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Abstract

The commuting graph C(G, X), where G is a group and X is a subset of G, is
the graph with vertex set X and distinct vertices being joined by an edge whenever
they commute. Here the diameter of C(G, X) is studied when G is a symmetric
group and X a conjugacy class of elements of order 3.
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1 Introduction

Suppose that G is a finite group and X is a subset of G. The commuting graph C(G, X)
is the graph with X as the vertex set and two distinct elements of X being joined by an
edge if they are commuting elements of G. This type of graph has been studied for a
wide variety of groups GG and selection of subsets of G. One of the earliest investigations
occurred in Brauer and Fowler [8] in which X = G\{1}. This particular case has recently
been the subject of further study by Segev [14], [15] and Segev and Seitz [16]. A great
deal of attention has been focussed on the case when X is a conjugacy class of involutions
— the so-called commuting involution graphs. Pioneering work on such graphs appeared
in Fischer [13] which led to the construction of the three Fischer groups. Recently various
properties of other commuting involution graphs have been studied; see, for example, [2],
3], [4], [5], [11] and [12]. When X is a conjugacy class of non-involutions, C(G, X) has to
date received less attention. Never-the-less graphs of this type can be of interest — wit-
ness the computer-free uniqueness proof of the Lyon’s simple group by Aschbacher and
Segev [1] which employed a commuting graph whose vertex set consisted of the 3-central
subgroups of order 3. Also see Baumeister and Stein [7], the results obtained there be-
ing used to describe the structure of Bruck loops and Bol loops of exponent 2. Further,
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commuting graphs when G is a symmetric group have been investigated in Bates, Bundy,
Perkins and Rowley [6] and Bundy[9]. The former paper concentrates on the structure of
discs (around some fixed vertex) and the diameter of the graph while the latter gives a
complete answer as to when C(G, X) is a connected graph.

In the present paper we shall determine the diameters of C(G, X') when G is a symmetric
group and X is a G-conjugacy class of elements of order 3. So for the rest of this paper
we assume G = Sym(Q) = Sym(n) with G acting upon the set Q@ = {1,...,n} in the
usual manner. Also let

t=(1,2,3)(4,5,6)(7,8,9)...(3r — 2,3r — 1,3r).

Thus t has order 3 and cycle type 1"72"3". Set X = t¢, the G-conjugacy class of ¢, and let
Diam (C(G, X)) denote the diameter of the commuting graph C(G, X). Our main results
are as follows.

Theorem 1.1. Ifn > 8r, then Diam (C(G, X)) = 2.
Theorem 1.2. If 6r < n < 8r, then Diam (C(G, X)) = 3.

Our last theorem only gives a bound on Diam (C(G, X)).
Theorem 1.3. Ifr > 1 and n = 6r, then Diam (C(G, X)) < 4.

Consulting Table 1 (or Table 1 of [6]) we see that for r = 1,n =7 or r = 2,n = 15 we
have that Diam (C(G, X)) = 3 and so Theorem 1.1 is sharp. For r = 2 the same table
gives Diam (C(G, X)) = 4 when n = 12 and 2 when n = 16, so Theorems 1.2 and 1.3 are
also sharp. We note that for r = 1 and n = 6, C(G, X) is disconnected which explains the
assumption 7 > 1 in Theorem 1.3. All the graphs we consider here are connected — see
[9]. For g € G, supp(g) denotes the set of points of Q2 not fixed by g. We use d(, ) for the
usual distance metric on the graph C(G, X). For z € X, the " disc, A;(z), is defined as
follows
Aij(x) ={y |y € Xand d(z,y) = i}.

The proofs of Theorems 1.1, 1.2 and 1.3 adopt a similar, somewhat direct, approach.
Since G acting by conjugation upon X induces graph automorphisms on C(G, X) and of
course is transitive on X, it suffices to determine (or bound) d(t, z) for an arbitrary vertex
x of X. This we do by writing down explicit paths in C(G, X).

