Computer Science book series), 2011.
[13] J. B. Lewis. Generating trees and pattern avoidance in alternating permutations. Electronic J. Combin., 19(1):P21, 2012.
[14] A. Robertson, D. Saracino, D. Zeilberger. Refined restricted permutations. Ann.Comb., 6:427-444, 2002.
[15] J. West. Permutations with forbidden subsequences and stack-sortable permutations. Ph.D. thesis, Massachuetts Institute of Technology, 1990.

[^0]: *Corresponding author.