2 Diameter of C(G, X)

We begin by establishing Theorem 1.1.
Proof of Theorem 1.1
Let z € X. Set A = supp(t) U supp(z) and s = |supp(t) N supp(x)|. Then |[A| = 6r —s. If
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s > r, then |A| < 5r. Hence there exists y € X with supp(t) N supp(y) = 0 = supp(x) N
supp(y) and so d(t,x) < 2. Now consider the case s < r, and set e = r — s. Without
loss of generality we may suppose that supp(t) Nsupp(x) C {1,2,3,...,3s—2,3s—1,3s}.
Put 3 = (3s+ 1,354+ 2,35+ 3)...(3r —2,3r — 1,3r) (so y; is the product of the “last”
r —s = e 3-cycles of t). Since [Q\ A| =8r — (6r —s) = 2r + s > 3s and s < r, we may
select yo with supp(y2) € Q\ A and y, is a product of s pairwise disjoint 3-cycles. So
y =11y € X, ty = yt and zy = yz. Thus d(t,x) < 2. Clearly Diam (C(G, X)) > 2, and
so the theorem follows.

Before proving Theorems 1.2 and 1.3 we introduce some notation and certain permuta-
tions of Sym(2). These permutations, though elements of order 3, are not in general in
X. We will assume that |Q2| > 6r. For z € X, we let {¥;(z)};=1,., denote the orbits of (x)
on € of size 3. So supp(z) = J;_, ¥;(x). Write t = t1to...t, where t; = (31 —2,3i — 1, 3i).
So 9(t;) = 9;(t) = {3i — 2,3i — 1, 3i}.

Let 2 € X. Denote the product of the t;’s for which 9;(¢) N supp(xz) = 0 by 79 and let 73
be the product of the ¢;’s for which 9;(¢) C supp(x). Also let 71 be the product of ry t;’s
where |0;(t) N supp(x)| = 1, 3 | 11 and 7 is as large as possible. Analogously, 7 is the
product of rq ¢;’s where |0;(t) N supp(x)| = 2, 3 | ro and 7 is as large as possible. Setting
Te = t7'0_17'1_172_173_1 we have t = 1,79mT273. Let r, be the number of ¢;’s in 7., r¢ the
number of ¢;’s in 7y and r3 the number of ¢;’s in 73. Observe that the maximality of r; and
ro means 7, < 4 and that at most two of the ¢;’s in 7, will have |J;(¢) N supp(z)| = 1 and
at most two will have |9;(t) N supp(z)| = 2. Evidently r = r, + rog + r1 + ro + r3 and, for
i=0,1,2,3,|supp(z) N supp(r;)| = ir;. Putting s, = |supp(x) N supp(7:)|, we also have

|supp(t) N supp(x)| = si + r1 + 2ry + 3r3.
Set A = Q\ (supp(t) U supp(x)). Since

|supp(t) U supp(x)| = 3r + 3r — (s, + 11 + 219 + 3r3)
=61 — (8. + 71 + 2r9 + 3r3)
it follows that
|A| = s, 4+ 71+ 2ry + 3r3 if n = 6r and
Al > 1+ s, 471+ 2ry + 3rgif n > 6r.

= | | Hiyiois

where the product of the p;,,i, = t;,ti,t, is pairwise disjoint. For each pi;, iy, = i, tiytiy, =
(317 — 2,301 — 1, 3i1)(3i2 — 2, 3ia — 1, 3i5) (3i3 — 2, 3i3 — 1, 3i3) we may without loss, suppose
that supp(pi,iyis) N supp(x) = {3iy — 2,31y — 2,3i3 — 2}. Put

Since 3 divides r, we may write

Nivigis = (3i1 — 2,31y — 2, 3i5 — 2)(3iy — 1,3y — 1, 3i5 — 1) (31, 3ia, 3i3).
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Then A commutes with fu;,;,,,. Let

P1 = H >\i1i2i3

and observe that p; commutes with ¢ and will be a pairwise disjoint product of r; 3-cycles.
Further, %+ of the 3-cycles in p; will have their support contained in supp(x) while the
remaining 2% 3-cycles in p; will have their support intersecting supp(z) in the empty set.

Also, as 3 divides ry, we may express

T2 = Hnj1j2j3

where 7;, .55 = tj,tj,tj, with the product being pairwise disjoint. For each 7;,;,;, we may
suppose that supp(n;,j,5,) N supp(x) = {371 — 2,351 — 1,342 — 2,3j> — 1,355 — 2,355 — 1}.
Define

119213

Ojujogs = (371,372, 373) (Bj1 — 2,32 — 2,3j3 — 2)(3j1 — 1,352 — 1,33 — 1),

P2 = H 0jijajs-

Evidently ps commutes with ¢ and ps is a pairwise disjoint product of ro 3-cycles. More-

over, 2% of the 3-cycles in ps will have their support contained in supp(z) and the re-

maining % have supports intersecting supp(z) in the empty set.
Let oy (respectively oy) be the product of the 2% (respectively 2) 3-cycles in p; (respec-
tively po) whose support intersects supp(z) in the empty set. Also let o4 be a pairwise

disjoint product of (% + 22 + r3) 3-cycles with supp(aq) € A. Put A = A\supp(o4).

and let

We now summarize the pertinent properties of the permutations just introduced.

Lemma 2.1. (i) supp(top1p273) C supp(t), Top1pa7s commutes with t and is the product
of r — ry pairwise disjoint 3-cycles.

(i1) 01097904 commutes with Top1paT3 and is the product of r—r, pairwise disjoint 3-cycles.
Moreover supp(ci09m904) N supp(z) = 0.

(7ii) |A| = s if n=6r and |A| =1+ s, if n > 6r.

Proof. (i) Since supp(p1p2) = supp(T172), Top1p2Ts is the product of pairwise disjoint 3-
cycles, and the number of such 3-cycles is r — r,.. Because p; and ps both commute with
t, Top1p273 commutes with £.

(ii) Since supp(o4) € A and supp(rop1p273) C supp(t), o4 commutes with 79p1pa73. While
01097y is a product of 3-cycles which appear in 79p1p273 and therefore o1097904 commutes
with 79p1p273. By construction o; N supp(z) = 0(i = 1,2), supp(ro) N supp(z) = 0 by
definition and because we chose o4 so as supp(cs) C A we get supp(o1091904) N supp(x) =
0.

(iii) Part (iii) follows from |supp(o4)| =11 + 2ry + 3r3 and A = A\supp(o4). O
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We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Lety € X be such that [supp(y)Nv;(t)| = 1 = [supp(t)Nv;i(y)|
fori=1,...,7. Then Cq(t) N Cq(y) = Sym(¥) where ¥ = Q\ (supp(t) U supp(y)). Now
|supp(t) U supp(y)| = 3r + 3r —r = 5r and so |V| = n — 5r < 8 — 5r = 3r. Thus
X NCq(t) N Cq(y) = 0 and consequently d(¢,y) > 3. Hence Diam (C(G, X)) > 3.

Let + € X. We aim to show that d(¢,z) < 3. On account of Cg(t) having shape
3"Sym(r) x Sym(n — 3r) there is no loss in supposing 7, = t;...t,, where 0 < r, < 4
(r. = 0 meaning 7, = 1). Depending on 7, we define two elements p, and o, which will
be the product of r, pairwise disjoint 3-cycles.

(1) r. =4

Then we have 7, = t1tatsty = (1,2,3)(4,5,6)(7,8,9)(10,11,12), s, = 6 and we may, with-
out loss, assume supp(7,)Nsupp(x) = {1,4,7,8,10,11}. Observe that |supp(z)\supp(t)| =
6 and so we may select oy, g, g, ., a5, g € supp(x)\supp(t). Also by Lemma 2.1(iii),
as s, = 6, |A| = 7. Thus we may also select (31, B2, B3, B4, 5, O € A. Define

Px = (041,CYQ,043)(044,CY57046)(51,52753)(54;55,56)

0. =(2,3,5)(6,9,12)(B1, Bz, B33) (B, Bs, Bs)-
(2)r,=3

So T, = titats = (1,2,3)(4,5,6)(7,8,9). First we examine the case when s, = 4, and may
suppose that supp(r.) N supp(z) = {1,4,7,8}. Here we have |supp(x)\supp(t)| = 5 and
|A| = 5. Choose aq, ag, ag, ay, a5 € supp(x)\supp(t) and By, Bz, B3, fa, B5 € A, and define

Px = (ab Qg, @3)(@4, a5, Bl)(ﬁ% BS: ﬁ4)

and
Oy = (2, 3, 5)(6, 9, ﬁ5)(ﬁ27 537 54)

We move onto the case when s, = 5 and, without loss of generality, assume supp(r,) N
supp(z) = {1,2,4,5,7}. Since |supp(x)\supp(t)| > 4 and |A] > 6, we may select
a1, 02,03 € supp(x)\supp(t) and 617 527ﬁ3aﬁ4vﬁ57/86 € A. Then we take

P« = (a1, 2, a3)(B1, B2, B3)(Ba Bs, Bs)

0. = (3,6,8) (51, B2, Bs)(Ba, Bs, Bs)-
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So 7, = tity = (1,2,3)(4,5,6) with s, = 2, 3 or 4. First we look at the case when s, = 2
or 3. Then we have |supp(z)\supp(t)| = 3, |supp(t)\supp(z)| = 3 and |A| > 3. Choosing

ai, g, az € supp(x)\supp(t), B, Bz, f3 € A and v, 72,73 € supp(t)\supp(z)), we let
Psx — (061,0427043)(51,52753)
and

Oy = (71,72,73)(/31,52,53)-

Now assume that s, = 4, and, without loss, that supp(7.) N supp(z) = {1,2,4,5}. Be-
cause |supp(z)\supp(t)| = 2 and |A| > 5 we may choose ay,ay € supp(x)\supp(t) and
B1, B2, Ps, Ba, B5 € A and then define

Px = (061,%,51)(52,53754)

0. = (3,6, 55)(52, b5, f1).
@ =1

Then 7, = t; = (1,2,3) and s, = 1 or 2. Suppose s, = 1 with supp(7.) N supp(x) = {1}.
So |supp(z)\supp(t)] = 2 < |Al]. Selecting oy, as € supp(z)\supp(t) and 5y, By € A, we
set

pe = (a1, 9, B1)
and

0. = (2,3, b2).
While if s, = 2, then |A] > 3 and selecting (1, B2, f3 € A we set

Px = Ox = (51752753)-
(5)r.,=0
Here we take p, =1 = o,.

Put y = pu1op1pems. Since y is the product of r, + rg + r1 + ro + r3 = r disjoint 3-
cycles, y € X. Further we have that ty = yt by Lemma 2.1(i). Next we consider
2z = 0,0109T904. BEach of 0,017,095, 7 and o4 are pairwise disjoint. Recalling that o1, 09
and o4 are, respectively, the product of 21, 22 (2 + 2% +73) disjoint 3-cycles, we see that

30 3°\3
z € X. It may be further checked using Lemma 2.1(ii) that yz = zy and xz = zx, and
consequently d(t,z) < 3. This completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Let z € X. Our objective here is to show that d(¢,z) < 4
from which it will follow that Diam (C(G, X)) < 4. We proceed in a similar fashion to
that in the proof of Theorem 1.1 though here, except for some cases, we will define three
permutations p, 0y, &, each a product of r, pairwise disjoint cycles.
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(6) 1. =4

So T. = titatsty = (1,2,3)(4,5,6)(7,8,9)(10,11,12) with s, = 6. Assume, without loss,
that supp(7.) N supp(z) = {1,4,7,8,10,11}. Since |supp(x)\ supp(t)] = 6 and so we
may choose ay, g, sz, ay, as, ag € supp(z)\supp(t). Further, as |A| = s, = 6 by Lemma
2.1(iii), we may also choose (1, 52, B3, B4, Bs, Bs € A. Now define

ps = (a1, g, as)(ay, as, ag) (81, B2, B3)(Ba, Bs, Bs)

Oy = (27 37 5)<67 97 12)<ﬁ17 527 63)(ﬁ47ﬁ57ﬁ6)'
(T)r.=3
So T. = titats = (1,2,3)(4,5,6)(7,8,9). If s, = 4 we may suppose without loss that

supp(t.) N supp(x) = {1,4,7,8}. Here we have |supp(x)\supp(t)| = 5 and |A| = s, =4
by Lemma 2.1(iii). Choose a1, ag, az € supp(x)\supp(t) and By, 2, f3 € A, and define

pe = (ou, s, a3) (b1, Ba, B3)(1,2,3),

Oy = (57 67 9)(B17 ﬁQa ﬁ3)<17 27 3)
and

5* - (57 6, 9)(61’ Ba, 53)(047 B, 7)7

where («, 3,7) is a 3-cycle of z for which 1 ¢ {a, 8,~}. Note that {«, 8,7} Nsupp(o,) = 0.
For the case when s, = 5, without loss of generality, we assume supp(7.) N supp(z) =
{1,4,5,7,8}. Since |supp(z)\supp(t)| = 4 and |A| = s, = 5, we may select oy, s, a3 €
supp(x)\supp(t) and By, 52, B3 € A. Then we take

Px = (Oél, Qa, 043)(51, 527 63)(47 57 6)’

Ox = (27 3, 9) (517 Ba, B3)<47 5, 6)
and

5* - (27 3, 9)(617 B, B3)(a7 B, 7)7

where («, 3,7) is a 3-cycle of z chosen so as {4,5} N{«, 3,7} = 0. Since r > r, = 3 such
a choice is possible.

Before dealing with r, = 2 we analyze a number of small cases.

(8) Suppose that t = (1,2,3)(4,5,6) (sor =2 and n = 12).
(i) If x = (1,7,8)(4,9,10) or x = (1,4,7)(2,5,8), then d(t,x) < 4.
(4)If © = (1,4,7)(8,9,10), then d(t,x) < 3.
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Assume that z = (1,7,8)(4,9, 10), and let
x1 = (7,8,11)(9,10,12), x9=(2,3,5)(9,10,12), x3=(2,3,5)(1,7,8).

Then x1, 29,23 € X and (¢, 21,29, 23, x) is a path in C(G, X) whence d(t,z) < 4. In
the case x = (1,4,7)(2,5,8) we take z; = (7,8,9)(10,11,12), 2o = (1,3,6)(10,11,12)
and x3 = (2,5,8) (10,11,12). It is easily checked that (¢, xq,xs,23,x) is also a path in
C(G, X), so proving part (i). For x = (1,4,7)(8,9,10) taking x; = (1,2,3)(8,9,10) and
xe = (5,6,11)(8,9,10) gives a path (¢, z1, 29, ) in C(G, X). So (ii) holds and (8) is proved.

(9) Suppose t = (1,2,3)(4,5,6)(7,8,9) with 7. = (1,2,3)(4,5,6) (sor =3 and n = 18).
Let # € X be such that supp(7.) N supp(z) = {1,4} and assume 1 and 4 are in different
3-cycles of x. Then d(t,z) < 4.

By assumption x = (1,%,*)(4,4,¢)(a, 8,7) with {1,4} N {«, 5,7} = . Because 7, =
(1,2,3)(4,5,6) we must have supp(t) N supp(x) = {1,4} or {1,4,7,8,9}. Suppose the
former holds and set =1 = (1,2,3)(a, 5,7)(7,8,9) and =y = (4,9,€)(c, 5,7)(7,8,9).
Then (t,x1,29,2) is a path in C(G,X). Hence d(t,z) < 3. Turning to the latter
case we have |supp(t) U supp(xz)| = 13. So we may choose, say, 16,17,18 € A and
then take x; = (1,2,3)(4,5,6) (16,17,18), 2o = (1,2,3)(a, 8,7)(16,17,18) and x5 =
(4,6,€)(c, 5,7)(16,17, 18), giving a path (¢, 1, z9, x3,2) in C(G, X). Thus d(t,z) < 4, so
proving (9).

(10) r. =2

So we have 7, = t1to = (1,2,3)(4,5,6) with s, = 2,3 or 4. First we consider the case
s, = 2, and assume supp(7.) N supp(z) = {1,4}. For the moment also assume that r = 2
(so t = 7). Then, without loss, x is either (1,7,8)(4,9,10) (1 and 4 in different 3-cycles
of x) or (1,4,7)(8,9,10) (1 and 4 in the same 3-cycle of x). By (8)(i) we have d(t,z) < 4.
So, since we are aiming to show that d(t,z) < 4, we may suppose r > 3. Now consider
the possibility that » = 3 and 1 and 4 are in different 3-cycles of x. Then, without loss,
x = (1,%,%)(4,0,€)(c, B,7) in which case d(t,z) < 4 by (9). Thus, when r = 3, we may
suppose 1 and 4 are in the same 3-cycle of . Consequently, as r > 3, we may find two
3-cycles of x, (o, 3,7) and (0, ¢, A) such that {a, 3,7,d,e, A} N {1,4} = . Now we define
px, 0 and &, by taking p. = o, = 7 and & = (o, 5,7), (6, €, A).

Next we look at the case s, = 3. Then we have |supp(z)\supp(t)| = 3, |supp(t)\supp(z)| >
3and |A] = s, = 3. Choosing a1, ay, az € supp(x)\ supp(t), B1, B2, B3 € A and 1,792,793 €

supp(t)\supp(zx)), we let
pi = (o1, a, a3) (B, B2, )

and

0w = (71,72, 73) (B1, B2, B3)-

Finally we come to s, = 4. So without loss we have supp(r.) N supp(x) = {1,2,4,5}.
Suppose, for the moment, that for all 3-cycles («, 3,7v) we have {1,2} N {«, 3,7} # 0 #
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{4,5} N {a, B,7}. Then it follows that r = 2 and, without loss, = = (1,4,7)(2,5,8). But
then d(t,z) < 4 by (8)(ii). Thus we may suppose = contains a 3-cycle («, 5,7) such that
(e, B,7) N {1,2} = 0, and we can now define p, and o,. Since |A| = s, = 4, we have
B1, B2, Ps € A. Let p, = (1,2,3)(p1, 52, f3) and o, = (o, B,7)(B1, B2, B3). This completes
the case s, =4 and (10).

Yet another special case must be looked at before doing 7, = 1.

(11) Let ¢t = (1,2,3)(4,5,6) with 7. = (1,2,3). Suppose z = (1,x*,%)(2,*,%) € X with
supp(i) N supp(x) = {1,2}. Then d(t,z) < 3.

Since 7. = (1,2, 3), supp(t)Nsupp(z) = {1,2} or {1,2,4,5,6}. If supp(t)Nsupp(z) = {1,2}
and, say Q\(supp(t) N supp(x)) = {11,12}, then define =1 = (4,5,6)(10,11,12), 29 =
(4,5,6)(cv, B,7) where (a, 3,7) is a 3-cycle not containing 10. While in the other case
with, say Q\ (supp(t)Nsupp(z)) = {8,9,10, 11,12} we define z; = (8,9,10)(7,11,12), 29 =
(8,9,10)(cv, B,7) where (v, 3,7) is a 3-cycle not containing 7. Hence d(t, z) < 3.

(12) r, =1

So we have either, without loss, supp(7.) N supp(x) = {1} or {2,3}. In view of (10), as
r > 1, either d(t,x) < 3 or we may find a 3-cycle («, 3,7) of x for which supp(r.) N
{a, 8,7} = (. In the latter case we define p, = 0, = 7, and & = (a, 3,7).

(13) r. =0

Just as in (5) we take p, =1 = o,.

Now let y = puTop1paTs, 2 = 0,0109T904 and w = £,01027904 (Where w is only defined if
in (6), (7), (10), (12), (13) & is defined). Then y, z,w € X with (¢,y, z,w, z) is a path
in C(G, X). Consequently d(¢,x) < 4. Since x was an arbitrary vertex, this shows that
Diam (C(G, X)) < 4 and completes the proof of Theorem 1.3. O

We end this paper with a table containing some calculations on diameters and discs using
MacMA[10]. Each entry in the table first gives the size of the relevant A;(¢) for the given
r and n with the number in brackets being the number of C¢(t)-orbits on A;(¢). A blank
entry means that |A;(¢)| = 0.
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12 1d# ‘(2102) (1)ZZ SOMMOLYNIANOD A0 TYNHUNOL DINOHLOATH HHL

As(t) As(t) A4(t) As () Ag(t)
r=1
n="7 24 (2) 36 (1) - - -
n==~§ 90 (3) - - - -
n= 126 (3) - - - -
r=2
n =10 192 (6) 1,008 (10) 2,628 (20) 3,672 (13) 864 (5)
n=11 1,080 (9) 7,560 (23) 9,756 (23) i i
n=12 6,300 (16) 28,296 (34) 2,160 (5) i i
n =13 25,740 (30) 42,336 (25) i ; ;
n =14 67,140 (48) 51,408 (7) i ; ;
n—15 168,948 (54) 27,216 (1) ; ] ;
n=16 310,956 (55) i i i i
r=3
n = 216 (4) 1,512 (11) 486 (6) . i
n=12 648 (8) 9,936 (39) 90,990 (139) 327,024 (404) | 64,152 (102)
n=13 2,308 (18) 79,488 (85) 724,086 (383) 783432 (332) | 11,664 (3)
n =14 9,936 (23) 300,582 (138) 3,217,806 (564) 865,800 (143) ]
n =15 62,424 (46) 2,414,610 (243) 8,733,420 (594) : i
n=16 482,760 (90) | 17,798,778 (578) 7,341,516 (220) i i
n=17 3,400,272 (145) | 50,175,126 (728) 70,912 (16) i i
n =18 16,126,308 (210) | 92,757,960 (679) ; .

0T

Continued on Next Page. ..




12 1d# ‘(9[06) ('[)ZZ SOTHOLVNIIINOD A0 TYNHNOL DINOYLOHTH HHL

1T

Table 1 — Continued

A (t) Ay(t) As(t) Ay(t) As(t) Ag(t)
r—
n=12| 159 (6) 8,532 (20) 193,104 (121) 44,604 (37) ; .
n=15| 367 (11) 37,044 (52) 3,053,160 (682) 81,668 484 (8,294)
n=16| 991 (11) | 271,236 (92) | 56,926,656 (2,351) | 390,820,212 (13,122) | 419,904 (12) i
n =17 2,239 (11) | 1,350,612 (112) | 487,124,064 (4,539) | 1,036,246,284 (12,578) ; :
r=5§
n =15 751 (8) 154,440 (44) 17,669,304 (783) 27,020,304 (996) - -

Table 1: Disc sizes and C¢(t)-orbits
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